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Abstract
Analogue gravity is based on a mathematical identity between quantum field 
theory in curved space-time and the propagation of perturbations in certain 
condensed matter systems. But not every curved space-time can be simulated 
in such a way. For analogue gravity to work, one needs not only a condensed 
matter system that generates the desired metric tensor, but this system then also 
has to obey its own equations of motion. However, the relation to the metric 
tensor usually overdetermines the equations  of the underlying condensed 
matter system, such that they in general cannot be fulfilled. In this case the 
desired metric does not have an analogue.

Here, we show that the class of metrics that have an analogue is larger than 
previously thought. The reason is that the analogue metric is only defined up 
to a choice of parametrization of the perturbation in the underlying condensed 
matter system. In this way, the class of analogue gravity models can be vastly 
expanded.

Keywords: analogue gravity, field theory, Lagrangian formalism

1. Introduction

Some condensed matter systems act as ‘analogues’ for gravity so that small perturbations 
around their background fulfill an equation of motion formally identical to that of fields in a 
curved space-time. The effective metric that quantifies the curved space-time is then a func-
tion of the properties of the condensed matter system.

There are various examples for such analogies. For illustrative purposes we will deal here 
with the one that employs a non-viscous, irrotational, and barotropic fluid. The effective 
 metric is then a function of the pressure (p0), the density (ρ0), and the velocity field (�v0) of 
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the fluid—though we note that the technique proposed here does not depend on the specific 
form of the metric and is more generally applicable. Here and throughout this paper the index 
0 refers to the background field.

That gravity and condensed matter physics are linked in this fashion has been known since 
the mid 1980s [1, 2], but only in the last decade has the field begun to attract attention. One of 
the reasons is that new connections between gravity and condensed matter systems have also 
been found in different approaches, such as the AdS/CFT correspondence [3–5] and entropic 
gravity [6–9]. The connection between analog gravity and the AdS/cft duality was studied 
in [10–16]. Another reason is that the possibility to experimentally explore these systems has 
recently become reality [17–22].

This is an exciting research area because it allows to probe quantum field theory in curved 
space-time, which is not currently possible in the actual curved space-time. Beyond that, it allows 
to explore how the underlying, more fundamental, theory makes itself noticeable. For condensed 
matter systems the underlying theory is known. For gravity it is not. So, from the correspondence 
between the two systems, we might learn in which situations we can probe the underlying theory.

But how much we can learn from analogue gravity is limited by the type of space-times 
that can be simulated in this fashion. It is not generally the case that the fluid whose density, 
pressure, and velocity can be extracted from the metric fulfills the equations of motion. In fact, 
for the most-studied case—the Schwarzschild metric [23–25]—the condensed matter system 
does not fulfill the equation of motion. This would lead one to conclude that it is not possible 
to simulate the Schwarzschild metric directly, but only a metric which is conformal to the 
Schwarzschild metric. We will, however, show here that by using a different way to identify 
the background-perturbations, the Schwarzschild metric—and many other metrics that were 
previously not possible—can be simulated directly.

This can be achieved by examining how a conformal factor enters the equations of motion 
of the perturbation—similar considerations were also made in [26]—and observing that the 
way in which this factor enters is similar to the way that an effective mass-term does. We 
then demonstrate how to modify the background system such that it creates an effective mass 
which cancels the contribution of the conformal factor. This method then allows us to find 
condensed matter systems that are gravitational analogues for space-times which are confor-
mally equivalent to those space-times presently known to have gravitational analogues.

This paper is organized as follows. In section 2, we briefly summarize the derivation of 
the equations  of motion for the perturbations around the background field, paying special 
attention to the effective mass and potential. In section 3, we remind the reader how confor-
mal rescaling affects the wave-equation. In section 4 we show with several examples how an 
appropriately chosen conformal factor can be used to satisfy the equations of motion of the 
fluid describing a non-relativistic acoustic metric. Then, in section 5, we discuss the procedure 
in more general terms before summing up our findings in the conclusions.

We use units in which the speed of light and � = 1. The constant c denotes the speed of 
sound and not the speed of light. We will work in the ‘mostly plus’ signature convention for 
the metric, (−1, 1, . . . , 1).

