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1 Introduction

Although the minimal supersymmetric extension of the standard model (MSSM) reveals
as a solution to the hierarchy problem, we still remain puzzled about the origin of the u-
term in the superpotential, known as the p-problem [1]. On the other hand, the fact that
neutrinos are not massless [2] suggests that the MSSM is incomplete. Motivated by these
two facts, the ”u from v” supersymmetric standard model (prSSM) [3-5], which relies on
the existence of right-handed neutrinos, arises as an alternative to the MSSM, providing a
solution to the p-problem and explaining the origin of neutrino masses.

In particular, the superpotential of the purSSM contains, in addition to the usual
Yukawa couplings for quarks and charged leptons, Yukawa couplings for neutrinos H,Lb",
terms of the type 0°HyH, producing an effective p term through right-handed sneutrino
vacuum expectation values (VEVs), and also terms of the type 0°0°0¢ avoiding the existence
of a Goldstone boson and contributing to generate effective Majorana masses for neutrinos
at the electroweak scale. Actually, the explicit breaking of R-parity in this model by the
above terms produces the mixing of neutralinos with left- and right-handed neutrinos, and
as a consequence a generalized matrix of the seesaw type that gives rise at tree level to
three light eigenvalues corresponding to neutrino masses [3].

Following this proposal, several papers have studied different aspects of the urSSM.
In [4] the parameter space of the prSSM was analyzed in detail, studying the viable regions
which avoid false minima and tachyons, as well as fulfill the Landau pole constraint. The
structure of the mass matrices, and the associated particle spectrum was also computed,
paying special attention to the mass of the lightest Higgs. In [6] neutrino masses and mixing



angles were discussed, as well as the decays of the lightest neutralino to two body (W-
lepton) final states. The correlations of the decay branching ratios with the neutrino mixing
angles were studied as another possible test of the uySSM at the LHC. The phenomenology
of the prSSM was also studied in [7], particularized for one and two generations of right-
handed sneutrinos, and taking into account all possible final states when studying the
decays of the lightest neutralino. Possible signatures that might allow to distinguish this
model from other R-parity breaking models were discussed qualitatively in the last two
papers. Let us finally mention that terms of the type 0 HyH, and 0°0°D° were also analysed
as sources of the observed baryon asymmetry in the Universe [8] and of neutrino masses
and bilarge mixing [9], respectively.

The goal of this work is twofold; first, we complete the analysis of the vacua of the
uvSSM presented in [4], studying spontaneous CP violation (SCPV) of the tree-level neutral
scalar potential. In particular, we explore CP violation in the lepton sector and show how
phases for the tree-level Maki-Nakagawa-Sakata matrix (MNS) [10] may arise due to the
fact that the minimum of the scalar potential with real parameters has complex VEV
solutions. Second, we discuss neutrino physics and the seesaw mechanism in the prSSM,
including also phases.

Let us recall that, although there is evidence for CP violation in the quark sector of
the standard model, there are not experimental traces of it in the leptonic part. CP can be
explicitly broken through complex parameters in the Lagrangian or can arise spontaneously
in a CP conserving Lagrangian (e.g. with all the parameters being real) through complex
VEVs. Although the standard model as well as the MSSM do not allow for SCPV, in more
complicated models both sources of CP violation, complex parameters and complex VEVs,
could be present.

Concerning the quark sector, a recent study argues that the Cabibbo-Kobayashi-
Maskawa (CKM) matrix is likely complex [11]. This conclusion is supported by the mea-
surement of the unitarity triangle angle v by BaBar and Belle collaborations [12, 13]. This
evidence of a complex CKM matrix has ruled out Next-to-MSSM (NMSSM)-like models
with SCPV (see e.g. [14]) for being the entire source of CP violation in the quark sector,
since the CKM matrix in such models is real. Thus complex parameters are necessary in
the quark sector. Given the structure of the prSSM, this fact also holds for this model.
On the other hand, as mentioned above, we will show that SCPV can be generated in the
leptonic sector of the prSSM, as well as phases for the MNS matrix.

One argument in favor of the presence of SCPV at the Lagrangian level is that, if
the determinant of the quark mass matrix is real, it leads to a solution to the strong CP
problem [15]. Extensions of the MSSM having this property, have been extensively studied
in the literature (see e.g. [16]). In those scenarios, the quark sector of the model is extended
in such a way that the effective 3 x 3 CKM matrix is complex whereas the determinant of
the quark matrix is real.

Other authors have extended the Higgs sector of the models, leading to SCPV with
a complex CKM matrix [17]. Last but not least, in supersymmetric (SUSY) models with
both CP and Peccei-Quinn symmetries, SCPV can be used as a solution to the SUSY phase
problem [18].



Regarding extensions of the urSSM, the SCPV scenario with a complex CKM matrix
can be accomplished by adding two more families of Higgs doublets. In this case the model
would contain three families of matter and Higgs fields. This possibility is well motivated
phenomenologically, since the potential problem of flavor changing neutral currents can be
avoided [19]. In addition, having three Higgs families is favored in some string scenarios [20].
Indeed, extensions of the quark sector of the model can also be studied, without altering
the results here presented.

What we want to point out in this work is that SCPV is possible in the simplest
version of the urSSM, i.e. with only one family of Higgs doublets, and therefore it is worth
studying its consequences. Following this philosophy, the paper is organized as follows.
Section 2 is devoted to complete the analysis of the vacuum of the urSSM started in [4],
including SCPV solutions. In section 3 we examine the seesaw mechanism as the origin
of neutrino masses and mixing angles in the model. In section 4 we carry out a detailed
numerical analysis of the tree-level neutral scalar potential, showing explicitly that SCPV
solutions are possible, and discussing their implications on the neutrino sector of the model.
Finally, the conclusions are left for section 5. Minimization equations of the model and an
approximate analytical formula for neutrino masses are given in the appendices.

2 Complex VEVs in the uvSSM

The superpotential of the urSSM introduced in [3] is given by

w=>YY [eab <Yu” AL QEa + Yy, HY QY dS + Y., HY LY eS + Y, HE L¢ o )]

a,b i,j

- ZZeabA v HOHS —1—2 Kijkli Vivg (2.1)
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Where we take HY = (HY, Hy), HY = (HF,HY), QF = (4;,d;), LT = (9, é1,), i,5,k =

2,3 are family indices, the 3x 3 matrices Y are dimensionless Yukawa couplings, a,b = 1,2
are SU(2), indices and €12 = 1. As mentioned in the Introduction, in addition to the MSSM
Yukawa couplings for quarks and charged leptons, the prSSM superpotential contains
Yukawa couplings for neutrinos, and two additional type of terms involving the Higgs
doublet superfields, H, and H, and the three right-handed neutrino superfields, 7§, with
the dimensionless vector coupling A and the totally symmetric tensor k.

A~

As discussed in [3], when the scalar components of the superfields of, denoted by
v$, acquire VEVs of the order of the electroweak scale, an effective interaction MI:I \Hy is
generated through the fifth term in eq. (2.1), with p = X\;(7¢). The last type of terms in
eq. (2.1) is allowed by all symmetries, and avoids the presence of an unacceptable Goldstone
boson associated to a global U(1) symmetry. In addition, it generates effective Majorana
masses for neutrinos at the electroweak scale. These two type of terms break explicitly
R-parity and lepton number.



