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1 Introduction

The Hawking temperature of a black hole vanishes in the extreme limit TH → 0. It is

therefore natural to interpret extreme black holes as ground states of the corresponding

quantum theory, and so they are presumably the simplest starting point for the analysis of

more general black holes with finite temperature. There are actually several inequivalent

extreme limits. Writing the (inverse) Hawking temperature as

1

TH
=

1

2

(

1

TR
+

1

TL

)

, (1.1)

we can take TH → 0 as:
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a) BPS: TR → 0 with supersymmetry preserved in the limit. These are the BPS black

holes, the examples most analyzed in string theory (some reviews are [1–3]).

b) non-BPS: TL → 0. This is the alternative extremal limit that breaks supersym-

metry completely. It is the “non-BPS branch” that has been developed recently

(including [4–7]).

Recently there has been much progress on the description of extreme Kerr black holes

(including [8–10]). One of the motivations for this particular extreme limit is that

many astrophysical black holes naturally spin up in the process of accretion, and so

tend to approach the extreme Kerr limit. The string theory description of extreme

Kerr could therefore be relevant for observations [8, 11]. Importantly, the extreme

Kerr limit defines a class distinct from those above:

c) Extreme Kerr: TR → 0 with supersymmetry broken in the limit, due to the presence

of angular momentum.

The BPS black hole and the extreme Kerr black hole both correspond to a definite

state in the R-sector, as far as classical considerations are concerned. The difference is that

the BPS black holes represent the true ground states, while the extreme Kerr black holes

correspond to states that have a condensate of angular momentum carriers (see eg.[12]).

The condensate breaks supersymmetry and carries a macroscopic angular momentum; but

it does not carry any macroscopic entropy and so TR → 0 just as in the true ground state

describing BPS black holes.

An illuminating way to analyze the various limits is to compute the frequency depen-

dent absorption cross-section of the black holes or, equivalently (due to detailed balance),

the spectrum of Hawking emission [13–18].

This means solving the (massless) Klein-Gordon equation for a scalar field in the black

hole background. Despite the generality of our setting, the equation takes a strikingly

simple form: it comprises some “asymptotic” terms and some “near horizon” terms. In

all cases where the two groups of terms can be taken into account sequentially, the full

solution takes the same form as the two-point correlator in a 2D CFT.

One situation where the matching procedure is justified is for near extremal black

holes where the two thermal scales TL,R establish a hierarchy. Significantly, the Left/Right

structure described above shows that the CFT underlying Kerr can be related by continuous

deformation to the BPS black holes that are well understood. All that is needed is that one

must maintain the hierarchy TR ≪ TL as the angular momentum is turned off by tuning

charges. This situation makes it interesting to keep all the charges as the Kerr limit is

approached. This is one of the gaps in the literature that we fill with this paper.

The discussion so far was for 4D but there is a similar story for 5D black holes. In

5D the R and L sectors are isomorphic, so there is no analogue of the non-BPS branch

b). However, the relation between the BPS and the Kerr branches remains the same.

Moreover, since there are two angular momenta JL,R, the near extreme limit defined by

large JR generally leaves JL free. In this paper we take the dependence of this parameter

into account.

– 2 –
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The central charge of Kerr/CFT was determined in [8] using the method of [19–23]

to determine the asymptotic symmetries. The result was later generalized to Kerr black

holes with one or more charges in various dimensions [9, 24, 25]. Here, we are interested

in the striking CFT interpretation of the supergravity correlation functions. Two point

functions do not immediately depend on the central charge, but they do depend on the

complex structure of the space that the CFT is defined on. We discuss the relevant scales

for the background with general charges.

The feature of the wave equation that leads to correlation functions reminiscent of

a CFT is the hypergeometric nature of the near horizon regime. The hypergeometric

function is a character of SL(2,RR), so one can try to interpret this structure as a rem-

nant of a Virasoro algebra. On the other hand, the asymptotic terms corresponds to just

the Coulomb-type gravitational scattering, which presumably does not probe the internal

structure of the black holes. The hypergeometric nature of the near horizon equation re-

mains for completely general black holes, with no extremality assumed. It is tempting to

interpret this feature as a SL(2,RR) symmetry as well, albeit one that is broken by coupling

to the asymptotic space. This could signal the presence of a Virasoro algebra, even when

there is no AdS-space at all. Seeing that the U(1) isometry of Kerr is enhanced to SL(2,RR)

and further to Virasoro, it is possible that the U(1)×U(1) isometry of general black holes

might be enhanced to SL(2,RR) × SL(2,RR) and on to Virasoro2. One tangible piece of

evidence for this structure is the remarkable quantization rule [17, 26]

1

(8πG4)2
A+A− = integer , (1.2)

satisfied by the outer/inner horizon area in an astonishing variety of examples. We will not

pursue this wider perspective further in this paper but it is clearly one of the underlying

motivations.

This paper is organized as follows. In section 2 we review the computation of greybody

factors for 4D black holes with charges. We emphasize the verification of the matching

condition for rotating black holes. In section 3 we turn to the greybody factors for 5D

black holes, with charges and two independent angular momenta. In section 4 we discuss

the CFT interpretation of these scattering amplitudes. Finally, in section 5, we situate

Kerr/CFT relative to the CFTs describing more general black holes. In particular we

relate the temperatures that appear naturally in the greybody factors to the Frolov-Thorne

temperature employed in Kerr/CFT.

2 Greybody factors for 4D rotating black holes

In this section we review the Klein-Gordon equation in the background of the general 4D

rotating black holes with charges. We discuss the matching procedure that leads to its

solution, with emphasis on the extreme rotating limit.

