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Abstract: We show that a D3/D7 system (in the limit of zero quark mass) at finite

isospin chemical potential goes through a superconductor (superfluid) like phase transi-

tion. This is similar to a flavored superfluid phase studied in the QCD literature, where

mesonic operators condense. We have studied the frequency dependent conductivity of

the condensate and found a delta function peak in the zero frequency limit. This is an

example of superconductivity in a string theory context. Consequently we have found a

superfluid/supercurrent type solution and studied the associated phase diagram. The su-

perconducting transition changes from second order to first order at a critical superfluid

velocity. We have studied various properties of the superconducting system like superfluid

density, energy gap, second sound etc. We investigate the possibility of the isospin chemical

potential modifying the embedding of the flavor branes by checking whether the transverse

scalars also condense at low temperatures. This however does not seem to be the case.
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1 Introduction

The phase structure of Quantum Chromodynamics (QCD) and similar theories at finite

values of the isospin and baryon chemical potentials is an interesting arena. At high

enough isospin density the color singlet mesonic flavor degrees of freedom (e.g. pions) may

go through a Bose-Einstein condensation. The physical motivation to study such a pion

superfluid formed at high isospin density is related to the investigation of neutron stars,

isospin asymmetric nuclear matter and heavy ion collisions at intermediate energies. Un-

fortunately this set of problems is difficult to tackle numerically due to the complex nature

of the action. Various approaches including lattice simulations are used to investigate the

nature of the QCD phase diagram at finite isospin chemical potential and the existence of

a superfluid like state is argued [1–6].

One way to investigate various aspects of gauge theories is to use the gauge gravity

duality [7] i.e., study a supergravity/tree level string theory to learn about large-N gauge

theories. Although such examples do not include QCD or even pure Yang-Mills (YM)

theory yet, many qualitatively similar models have been constructed. In the idealized

limit where the ratio of flavor and color degrees of freedom is small, one can introduce

probe branes in the gravity background to study flavor physics [8]. In this scenario, the

baryon/isospin chemical potential maps to the chemical potentials for various gauge fields

living on the brane. The issue of baryon and isospin chemical potentials has been addressed

in various type of brane systems [9–15]. One phenomenon which is relatively less discussed

in string theory literature is flavor superconductivity. There are isospin charged bosonic
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states with mass of O(1) (e.g pions in QCD), which may be thought of as strings which

have endpoints on different flavor branes. Such a state may naturally condense as we turn

on the isospin chemical potential. Here we discuss such a scenario in a D3/D7 system in

the zero quark mass limit. We introduce a couple of coincident branes which end on a AdS5

black hole. We turn on a chemical potential corresponding to the SU(2) isospin gauge field

living on the world volume of the branes and study the resulting superconducting phase

transition and various properties associated with it.

The plan of the paper is as follows. In section 2 we will set up the probe brane configu-

ration and the equations of motion for the gauge fields. In sections 3 and 4, we establish the

superconducting phase transition and study the frequency dependent conductivity which

has a pole (corresponds to DC superconductivity) at zero frequency. The speed of second

sound is also calculated. Section 5 is devoted to a study of the DC supercurrent and the

phase diagram as a function of the temperature and the velocity of the supercurrent. We

discuss in detail the possibility of other relevant adjoint scalar fields also condensing at

low temperatures through a similar mechanism in section 6. In section 7, we conclude and

point out possible future extensions to the project.

Note added. When our work was near completion, another paper [16] was posted which

deals with similar questions. These authors have however considered the full DBI action

and hence the resulting details are a little different.

2 General setup

Let us consider AdS5 × S5 in Poincare co-ordinates,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2

1 + dx2
2 + dx2

3) + L2dΩ2
5 (2.1)

with

f(r) =
r2

L2
− M

r2
, (2.2)

where L is the radius of the anti-de Sitter space and M is related to the mass of the black

hole. In this paper we will adopt the convention M = L = 1. The temperature of the black

hole (and also of the boundary field theory) is given by

T =
1

π
. (2.3)

It is more convenient to analyze the system by making a coordinate transformation z = 1/r.