Working in the framework of gravity mediated supersymmetry breaking, the La-
grangian Lg.g is given by:

- ﬁsoft = Z

/[:7.7
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In addition to terms from L., the tree-level scalar potential receives the D and F
term contributions also computed in [3]. In the following we will suppose that CP is a
good symmetry of the model, taking all the parameters in the neutral scalar potential real
and assuming that CP is only violated by the VEVs of the scalar fields

(HY) = eva vy, (HO) = e v, (i) =ePivy, (0F) =e™ uf. (2.3)
We then obtain for the tree-level neutral scalar potential,
VO = Viote + VD + Vir, (2.4)

where
2 2
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with G2 = ¢? + g3, and
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7-7
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We observe that in the potential there are seven independent phases, and we have defined
them as

Ov = Pu, + oy » Xi = Pvi + Doy s P (2.8)

Now one can derive the fifteen minimization conditions with respect to the moduli vy,
Vu, V§, Vi, and phases ¢y, X;, and ¢,¢ . These are written in appendix A. Finding minima
requires the solutions of equations (A.1)—(A.7). A standard way to obtain this is to give the
values of the cosines of the phases in terms of the moduli, using the triangle method [21-
23] for the equation of the phases, and then substitute the expressions in the minimum
equations for the moduli, solving them numerically. This method permits to demonstrate
the existence at tree level of only real minima in several models. This is for example the
case of the NMSSM [24], and the MSSM with extra doublets. The latter result has been
proved for the MSSM with an extra pair of Higgs doublets [22] (the so called 4D model), the
bilinear R-parity violation model (analogous to a 5D model because of the VEVs of the left-
handed sneutrinos), and the MSSM with two extra pair of Higgs doublets (6D model) [23].

Another way of finding minima consists of using as input the phases and solve the
fifteen equations to fix the variables that are linear in these equations, as it is the case of
some of the soft terms. This is the procedure that we will follow in section 4.

A simple way to prove the existence of CP violating minima in the urSSM is using the
results of ref. [23], where the authors prove that SUSY scenarios for SCPV require singlets.
In particular, they found that, if the singlets do not introduce dimensional parameters in the
superpotential (i.e. no linear or bilinear terms), the MSSM extended with two gauge singlets
would be the minimal SUSY model where CP violation can be generated spontaneously.

Since that model is a limiting case of the urSSM with vanishing neutrino Yukawa couplings

Y,

vij T 0, )\3 = 0, and K333 = K322 = K332 = K311 = K331 = K123 = 0, this would prove



that the purSSM can break CP spontaneously. Let us remark that, since in the prSSM
one is using a seesaw at the electroweak scale, the Y,,, have to be very small compared
with the other parameters [3], and as a consequence the neutral scalar potential can be
understood as a deformation of the MSSM extended with three gauge singlets. Although
there is no literature about general solutions that break CP spontaneously in the latter, it
is obvious that this model contains the MSSM extended with two singlets as a limiting case
when k333 = K320 = K332 = K311 = K331 = K123 = 0, and A3 = 0. As already mentioned,
SCPYV solutions are well known in this case [23, 25]. Thus one could argue that a subset of
solutions with neutrino masses different from zero could be obtained deforming the scalar
potential of the MSSM extended with three singlets' through non-zero Yo,

In section 4 we will do a thorough numerical analysis showing explicitly how SCPYV is
realizable in the leptonic sector. Nevertheless, it is worth pointing out here that to find
complex solutions is a non-trivial task compared to the search of real ones. As we will
show, the key of SCPV is on the (Axk);jr terms used as inputs. In order to fulfill the
minimization equations, the basic requirement is that entries different from (Ayk);; must
be allowed. In addition, these parameters have to be chosen carefully to obtain SCPV as
a global minimum.

In the next section we will study the seesaw mechanism in the model as the origin of

neutrino masses and mixing angles.

3 Neutrino masses and mixing angles

In the prSSM the MSSM neutralinos mix with the left- and right-handed neutrinos as
a consequence of R-parity violation. Therefore the right-handed neutrinos behave as
singlino components of the neutralinos. In the basis XOT = (éO,WO,ﬁd,ﬁu,yRi,uLi)
the neutralino-neutrino mass matrix was given in [3, 4] for real VEVs. Considering now
the possibility of complex VEVs the result is given by

M m
M, = , 3.1
<mT 03><3> (8-1)

where the neutralino mass matrix is

M,y 0 —A(H)* A(HOY* 0 0 0
0 Mo B(HJ)* —B(H)* 0 0 0
<Hd> B(HJ)* 0 =i {f) =1 (HY) X2 (HY) —X3(Hy)
M=| A(Hp)* —B(HD)* —Xi(7f) 0 “A(HQ) Y0, (i) —A2(HQ)+ Yo, (%) —As(Hg)+Yo,5 ()
0 =X(HD) —A(HD+Yo,, (7) 2k115(75) 2k125(75) 26135 (75)
0 0 =Xo(HY) —A2(HD+Yo, () 2215 (75) 26225 (75) k235 (75)
0 0 —X3(HY) —X3(HY)+Yy,; (%) 2k315(75) 2325 (75) 2r335 (75)

(3.2)

1Since only mass differences for neutrino masses have been measured, in principle two right-handed neu-
trino supermultiplets are enough to give two tree-level masses and also break CP spontaneously. Thus a ver-
sion of the prSSM with only two right-handed neutrinos instead of three could be formulated. Nevertheless,
we will follow the philosophy that the existence of three generations of all kind of leptons is more natural.



with A = %sin&w, B = % cos Oy, and

— S ()" B (1) 0 Vi (5F) Yoy (HO) Vi (H) Yoy (HY)
ml — — ()" ()" 0 Y, () Yooy (HY) Y, (HO) Y, (HY) | . (3.3)
— S5 ()" L (T5)" 0 Vi (0F) Yoy (HO) Yoy (HO) Yoy (HY)

For simplicity the summation convention on repeated indices was used in the above two
equations. The above matrix (3.1) is of the seesaw type giving rise to the neutrino masses
which have to be very small. This is the case since the entries of the matrix M are much
larger than the ones in the matrix m. Notice in this respect that the entries of M are of
the order of the electroweak scale while the ones in m are of the order of the Dirac masses
for the neutrinos [3, 4]. Therefore in a first approximation the effective neutrino mixing
mass matrix can be written as

Megg = —m? - ML m. (3.4)

Because meg is symmetric and miﬁmeﬂr is Hermitian, one can diagonalize them by a unitary
transformation

Ul\j/}NSmeff UMNS = dia’g(ml’l s Mg, ml/s)’ (35)

Udinsmigmes Unins = diag(m?,,m?2,,m2,). (3.6)

In appendix B, eq. (B.1), we present an approximate analytical expression for the
effective neutrino mass matrix of the urSSM with SCPV, neglecting all the terms containing
Y202, Y2v and Y,v? in eq. (3.4) due to the smallness of Y, and v [3]. In the limit of
vanishing phases ¢y, = @y, = @ve = py, = 0, eq. (B.1) is reduced to eq. (B.9). This is the
formula that we will use in the following, in order to have a qualitative idea of how the
seesaw mechanism works in this model.

Let us first rewrite the expression (B.9) in the following form:

2 1 Vg (Yw l/j-FY,,J/Z') Yl,iY,,,vg
(meff|real)ij :WZCYWYVV?’ (1—3 5@]) — m ViV ) J + 9)\2] R (37)
with
v? 20Uy U2
Mg =M|1- 2k 8 4 )|, 3.8
off 2M (kv + Avyug) 3Ave < S 2 > (38)

which coincides with the result in [6], where the possibility of obtaining an adequate seesaw
with diagonal Yukawa couplings was also pointed out. Here v = v2 +v3+ >, 17 ~ v 403
with v &~ 174 GeV has been used, since v; < vy, vgq [3], and let us recall that we are also
using couplings \; = A, a tensor xk with terms k;; = k; = k and vanishing otherwise,
diagonal Yukawa couplings Y,,, =Y,,, VEVs vf = v, and ﬁ = 1\511_%1 + ]‘(\]/[—%2.

In the limit where gauginos are very heavy and decouple (i.e. M — o0), eq. (3.7)
reduces to

,02

(meff|real)ij = GK—Q;JCYWYW (1 - 362]) . (39)



It is interesting to note that in contrast with the ordinary seesaw (i.e. generated only
through the mixing between left- and right-handed neutrinos), where the case of diagonal
Yukawas would give rise to a diagonal mass matrix of the form

2 .
—v, Y., Yy, 0ij

2 kV©

L.~

(meff|0rdinary seesaw)zg —

(3.10)

in this case we have an extra contribution given by the first term of eq. (3.9). This is
due to the effective mixing of the right-handed neutrinos and Higgsinos in this limit, and
produces off-diagonal entries in the mass matrix. Besides, when right-handed neutrinos
are also decoupled (i.e. v — 00), the neutrino masses are zero as corresponds to the case
of a seesaw with only Higgsinos.