2.1 The wave equation

We consider the general asymptotically flat 4D black hole with rotation, and also four

independent U(1) charges. The solution was constructed in [27]. Following [18] we present

– 3 –
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the massless Klein-Gordon equation as

[

4
∂

∂x

(

x2− 1

4

)

∂

∂x
+

1

x− 1
2

(

ω

κ+
−m Ω

κ+

)2

− 1

x+ 1
2

(

ω

κ−
−m Ω

κ+

)2

+4j̃(j̃+1)

+8G4xM∆ω2 + x2∆2ω2

]

Φ = 0 . (2.1)

We employ the radial coordinate

x =
r − 1

2 (r+ + r−)

r+ − r−
, (2.2)

which is designed so that the two horizons

r± =
1

4
(µ±

√

µ2 − l2) , (2.3)

are at x = ±1
2 . The overall scale of the black hole is set by r+ + r− = 1

2µ. The departure

from extremality is encoded in

∆ = 2(r+ − r−) =
√

µ2 − l2 . (2.4)

We have assumed that the dependence of the wave function on the temporal and angular

Killing vectors is

Φ ∝ e−iωt′+imφ′

, (2.5)

and we replaced the derivatives ∂t′ and ∂φ′ in the Laplacian accordingly.

The dependence of the wave function on the polar coordinate θ is determined by the

angular operator

Λ̃ = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

m2

sin2 θ
− 1

16
l2ω2 cos2 θ− 1

16
µ2ω2



1 +
∑

i<j

cosh 2δi cosh 2δj



 , (2.6)

For the purposes of the radial equation we can think of this operator as a constant (its

eigenvalue):1

Λ̃ → j̃(j̃ + 1) . (2.7)

In the special case of low energy µω ≪ j̃ + 1
2 (which for near extreme Kerr implies

also lω ≪ j̃ + 1
2), the angular wave function is just a spherical harmonic with angular

momentum j = j̃. We will in fact not assume low energy and so the generalized angular

momentum j̃ is just a separation constant defined through (2.7). It takes on a sequence of

discrete values that are not necessarily integral.2

1In [17] we used the notation ζ = 1

2
+ j̃. The recent work [10] similarly used β = 1

2
+ j̃.

2Although the eigenvalue j̃(j̃+1) must be real, there are parameters for which j̃ becomes complex. In [10]

this possibility was interpreted as a genuine instability, interpreted in bulk as Schwinger pair production [28,

29]. Our computation applies only when j̃ is real.

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
0
8
8

2.2 Parametric representation of black hole variables

We use a parametric form for the physical variables of the black holes

8G4M =
1

2
µ

4
∑

i=1

cosh 2δi ,

8G4Qi =
1

2
µ sinh 2δi , (2.8)

8G4J =
1

2
µl

(

4
∏

i=1

cosh δi −
4
∏

i=1

sinh δi

)

.

The variables µ, l have dimension of length. Our charges Qi have dimension of mass while

the angular momentum J is dimensionless. The special case of Kerr-Newman black holes

corresponds to having just one charge Q ≡ 1
2Qi (for any i).

The surface accelerations κ± of the outer and inner horizons are encoded in the R-

and L-temperatures TR,L = β−1
R,L with the parametric form

βR =
2π

κ+
+

2π

κ−
=

2πµ2

√

µ2 − l2

(

∏

i

cosh δi +
∏

i

sinh δi

)

,

βL =
2π

κ+
− 2π

κ−
= 2πµ

(

∏

i

cosh δi −
∏

i

sinh δi

)

. (2.9)

The (inverse) Hawking temperature are given terms of these as

T−1
H = βH =

2π

κ+
=

1

2
(βR + βL) . (2.10)

The angular velocity is parametrized as

1

κ+
Ω =

l
√

µ2 − l2
. (2.11)

For easy reference we also record two equivalent expressions for the black hole entropy

S = 2π







1

16G4
µ2

(

∏

i

cosh δi+
∏

sinh δi

)

+

√

√

√

√

1

256G2
4

µ4

(

∏

i

cosh δi−
∏

sinh δi

)2

−J2







=
2π

8G4

[

1

2
µ2

(

∏

i

cosh δi +
∏

sinh δi

)

+
1

2
µ
√

µ2 − l2

(

∏

i

cosh δi −
∏

sinh δi

)]

.(2.12)

2.3 Solving the wave equation

We solve the radial equation (2.1) one region at a time, and then patch the partial solutions

together for the complete wave function.

The near horizon region of the black hole involves all terms in (2.1) except those linear

and quadratic in the radial coordinate x. The solution to this part of the equation is

– 5 –
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essentially a hypergeometric function3

ΦNH =

(

x− 1
2

x+ 1
2

)−i
βH
4π

(ω−mΩ)
(

x+
1

2

)−1−j̃

×F
(

1+j̃− i

2π

(

βR
ω

2
−βHmΩ

)

, 1+j̃− iβLω

4π
, 1−iβH

2π
(ω−mΩ),

x− 1
2

x+ 1
2

)

. (2.13)

The complex conjugate expression is a linearly independent solution.

The asymptotic region of the black hole involves just the terms that are constant or

increase as a function of the radial coordinate x. The solution to this part of the equation

alone is essentially Kummer’s function, as usual for scattering on a potential with a long

range force (1/r-component) and a centrifugal barrier (1/r2-component).

In favorable cases there is a “matching” region where both the near horizon and the

asymptotic approximation apply. In this region the radial equation involves just the gener-

alized angular momentum barrier j̃(j̃+1) and the kinetic energy. Accordingly, the near hori-

zon wave function (2.13) and the asymptotic wave function both take the same, simple form

Φmatching = axj̃ . (2.14)

The complementary solution ∼ x−1−j̃ is negligible. Therefore the coefficient a appearing

in each of the two partial solutions of the wave equation must be the same, leading to the

complete wave function.