The metric becomes:

ds2 = −f(z)dt2 +
dz2

z4f(z)
+

1

z2
(dx2

1 + dx2
2 + dx2

3) + dΩ2
5 (2.4)

with

f(z) =
1

z2
− z2. (2.5)
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The horizon is now at z = 1, while the conformal boundary lives at z = 0. In this

background we will introduce two (or more) co-incident D7-branes. For simplicity we will

consider the zero quark mass embedding, where the brane fills the whole AdS5 and wraps

the maximal S3 of S5. In this limit the effective induced metric on the brane will just be

the AdS5 × S3 metric.

ds2
brane = −f(z)dt2 +

dz2

z4f(z)
+

1

z2
(dx2

1 + dx2
2 + dx2

3) + dΩ2
3 (2.6)

The effective action for the brane fields is the Born-Infeld action,

SDBI = −T7

∫

d8x
√

G + 2πα′F. (2.7)

In order to consider the system at finite isospin chemical potential, we will add a pair

of D7 brane probes. In this case F is a U(2) field strength on the world volume of the

probes. We will not focus on baryonic U(1)B and only investigate terms containing SU(2)

isospin gauge fields. The string states which have their endpoints on different branes

are charged under the isospin SU(2). The exact form of the non-Abelian DBI action is

unknown [17]. To proceed further we will expand the action to leading order in λY M4

keeping only Yang Mills terms.1 Such a simplification has also been employed in studying

other aspects of holographic QCD such as the meson spectra and baryon masses[18–20].

Such an approximation will be more accurate in the limit where the non-Abelian field

strengths are small. The effective action now takes the form

SDBI = −T7

(2πα′)2

gs

∫

d8x
√
−GTrF 2 ∝ Nc

∫

d8x
√
−GTrF 2 (2.8)

where we have scaled out 7 + 1 dimensional Yang Mills coupling g7 and

F a = ∂Aa + ǫabcAbAc (2.9)

On a phenomenological level eq. (2.8) may be thought as an effective holographic model of

flavor superconductivity.

The setup is very similar to that of [21–23], where the non-Abelian gauge field is shown

to condense at low temperatures in an AdS black hole background. Due to the non-Abelian

nature of the SU(2) symmetry, the τ1 and τ2 components of the gauge field are charged

under the τ3 component. Hence turning on a chemical potential for the τ3 component

1The square root form of the DBI action was considered in [16]. Their main result that the existence

of condensate and superconductivity (i.e. a pole of imaginary part of the conductivity at zero frequency) is

similar. However they find out finer details of the frequency response like other poles. It should be noted

that our approximation of neglecting all the higher order terms is not a controlled approximation, as the

chemical potential µ (∝ F 2 in the unit of α′) is large (µ = 4) near the phase transition. Keeping the whole

DBI action changes the exact quantitative results but order of the magnitudes of quantities do not seem to

change much. For example we have checked that in our convention phase transition occurs at µ ≈ 7 for the

DBI corrected action. The scalar condensates (see 6) forms at µ & 15, although at such a low temperature

numerics is less reliable. Interestingly, near integral value µ ≈ 7 implies a possibility of finding an exact

solution as in sec 3.
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of the gauge field may lead to a condensation of the other two. This mechanism is very

similar to condensation of a U(1) charged scalar discussed in [24]. Turning on a chemical

potential for the τ3 component of the gauge field breaks SU(2) to U(1)I . A condensation

of the τ1 or τ2 component of the gauge field further breaks the U(1)I symmetry. It should

be mentioned that unlike U(1)B where all charged states are baryonic and have masses of

order O(N), this U(1)I theory has charged states (mesons) with O(1) masses and their

condensation can naturally be studied in terms of the probe brane picture.