Another observation is that, independently on the nature of the lightest neutralino,
Higgsino-like or v-like or even a mixture of them (recall that the v can be interpreted also
as the singlino component of the neutralino since R-parity is broken), the form of the effec-
tive neutrino mass matrix is the same when the gauginos are decoupled, as given by (3.9).

Another limit which is worth discussing is v — oco. Then, eq. (3.7) reduces to the form

1 va(Y,v; + Y 1) YViYV.vCQl
(Mefpireat)is = =557 |Vivi + ;)\ s 9)\5 (3.11)
We can also see that for vg — 0 (i.e. tan 3 = {* — o0) one obtains
ViV;
(meff\real)ij = - 22]\4] . (312)

Yyi Vg

Note that this result can actually be obtained if v; > —5=, and that this relation can be
fulfilled with vg ~ v, ~ 174 GeV for suitable values of A. It means that decoupling right-
handed neutrinos/singlinos and Higgsinos, the seesaw mechanism is generated through the
mixing of left-handed neutrinos with gauginos. This is a characteristic feature of the seesaw
in the well-known bilinear R-parity violation model (BRpV) [26].

The seesaw in the prSSM comes, in general, from the interplay of the above two limits.
Namely, the limit where we suppress only certain Higgsino and gaugino mixing. Hence,
taking vg — 0 in eq. (3.7), which means quite pure gauginos but Higgsinos mixed with
right-handed neutrinos, we obtain

02 1
(Mefflreat)ij = W;Yuiyuj(l —30;5) — CRYARGLE (3.13)

As above, we remark that actually this result can be obtained if v; > %. The effective
mass Meg = M (1 -3 1]’\; 3) represents the mixing between gauginos and Higgsinos-v°¢
kMuvc

that is not completely suppressed in this limit. Expression (3.13) is more general than the
other two limits studied above. On the other hand, for typical values of the parameters
involved in the seesaw, Mqg ~ M, and therefore we get a simple formula that can be used
to understand the seesaw mechanism in this model in an qualitative way, that is

,02

1
(Meffireat)ij = GK—ZCYWYW(l —30;5) — oaf Vi (3.14)



Am2,/107° eV? sin? 615 sin? 03 sin? 63 Am2,,, /1073 eV?

7.14-8.19 0.263-0.375 | < 0.046 | 0.331-0.644 2.06-2.81

Table 1. Allowed 30 ranges for the neutrino masses and mixings as discussed in [27].

m? m?’
" -V, %
-V,
-V,
my* L2
solar~7x109eV?2 ;
, —1 "
atmospheric I
~2x10%eV? .
atmospheric
mzz__ ~2x107%eV?
solar~7x10 e V?2 ,
m 12__ __ng"
0 0

Figure 1. The two possible hierarchies of neutrino masses as shown in [28]. The pattern on the left
side corresponds to the normal hierarchy and is characterized by one heavy state with a very little
electron neutrino component, and two almost degenerate light states with a mass difference which
is the solar mass difference. The pattern on the right side corresponds to the inverted hierarchy
and is characterized by two almost degenerate heavy states with a mass difference that is the solar
mass difference, and a light state which has very little electron neutrino component. In both cases
the mass difference between the heaviest/lightest eigenstate and the almost degenerate eigenstates
is the atmospheric scale.

The simplicity of eq. (3.14), in contrast with the full formula given by eq. (3.7), comes from
the fact that the mixing between gauginos and Higgsinos-v° is neglected.

To continue the discussion of the seesaw in the urSSM, let us remind that two mass
differences and mixing angles have been measured experimentally in the neutrino sector.
The allowed 30 ranges for these parameters are shown in table 1. We also show the
compositions of the mass eigenstates in figure 1 for the normal and inverted hierarchy cases.
For the discussion, hereafter we will use indistinctly the subindices (1,2,3) = (e, u, 7).

Due to the fact that the mass eigenstates have, in a good approximation, the same
composition of v, and v, we start considering Y,, = Y,, and vy = w3, and therefore
eq. (3.14) takes the form

dc c
meg = | ¢c AB |, (3.15)
cB A



where

Uy 2 I 5
d= 3/@1/CYV1 B 2MV1’
2
¢ = lu Yy 1212
6k 2 2M ’
2
_ Uy 2 I 5
4= 3rpc V2 2MV2’
2
1
B=_tuyz_ .2 (3.16)

6rvC Y2 2M 2

The eigenvalues of this matrix are the following;:

% (A+B—\BE+(A+B—dP+d) % (A+B+VBET(ATB-dP+d) A-B, (3.17)

and the corresponding eigenvectors (for simplicity are not normalised) are

A+4B++/8c2+(A+B—d)?—d
- P] yGC

<AB+ 8c2+(A+B—d)2+d7 1, 1) 7

2c
(0,—1,1). (3.18)
We have ordered the eigenvalues in such a way that it is clear how to obtain the normal
hierarchy for the v,-v, degenerate case. Then we see that sin 013 = 0 and sin® fy3 = %, as

in the tri-bimaximal mixing regime. Also we have enough freedom to fix the parameters in
such a way that the experimental values for the mass differences and the remaining angle
012 can be reproduced. It is important to mention that the above two values of the angles
are a consequence of considering the example with v,-v; degeneration, and therefore valid
even if we use the general formula (3.7) instead of the simplified expression (3.14). Notice
that egs. (3.15), (3.17) and (3.18) would be the same but with the corresponding values of
A, B,c and d.

Let us remark that the fact that to obtain the correct neutrino angles is easy in this
kind of seesaw is due to the following characteristics: R-parity is broken and the relevant
scale is the electroweak one. In a sense we are giving an answer to the question why the
mixing angles are so different in the quark and lepton sectors.

To show qualitatively how we can obtain an adequate seesaw with diagonal neutrino
Yukawa couplings, let us first consider the limit? ¢ — 0 . In this limit the electron neutrino
is the lightest neutrino, and is completely decoupled from the rest. The second eigenvector
has no v, composition (sinfi2 — 0), and it is half v, and half v,. Understanding this case
we can easily generalize the situation to the case sin 619 # 0, switching on the parameter
c. The eigenvalues in this limit are

d, A+ B, A— B, (3.19)

2 Actually this limit can be obtained taking Y,, — 0, v; — 0, implying ¢ — 0, and also d — 0, and
leading to similar conclusions. This limit means that the electron neutrino is decoupled from the other two
neutrinos, having a negligible mass.

,10,



where

V2 1
d _ u Y2 2
=52V + g
2
| v 2 1 5
A+ Bl = vt + 504,
IA—B| = U y2 (3.20)
T o9kpe 2 '

We can see that Am2,  ~ |[4AB| = and Amgol ~ (A +

8202 AMZY2 T T2hMkoc

4 < vi YV42 1 .4 v2 Yl?2 V% >
2

2 2 2 2
2 21 _ v 2 1.9 v 2 192
B)* —d*| = ‘(GJCYW + M’/2) - <3;§Zc ot 2MV1>

It is important to note that we need |A — B| > |A 4+ B]| for the normal hierarchy case,

otherwise the 615 angle is zero even when ¢ is not neglected. This is easy to obtain for
M > 2rkv¢. If M ~ 2kv¢, using different signs for the effective Majorana and gaugino
masses helps to fulfill the above inequality. For this to hold with our convention, one must
take M < 0.

In the inverted hierarchy scenario |A — B| > |A + B| leads the angle 02 to zero also
with ¢ # 0 which is not phenomenologically viable. Then we impose |A — B| < |A + B|.
Note that when c is switched on, the parameter d has to be large enough for having the
associated neutrino with an intermediate mass, as corresponds to the inverted hierarchy
scenario. Therefore in this case we can also have easily the tri-bimaximal mixing regime
for M < 2kv°¢. When M ~ 2kv¢, having M > 0 helps to fulfill the above condition.