In the case of absorption by the black hole, boundary conditions at the outer horizon

are chosen such that there is no outgoing wave there. This determines the coefficient a in

the matching region, and so the resulting fluxes in the asymptotic region. The result for

the absorption cross-section found using the steps outlined above is [18]4

σabs(ω) =
π(2j̃ + 1)

ω2
· 2βH(ω −mΩ)

π∆ω
·
∣

∣

∣

∣

(ampl)0
(ampl)∞

∣

∣

∣

∣

2

=
(∆ω)1+2j̃

ω2
sinh

βH(ω−mΩ)

2

∣

∣

∣

∣

Γ

(

1+j̃− iβLω

4π

)

Γ

(

1+j̃− i

2π

(

βR
ω

2
−βHmΩ

))∣

∣

∣

∣

2

× (2j̃ + 1)

Γ(2j̃ + 1)2Γ(2j̃ + 2)2
e2πG4Mω|Γ(1 + j̃ + 2iG4Mω)|2 . (2.15)

As we have emphasized, the only assumption we have made in finding this expression is the

existence of a suitable matching region. Before turning to the analysis of this expression

we therefore need to justify that assumption. That is what we turn to next.

3We have taken the azimuthal quantum number m into account by using the replacements βRω/2 →

βRω/2 − βHmΩ, βHω → βH(ω − mΩ) noted in footnote 8 of [18].
4The absorption cross-section is not just the ratio of fluxes at the horizon and asymptotically: there is

also the overlap with a plane wave. For the numerical factor we use (without detailed justification) the

standard result also when j̃ is not an integer.

– 6 –
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2.4 Matching region in the near extreme Kerr limit

We are interested in the near extreme Kerr limit µ ∼ l with the scale µ arbitrary:

µ

∆
≡ µ
√

µ2 − l2
≫ 1 . (2.16)

For the purposes of estimates we take charge parameters δi ∼ 1. The estimates are valid

also for δi = 0, but extreme limits that involve δi ≫ 1 along with (2.16) require additional

considerations. In the near extreme limit the inverse temperatures βR, βH ≫ µ, but βL ∼ µ

and Ω ∼ µ−1.

As discussed in the previous subsection, the matching region is “far away” from the

near horizon perspective so we must require that the near horizon terms must be subleading

there. Rewriting the near horizon expressions we find the condition

1

x2 − 1
4

(

βH

2π
(ω −mΩ)

)2

+
1

x+ 1
2

(

βLω

2π

)(

βH

π
(ω −mΩ) − βLω

2π

)

≪ j̃(j̃ + 1) . (2.17)

Thus for them to be subleading one requires:

1

x2
· β2

H(ω −mΩ)2 ≪ j̃(j̃ + 1) ,

1

x
(βLω) · |2βH (ω −mΩ) − βLω| ≪ j̃(j̃ + 1) . (2.18)

However, the matching region should nevertheless be “near the black hole” from the point

of view of the asymptotically flat region. Thus the terms in (2.1) that are linear or quadratic

in x should be negligible. This condition can be expressed as the inequalities

x2 · ∆2

µ2
µ2ω2 ≪ j̃(j̃ + 1) ,

x · ∆

µ
µ2ω2 ≪ j̃(j̃ + 1) . (2.19)

We need to establish that there is a range of x≫ 1 satisfying both (2.18) and (2.19).

For x≫ 1 a sufficient condition for (2.18) to be satisfied is:

βH(ω −mΩ) ∼ 1 ,

βLω ∼ 1 . (2.20)

The first requirement requires that we probe the energies, which are natural for the co-

rotating observer, and the second requirement further constrains the energy regime to be

of order O(µ−1) (recall βL = O(µ)). Thus, we consider

µω ∼ m ∼ 1 . (2.21)

Recalling that µΩ ∼ 1 in the extreme limit (2.16) we can do this with the difference ω−mΩ

tuned such that (2.20) is satisfied even though βH ≫ µ.

– 7 –
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The energy and azimuthal quantum number of the scalar field contribute to the angular

operator (2.6). With these scales taken as (2.21) it is natural to assume the generalized

angular momentum j̃ ∼ 1 as well.

At this point we have specified the properties of the scalar field probe completely. It

is then a simple matter to verify that the matching conditions (2.18)–(2.19) are solved in

the range

1 ≪ x≪ µ
√

µ2 − l2
. (2.22)

2.5 A formal decoupling limit

It is instructive to revisit the limits we consider by comparing with a formal decoupling in

real space, generalizing the NHEK limit [30] to the near extreme limit with charges.

Introducing

ǫλ =
1

2
(r+ − r−) =

1

4

√

µ2 − l2 , (2.23)

the near extreme limit is defined as λ→ 0 with the excitation scale ǫ kept fixed along with

the horizon scale 1
2(r+ + r−) = 1

2µ.

We focus on the near horizon region by introducing the scaling coordinate U through

r =
1

2
(r+ + r−) + λU . (2.24)

We keep U fixed as λ → 0. The dimensionless coordinate x = U/2ǫ introduced in (2.2)

also remains a good coordinate in the scalling limit.

In the wave equation (2.1) we assumed the form (2.5) for the wave function. In other

words, we made the replacements

∂

∂t′
→ −iω ,

∂

∂φ′
→ im . (2.25)

Note that the asymptotic coordinates are defined with a prime from the outset. The near

horizon observer more naturally employ the comoving coordinates

t = λt′ ,

φ = φ′ − Ωt′ . (2.26)

In these coordinates

ω −mΩ → i(∂t′ + Ω∂φ′) = iλ∂t → λωcom . (2.27)

The comoving energy ωcom is kept finite in the scaling limit.

The surface accelerations κ± ∼ λ so all the terms in the first line of the wave equa-

tion (2.1) remain finite in the scaling limit. In contrast, the asymptotic terms in the second

line of (2.1) scale to zero. The scaling limit thus isolates the near horizon region, including

the matching region, while the asymptotically flat region decouples as λ→ 0. It is therefore

sensible to propose a theory that controls the near horizon region alone.