We start with the ansatz

A = Atτ
3dt + Bx1

τ1dx1 (2.10)

We will assume spatial homogeneity in the field theory directions and our fields will only

have dependence on the radial coordinate. The equations of motion for the fields in this

coordinate system are:

A′′
t − A′

t

z
− 2

B2
x1

z2f
At = 0 (2.11)

B′′
x1

+

(

f ′

f
+

1

z

)

B′
x1

+
1

z2f

(

A2
t

Bx1

z2f

)

= 0 (2.12)

For regularity at the horizon we will have to set At = 0 at z = 1. Since we have a set of

coupled equations, this will in turn give the following conditions at the horizon (z = 1).

B′
x1

= 0

At = 0

Examining the behavior of the fields near the boundary, we find

At ∼ µ − ρz2 + ...

Bx1
∼ Mx + Wxz2 + ...

Using gauge/gravity duality, µ, ρ are mapped to the isospin chemical potential2 and charge

density in the dual field theory, respectively. Wx is mapped to the expectation value of a

meson operator which condenses at low temperatures. We will set the non-normalizable

mode Mx to zero. In what follows we first establish that the mesonic condensate forms

below a critical temperature. We compute the time dependent conductivity by turning on

a spatial component for the isospin current as a fluctuation.

Ax3
= X(z)eiωtτ3dx3 (2.13)

2It is known that such a system at finite isospin chemical potential and zero temperature is unstable

due to runaway Higgs VEV as the zero VEV configuration becomes a local maximum of the effective

potential [25]. What happens at finite temperature is not completely clear. However one may imagine a

system where Higgs VEV is artificially fixed to zero. We would like to thank Nick Evans for pointing this

out. Alternatively one may consider a supersymmetric D3/D5 system which does not have such instabilities.

The resulting equations of motion are almost the same as in the case of a D3/D7 system.
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The equation of motion for Ax3
is

X ′′ +

(

1

z
+

f ′

f

)

X ′ − B2
x1

X

z2f
+

ω2X

z4f2
= 0 (2.14)

We will choose infalling boundary condition at the horizon Ax3
∝ (z − 1)−iω/4. Asymptot-

ically,

X ∼ Sx + Jxz2 + .... (2.15)

Jx corresponds to the isospin current, while Sx gives the dual current source (superfluid

velocity). The conductivity3 is given by

σ = Re

[

Jx

iωSx

]

(2.16)

X can be normalized to one at the horizon. As we will see, the conductivity has a pole

at ω = 0. This suggests that there is a DC supercurrent solution. To find such a solution

we solve the following set of coupled time independent equations [27, 28]. Note here the

effects of Ax3
= X(z) on the other components of the gauge fields are taken into account,

so this is not a fluctuation around the condensate formed by Bx1
. In this case the field Ax3

has the form Ax3
= X(z)τ3dx3.

A′′
t − A′

t

z
− B2

x1

z2f
At = 0

B′′
x1

+

(

f

f ′ +
1

z

)

B′
x1

+
1

z2f

(

A2
t

Bx1

z2f
− B3

x1
− X2Bx1

)

= 0 (2.17)

X ′′ +

(

1

z
+

f ′

f

)

X ′ − B2
x1

X

z2f
= 0

For the regularity of Ax3
at the horizon,

X ′ = − B2
x1

X

4

∣

∣

∣

∣

z=1

(2.18)

As we will see shortly, the system eq. (2.17) reveals a rich phase structure as the boundary

value of Ax3
is tuned.

The convenient physical parameters for us are (T
µ , ω

µ , Sx

µ ,
3
√

Wx

µ ), or(T
µ , ω

µ ,
3
√

Jx

µ ,
3
√

Wx

µ ).

We will use
3
√

Wx

µ is an order parameter and plot it as a function of (T
µ , Sx

µ ). In practice,

we choose to keep the temperature fixed and vary µ in this paper. The components of

gauge fields on the three-sphere may also condense through a similar mechanism. We will

examine these cases in the appendix. An important question is whether the isospin chemical

potential would modify the embedding of the flavor branes. We will leave a detailed analysis

of this for a future project. For now we will just check whether the transverse scalars also

condense at low temperatures (section 6).