Let us finally remark that we can get the complete tri-bimaximal mixing regime
sin? @13 = 0, sin?fy3 = 1/2 and sin®6@5 = 1/3 fixing in eq. (3.15) ¢ = A+ B —d. In
this way we obtain the eigenvalues

—(A+B)+2d, 2(A+B)—d, A—B, (3.21)

and from eq. (3.18), after normalization, we arrive to sin? 65 = 1/3.

Breaking the degeneracy between the Y, and v of the muon and tau neutrinos, it is
possible to find more general solutions in the normal and inverted hierarchy cases. We
will show this with numerical examples in the next section, working always in the case
M ~ 2kv°. Note also that in the case of degenerate v,-v; parameters, as the Dirac CP
phase always appears in the MNS matrix in the form sin #3¢? (see eq. (4.2) below), the
SCPV effect is suppressed since sin 13 is negligible. This is not the case if we break the
degeneration between v, and v;.

When the vacuum is non CP-conserving the situation is more complicated since new
relative phases are present, but the idea still holds. In the next section we will use the
above results to find numerical examples in the general case where also phases are generated
through complex vacua. Examples where changing the sign of M the second and third
eigenvalue are interchanged and the behavior is similar to the one described in this section.

— 11 —



4 Results

In section 2 we have given a simple argument to show that the purSSM can violate CP
spontaneously. In section 3 we have discussed how to obtain correct neutrino masses and
mixing angles. In this section we sketch the numerical method used for the search of global
minima of the urSSM with SCPV, giving rise also to an effective neutrino mass matrix that
reproduces correctly the phenomenology of the neutrino sector according to observations.
We also give some examples.

For simplicity, we assume that all the parameters appearing in the potential are di-
agonal in flavor space at the electroweak scale, except the trilinear (A.x);;, terms whose
entries different from (Ak);; are relevant to break CP spontaneously. We introduce the
following notation for the flavor diagonal free parameters of the scalar potential: x;, Y,,,
(ALY, m%i, m’%f with ¢ = 1,2, 3 being flavor indices. Under this assumption, the neutral
scalar potential in (2.4) is obviously simplified, and as a consequence also the minimiza-
tion conditions (A.1)—(A.7) are simplified. In addition to the complex VEVs, the potential
depends on \;, ki, Yo, (Axk)ije, (AxN)i, (AYL)i, muy,, mu,, mpe and my .

The strategy followed to find minima of the model consists of solving the minimization
equations in terms of the soft parameters that are linear in those equations. More precisely,

the three minimization equations (A.7), corresponding to g—)‘é = 0, are used to solve the
values of (4,Y),);. Using this result, egs. (A.6) for i = 2, 3, corresponding to agcv =0, are
v9.3

then solved for (AyA)z23. Repeating the procedure using the equation (A.5), g% =0, one
obtains (Ax\);. Finally, eq. (A.6) for i = 1 is used to get (Axx)111. The conditions with
respect to the moduli of the VEVs (A.1)-(A.4) are used to get the squared soft masses.
Once this is done, we ensure that the critical point found (i.e. with non-vanishing phases
for the VEVs) is a global minimum through a numerical procedure. As discussed in [4],
one has to check in particular that the minimum found is deeper than the local minima
with some or all the VEVs vanishing.

To accomplish the numerical task of finding global minima we need as inputs the eight
moduli and seven phases of the VEVs, the \;, x; and Y}, couplings and the soft-trilinear
terms (Axk)ijk With (i,4,k) # (1,1,1). For simplicity, we assume a special structure for
the latter: (Axk)220 = (Axk)333, a common value for (A.k);j; with 4,7,k # 1, and another
common value for (A,k);;, with one or two indices equal to 1. Moreover, let us recall that
the modulus of the SUSY Higgs VEVs, can be determined from v* = vfl +v2 + > I/ZZ R
v?l +v2 with v~ 174 GeV, and the value of tan 3 = Z_Z'

Once we find global minima, the next step is to build the neutralino mass matrix and
to diagonalize it perturbatively in order to extract the effective neutrino mass matrix. Di-
agonalizing the effective neutrino mass matrix, we can extract the mass differences and the
mixing angles of the neutrino sector and compare them with the data. The key for obtain-
ing a phenomenologically viable neutrino sector, once we are in a global minimum, consists
of varying either the neutrino Yukawa couplings, the left-handed sneutrino VEVs or the soft
gaugino masses. This approach does not alter the vacuum structure previously obtained.

Let us now describe the details on how we proceed with the phenomenological analysis
of the neutrino sector of the model. First, we assume for simplicity the GUT inspired

- 12 —



A =0.13 ki = 0.55 | v¥ = 1000 GeV
tan 0 = 29 Oy = —T poe =12
901/52901@:_% Xlz_% X2 = X3 =

SNE]

Table 2. Numerical values of the relevant input parameters for a global minimum that breaks
CP spontaneously.

relation between the gaugino masses My and My, My = g—gMg, implying My ~ 2M; at low
energy. As discussed in section 3, one has to diagonalize the neutrino effective mass matrix,
Mmeg = —m! - M~1-m. Since it is a complex symmetric matrix, it can be diagonalized with
an unitary transformation, as it is shown in egs. (3.5) and (3.6). For the MNS matrix we
follow the standard parameterization

Unmns = diag (eiée, eon ei‘s*> -V - diag <e_i¢1/2, e 192/2, 1) , (4.1)
where ¢ and ¢9 are the Majorana phases and V' is given by
—id
C12€13 512€13 s13€
V = | —cogs1z — sagsi3c12e™ cazcrz — sa3s13s12€ sazcis | - (4.2)

i i
593512 — €23513C12€""  —S523C12 — €23513512€"° C23C13

Here c¢;; = cosf;; and s;; = sin6;; whereas 0 is the Dirac CP violating phase. The
conventions used for extracting the mixing angles and the Majorana and Dirac phases
from eqs. (4.1) and (4.2) are outlined in ref. [29].

Taking all the above into account, we show in table 2 the parameters that charac-
terize an example of a global minimum that breaks CP spontaneously. The values of
the soft parameters not determined by the minimization equations have been chosen to be
(Axk)iii = 280 GeV for i # 1, (Axk)ijr = —40GeV for i, 5,k # 1, and (Axk)ix = —120 GeV
for one or two indices equal to 1. In table 3 we show the neutrino/neutralino inputs used
in order to obtain a v,-v; degenerated case with normal hierarchy, producing values of
masses and angles within the ranges of table 1. In particular, we obtain sin®6;3 ~ 0
and sin’ a3 = 0.5, as expected from the discussion in section 3, sin®fj5 = 0.323, and
neutrino masses m1 = 0.00305eV, mo = 0.00949eV and m3 = 0.05091 eV, producing
Am?, =8.08x1075eV? and AmZ,, = 2.50 x 1073 eV2. The corresponding values of the
soft terms calculated with the minimization equations are presented in table 4.

It is worth noticing that for this solution, the soft masses of the left-handed sneutrinos,
mj ., do not need to be very different, and, actually, in this case they are almost degenerate
~ 3700 GeV. This can be understood using the minimization equations (A.4), neglecting
%i = }%", V 1,7, one obtains m%l = m%j.
However, we have to point out that the values obtained for other soft parameters are not
so natural in a SUSY framework. Notice for example that A, ~ —7TeV, Ay, ~ —11TeV,
whereas A,,,, ~ —0.5GeV. Indeed, this is a consequence of the particular solution shown
in table 2.

Although it is non-trivial to find realistic solutions, since many minima which appar-

the terms with products of Yukawas. When

ently are acceptable, at the end of the day turn out to be false minima, we have been able to
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Y, =4.25x 1077 Y,, =Y,, =136 x 107¢ | M; = —340 GeV
v =3.88x107° GeV | vy =3 = 1.24 x 107% GeV

Table 3. Numerical values of the neutrino/neutralino inputs that reproduce the neutrino experi-
mental constraints, and correspond to the normal hierarchy scenario.