2. The acoustic metric

The effective metric which is perceived by small perturbations over a background field can 
be derived using a Lagrangian approach. We here briefly summarize the results of this der-
ivation—for details the reader is referred to [2, 15, 27]. We assume that the ‘subjacent’ (as 
opposed to effective) metric lives on a Lorenzian manifold of dimension n + 1.
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2.1. Real scalar field

We use a Lagrangian for a real scalar field which is of the general form

L = L[χ(∂θ), V(θ,�x)], (1)

where

χ = ηµν (∂νθ) (∂µθ) (2)

is the kinetic term and V(θ,�x) describes the potential for the field and possible interactions 
with external sources. Next, we split the field into a background and perturbations around the 
background, θ = θ0 + θ1, where (by assumption) the background field θ0  fulfills the Euler–
Lagrange equations. One can then expand the action in powers of the perturbation. This way, 
one finds that the terms for the perturbation take the form of the action of a scalar field propa-
gating in an effective metric gµν which is defined by

√
−ggµν = − ∂2L

∂(∂νθ)∂(∂µθ)

∣∣∣∣∣
θ=θ0

, (3)

and has a mass term

√
−gm2

eff = −

[
∂2L
∂θ∂θ

+ ∂ν

(
∂2L

∂(∂νθ)∂θ

)]

θ=θ0

. (4)

Since (3) determines the propagation of sound-waves, it is also known as the (inverse) acoustic 
metric. The effective mass (4) will not be a constant, in most cases. It might thus appear more 
appropriate to use the term potential instead, however, to avoid a nomenclature-confusion with 
the potential for the background field, we will refer to it as effective mass—as it has become 
customary in the literature, in general.

Next, one can represent the acoustic metric in terms of quantities familiarly used for fluid 
dynamics. To that end, one introduces the stress-energy-tensor

Tµν = ( p0 + ρ0)uµuν + p0ηµν , (5)

where the four-velocity, pressure and density of the background field are given by

uν =
∂νθ√
χ

, p0 = L, ρ0 = 2χ
∂L
∂χ

− L, (6)

and the four-velocity is normalized to one

ηµνuµuν = −1. (7)

The field equations of the relativistic fluid are then identical to the conservation of the stress 
energy

∂νTµν = 0, (8)

and the acoustic metric and its inverse can be expressed as

gµν = c
2

n−1

(
ρ0 + p0

χ

)− 2
n−1

(
ηµν +

(
1 − 1

c2

)
uµuν

)
, (9)

gµν = c
−2
n−1

(
ρ0 + p0

χ

) 2
n−1 (

ηµν +
(
1 − c2) uµuν

)
. (10)
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Here, c is the speed of sound and defined by c−2 = ∂ρ0/∂p0 .
In the non-relativistic limit, p0 � ρ0 and v2 � c2, then the acoustic metric is of the form

gµν(t,�x) ∝
(ρ0

c

)− 2
n−1

(
−1/c2 −v j

0/c2

−vi
0/c2 δij − vi

0v j
0/c2

)
,

 

(11)

gµν(t,�x) ∝
(ρ0

c

) 2
n−1

(
−(c2 − v2

0) −(v0)j

−(v0)i δij

)
.

 

(12)

In this limit, the equations of motion for the background field are the continuity equation and 
the Euler equation:

∂tρ0 + �∇ · (ρ0�v0) = 0, (13)

ρ
[
∂t�v0 + (�v0 · �∇)�v0

]
= �F. (14)

The argument we will develop here assumes that we are in the non-relativist limit.
We will also assume, as usual, that the fluid is non-viscuos, has vanishing rotation (i.e. 

is vorticity-free), and is barotropic. The velocity field is then the gradient of a scalar field 
�v0 = −�∇φ and the density ρ0 is a function of p0 only. In this case, the Euler equation can be 
integrated once and can be written as

∂tφ = h +
1
2

(
�∇φ

)2
, (15)

where

h( p) =
∫ p

0

dp′

ρ0( p′) (16)

is the specific enthalpy.
Let us then make the following observation. Consider we have a type of fluid with a speci-

fied Lagrangian L and an unspecified potential V. We would like to find a potential for the 
fluid that realizes a space-time metric which takes the form of the acoustic metric (12). We 
then first read off ρ and �v  from the metric. With the previously made assumptions that the fluid 
be non-viscuos, vorticity-free and barotropic, this will result in two equations of motions (13) 
and (15). In general, however, both equations cannot be solved simultaneously. And since (3) 
does not depend on V directly, different choices of the potential do not remedy the problem. 
This leads to the conclusion that most metrics cannot be realized as gravitational analogues. 
Indeed this is the case e.g. for the Schwarzschild-metric [2, 15].