3There is a logarithmic correction to the conductivity in five dimensions [26], under which σ → σ + iω

2
.

However such a term depends on the choice of renormalization and physical quantities like mass gap etc do

not depend on it.
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Figure 1. Plot of the zero mode at µ = 4

3 Phase diagram

At high temperatures (or, equivalently, small values of µ) there is only one set of solutions

to eq. (2.12) given by

At = µ(1 − z2) (3.1)

Bx1
= 0

This should be interpreted as an isospin-charged black hole, where gauge fields are confined

to the D7 brane. The dual gauge theory interpretation is a deconfined plasma with non-

zero isospin charge. As we increase µ the effective mass of Bx1
in eq. (2.12) decreases

and Bx1
develops a zero mode at µ = µc = 4. The existence of this zero mode can be

analytically demonstrated. Substituting At from eq. (3.1) into the second of eq. (2.12) we

get (this small fluctuation analysis does not depend on any possible cubic terms and is

therefore true for other scalar field ansatzes considered later)

B′′
x1

+

(

f

f ′ +
1

z

)

B′
x1

+

(

µ2(1 − z2)2

z4f2

)

Bx1
= 0 (3.2)

The above equation has an analytic solution for µ = 4 given by

Bx1
(z) =

z2

(1 + z2)2
(3.3)

The plot of this zero mode is shown in figure 3. Any further increment of µ leads to a

condensation of Bx1
. Hence for 1/µ < 0.25 the solution develops a new branch with a

non-zero value of Bx1
. Such a solution can be numerically constructed. The associated

transition seems to be of second order from our numerics. In figure 2 we show a plot of the

condensate with 1

µ (a plot of the corresponding free energy is provided in section 6).

At low temperatures we find that the condensate levels off at Wx/µ3 ≈ 0.26. In

terms of the critical temperature Tc the condensate strength can be expressed as Wx ≈
0.2643π3T 3

c ≈ 515.94T 3
c or W

1

3
x ≈ 8.01Tc.

3.1 Speed of second sound

The boundary field theory which is dual to the D3/D7 system in AdS5 ×S5 behaves like a

superfluid below the critical temperature. Superfluids are known to exhibit modes known

– 6 –
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Figure 2. Plot of the condensate with 1/µ.
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Figure 3. Speed of second sound as a function of 1/µ.

as second sound which are basically temperature waves propagating through the fluid. For

a hydrodynamic discussion see [28], where this was computed at zero superfluid velocity

for the Abelian Higgs model on AdS4. We also compute the speed of second sound in

our case. The superfluid velocity now corresponds to Sx/µ, which we set to zero for this

computation. The main relation is (see eq. (18) of [28]):

v2
2 =

ρs

µ∂2P
∂µ2

, (3.4)

where ρs is the density of the superfluid component and P is the pressure. The pressure

can be expressed in terms of the total fluid density ρ by using the equation of state of a

perfect fluid P = µρ/(d− 1) where d = 4 is the dimension in the fluid (boundary) theory.4

Using this it is fairly simple to compute v2
2. We present the result in figure 3, where we

plot v2
2 as a function of 1/µ. At high values of µ, v2

2 approaches a limiting value v2
2 ≈ 0.32.

4The perfect fluid approximation is valid here since we are not considering any backreaction due to the

metric. Hence there is no viscosity correction which originates from fluctuations of the metric.
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µ

Figure 4. Plot of the real part of σ

µ
with µ = 7.57µc, 2.52µc, 1.71µc, 1.37µc, 1.13µc (gradually from

red to green curves). The blue curve is for the exact frequency response at µ = µc = 4.

4 Frequency response

In this section we will study the frequency dependent conductivity of the spatial component

of the isospin current eq. (2.13). In the absence of a condensate of Bx1
the frequency

response can be exactly solved for [26], and is expressed in terms of digamma functions.