(A,Y,)1 =~ —0.0031 GeV (A,Y,)2 =~ —0.010GeV [(A,Y,)3 =~ —0.010 GeV
(AxA)1 ~ —1487 GeV (AxA)2 ~ —679 GeV (Ax\)3 =~ —679 GeV
(Awk)111 ~ —0.25 GeV my; ~ 7.0325x107 GeV?| m3, ~ —47200 GeV?

mze = 260140 GeV? mze =~ —100820 GeV? | m2 ~ —100820 GeV?
m%l ~ m%Q :m%q =1.37x107 GeV?

Table 4. Values of the soft terms calculated with the minimization equations for the global mini-
mum associated to the parameters shown in table 2.

Ai =0.10 ki = 0.35| v{ =835 GeV, v5 =v§ =685 GeV
tan § = 29 Pov = —T Pvi = %

=N
=Nk

Table 5. Numerical values of the relevant inputs for the second global minimum discussed in the
text, that breaks CP spontaneously.

Y, =5.4x 1077 Y, =Y,, =92x 1077 | M; = —340 GeV
v =3.7x107° GeV | vy =13 =88 x 107° GeV

Table 6. Numerical values of the neutrino/neutralino inputs for the second global minimum dis-
cussed in the text, that reproduce the neutrino experimental constraints and correspond to the
normal hierarchy scenario.

find more sensible solutions. This is the case of the one shown in table 5, with the values of
the input soft parameters (A.k)ii; = —150GeV for i # 1, (Axk)ijr = 75 GeV for 4,5,k # 1
and (Axk)ijr = —50 GeV for one or two indices equal to 1. For example, lowering the values
of ¢ one is able to lower the trilinear terms A, ~ —3TeV in order to fulfill egs. (A.7) (also
lowering  contributes to this result), and also the soft masses m i~ 28 TeV, as shown in
table 7. Lowering A one is able to lower the trilinears Ay, ~ —1.5TeV, A, ; ~ —840 GeV,
in order to fulfill eqs. (A.5) and (A.6). Notice finally that the use of non-degenerate v{
allows to increase the trilinear A, ,, ~ 36 GeV. In table 6 we show the corresponding neu-
trino/neutralino inputs producing values of masses and angles within the ranges of table 1.

Modifying the values of the angles we can also obtain other interesting solutions. See
for example the one shown in tables 8, 9, and 10. In this case the values of the input
soft parameters are chosen to be (Axk)i; = —200GeV for i # 1, (Axk)ijr = 125 GeV for
i,j,k # 1 and (Axk)ijr = —75GeV for one or two indices equal to 1. Notice that now the
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(A,Y,)1 ~ —0.00209 GeV

(A)Y,)2 ~ —0.00294 GeV

(AY,)3 >~ —0.00294 GeV

(AxM)1 ~ —156 GeV

(AaA)2 >~ —84 GeV

(AaA)3 >~ —84 GeV

(A,{Ii)nl ~ 12.7 GeV

m3, ~5.36 x 106 GeV?
d

2 —37910 GeV?

’I’I’LHU ~

mze =~ 51035 GeV?

mz, = 69155 GeV?

mz = 69155 GeV?

2

2

mQ~1 = 8.07 x 10% GeV?

L mi

mi L

=3.92 x 105 GeV?
Lo

L =3.92x 106 GeV?

Table 7. Values of the soft terms calculated with the minimization equations for the second global
minimum discussed in the text, associated to the parameters shown in table 5.

Ai = 0.10 ki = 0.42 | vf =850 GeV, v§ =15 =550 GeV
tan (§ = 29 Yy =T Yvi =3
Pvg=pue =—% | X1 =—3% X2=X3=3

Table 8. Numerical values of the relevant inputs for the third global minimum discussed in the
text, that breaks CP spontaneously.

Y,, =1.9x 1077
1 =6x107° GeV

Yy, =Y, =85 x 1077
vy =13 =4.9 x 107° GeV

My = —100 GeV

Table 9. Numerical values of the neutrino/neutralino inputs for the third global minimum discussed
in the text, that reproduce the neutrino experimental constraints and correspond to the normal
hierarchy scenario.

values obtained for the soft terms are also of this order. In particular, the trilinears are
Ay, ~ —657GeV, Ay, ; ~ —429GeV, Ay, ~ —990GeV, Ay,, ~ —830GeV, and A, ~
100 GeV. For the soft masses we obtain my ~ 628 GeV, mi, ., ~ 950 GeV.

A general analysis of the parameter space, finding other interesting complex vacua, is
obviously extremely complicated given the large number of parameters involved, and be-
yond the scope of this paper. Nevertheless, we have checked that other sensible solutions
can indeed be obtained modifying adequately the parameters. In the following we will work
with the solution associated to the parameters of table 2, since the discussion below is essen-
tially valid for other solutions. Our strategy will consist of varying the neutrino/neutralino
inputs Y,,, v; and M; in such a way that the derived neutrino mass differences and mixing
angles are within the ranges of table 1. As mentioned above, this procedure will not alter
the vacuum structure found. Notice in this respect that gaugino masses do not contribute
to the minimization equations, and that the values of Y,, and v; are very small. Let us
also mention that this strategy can indeed be applied to the much more simple issue of
analyzing real vacua. In particular, it was shown in [4] that many global minima with real
VEVs can be found. For them neutrino/neutralino inputs Y,,, v;, M;, similar to those
studied here are also valid.

As noted in section 3 we have chosen M; < 0 in order to guaranty a viable ;2 angle.
It is worth pointing out here that a redefinition of the parameters leaving the Lagrangian

invariant can be made, in such a way that M; becomes positive and other parameters such

,15,



vYy)1 = —U. € v¥y)2 = —U. € v¥y)3 = —U. €

AY, 0.000125 GeV | (4, Y, 0.000365 GeV | (A,Y; 0.000365 GeV
(AxA\)1 ~ —99 GeV (AxN)g ~ —83 GeV (Ax\)3 >~ —83 GeV
(Apr)111 ~ 41.9 GeV my; ~ 3.6 x 10° GeV? my, ~ —25118 GeV?
mze ~ —24393 GeV’ mz. = 208377 GeV? mz. = 208377 GeV?
mé = 394777 GeV? m%Q = 903528 GeV? m%q = 903528 GeV?

Table 10. Values of the soft terms calculated with the minimization equations for the third global
minimum discussed in the text, associated to the parameters shown in table 8.

as the VEVs become negative, describing indeed the same physics. In our convention the
VEVs, vg, vy, v§, v4, are always taken positive.

We would also like to stress that all the numerical results have been obtained without
any approximation, that is, with the exact expression of the 10 x 10 neutralino mass matrix,
calculating numerically the effective neutrino mass matrix and diagonalizing it.

Let us first study how the neutrino mass differences depend on the inputs. In section 3

we showed that in this scenario there are two different contributions to the seesaw mech-

(YLivu)
2kV°

the Dirac and Majorana masses are parameterized by Y, v, and 2xv¢, respectively, and

2 b
the contribution coming from the gaugino seesaw given by % + %, where the Dirac

anism; the one involving right-handed neutrinos (and Higgsinos) given by , where

and Majorana masses are parameterized by g,v; and M,, respectively, with a = 1, 2.

Figures 2a and 2b show that the heaviest eigenvalue (dashed line) has very little
electron-neutrino component, as expected in the normal hierarchy scenario (see figure 1),
and therefore it does not depend on (Y,,,v,)?/(2kv°), whereas the intermediate (solid line)
and lightest (dotted line) eigenvalues, that have sizeable electron-neutrino components,
grow with this term. As a consequence of the latter, the squared solar mass difference
grows as well. On the other hand, following the arguments related to eq. (3.14), we can see
in figures 2c and 2d that the heaviest eigenvalue is controlled by the contribution of the
seesaw with right-handed neutrinos having an important muon/tau neutrino composition,
thus we observe how the heaviest eigenvalue grows with (Y,,v,)%/(2kv¢) and, as a conse-
quence, the squared atmospheric mass difference grows accordingly. The variation with
(Y,,vu)?/(260°) is analogue.