– 8 –
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2.6 Superradiance

At this point we have established the existence of a suitable matching region in the case of

extremal Kerr (2.16). This means the absorption cross-section (2.15) applies in this case.

The non-trivial frequency dependence in the absorption cross-scetion (2.15) all remains

in the limit discussed in the previous two subsections: there is no further simplification

beyond the one due to the existence of a matching region.

In the formal decoupling limit λ → 0 the absorption cross-section in fact vanishes,

because the overall prefactor scales to zero. Thus the black hole does not absorb incoming

waves, nor does it emit particles. This limit is therefore truly a decoupling limit.

It is interesting and surprising that the absorption cross-section (2.15) may be negative

σab(ω < mΩ) < 0 . (2.28)

In this situation the amplitude of the wave reflecting from the black hole is larger than the

incoming wave. This phenomenon is known as super-radiance [31–33].

It is interesting to trace the origin of super-radiance in our set-up. Very near the

(outer) horizon at x ∼ 1
2 the radial wave function (2.13) reduces to

ΦNH

(

x− 1

2
≪ 1

)

∼
(

x− 1

2

)−i
βH
4π

(ω−mΩ)

. (2.29)

An exponent with negative imaginary part corresponds to an incoming wave, as one

expects for absorption by the black hole. However, for ω < mΩ the exponent has positive

imaginary part. Then the flux is flowing out from the horizon so that, at infinity, more

flux is reflected than is send in.

2.7 The emission spectrum

The spectrum of emitted Hawking radiation follows from the absorption cross-section by

detailed balance. It becomes

Γem(ω) = σabs(ω)
1

eβH (ω−mΩ)−1

d3k

(2π)3

=
(∆ω)1+2j̃

2ω2
eβH(ω−mΩ)/2

∣

∣

∣

∣

Γ

(

1 + j̃ − iβLω

4π

)

Γ

(

1 + j̃ − i

2π

(

βR
ω

2
− βHmΩ

))∣

∣

∣

∣

2

× (2j̃ + 1)

Γ(2j̃ + 1)2Γ(2j̃ + 2)2
e2πG4Mω|Γ(1 + j̃ + 2iG4Mω)|2 d3k

(2π)3
. (2.30)

The emission spectrum does not exhibit superradiance: superradiance is stimulated

emission so it relies on the incoming quanta as well. However, emission is more convenient

for the discussion of the CFT description.

The frequency dependence in the final line of (2.30) is due to the long range nature

of the interaction. This term is present for all processes involving 1/r forces, including

atomic and nuclear scattering. Although it arises from a hypergeometric function it can

presumably not be interpreted as due to an underlying CFT. In section 4 we will therefore

seek to understand just the frequency dependence in the first line of (2.30).

– 9 –
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3 Near-extreme Kerr black holes in D=5

In this section we carry out the analysis of near extreme Kerr black holes in five dimensions.

We maintain all three U(1) charges and two independent angular momenta.

3.1 The scalar wave equation

The asymptotically flat black hole solution in 5D with independent values for the two

angular momenta and also three independent charges was found in [34]. The corresponding

Klein-Gordon equation was presented in [17] as

[

4
∂

∂x

(

x2− 1

4

)

∂

∂x
+

1

x− 1
2

(

ω

κ+
−mR

ΩR

κ+
−mL

ΩL

κ+

)2

− 1

x+ 1
2

(

ω

κ−
−mR

ΩR

κ+
+mL

ΩL

κ+

)2

−j̃(j̃ + 2) + x∆ω2
]

Φ0 = 0 .

(3.1)

The radial coordinate

x =
r2 − 1

2(r2+ + r2−)

r2+ − r2−
, (3.2)

is designed to put the horizons

r2± =
1

2

(

µ±
√

(µ− (l1 − l2)2)(µ− (l1 + l2)2)
)

, (3.3)

at x = ±1
2 for all values of the black hole parameters. The departure from extremality

(which may be arbitrary at this point) is encoded in

∆ = r2+ − r2− =
√

(µ− (l1 − l2)2)(µ− (l1 + l2)2) . (3.4)

The full angular Laplacian for the problem is

Λ̂ =− 1

sin 2θ

∂

∂θ
sin 2θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
− 1

cos2 θ

∂2

∂ψ2
+(l21+l

2
2)ω

2+(l22−l21)ω2 cos 2θ−Mω2 . (3.5)

We denote the eigenvalue of this operator j̃(j̃ + 2). Accordingly, we inserted this value of

the angular momentum barrier in the radial equation (3.1). At low energy l1,2ω
2,Mω2 ≪ 1

our notation j̃ reduces to the usual angular momentum j, which in that limit labels the

quadratic Casimirs of the rotation group SO(4) ≃ SU(2) × SU(2). However, we will not

assume that the energy is small and so the generalized angular momentum j̃ is just a

notation for the separation constant of the Klein-Gordon equation.5

5As in 4D, j̃(j̃ + 2) must be real, but in general this combination can be less than −1 so that j̃ may

acquire an imaginary part.
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3.2 Parametric form of black hole variables

In the general case with three U(1) charges it is essential that we employ the parametric

representation of black hole variables [34]

4G5

π
M =

1

2
µ

3
∑

i=1

cosh 2δi ,

4G5

π
Qi =

1

2
µ sinh 2δi , (i = 1, 2, 3) ,

4G5

π
JR,L =

1

2
µ(l1 ± l2)

(

3
∏

i=1

cosh δi ∓
3
∏

i=1

sinh δi

)

. (3.6)

Note that in 5D the scale µ has dimension of length squared. The parametric angular

momenta l1,2 are lengths and the parametric charges are δi dimensionless.6

The surface accelerations κ± in the radial equation (3.1) are equivalent to the inverse

temperatures

βR,L =
2π

κ+
± 2π

κ−
, (3.7)

which in turn have the parametric form

βL =
2πµ

√

µ− (l1 − l2)2

(

∏

i

cosh δi −
∏

i

sinh δi

)

,

βR =
2πµ

√

µ− (l1 + l2)2

(

∏

i

cosh δi +
∏

i

sinh δi

)

. (3.8)

The inverse Hawking temperature is βH = 2π
κ+

.