In the presence of a condensate of the Bx1
field an analytic solution is difficult, but we can

still numerically calculate the conductivity using eq. (2.16). First, we solve eq. (2.12) to

determine the condensate. This solution is then taken as a fixed background on which we

solve eq. (2.14) for the conductivity σ. In figure 4 we plot σ as a function of the frequency

ω for various values of the parameter µ. We find that Im[σ(ω)] ∼ ns

ω as ω → 0, where ns

is the superfluid density. Figure 5 shows a plot of ns with 1/µ. Near µ = µc, ns becomes

proportional to µ−µc, vanishing at µ = µc. Fitting a linear function near the critical point

we get ns ∝ 0.1µ2
c(µ − µc).

The pole at ω = 0 for Im[σ(ω)] implies Re[σ(0)] ∼ πnsδ(ω) + terms regular in ω.

This delta function singularity of the real part of sigma is not captured in the numerics

directly. However this corresponds to superconductivity/superfluidity and consequently we

can find a supercurrent/superfluid solution (see Sec 5). Unlike [16] we do not get any low

temperature resonances in the conductivity. Our result is more similar to the zero mass

Abelian-Higgs system presented in [26].5

As
∫

Re[σ]dσ is a temperature invariant quantity, the delta function at ω = 0 is

compensated by a dip in Re[σ] at low frequencies. The dip becomes more prominent as

we lower the temperature (i.e., increase µ). It is clear from the plot (figure 4) that at

low temperatures (large µ) Re[σ] → 0. In fact it is expected that at low temperatures

5It seems that in an Abelian-Higgs system in AdS5 resonances occur near the conformal mass [29].

– 8 –



J
H
E
P
1
1
(
2
0
0
9
)
0
7
0

0.15 0.20 0.25
�����

1

Μ

0.01

0.02

0.03

0.04

0.05

0.06

0.07

���������

ns

Μ
2

Figure 5. Plot of superfluid density with 1/µ.

Re[σ] ∼ exp(−∆g

T ), where ∆g is the energy gap of the system. Also looking at the zero

temperature limit of the real part of the conductivity we see that Re[σ] = 0 for ω ≤ ∆p. ∆p

is similar to the energy of a “Cooper pair”. The ratio ng =
∆p

∆g
gives important information

about the nature of the condensate. From our numerics we calculate

ng ≈ 1.2 (4.1)

At high frequencies Re[σ] computed at different temperatures (below Tc) approaches the

zero condensate value.

5 Effect of stationary isospin current

In this section we investigate the effects of turning on a finite time-independent isospin X

field (recall Aa
µ(r) = At(r)τ

3dt + Bx1
(r)τ1dx1 + X(r)τ3dx3). We tune the boundary value

of X, Sx/µ at a fixed isospin chemical potential µ to investigate the phase structure. At

high enough µ and in absence of X the gauge component Bx1
condenses. As we can see

from eq. (2.17), the effect of X is to increase the effective mass of the Bx1
field. This will

cause the Bx1
condensate to weaken with increasing Sx/µ. Indeed, this happens, as we

can see from figure 6. Here we plot the condensate strength as a function of the isospin

current source Sx/µ for different chemical potentials µ. µ increases from left to right.

For strong enough Sx/µ (above a critical value) there is a phase transition to the normal

(non-superfluid) state. The order of this phase transition seems to be µ dependent. For

high µ (compared to µc) the phase transition is first order, i.e. the system discontinuously

jumps to the normal state above the critical current velocity Sx/µ. For µ close to µc the

transition becomes second order. The order of the transition changes near µsp = 1.4µc.

Note that in each case the condensate approaches a limiting value at low values of Sx/µ,

and this limiting value decreases with decreasing µ.