Figure 3 is analogous to figure 2 but showing the squared neutrino mass differences
dependence on the gaugino seesaw component. In this case, because the heaviest eigenstate
(dashed line) practically does not mix with the electron neutrino we can see that it does not
vary with ((g1v4)?/My + (g2vi)?/M3)? for i = 1,2,3. On the other hand, the intermediate
eigenstate grows with the mixing with the gauginos, as explained in section 3 with M; < 0,
therefore the squared solar mass difference also grows.

Let us now discuss the mixing angles. Note that in the v,-v; degenerate case with
normal hierarchy and M; < 0 we have obtained sin? 015 = 0 and sin® fa3 = % In figure 4 we

present the variation of sin” #15 with the ratio of the parameters that control the gaugino
2
’u,’
consider the complicated factors containing phases in egs. (B.5).

To obtain results different from sin? a3 ~ % and sin® 613 ~ 0, in the following we

seesaw, bg /b, where for the sake of simplicity we take b; = Y, vg + 3Av; and we do not
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Figure 2. Squared neutrino masses versus (Y,,v,)*/(2kv°)?. (a) and (b) show for i = 1 the two
heaviest and lightest neutrinos, respectively. The same for (c¢) and (d) but for i = 2.

consider the possibility of having different values for the Y, and v parameters for p and
7 neutrinos. We show in figure 5a sin?#fy3 as a function of the ratio of the term that
controls the Higgsino-v¢ seesaw, az Ja2. When ay/ar goes to 1, the v,-v; degeneracy is
recovered and sin? fo3 goes to 1/2 as expected. In figure 5b we show sin? f13 as a function
of ﬂisz)g that is a good measure of the degeneration in this case. Note that when
4aya./(a, + a;)®> — 1 the degeneracy is recovered and sin? 613 — 0 as expected. The
parameters a; have been defined in eq. (B.2). Let us point out that sin? ;3 < 1073 since
we are breaking the degeneration between p and 7 neutrinos but the term that controls

the higgsino-v¢ seesaw for the first family is very small compared to the other two families.
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Figure 3. The same as in figure 2 but for the squared neutrino masses versus [(g1v;)?/M; +
(9214)? /Mo,

As mentioned previously, the purSSM with SCPV also predicts non-zero CP phases in
the MNS matrix. We have checked numerically that for each of the experimentally allowed
regions found, the two Majorana CP phases and the Dirac CP phase are different from
zero. This fact is reflected in figure 6 where we present two plots in the § — ¢; and § — ¢o
planes (Dirac-Majorana CP phases) constructed varying all the inputs in the neutrino
sector. However, it is fair to say that due to the smallness of sin® f15 ~ 1072 in this region,
the CP violation effects of the phases of the VEVs turn out to be suppressed in the MNS
matrix because the Dirac CP phase always appears in the form sin 6;3e.

In order to complete the discussion about the neutrino sector in this scenario, we will
consider the possibility M7 > 0 instead of My < 0 . In section 3 we have seen that with
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Figure 4. Variation of the solar mixing angle with respect to the relevant term that controls its

evolution, b2 /b2.
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Figure 5. (a) The variation of sin? 023 with respect to the relevant term that controls its evolution,
ai /a?. (b) The variation of sin? 613 with respect to the term that measures the v,-vr degeneracy.

M; > 0 it is more complicated to have a degeneracy between muon and tau neutrinos
because it is easy to obtain sin?f@is ~ 0, in contradiction with the data (see table 1).
Thus we will show a region where breaking the degeneracy v,-v, a normal hierarchy is
obtained with M; > 0. This region is around the point of the parameter space shown in
table 11. In this example the angle sin®#;5 can easily be made small as required by the
data, but it is not necessarily negligible. Thus the CP violating effects would be present in
the MNS matrix. Besides, we can roughly say that sin? ;3 and sin® f;, are interchanged
with respect to the case discussed above with M; < 0. For completeness, in figure 7a we
show the variation of sin® 613 with respect to the term that controls the gaugino seesaw
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Y, =9.54 x 1077 Yy, = 9.47 x 1077 Y,, =231 x 1077 | My =350 GeV
v1 =859 x 107° GeV|re = 2.25 x 107% GeV | v3 = 2.29 x 10~ GeV

Table 11. Numerical values of the relevant neutrino/neutralino-sector inputs that reproduce the
neutrino experimental constraints, and correspond to the normal hierarchy scenario with M7 > 0.
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Figure 6. 6 — ¢; plane (a) and § — ¢2 plane (b) for the scenario with normal hierarchy and negative

0.85

gaugino masses M < 0, varying simultaneously Y,,, v;, M.

relevant in this case, namely b2/ (bi + b2). We also plot in figure 7b sin? ;5 as a function
dapar - Ag ioned ab

(anta)? s mentioned above,

an interesting feature of this region of the parameter space is that the effect of the Dirac

of the relevant term that controls the Higgsino-v¢ seesaw

CP phase in the MNS is not removed, since the value of sin ;3 is not negligible. Figure 8
shows the derived CP phases of the MNS matrix.

For the sake of completeness, we show in table 12 an example where the inverse hier-

archy scenario is achieved.

At this point it is clear that there are many regions with different characteristics, dif-
ferent compositions for the lightest neutralino or regions close to the tri-bimaximal mixing
regime for normal or inverted hierarchy that can be found with different neutrino parame-
ters. Furthermore, we have seen that the pvSSM with SCPV predicts non-zero CP-violating
phases in the neutrino sector. If in the future a non-zero CP violating phase in the lepton
sector is measured, SCPV as the one analyzed here could be a possible source.

Neutrino oscillations are sensitive only to the Dirac CP phase (insensitive to the Ma-
jorana phases). Let us briefly comment about the possible determination of ¢ in future

neutrino experiments. The conservation of CP implies P (v, — vg) = P(Vq — vg). If CP
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Figure 7. (a) The variation of sin® #;3 with respect to the relevant term that controls its evolution.
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Figure 8. § — ¢1 plane (a) and § — ¢2 plane (b) for the scenario with normal hierarchy and positive
gaugino masses M > 0, varying simultaneously Y,,, v;, M.

is not conserved, we would have [30]

_ _ . (AmL\ . (Am3L\ . [(Am3,L
P(v, — v.) — P(vy, — ve) = —16J sin (T) sin (T) sin (T) . (4.3)

where L is the oscillation length, E is the neutrino beam energy and J is the Jarlskog
invariant for the neutrino mass matrix which is given by J = s12¢19 8230238136%3 sind. There
is only an upper experimental limit for J, J < 0.04. The reason is that J depends on 63
and 0, which are currently unknown. If 13 vanishes (recall the bound sin? 613 < 0.038) .J
vanishes and the effect of CP violation via (4.3) would be unobservable. The same occurs
if there was a degeneracy in the neutrino masses. In spite of these extreme situations the
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Y, =598 x 1077 Y,, =1.32 x 107¢ Y,, = 1.40 x 107% | M; = 340 GeV
v = 3.276 x 107% GeV|ry = 6.20 x 107° GeV|vs = 6.56 x 107> GeV

Table 12. Numerical values of the relevant neutrino/neutralino inputs that reproduce the neutrino
experimental constraints, and correspond to the inverted hierarchy scenario.

A =0.13 ki = 0.55 | v{f =900 GeV, v§=v5 =600 GeV
tan 0 = 29 py =0 e = 100
Prs = Pug = ~10g | X1 = 5 X2 = X3 = 3

Table 13. Numerical values of the relevant inputs of a global minimum that breaks CP sponta-
neously with small phases.

process (4.3) implies that long baseline experiments allow the observation of CP violation
due to the Dirac phase ¢ in the neutrino sector. Two experiments are designed for this
purpose: NOvA [31] and the T2KK detector [32].

On the other hand, although Majorana phases affect neutrinoless double beta decay
OvB3 [33], their determination turn out to be difficult.