We will in the following show how to circumvent this impasse.

2.2. Complex scalar field

Before we get to our main argument, let us briefly look at how to generalize the above formal-
ism to a complex scalar field, when the Lagrangian is a function of ∂θ, ∂θ∗, and θ, θ∗. The 
expansion works similarly to the case of a real scalar. When we set

Θ0/1 =
(
θ0/1, θ∗0/1

)
 (17)

S Hossenfelder and T Zingg Class. Quantum Grav. 34 (2017) 165004
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for brevity, then expanding the action to second order leads to the equations of motion for the 
perturbations

∂µ (Gµν · ∂νΘ1)− M ·Θ1 = 0 , (18)

where

Gµν =




1
2

(
∂2L

∂(∂µθ)∂θ∗
;ν
+ c.c.

)
∂2L

∂θ∗
;µ∂θ

∗
;ν

∂2L
∂θ;µ∂θ;ν

1
2

(
∂2L

∂θ;µ∂θ∗
;ν
+ c.c.

)


 ,

 

(19)

M =




1
2

(
∂2L

∂θ∂θ∗ − ∂µ
∂2L

∂θ∂θ∗
;µ
+ c.c.

)
∂2L

∂θ∗∂θ∗ − ∂µ
∂2L

∂θ∗∂θ∗
;µ

∂2L
∂θ∂θ − ∂µ

∂2L
∂θ∂θ;µ

1
2

(
∂2L

∂θ∂θ∗ − ∂µ
∂2L

∂θ∂θ∗
;µ
+ c.c.

)


 .

 (20)
Here, a semicolon denotes a covariant derivative with respect to the index that follows. With 
the usual assumption of L being real-valued, these matrices are Hermitian.

The equation of motion for the perturbations θ1 and θ∗1  are then two separate equations, 
which are complex conjugates of each other. They do not in general split into separate equa-
tions for θ1 and θ∗1  respectively, which means there is no straight-forward interpretation of the 
equations of motion in terms of an analogue metric.

However, under certain circumstances it is possible to separate the two equations. In par-
ticular, if Gµν  and M, as 2 × 2 matrices, have a common eigenvector, then a perturbation which 
is parallel to this eigenvector will separate. Such a common eigenvector of Gµν  and M exists if,

ker

2⋂
k,l=1

[
(Gµν)k, Ml] ∣∣

Θ=Θ0
�= {0} . (21)

Here, k, l are exponents, not indices, and the square brackets denote the commutator. We will 
in the following not explore the necessary conditions which this implies for the Lagrangian. 
We merely note that a sufficient condition to fulfill this requirement is that L is subject to a 
reality condition—as it would be for a feasible physical system, anyway—and background as 
well as perturbation are restricted to real values. We will in the following assume that this is 
the case. If the original definition of the fields does fulfill this condition, then one can separate 
the equations by forming the linear combinations θ1 + θ∗1  and θ1 − θ∗1 . In the case of a U(1) 
gauge symmetry, this does not even impose any actual restriction, as a choice orthogonal to 
the real solution would be pure gauge.