In order to properly see the transition from first to second order, we also plot the

difference in free energies6 of the normal and superconducting branches. In figure 7 the left

6Free energy is calculated from the action eq. (2.7). The value of the Lorentzain action itself is the

– 9 –
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Figure 6. Plot of Wx/µ3 as a function of Sx/µ at different values of µ. The values of µ range from

1.24µc to 1.97µc from left to right.

hand plot is for µ = 1.97µc while the right hand plot is for µ = 1.24µc. We see the typical

swallow tail shape indicating the abrupt change in dominance from the normal to the

superconducting branch at low values of Sx/µ. We can understand this curve figure 7(a) in

the following manner. As Sx/µ is lowered from above the critical value Sx,c/µ, at first there

is only a normal branch (I). At some value Sx,N/µ = 0.571 two new branches are nucleated:

one of these is stable (II), while the other one is unstable (III). The stable branch starts

out with a higher free energy than the normal branch, but as Sx/µ is lowered further these

two branches intersect at Sx,c/µ = 0.568, where the branch (II) has the same free energy

as branch (I). This is the first order phase transition point below which the system jumps

to the superconducting branch (II) which now has lower free energy. At lower values of the

chemical potential µ shown in figure 7(b) the transition is continuous between branches (I)

and (II) at Sx,c/µ = 0.038.

6 What condenses and what doesn’t

There are various type of bosonic fields living on the branes which are charged under A3
µ and

may condense as we turn on a chemical potential for A3
µ. These states come from strings

ending on different branes. This includes gauge fields proportional to τ1 and τ2. Together

with A3, the trio corresponds to a vector/isovector “meson”7 in the boundary theory. In

this paper we consider an ansatz like eq. (2.10), but more generally one may consider

A = Atτ
3dt+Bx1

τ1dx1 +Cxτ2dx2. In this case the action contains a term proportional to

free energy. It should be noted that our evaluation of free energy is primarily numerical and there may be

subtelty in the discussion of the phase transition. A better analytic understanding with possibly the full

DBI action will be interesting. There may also be subtelty associated with boundary terms and gravity

back reaction may be important in some situation. We thank refree for pointing this out.
7As mq = 0 to begin with in our case, there is no stable meson. We only have quasinormal modes

corresponding to various brane fields [30]. The dual interpretation of such modes are mesons decaying in

the gauge theory plasma.
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Figure 7. Plot of the difference in free energies (F ) of the normal and superconducting branches

as a function of Sx/µ.

B2
x1

C2
x which describes a repulsive interaction between these two fields, so one may expect

that both do not condense together. Also, an ansatz of the form Bx1
(τ1dx1 + τ2dx2) [21]

will generally have a higher free energy than what we have chosen.

Another possibility is the condensation of transverse scalar fields which exist on the

brane. Brane fields are invariant under only a SO(4) × SO(2) subgroup of the full R-

symmetry group SO(6) of S5. A pair of transverse scalar fields correspond to one SO(2)-

charged isovector scalar in the boundary theory. The Born-Infeld type effective action for

such scalars is given in the appendix. We choose a general ansatz suitable for our case,

Φ1 = φ1τ
1, Φ2 = φ2τ

2, (6.1)

The EOM’s are,

φ′′
i +

(

− 1

z
+

f ′

f

)

φ′
i +

1

z4f

(

A2
t

f
− φ2

j

)

φi = 0, (6.2)

where i, j = 1, 2 and i 6= j. From the discussion in the previous paragraph it is clear

that due to the repulsive interaction term, a preferred configuration will have one of the

two φi’s turned off. One may try to find when such a field becomes unstable in a fixed

At background. From our numerics we find out that for the solution eq. (3.2) such a

thing happens at µs
c ≈ 6.57 = 1.64µc and greater than our µc = 4 value for Bx1

field.

Hence when we gradually decrease the temperature of our system, Bx1
condenses before

any scalar degree of freedom. One may further ask wheather the resulting superconducting

phase with a Bx1
condensate has an instability towards φ fluctuations. Our numerics

answer this question negatively. It seems that some type of ”blocking” mechanism stops

further condensation of more fields. However that does not rule out the possibility of a

first order transition between Bx1
condensed phase and φ condensed phase. We plot the

free energy of both the phases to investigate a possible first order transition in figure 8.