Let us finally briefly discuss the implications of the CP-violating phases concerning
the electric dipole moments (EDMs) in the urSSM. As is well known, EDMs impose im-
portant constraints on supersymmetric theories. The MSSM (with explicit CP violation
in the soft Lagrangian) predicts EDMs about three orders of magnitude larger than the
experimental bounds for the EDM of the electron and neutron if the supersymmetric CP
violating phases are O(1) and the supersymmetric particles have masses near their current
experimental bounds O(100 GeV) [34]. There are three kind of solutions to this problem
in supersymmetric theories. First, if the supersymmetric CP violating phases are very
small, of order O(1072 — 1073) the EDM bounds can be easily satisfied [34]. Second, if
the supersymmetric scalar particles are decoupled with masses larger than about 3 TeV,
and thus out of reach of the LHC, but not spoiling the solution of supersymmetry to the
hierarchy problem, the EDM bounds could also be accomplished [35]. Third, there can be
internal cancellations between the different contributions to the EDMs [36].

We would like to point out that the urSSM with SCPV could implement these three
kind of solutions. First of all, the possibility of small supersymmetric CP phases is present
in our model. Let us show for example a global minimum that break CP spontaneously
with O(1072) CP phases (we have also found global minima with O(1073) phases). The
values of the soft parameters not determined by the minimization equations are chosen
to be (Axk)ii = —175GeV for i # 1, (Axk)ijr = 100 GeV for 4,7,k # 1 and (Axk)iji =
—100 GeV for one or two indices equal to 1. The numerical values of the phases and the
rest of input parameters are presented in tables 13 and 14.

It is worth remarking here that in models with SCPV small phases are not unnatural,
since they arise as a consequence of the minimization conditions (notice that the use of
phases as inputs in this work is just an artifact of the computation) for particular values
of the soft terms.

— 292 —



Y, =19 %1077 Y,, =Y,, =1.06 x 107¢ | My = 300 GeV
1 =154 x 1071 GeV | vy = v3 = 2.4 x 107° GeV

Table 14. Numerical values of the neutrino/neutralino inputs that reproduce the neutrino experi-
mental constraints for the global minimum with small phases.

The other two solutions, heavy scalars and internal cancellations, can also be im-
plemented. Notice that the following soft parameters remain free in our model be-
cause they are not included in either the neutral scalar potential or the neutrino sector:
(AuYa)ij ngj . Ms, (AcYe)ij, mgf Thus, the solution with heavy scalars remains valid
for scalar masses heavier than about 3 TeV. We also expect the internal cancellation solu-
tion to be valid in our model. This is because these free parameters enter in the calculation
of the EDMs, and we will have enough freedom to find values where such cancellations can
be accomplished, fulfilling the EDMs bounds.

5 Conclusions

In this work we have studied in detail the neutrino sector of the urSSM. We have also
shown that, even if all parameters in the scalar potential are real, SCPV is possible at tree
level, and we have used these vacua to show how a complex MNS matrix can arise.

In particular, we have calculated first the scalar potential of the purSSM with real
parameters, assuming the most general situation where the VEVs of Higgses and sneutrinos
can be complex. We have shown, using a simple argument, that CP can actually be
spontaneously violated in this model.

Then we have discussed the neutralino-neutrino mass matrix of the urSSM, and we
have shown how to obtain from it the effective neutrino mass matrix. Although the dis-
cussion is general, we have applied it also to the particularly interesting case of real vacua.
We have analyzed how the electroweak seesaw mechanism works in the urSSM using ap-
proximate analytical equations, particularized for certain interesting limits that clarify the
neutrino-sector behavior of the model. In addition, we have given the qualitative idea
of how to find regions in the parameter space of the model that satisfy the neutrino ex-
perimental constraints. Let us remark that these constraints can be fulfilled even with a
diagonal neutrino Yukawa matrix, since this seesaw does not involve only the right-handed
neutrinos but also the MSSM neutralinos. Actually, to obtain the correct neutrino angles
turns out to be easy due to the following characteristics of this seesaw: R-parity is bro-
ken and the relevant scale is the electroweak one. In a sense, this gives an answer to the
question why the mixing angles are so different in the quark and lepton sectors.

Finally, we have presented our results describing the method to obtain numerically
global minima with SCPV, and giving examples of such minima. Let us emphasize how-
ever that, unlike the case with real VEVs where many global minima can be found, for the
case with complex VEVs such minima are not so easy to find. In particular, one has to
choose carefully the parameters of the model. For the examples found we have shown the
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dependence of the neutrino mass differences (for both normal and inverted hierarchies),
mixing angles, and CP phases of the MNS matrix, in terms of the relevant neutrino inputs.
Last but not least, we have checked that different regions of the parameter space can repro-
duce the neutrino experimental constraints. In this context, future neutrino experiments
could be able to measure a non-zero Dirac CP-violating phase, opening the possibility to
SCPV in the urSSM as the dominant source.
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A Minimization equations

Here we write first the eight minimization conditions with respect to the moduli vy, vy,
V , Vit

(Z vivi + 03 — v ) Vg + devd + vgv2 Z Z(AA)\) Vi vy, cos(pu + pue)

[

+ Z VAN ViV cos( ve — npl, Z Kikj AU Vi V§ €OS(pue + Pue — ®)

ik
Z Yo, Mevivi vy cos(Xi + ue — ug ZZ Yo, Ajuavi cos(py — xi) = 0,
. (A1)
——G2 (ZVM + 02— ) vy + M, vy +'qudz
+Z (AY,) ijl/il/ ¢ cos(x; + Pue ¢) — Z(A/\)\)'vad COS(SD’U:_ Pue)
0,
+Z)\ AjouVi v cos(ppe — npl, ZZH”’C)"CWV V5 cos(ppe + Pue — ©y)
+ Z Z Yo, kukVivi v cos(pue + pue — Z Z 2Yy,, Ajvavavi cos(py — Xi)
gk 1
+ZZY”k Ve VuViVj €os(Xi — X;) +ZZY’% Yo, 0uViV§ cos(ppe — pve) = 0,
(A.2)
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Zm?l;icj V5 cos(pye — gp,,;) — (AxA)ivyva cos(py + @ue) + Z(AUYU)jiiju cos(x; + ¢ue)
+ Z (Axk)ijrvivy cos(pue + Pue + Pue) + Z AiAjvﬁy; cos(ppe — gp,,]g)

+Z)\ )\jiju cos(pve — pue) + Z ZQH””’“H“”J Vvivivy cos(pug + pue — oo — Pur)
7.kl m

_ Z Z 2Kk Ak VAUV COS(Pue + Pve — Py +Z Z 2Y,,, Kik1vuljVj, cOS(pue + Pue — X;)

_ Z Yo, Aevavivi cos(X; + ue — Pue — Pu —Z Yo, Aivavivy cos(xe + ve — Pue — Pv)
i gk

+ Z Vi Yo Vitivy €os(Xs — Xk + @ue — pue) + Z ZYV,“YV,WU § cos(pue — (pl,]g) =0,
Jik,l j

(A.3)

Z viv; +v3 — vl | v + Zm%ijyj cos(xi — X;j) + Z (ALYy)ijv§vy cos(xi + gp,,]q)
] J J

+ Z Z Yo KjikUu V5V cos(goujq + pue — Xi)
gkl

Z vij AUV Vi cos(x; + v — Pug Z Y., Ajvavy cos(go - Xi)

+ > Vi Yo v5uf cos(Xi — Xk + v — Pug) + ZZ v Yo, vavy cos(xi — xj) = 0.
Jikil

The seven minimization conditions with respect to the phases ¢, ¢,¢ and y; are:

— Z Z 2Kk AN VAVW V5 Vj sm((puic + Pue — ©v)

-2 Z Yo, Akvavi5v sin(Xi + v — pug — 9u) — Z Z Yy, Ajvavav; sin(p, — X;)
04,k i g
+2 Z(A,\)\)iufvdvu sin(py, + @ue) = 0,
i
(A.5)
—Zm o Uy sm c—<pu Z)\)\vduu sin(p c—<pu Z)\)\viuz ¢sin(ep C—SD,/;)