3. Conformal rescaling of the wave-equation

The perturbation of the scalar field, θ1, satisfies the equation of motion

�θ1 − m2
effθ1 =

1√
|g|

∂µ

(√
|g|gµν∂νθ1

)
− m2

effθ1 = 0. (22)

We now introduce a rescaled metric g̃ = Ω−2g, with an unspecified conformal factor Ω(t,�x) 
that is a function of the coordinates. The d’Alembert-Operator � acting on θ1 can then be 
rewritten via replacing occurrences of g in terms of g̃ and Ω,

S Hossenfelder and T Zingg Class. Quantum Grav. 34 (2017) 165004



6

�θ1 =
1

Ωn
√
|g̃|

∂µ

(
Ωn−2

√
|g̃|g̃µν∂νθ1

)
. (23)

Next, we replace θ1 with a rescaled field θ̃1 = Ω
n−2

2 θ1. This results in the identity

�θ1 =
1

Ωn
√
|g̃|

∂µ

[√
|g̃|g̃µν

(
Ω

n−2
2 ∂ν θ̃1 +

2 − n
2

Ω
n−4

2 θ̃1∂νΩ

)]

=
Ω− n+2

2√
|g̃|

∂µ

(√
|g̃|g̃µν∂ν θ̃1

)
+

(2 − n)θ̃1

2Ωn
√
|g̃|

∂µ

(
Ω

n−4
2
√

|g̃|g̃µν∂νΩ
)

.

 

(24)

Plugging this result into the original equation of motion, we therefore see that any field θ1 
which fulfills the wave-equation (22) in the background given by the metric g can be mapped 
to a field θ̃1 which fulfills the wave-equation in the background g̃

�̃θ̃1 − m̃2
effθ̃1 = 0, (25)

provided we define the new effective mass as

m̃2
eff = Ω2m2

eff +Ω
2−n

2 �̃Ω
n−2

2 . (26)

The conformal factor hence determines which effective mass is necessary to obtain the wave-
equation in the desired background g.

This also works if the scalar field is U(1)-charged and has a gauge field Aν . We then have

(∇µ + iqAµ)(∇µ + iqAµ)θ1 − m2
effθ1 = 0, (27)

and the equation can be mapped to

(∇̃µ + iqAµ)(∇̃µ + iqAµ)θ̃1 − m̃2
effθ̃1 = 0, (28)

with the same effective mass as in equation (26) and the gauge field Aµ remaining unmodified. 
Here, ∇ and ∇̃ denote the covariant derivatives compatible with the effective metrics g and 
g̃, respectively.

4. Examples

Space-times that can be simulated with gravitational analogues include the Schwarzschild 
black hole [23–25] and expanding de-Sitter space that mimics the inflationary epoch of the 
early universe [27–31].

In many cases, it was found that the specific metric of interest does not satisfy the resulting 
fluid’s equations of motion, only a metric conformally equivalent to it does. To study certain 
phenomena from a qualitative point of view, this is sufficient, but if any scale-dependence is 
to be taken seriously in such findings, it would be much preferable to directly simulate the 
original metric and not one that is merely conformal to it.

Important examples of metrics that can be made to satisfy the equations of motion by intro-
ducing a conformal factor are below.

4.1. Conformally flat space-times

The simplest case to illustrate the use of what we have shown in the previous section is to 
consider a conformally flat space-time with line-element

S Hossenfelder and T Zingg Class. Quantum Grav. 34 (2017) 165004
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ds2 = a2(t,�x)
(
−dt′2 + δijdxidx j) . (29)

Formally, this case may not seem particularly interesting, because any conformally flat metric 
with ∂tρ0 = 0 can directly be realized as an acoustic metric by choosing ρ0 = a2 and �v0 = 0. 
Nevertheless, for an arbitrary function a(t,�x), it may not be feasible to create an exper imental 
setup where the density ρ0 has a complicated, spatially modulated, and potentially time-
dependent, profile. But with the derivation from section  3, where is was laid out that the 
analog metric is actually only determined up to a choice of parametrization, by setting Ω = a, 
a perturbation in (29) can be mapped to a perturbation propagating in flat Minkowski space. 
This, of course, comes at the price of having to adjust the effective mass (26) for the perturba-
tion to accommodate for the shift due to the conformal factor. From the point of view of an 
experimental setup, however, the latter would appear much more practical, e.g. by coupling to 
an external potential, which seems more straightforward to realize than having to change the 
background altogether to allow for different profiles a(t,�x).

4.2. Black holes

A more interesting case are black hole space-times, which, in general, are not conformally 
flat—e.g. the Schwarzschild metric. They are of special interest as their analogue dual can be 
used to test the presence of Hawking radiation3.