It seems that the Bx1
6= 0 phase always dominates. However our numerics is not

very reliable for the parameter range µ > 10µc. Also, we did not exhaustively search

for the possibility of various mixed phases. The case of gauge fields with S5 indices is
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Figure 8. Plot of action for phases Bx1
6= 0 (upper curve) and φ 6= 0 (lower curve).

similar to that of the scalar fields (see appendix), at least for small fluctuations. Hence the

blocking mechanism discussed above will work for them too and these fields will not also

condense. However we have not investigated the possible phases and possibility of a first

order transition in great detail for these fields.

7 Conclusions

In this paper we explored a model which provides a realization of holographic supercon-

ductivity/superfluidity in a string theory setup. We have studied a couple of probe D7

branes in an AdS5 × S5 background. We have introduced a finite isospin chemical poten-

tial (i.e. potential for some of the world volume gauge fields) and have found the existence

of a flavored superconducting state at high enough values of this chemical potential. We

have studied the frequency dependent conductivity and have found a delta function pole

in the zero frequency limit. This indicates a superconductor-like phase. Consequently we

have found a superfluid/supercurrent type solution and have studied the resulting phase

diagram. The superconducting transition changes from second order to first order at a

critical a superfluid velocity. The holographic dual of such a string theory system is large

Nc, N = 4 supersymmetric gauge theory with Nf ≪ Nc. In a dual gauge theory such a

superconducting state is characterized by mesonic condensates. We have studied various

properties of the superconducting system like energy gap, second sound etc.

In this paper we have discussed the possibility of a first order transition between various

possible condensate. It is also important to check whether the isospin chemical potential

modifies the embedding of the flavor branes and whether the transverse scalars actually

condense. In our case they do not, but for some other setup they might. It would be

interesting to address such questions in more detail.

In QCD, mesonic condensates (pion superfluids) have been argued to exist at finite

isospin chemical potential. A natural extension of our work will be to study more realistic

holographic models like [14, 18] or AdS/QCD like theories. It would be interesting to study

such phenomena in cases where the fundamental degrees of freedom are fermionic. Here

we focused on the zero quark mass case, which may be thought of as a high temperature

limit. It would be natural to extend our work to the case of finite quark mass. Another

interesting issue to investigate is flavor backreaction [31–33]. The mesonic operators which
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condense in our case are color singlets and do not lead to color superconductivity. It would

be interesting to study some models with color superconductivity.
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A Transverse scalars and gauge fields on S3

Consider D7-branes embedded in an AdS5 × S5 background,

ds2 = −f(z)dt2 +
dz2

z4f(z)
+

1

z2
(dx2

1 + dx2
2 + dx2

3) + dθ2 + sin2 θ
(

dϕ2 + sin2 ϕ dΩ2
3

)

. (A.1)

The induced metric is

ds2
7 = −f(z)dt2 +

dz2

z4f(z)
+

1

z2
(dx2

1 + dx2
2 + dx2

3) + sin2 θ sin2 ϕ dΩ2
3. (A.2)

According to [17], the leading order DBI action of a Dp-brane is

Sp = −Tp(2πα′)2

4gs

∫

dp+1ξ
√

−GindTr
[

FabF
ab + 2DaΦiDaΦi + [Φi,Φj ][Φ

i,Φj ]
]

, (A.3)

where the scalars Φi ≡ Xi/(2πα′) are the transverse coordinates, and the covariant deriva-

tive is defined as DaΦi = ∂aΦi + [Aa,Φi]. For D7-branes, one has two scalars Φi, i = θ, ϕ.

We turn on a gauge field according to the ansatz A = Atτ
3dt, where τa = τa/2i with

the commutation relations [τa, τ b] = ǫabcτ c. The scalars take the general form Φi = Φi
aτ

a.