=23 BimkKim VSRV sin(cpl,g + ove — Pug — Pug)
7.k, m

+2 Z Kikj Ak VU Vi V5 sin (e +pve— Yy) —2 Z Z Yo, KitkOu Vi Vi Vi sin (e +@ue —X;)
Jok gkl
+Z Vi AkVaV V5 Vg SIn(X +ue —Pue — py) —Z Yo, Aivavrvivg sin(xe +Pue — e —pu)

Z Vi ukll/jufukl/fsin(Xj—Xk-i-(pu;—(Pu;)—ZZYV,”Y wiug fsin(gouic—go,,;)
gkl j
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+(AAN)ivi vavy sin(py + ‘Puf) - Z(An“)ijkyf’/gc'yli Sin(@l/f + Prg + ‘Pug)

j.k
—Z (ALY,)jivuvsvg sin(x; + @ue) = 0,
(A.6)
— Z m SViv sin(x; — x;) + Z Z Yo, Kjikvulivi vy, sin(goujq +Pue —Xi)
gkl
+Z vi; N VaViVs vy sm(xz—l—gol,c—gol, Z Yy, Ajvavav; sin(p, — X;)

Z vi; Yo Vivsvey sin(xi — xx + Pre — Pue) Z Z vie Yuin V2w sin(x: — X;)
gkl
— Z (AY)) iquViV; sin(x; + 901/;) = 0.
J

(A7)

B Analitical formula for neutrino masses

The formula presented here is obtained from eq. (3.4) neglecting terms proportional to
Y202, Y3v and Y,3, and has been particularized for the simplified case discussed in
section 4 of a common value of couplings \; = A, a tensor k with terms k;;; = k; = Kk
and vanishing otherwise, diagonal Yukawa couplings V,,, = Y,,, and a common value of
the VEVs vf = v°. The phase structure of the global minimum discussed in section 4 for
analyzing the neutrino sector, pye = —pue = —ue = @pe and Yy, = —Pu, = —Puy = Py,
has also been used in the computation. Then we arrive to the following formula:
Xij | Tij aia;
M )i ~ = 24
(Metr)is A 7 2kvc’

(B.1)
where the parameters have been defined as

a; = Yuivm
A = (ei‘p”“ + 2ei3‘p”“) A2 (vi + 02)2 + (8€i%’c + 4613“’”“) Mev 2 vgu,e "0

— (16 + 16e27v° 4 461'4@”6) MMk — (8 + 20e2ve 4 861'4@”6) M N30 vqv,e™7
7 = e're [—46“""0 (2 + em’”c) KU 2 uguy + €99\ (4M (2 + ei2§""°)2 k3

— elve (1+ 26’2“’”) (vg + v3)2) + 42t 20) N2 N Cuqu, (5 + 4 cos 2gpl,c)] , (B.2)
with ﬁ = ]5\7/[—%1 + ]i[—i,

Ty, = 2% [—461'2("0”0 ng"”)(2 + ef2Pve )M)\2ucvdvu 1 4eive g VgUuy
+ei‘p”)\(—4(2 + ei("“""c)Mm/c3 + ei3Pre (vi + 03)2)],
Toy = T33 = Qei(g"ﬂcﬂ*"”)[—462‘2(*"”C “’”)(2 + eiQ‘P"c)M)\Qucvdvu + 4et3¢re m/chdvu

—|—ew“)\(—4(1 + v 4 61'4“""0)M/£1/c3 + eiBeve (vi + 02)2)],
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Toz = —

and

(b11
(ba2
(b33

(¥11)

(b3a)?
(bhs)?
(b1)?

( ,13)2 =

(b33)

and

)
)
)
2

2

€11 =
€22
€33
€12
€13

€23

= T3 = —'2%v [—4ei2(‘p”c +ev) (2+ ei2pve )M)\21/cvdvu + 4etdeve I{IJC2’UdUu cos(2¢pyc)

+¢'Bevetev) X (4(=3 cos(3pye) + isin (3<pyc))Mm/63 + (02 +v3)?)],

. ‘ . ‘ )
ei2e [—4622(2“’”0 +ev) (2+ ei2pve )M)\21/cvdvu + 4B kS v,

e N (—4(—1 4 43¢ cos(goyc))M,k;yc3 + e (12 4 02)?)], (B.3)
X = 2k (b11)? + 2\ v0,e™7 (b)) + €11,
Xog = 2k (b22)2 + 2A\ v, e (b'22) + €99,
Xa3 = 260 (bgg)? + 2A 0q0,™" (b3 )2 + €33,
X1 = 260 (b11)(baa) + 22 00, ()2 + €12,
X3 = 2k (b11)(b33) + 22X\ v, "7 (b)3)% + €13,
Xog = 2k (ba2) (b33) 4 2A0 00,77 (bhys)? + €a3, (B.4)

2 + ipve ))\efi“"” v + ei2eve vqYy,,
2 4 ei2pve ))\ew” vy + v4Yy,,

2 + €22 ) Ne¥r g + VaYys,

2+ 5ei2tpyc + 2ei4<pl,c ))\2671'2@” V%

+(2 + 2ei2<ﬂyc + 26i480u0))\vde—i<py VIYlll + elQ(p,,c Zy2

vy?

~—~~ ~~ —~~

= (2 + 562‘2&0”0 + 2ei4<pl,c ))\261‘2@” 1/22

+(1 4 49 4 190 ) Nuge? 1y Y, + 2Py

v

= (2 + be'2Pve 4 2eMPre ) \2ei20v 2

+(1 4 49 4 90 ) Nuge? 13Y,, + 2Py

V3

= (24 5e2ve 4 20 N2 0y 4 (1 4 €7290° 4 900 Npger 1Y,

+((1/2) 4+ 2¢7 + (1/2)e9 ) Avge 1Yy, + (1/2)(1 4 €49°)02Y,,, Y,
(2 + 5e™2Pve 4 2619 ) \2p 13 + (1 4 €29 4 M90) Npgev 13Ys,
+((1/2) + 229 4 (1/2)e9 ) Avge v 1Yy, + (1/2)(1 4 49v°)03Y,, Y,

=(2+ 5el2eve 4 9etdeve )Azeizs"” Vo3

+((1/2)+2e22v¢ 4 (1/2)eM9v ) Avge™?” (13Yy, + 1Yy, ) +e29°03Y,, Y, (B.5)

4p,e 4 )\2 c eupv up"VlYV
2 — 2eMPre) N2 e ew”ew”ugyy

)Nl
N
2 — 2614%’6))\2 ¢ 2 i e*"”ngy
)Nt
Nl

% dy,c —9 )\2 c ewvewl,VQYVl +( _ z4gol,c))\2 c 36230U6—ZQOVV1YU2’
DN 3 etey Z“"”1/31/,,1 +(1- 624“’”0))\21102}36“"“ w"l/lyys,

1— i4g0uc ))\2 ch3 ewv Py (I/gYV2 + V2Y1/3)- (B.G)
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Let us discuss two particular limits where the formula becomes simple. In the limit

M — oo and vy — 0 we obtain

CLZ'CL]'
2kvC’

(Megr)ij =~ Fij (B.7)

where

Fyy = _26i(2<pvf<pl,c)(2 + ei&pyc) (2 + 621‘4,91,0)—2,
Fyy = F33 _ _2ei(2gov—<pyc)(1 + eiZgol,c + e’i4cpuc) (2 + 621‘%0)*27
Fiy = Fi3 = e2ve+¢0)(3¢05(3¢,¢) — isin (3p,c) (2+ e2i“"”c)_2 ,

2

Fog = €/2Pv=¢00) (43390 cos(pye) — 1) (2+ eZi“O”C)f . (B.8)

In the limit of vanishing phases, i.e. real VEVs, we obtain

(HZVCQ + Avyvg)v°
v2 + v2)2 + AP oyvg — 12MA (kv + Aogvg) Ave

2
(meff|real)ij = 5)\2( bibj

_l’_

6/4:1/6(1 — 352‘]‘)0,2‘@]', (B.9)

where we have defined

b, = Yyivd + 3)\y;. (B.lO)

Regarding the previous parameters we note that for the real case

b = by = by,

bg = biibj; = b bj,
eij = 0. (B.11)
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