Thus, consider a typical static stationary black hole space-time in n + 1 dimensions4

ds2 = Ω(r)2
[
−γ(r)dt2 +

dr2

γ(r)
+ r2dσn−1

]
, (30)

with the horizon topology of a n − 1 dimensional sphere (dσ) and blackening factor γ(r). In 
analogy to Painlevé–Gullstrand coordinates for the Schwarzschild metric [32–34] this metric 
can be brought to the form

ds2 = Ω(r)2
[
−κ2 γ(r)dt′2 + 2κ

√
1 − γ(r) dt′dr + dr2 + r2dσn−1

]
, (31)

where the constant κ has been introduced for later convenience. Comparing to (12) it is now 
straightforward to read off the fluid components,

c0 = κ, ρ0 = κΩ(r)n−1, vr
0 = κ

√
1 − γ(r). (32)

For generic γ and Ω it can easily be checked that the continuity equation (13) is generally 
not satisfied, unless the very specific condition ρ0vr

0 ∼ r1−n is met. However, if Ω(r) were an 
adjustable function, the continuity and Euler equation could be solved by choosing

Ω(r) =
1
r
[1 − γ(r)]−1/2(n−1) , Fr = − κ3

2rn−1

γ′(r)√
1 − γ(r)

. (33)

We can therefore conclude that while a generic black hole space-time will likely not be an 
analogue metric, there is usually a conformally related metric that actually will be. As per our 
previous argument, this means that we can find a rescaled perturbation for which the black 
hole space-time is the analogue metric.

3 See e.g. [17, 18, 20, 21].
4 Schwarzschild, AdS-Schwarzschild, RN and AdS-RN can all be written in a form like (30).

S Hossenfelder and T Zingg Class. Quantum Grav. 34 (2017) 165004
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Note, however, that this may not work globally, as e.g. in regions with γ(r) > 1 bringing 
the metric directly to Painlevé–Gullstrand form is not well defined—though, in areas close 
enough to the horizon, there are no such issues.

4.3. Black branes

With black brane we refer to a space-time with a planar event horizon. A typical metric is of 
the form

ds2 = Ω(r)2
[
−γ(r)dt2 +

dr2

γ(r)
+ dx2

]
. (34)

Such space-times are of particular relevance in AdS/cft, where one is often interested in a 
gravitational dual of a strongly correlated thermal field theory on the flat boundary geometry in 
aymptotically AdS space-times. Finding an analog dual of such a metric works almost exactly 
as in the previous section. From transforming into Painlevé–Gullstrand type coordinates,

ds2 = Ω(r)2
[
−κ2 γ(r)dt′2 + 2κ

√
1 − γ(r) dt′dr + dr2 + dx2

]
, (35)

the fluid components can again be read off directly. The main difference to the previous case 
is that the spatial part of the line element is now in Cartesian rather than spherical coordinates. 
This slightly changes how Ω(r) needs to be chosen to satisfy the fluid equations. A quick 
calcul ation reveals that the fluid components are again as in (32), but what has changed is

Ω(r) = [1 − γ(r)]−1/2(n−1) , Fr = −κ3

2
γ′(r)√
1 − γ(r)

. (36)

5. Analogue systems from conformal rescaling

The cases discussed in section 4 exemplify a more general lesson which can be summarized 
as follows.

For a generic analougue metric of the form (12), the fluid equations are usually not satisfied 
unless special compatibility conditions are met. The introduction of a conformal factor allows 
to resolve that obstacle because it adds an additional degree of freedom. With the conformal 
factor Ω taken into account, the continuity and Euler equations (13) and (14) are not any more 
overdetermined, when considered as a set of equations for Ω and �F . This means that with an 
appropriately chosen Ω it is now generally possible to realize a given background as an ana-
logue metric.

As previously mentioned, a caveat is that the solution might not be valid everywhere as, 
e.g. for a generic background and boundary conditions it is a priori not necessarily forbidden 
that Ω could potentially change sign, which would result in an unphysical analogue metric. 
However, locally the system is solvable and in case Ω would change sign this just means that 
the parameter range would have to be reduced in a conceivable experimental setup.