The angular velocities in the radial equation (3.1) have the parametric forms

βHΩL =
2π(l1 − l2)

√

µ− (l1 − l2)2
,

βHΩR =
2π(l1 + l2)

√

µ− (l1 + l2)2
. (3.9)

For later reference we also record the black hole entropy

S = 2π

√

√

√

√

π2

64G2

5

µ3

(

∏

i

cosh δi+
∏

sinh δi

)2

−J2

L
+2π

√

√

√

√

π2

64G2

5

µ3

(

∏

i

cosh δi−
∏

sinh δi

)2

−J2

R
.

(3.10)

6We indicate Newton’s constant explicitly. For the value G5 = π
4

the formulae simplify and Qi becomes

integral in the simplest string theory embedding (see eg. [35]).
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3.3 Wave functions and greybody factors

The radial equation (3.1) cannot be solved analytically in general. However, in the near

horizon region where the term linear in x can be neglected the equation is hypergeometric

with solution[17]7

ΦNH(x) =

(

x− 1
2

x+ 1
2

)−i
βH
4π

(ω−mLΩL−mRΩR)
(

x+
1

2

)−1− 1

2
j̃

×F
(

1+
1

2
j̃− i

2π

(

βRω

2
−βHmRΩR

)

,

1 +
1

2
j̃ − i

2π

(

βLω

2
− βHmLΩL

)

, 1 − i
βH

2π
(ω −mLΩL −mRΩR),

x− 1
2

x+ 1
2

)

. (3.11)

The wave function was chosen with incoming boundary conditions. The complex conjugate

wave function is a linearly independent solution, with outgoing boundary condition. The

asymptotic behavior of (3.11) for large x takes the form

ΦNH(x) ∼ ax
1

2
j̃ . (3.12)

The solution in the asymptotic region where the horizon terms with singularities as x = ±1
2

can be neglected is also simple: it is just a Bessel function. In the short distance limit this

asymptotic wave function takes the same form as (3.12). In cases where an overlapping

regime of applicability of the two regimes can be established the coefficient a for the two

regional wave functions must agree, and then the full wave function follows. Comparing

the asymptotic flux to the one at the horizon, we find the transmission coefficient

|Tj̃ |2 = βH(ω −mLΩL −mRΩR)

(√
∆ω

2

)2+2j̃

×
∣

∣

∣

∣

∣

Γ(1 + 1
2 j̃ − i

2π (βL
ω
2 − βHmLΩL))Γ(1 + 1

2 j̃ − i
2π (βR

ω
2 − βHmRΩR))

Γ(j̃)Γ(1 + j̃)Γ(1 − i
2πβH(ω −mLΩL −mRΩR))

∣

∣

∣

∣

∣

2

.(3.13)

Expanding one of the Γ-functions, the absorption cross-section becomes8

σabs(ω) =
8π

ω3
sinh

(

1

2
βH(ω −mLΩL −mRΩR)

)

(√
∆ω

2

)2+2j̃
(j̃ + 1)2

|Γ(j̃)Γ(1 + j̃)|2

×
∣

∣

∣

∣

Γ

(

1+
1

2
j̃− i

2π

(

βL
ω

2
−βHmLΩL

))

Γ

(

1+
1

2
j̃− i

2π

(

βR
ω

2
−βHmRΩR

))∣

∣

∣

∣

2

.

(3.14)

7The notation of [17] is ξ = 1 + 1

2
j̃.

8The transmission coefficient and the cross-section are related by the overlap between our wave function

in spherical coordinates and a plane wave. This is difficult to compute because the solutions to the angular

equation (3.5) are involved when there is no spherical symmetry. Guided by spherical symmetry, we use

the overlap 4π(j̃ + 1)2/ω3, knowing that this expression should receive small corrections.
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3.4 The near extreme limit and matching conditions

The 5D near extreme Kerr limit takes one of the two angular momenta large, keeping

the other at moderate values. Without loss of generality, we take JR ∼ JR,max, with JL

arbitrary. In our parametric notation we take

√
µ

√

µ− (l1 + l2)2
≫ 1 . (3.15)

The variables are otherwise not constrained so we can estimate µ − (l1 − l2)
2 ∼ µ for

the combination that controls the other angular momentum (JL). The non-extremality

parameter (3.4) becomes

∆ ∼ 2
√

l1l2
√

µ− (l1 + l2)2 ≤ √
µ
√

µ− (l1 + l2)2 ≪ µ (3.16)

in the limit (3.15). In our limit βH ∼ βR ≫ βL . Also, ΩR ∼ µ−1/2 and ΩL ∼ β−1
H so

ΩR ≫ ΩL. As in 4D we take the charge parameters δi ∼ 1 in our estimates.

The matching region is a range of x where the angular momentum barrier dominates

the near horizon terms. Rewriting the near horizon expressions we find the condition:

1

x2 − 1
4

(

βH

2π
(ω −mRΩR −mLΩL)

)2

+

1

x+ 1
2

(

βLω

2π
−βHmLΩL

π

)(

βH

π
(ω −mRΩR−mLΩL)−

(

βLω

2π
−βHmLΩL

π

))

≪ j̃(j̃ + 2) .