The non-zero components of DaΦi are

DtΦi = [Atτ
3,Φi] = At(Φi,2τ

1 − Φi,1τ
2), DzΦi = ∂zΦi = (∂zΦi,a)τ

a. (A.4)

The effective action can be written as

S7 = −T7(2πα′)2

4gs

∫

d8ξ
sin3 θ sin3 ϕ

z5

{

Tr
(

FabF
ab

)

−gii

[

z4f(z)
3

∑

l=1

(∂zΦ
i
l)

2−f(z)A2
t ((Φ

i
1)

2 + (Φi
2)

2)

]

− 1

2
sin2 θ





1,2,3
∑

l 6=m

(Φθ
l Φ

ϕ
m−Φθ

mΦϕ
l )2





}

,

(A.5)

where gii are 10-dimensional metric components with i = θ or ϕ.
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Introducing Φi
± ≡ (Φi

1 ± iΦi
2)/2, we find the equations of motion for (Φi

3,Φ
i
±),

gii

[

f(z)

z
∂2

zΦi
3 +

(

− f

z2
+

f ′(z)

z

)

∂zΦ
i
3

]

=2
sin2 θ

z5

[

Φi
3((Φ

j
−)2+Φj

+Φj
−)−Φj

3(Φ
i
+Φj

−+Φi
−Φj

+)

]

,

gii

[

f(z)

z
∂2

zΦi
+ +

(

− f

z2
+

f ′(z)

z

)

∂zΦ
i
+

]

=
1

z5

{

− gii

f
A2

t Φ
i
++sin2 θ

[

Φi
+ Φj

+Φj
−+Φi

−(−(Φj
+)2+(Φj

3)
2)−Φi

3 Φj
−Φj

3

]

}

gii

[

f(z)

z
∂2

zΦi
− +

(

− f

z2
+

f ′(z)

z

)

∂zΦ
i
−

]

=
1

z5

{

− gii

f
A2

t Φ
i
−+sin2 θ

[

Φi
− Φj

+Φj
−+Φi

+(−(Φj
−)2+(Φj

3)
2)−Φi

3 Φj
+Φj

3

]

}

,

(A.6)

where i, j ∈ (θ, ϕ) and i 6= j.

Consider fluctuations. One can set sin θ = 1, and thus gii = 1 in the above equations.

If we limit our discussion to the ansatz

Φ1 = φ1τ
1, Φ2 = φ2τ

2, (A.7)

the the EOM’s can be simplified

φ′′
i +

(

− 1

z
+

f ′

f

)

φ′
i +

1

z4f

(

A2
t

f
− φ2

j

)

φi = 0, (A.8)

where i, j = 1, 2 and i 6= j.

For the simplest case, with Φ = φ(z)(τ1dx1 + τ2dx2), the equation of motion is

φ′′ +

(

− 1

z
+

f ′

f

)

φ′ +
1

z4f

(

A2
t

f
φ − φ3

)

= 0. (A.9)

If the gauge fields on the 3-sphere are turned on instead of the transverse scalars on the

D7-branes, one would find a similar condensation phenomenon. In an ansatz

A ∼ At(z)τ3dt + Aθ(z)τ1dθ, (A.10)

the equations of motion are

A′′
t − 1

z
A′

t −
A2

θ

z4f
At = 0,

A′′
θ +

(

−1

z
+

f ′

f

)

A′
θ +

A2
t

z4f2
Aθ = 0. (A.11)

Or in another ansatz,

A ∼ Atτ
3dt + Aθ(τ

1dθ + τ2 sin θdϕ), (A.12)
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where (θ, ϕ) are angle coordinates on 3-sphere of D7-brane worldvolume AdS5 × S3. The

EOM’s turn out to be

A′′
t − 1

z
A′

t −
2A2

θ

z4f
At = 0,

A′′
θ +

(

−1

z
+

f ′

f

)

A′
θ +

1

z4f

(

A2
t

f
Aθ − A3

θ

)

= 0. (A.13)
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