We can then combine this insight with what we showed in section 3. There, we laid out 
that the analogue metric is actually only determined up to a choice of parametrization of the 
perturbation. In particular, a conformal rescaling of the analogue metric is related to a con-
formal rescaling of the perturbation and a shift in the potential that determines the effective 
mass. The latter is of course more than a mere choice of parametrization; it is a change to the 
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experimental setup. Nevertheless, it is still an approach that seems experimentally quite con-
ceivable to realize, e.g. by coupling to an external potential.

Hence, we can conclude that any given metric of the form of a non-relativistic acoustic 
metric (12) can indeed be realized as an analogue metric—albeit with some restrictions on 
global validity as pointed out above. The procedure, as outlined above, is to first use the liberty 
to choose a representative of the conformal class of metrics that satisfies the fluid equations, 
and then absorb the conformal factor into a change of the potential for the perturbation.

We have in this present work not investigated the relativistic case. It is more complicated 
because the pressure appears in the effective metric and the equations of motion cannot as easily 
be integrated once. It is therefore not a priori clear that introducing one additional free function 
will in general allow to solve the equations of motion. It is clear, however, that the additional 
function will also in this case increase the class of metrics that can be realized. However, just in 
which way the class would be enlarged is beyond the scope of this present work.

5.1. Modified Lagrangian

Having established how a conformal factor in the analogue metric can be absorbed into the 
effective mass of the perturbation, the question becomes how this change can be incorporated 
into the Lagrangian. Ideally, one would wish to change the potential for the scalar perturbation 
without having to change anything in the background metric, or the fluid, respectively.

Thus, assume there are two actions S1,2[θ] such that, for a particular solution θ = θ0, in 
either case the Euler–Lagrange equation  is satisfied, as well as the resulting analog metric 
and the stress tensor being identical. Then, on general grounds, it can be assumed that, when 
evaluated close to the particular solution,

S1[θ]− S2[θ] = O(|θ − θ0|2). (37)

This constrains the modified Lagrangian in the following way. If L[∂νθ, θ] is given and the 
Euler–Lagrange equation is solved at θ = θ0, then any Lagrangian that reproduces the same 
background and analog metric is expected to be of the form L̃[∂νθ, θ,∆] with ∆ = (θ − θ0)

2 
such that L̃[∂νθ, θ, 0] = L[∂νθ, θ]. Of course, under the condition that L̃ is sufficiently smooth 
in the third variable, such that the resulting Euler–Lagrange equation are still well-defined and 
fulfilled at θ = θ0.

Then, it is straightforward to verify that analogue metric (3) is unchanged and the fluid 
identification, as well as the stress-energy tensor in this particular background remain the 
same. However, according to (4), the effective mass for the variation will change to

√
−gm̃2

eff =
√
−gm2

eff − 2
∂L
∂∆

. (38)

The question remains what practical ways there are to modify a given Lagrangian. This, how-
ever, is a very model-specific problem which cannot be answered in all generality.

6. Conclusion

In this work we have detailed how an arbitrarily adjustable change in parametrization of a 
perturbation around a condensed matter background changes the resulting analogue metric 
and potential. This results in a significant extension of the class of space-times that have a 
fluid analogue.
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Using this freedom in parametrization, we considered metrics—in particular black hole 
space-times—which were hitherto argued to only be realizable in a conformally equivalent 
way as analogue metrics. We then showed how any introduced conformal factor could be 
absorbed into a change of potential for the perturbation. By using this procedure, we con-
cluded that, once a specific space-time has been specified, having to fulfill the equations of 
motion for the analogue condensed matter system is less restrictive than it might originally 
have appeared. In the case of non-viscous, barotropic fluids in the non-relativistic limit, we 
even found that this new degree of freedom is sufficient to prevent the fluid equations  of 
motion from becoming overdetermined, thus removing a feature that otherwise would obstruct 
finding a consistent analogue fluid.

We wish to emphasize that the re-parametrization introduced here does not rely on specific 
symmetries of an analogue model, but merely quantifies a freedom of choice for selecting 
the perturbation and defining its analogue metric. Therefore, the procedure as outlined in this 
paper can be applied to any conceivable analogue model and represents a powerful new tool 
to extend the classes of analogue metrics.
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