(3.17)

Since ΩL ≪ ΩR and j̃ ∼ 1, sufficient conditions for these terms to be subleading for

x≫ 1 are:

βH(ω −mRΩR) ∼ 1 , βLω − βHmLΩL ∼ 1 . (3.18)

The first condition is the most delicate since βH is large. We satisfy it by focussing on

modes with their natural energy and azimuthal quantum number, but a cancellation so

that (3.18) is satisfied. The second condition is almost automatic since neither βL or

βHΩL is large in the near extreme limit. In formulae, we take:

√
µω ∼ mR ∼ mL ∼ 1 , (3.19)

with the precise values of ω,mR tuned so that (3.18) remains satisfied even though βH ≫√
µ in the limit (3.15).

In the matching region the angular momentum barrier must also dominate the term

encoding asymptotic Minkowski space, ie. the term in (3.1) that is linear in x. This gives

the condition

x
∆

µ
(µω2) ≪ j̃(j̃ + 2) . (3.20)

The natural magnitude for the generalized angular momentum is similarly j̃ ∼ 1, since the

expression (3.5) receives contributions from terms of the order (3.19).
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We can now verify that the conditions (3.18)–(3.19) on the scalar wave are sufficient

to satisfy the matching conditions (3.17) and (3.20) in the range

1 ≪ x≪
√

µ

µ− (l1 + l2)2
. (3.21)

This is what is needed to justify the greybody factor (3.14).

As in 4D (section 2.5) we could formalize the estimates in this section such that the

validity of the approximations are recast as a formal limit, rendering the near horizon

region (including the matching region) properly decoupled from the asymptotically flat

space. We will mostly refer to the approximate notation detailed in this section.

3.5 Superradiant greybody factors

At this point we have justified the use of the matching procedure for the 5D extreme black

holes with charge. All the structure in the absorption cross-section (3.14) persists in the

scaling limit, there are no further simplifications.

As in 4D, the absorption cross-section may turn negative, corresponding to superradi-

ance. The condition for this phenomenon is

βH(ω −mLΩL −mRΩR) =

(

βL
ω

2
− βHmLΩL

)

+

(

βR
ω

2
− βHmRΩR

)

< 0 . (3.22)

The two parenthesis in the last expression are both of order 1 in our scaling limit. Super-

radiance can therefore be realized in non-trivial ways in 5D: it can be due to level inversion

in either the L or the R side.

3.6 The emission spectrum

We may recast the absorption cross-section (3.14) as an emission amplitude for Hawking

radiation, using detailed balance. The result is

Γem(ω) = σabs(ω)
1

eβH(ω−mLΩL−mRΩR) − 1

d4k

(2π)4

=
4π

ω3

(√
∆ω

2

)2+2j̃
(j̃ + 1)2

|Γ(j̃)Γ(1 + j̃)|2
e−

1

2
βH(ω−mLΩL−mRΩR)

×
∣

∣

∣

∣

Γ

(

1+
1

2
j̃− i

2π

(

βL
ω

2
−βHmLΩL

))

Γ

(

1+
1

2
j̃− i

2π

(

βR
ω

2
−βHmRΩR

))∣

∣

∣

∣

2 d4k

(2π)4
.

(3.23)

In the case where U(1) charges and two independent angular momenta are included

the four potentials βR,LandβHΩR,L are independent. This gives significant structure to the

amplitude (3.23).

We have maintained the notation appropriate for the asymptotic observer. However,

in the near horizon theory it is more natural to introduce the rescaled potential β̃H = λβH

and the corresponding comoving energy ωcom = λ(ω −mRΩR) with the scaling parameter

λ ∼
√

µ2−(l1+l2)2

µ taken to be small. The rescaled quantities are finite even in the formal

scaling limit λ→ 0.
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4 The CFT model

In this section we model the emission amplitudes from a microscopic point of view. The

presentation follows our previous papers [17, 18, 36], now adapted to the Kerr/CFT context.

In comparison with the recent work [10] we include all the overall frequency dependent

factors. We also keep all four U(1) charges in the 4D theory, and we include both angular

momenta in the 5D theory. These additional black hole parameters makes the general

structure more transparent and makes the relation to the BPS cases clearer. We first

consider the 5D theory, and then briefly the 4D case.

4.1 5D emission spectrum from CFT

The working assumption of the microscopic model is that the entire near horizon re-

gion, including the matching region, can be described by a dual CFT, generalizing the

4D Kerr/CFT [8].

That the near horizon region should be dual to some quantum field theory is suggested

by the decoupling of this region from the asymptotically flat space. That the theory should

be a CFT is made possible by the classical fields reducing to hypergeometric functions,

which are the characters of the SL(2,RR) group. The geometrical origin of the SL(2,RR) is

the isometry group the AdS2 factor in the geometry, and the wave equation is the SL(2,RR)

Casimir.

In the description where the near horizon region is replaced by a CFT, the emission

of quanta embodied in (3.23) is due to couplings

ΦbulkO(h,h̄) (4.1)

between bulk modes Φbulk and operators O(h,h̄) in the CFT. The structure of the resulting

emission depends primarily on the conformal weights (h, h̄) of the operator. The value of

the conformal weight

h = h̄ = 1 +
1

2
j̃ , (4.2)

can be read off from the asymptotic behavior (3.12) near the boundary of the near horizon

region.

In situations where the black hole background has spherical symmetry the difference

h− h̄ measures the bulk spin s and so it is obvious that h = h̄ for scalar fields in bulk (see

e.g. [16, 37]). The Kerr black hole is not spherically symmetric and so h = h̄ is not clear a

priori [10].

The canonical thermal two-point function of chiral operator with conformal weight h

is specified by the singularity ∼ z−2h and the periodicty 2πβ−1:

Gh
β(z) =

(

π/β

sinh (πz/β)

)2h

(4.3)

The Fourier transform is

Gh
β

(ω

2

)

=

(

2π

β

)2h−1

e−βω/4 1

Γ(2h)

∣

∣

∣

∣

Γ

(

h+
iβω

4π

)∣

∣

∣

∣

2

(4.4)
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The two point function of an operator O(h,h̄) with conformal weights (4.2) thus gives the

contributions to the emission amplitude from the CFT operators:

Γem(ω) ∝
(

4π2

βRβL

)j̃+1

e−βL(ω−mLΩL)/4−βR(ω−mRΩR)/4

×
∣

∣

∣

∣

Γ

(

1+
1

2
j̃+

i

2π

(

βR
ω

2
−βHmRΩR

))∣

∣

∣

∣

2

·
∣

∣

∣

∣

Γ

(

1+
1

2
j̃+

i

2π

(

βL
ω

2
−βHmLΩL

))∣

∣

∣

∣

2

(4.5)

This goes a long way towards accounting for the supergravity expression (3.23). As ex-

plained after (3.23), we maintain the notation appropriate for the asymptotic observer.

Since the CFT knows only about comoving energies and rescaled temperatures, it is those

combinations that appear in (4.5).

The details of the emission will depend on the coupling (4.1) between the CFT op-

erator and the bulk field. If (4.1) is literally the coupling, the only additional frequency

dependence is ω−1 from the standard normalization of the outgoing wave function Φbulk.

However, generally the coupling must also include derivatives and numerical group theory

factors (such as Γ-matrices) in order to ensure Lorentz invariance and other symmetries. At

low energy, the coupling to spin j involves precisely j derivatives that act on the outgoing

wave function, giving a factor ωj in the amplitude, and the square of that in the proba-

bility [16, 38–40]. In Kerr/CFT there is not enough known about the dual theory that we

can construct the coupling to bulk fields in any detail. Nevertheless, it is reasonable to

expect such couplings to lead to an overall frequency dependence

ω2j̃−1 . (4.6)

It is the “far away” frequency ω rather than either of the “near horizon” (comoving)

frequencies ω − mL,RΩL,R that enter in this factor. The reason is that the (generalized)

derivatives in the coupling can be taken to act on the bulk wave function Φbulk which only

reaches into the matching region. Thus the coupling is sensitive to the deformation of the

sphere due to rotation (j̃ rather than j) but not to the motion of the near horizon region.

The emission rate (4.5) in the microscopic model, with the prefactor (4.6), should be

compared with the supergravity result (3.23). A useful relation is

βRβL∆

2π
=

4G5

π
L5 , (4.7)

where we have introduced the length scale L5 through [17, 41]

4G5

π
L5 = 2πµ2

(

3
∏

i=1

cosh2 δi −
3
∏

i=1

sinh2 δi

)

. (4.8)

The two expressions depend identically on all black hole parameters. One formal discrep-

ancy arises because the CFT expressions like (4.4) were written by convention in units

where the CFT is defined on a space of unit length. The comparison determines that

length scale as L5 given in (4.8).
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We do not have a derivation of this length scale from first principle in the present

context. However, in the near BPS limit δ1,2 ≫ 1 the length scale depends on just two of

the three charges, and on the length scale associated with the third charge. In the standard

D1 −D5 −KK duality frame, the scale becomes

L5,BPS = 2πn1n5R . (4.9)

This is the “long string scale”, corresponding to maximal winding around the compact

KK-circle [42]. It is this scale that controls emission amplitude in many simpler contexts

(see eg [13, 38, 43, 44]). In the next section we discuss the corresponding length scale for

near extreme Kerr.

We have not attempted to reproduce the overall numerical factors in the emission

amplitude from a microscopic point of view. In the simplest case of low energy emission

from a spherical symmetric black hole the numerical factor was understood long time

ago [43]. There is also (at least) a partial understanding of the numerical factors pertaining

to higher partial waves [16, 38, 39] but those depend on the explicit coupling between bulk

modes and the CFT which is not available here.

The overall scaling of the amplitudes represents an interesting point. In the CFT ampli-

tude (4.5) the overall normalization include β−j̃−1. It is the CFT temperature that enters,

so it would be more correct to write β̃−j̃−1
R = λ−j̃−1β−j̃−1, in the notation after (3.23). In

other words, the supergravity amplitude is suppressed in the scaling parameter λ, as one

expects when the near horizon theory is fully decoupled; but the CFT amplitude is not

suppressed, because everything is written in terms of rescaled variables.

4.2 4D emission spectrum from CFT

The microscopic model that gives an interpretation of the 4D supergravity emission am-

plitude is very similar to the 5D model so we shall just summarize the main formulae.

The conformal weight of the CFT operator that is responsible for the emission can be

read off from the wave function (2.14) in the matching region [18]

h = h̄ = 1 + j̃ . (4.10)

The two point correlations function of the operator is again (4.4) in Fourier space. The

normalization of the outgoing bulk wave function and the frequency dependence from the

couplings combine to give an overall frequency dependence

ω2j̃−1 . (4.11)

Collecting these factors give the emission amplitude

Γem(ω) ∝
(

4π2

βRβL

)2j̃+1

ω2j̃−1e−βH(ω−mΩ)/2

×
∣

∣

∣

∣

Γ

(

1 + j̃ +
i

2π

(

βR
ω

2
− βHmΩ

))∣

∣

∣

∣

2

·
∣

∣

∣

∣

Γ

(

1 + j̃ +
i

4π
βLω

)∣

∣

∣

∣

2

. (4.12)
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The complete dependence on the frequency ω and the azimuthal quantum numberm agrees

precisely with (2.30) (except for the Coulomb factors in the last line (2.30) which should

be neglected, as explained just after (2.30)).

The dependence on the black hole parameters can be compared by using the relation

βRβL∆

2π
= 8G4L4 , (4.13)

where we have introduced the length scale L4 through [17, 41]

8G4L4 = 2πµ3

(

4
∏

i=1

cosh2 δi −
4
∏

i=1

sinh2 δi

)

. (4.14)

The dependence on the black hole parameters also agrees except that, as in 5D, we have

normalized our CFT correlation functions so that they depend on just the physical tempera-

tures, but the size of the spatial circle has been scaled out. The comparison determines that

length scale as (4.14). As in 5D we interpret this scale as the “long string” scale [14, 45].

In the limit where the black hole is nearly BPS there are three large charges δ1,2,3 ≫ 1

and (4.14) reduces to

L4,BPS = 2πn1n2n3R , (4.15)

where R is the size of a physical compactification circle. The general expression (4.14) for

the “long string scale” should be useful also away from the BPS limit. In the next section

we make this expectation explicit in Kerr/CFT.

5 Features of the microscopic theory

In this section we extract some of the features of the microscopic theory. We focus on the

4D theory for easy comparison with other works, and just summarize the 5D formulae.

The important point as that we include all charges to appreciate the full structure.

5.1 Phenomenological model for general 4D black holes

We start out very ambitiously, by writing the beginnings of a model for the entire class

of 4D black holes we consider, including black holes that are nowhere near extremality.

The working hypothesis is that all these black holes can be interpreted as a 2D CFT in

a periodic box with some unknown radius R4, and that the entropy is captured by the

standard high temperature expression:

S =
π2

3
(cLTL + cRTR)R4 . (5.1)

The two temperatures TL,R we identify with the temperatures (2.9) that appear in the

greybody factors, and the entropy of the left and right movers independently we take from

the two terms in (2.12). These assumptions give expressions for the central charge in units

of the box radius

cLR4 = cRR4 = 12 · µ3

16G4

(

4
∏

i=1

cosh2 δi −
4
∏

i=1

sinh2 δi

)

. (5.2)
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It is interesting that the central charge found this way is the same for the two chiralities.

Let us now specialize to black holes that are extreme due to their rotation. In this

limit the entropy is exclusively due to the L-sector. It has been argued [8] that in this

situation the temperature of the L-sector is the Frolov-Thorne temperature [46], which for

general charges can be computed as

βFT =
∂

∂J
S(M = Mext) =

2πJ
√

J2 + 1
64G2

4

∏4
i=1Qi

. (5.3)

This value is somewhat puzzling because it differs from the temperature βL in (2.9) which,

as we have seen, appears quite prominently in the physical greybody factors, even in the

extreme limit. To resolve this tension we note that the Frolov-Thorne temperature defined

in (5.3) is dimensionless. However, the natural unit is the box radius, so we can in fact

identify the two proposed temperatures, after all:

βFT = βL/R4 . (5.4)

Moreover, this identification determines the box size as

R4 = µ

(

4
∏

i=1

cosh δi +
4
∏

i=1

sinh δi

)

. (5.5)

The CFT is of course scale invariant so R4 has no meaning in the microscopic theory:

only the complex structure encoded in βFT makes sense. However, the identification of

observables at infinity involves R4. Additionally, R4 ∼ β̃R, the rescaled temperature that

does make sense in the CFT.

At this point the central charge determined from (5.2) becomes

cL = cR = 12 · µ2

16G4

(

4
∏

i=1

cosh δi −
4
∏

i=1

sinh δi

)

= 12J . (5.6)

The final equality followed from the relation between charges, mass and angular momentum

in the extreme limit. The result for the central charge agrees with the well known one from

Kerr/CFT. In particular it does not depend on the value of the U(1) charges. This suggests

that all the U(1) charges are present in the CFT from the outset.

We are now ready to reconsider the length scale L4 that was extracted from the grey-

body computations. Combining the formulae above, we find

L4 = J · 2πR4 . (5.7)

The effective length that appears in the scattering is therefore essentially the same as the

box size inferred from the simplest thermodynamic model. The only difference is a rescaling

related to the background angular momentum. This rescaling is reminiscent of the “long

string” rescaling (4.15) of BPS black holes. Our result is a quantitative prediction for a

similar phenomenon in Kerr/CFT.
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5.2 The 5D model

In D=5 the entropy formula (3.10) can also quite generally be cast in the form (5.1) with

two temperatures TL,R identified with those appearing in the greybody factors (3.8). This

procedure gives the central charges in units of the box radius R5 are

cLR5 = cRR5 = 12 · πµ
2

8G5

(

3
∏

i=1

cosh2 δi −
3
∏

i=1

sinh2 δi

)

. (5.8)

Again, the central charges are the same for both chiralities.

When specializing to the extreme black holes, the entropy has only a contribution for

the L-sector. The Frolov-Thorne temperature along the dominant (R) motion becomes:

βFT =
∂

∂JR
S(M = Mext) =

2πJR
√

J2
R − J2

L + 4G5

π

∏3
i=1Qi

. (5.9)

We can identify the greybody temperature βL with the Frolov-Thorne temperature (in

units of a box size) βFT by introducing the box-size

R5 =
βL

βFT
= 2πµ1/2

(

3
∏

i=1

cosh δi +

3
∏

i=1

sinh δi

)

, (5.10)

As in 5D, the box size if of order the “small” temperature, in units if the scaling variable

R5 ∼ β̃R.

The central charges determined from (5.8) now become:

cL = cR = 12 · µ
3/2

16G5

(

3
∏

i=1

cosh δi −
3
∏

i=1

sinh δi

)

= 12JR (5.11)

as expected. These expressions for the central charges are compatible with those found

in [24] where Kerr/CFT techniques were employed.9

Finally, we can now derive the length scale L5 that was extracted from the greybody

computations. Combining the formulae above, we find

L5 = JR · 2πR5 . (5.12)

Again the rescaling is reminiscent of the “long string” rescaling (4.15) of BPS black holes.
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