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We briefly review the Hořava-Lifshitz gravity theory [1], which builds on some of

Hořava’s previous work, in particular [2]. The dynamical variables are N,N i, sometimes re-

ferred to as the “lapse” and “shift” parameters from general relativity, and a D-dimensional

spatial metric gij . The theory allows anisotropic scaling with dynamical exponent z,

x → bx, t → bzt, (1)

with Lorentz invariance reinstated for z = 1. For general z, the classical scaling dimensions

of the fields are

[gij ] = 0, [Ni] = z − 1, [N ] = 0. (2)

With its anisotropic scaling, the theory admits a foliation of D+1 spacetime, with the

leaves of the foliation being hypersurfaces at constant time t. In general for z = D, the

theory is expected to give a ghost-free UV-renormalisable theory of non-relativistic gravity

in flat space.

The metric in ADM decomposition [3] may be given by

ds2 = −N2dt2 + gij(dxi − N idt)(dxj − N jdt). (3)

The action of the theory S = SK + SP may be separated into kinetic terms

SK =
2

κ2

∫

dtd3√gN(KijK
ij − λK2), (4)

where the extrinsic curvature Kij is

Kij =
1

2N
(ġij −∇iNj −∇jNi), (5)

and potential terms SP .

Completing the action involves adding potential terms which are of dimension equal

to or less than the dimension of the kinetic term, [KijK
ij ] = 2z. It is the presence of these

relevant operators, added through the potential term, that govern how Lorentz invariance

is restored in the IR. Hořava also subjected the theory to the extra requirement of “detailed

balance” [1] as a means to whittle down the choice of these numerous relavant operators.

The appropriate selection of these relevant operators so as to correctly recover general

relativity is an issue that requires further study. For some recent musings on recovering

general relativity at different scales by relaxing the detailed balance condition, see [4]. For

other works in this nascent area, including the implications for cosmology, see [5, 6].

For the moment, we continue the review of Hořava’s original incarnation of the theory

and persist with the detailed balance condition, which we will relax again later. Under

this assumption, and specialising to z = D = 3, the complete action of Hořava-Lifshitz is

given by [1]

Shl =

∫

dtd3
x(L0 + L1),

L0 =
√

gN

{

2

κ2
(KijK

ij − λK2) +
κ2µ2(ΛW R − 3Λ2

W )

8(1 − 3λ)

}

,

L1 =
√

gN

{

κ2µ2(1 − 4λ)

32(1 − 3λ)
R2 − κ2

2w4

(

Cij −
µw2

2
Rij

)(

Cij − µw2

2
Rij

)}

, (6)
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where λ and κ are dimensionless constants and the Cotton tensor - a measure of conformal

flatness in D = 3 - is defined by

Cij = ǫikℓ∇k

(

Rj
ℓ −

1

4
Rδj

ℓ

)

. (7)

All spatial indices may be raised and lowered using gij . The equations of motion were

independently worked out in [7] and [8], but owing to their length, we omit them.

One special feature of this theory are emerging constants. Comparing L0 to that of

general relativity in the ADM formalism,1 the speed of light, Newton’s constant and the

cosmological constant are:

c =
κ2µ

4

√

ΛW

1 − 3λ
, G =

κ2

32π c
, Λ =

3

2
Λw. (8)

Strictly speaking, to make the comparison between L0, and Einstein-Hilbert action, we

must take λ = 1, however in Hořava-Lifshitz gravity λ represents a dynamical coupling

constant. Adopting the range λ > 1/3, one sees that the cosmological constant Λ is

necessarily negative. Despite this, one may analytically continue µ → iµ,w2 → −iw2, to

make the cosmological constant positive.

We consider this system coupled to a vector field. A general non-relativistic action Sm

where the potential depends only on gauge field and field strength was presented in [8]

Sm =

∫

dtd3
xL2,

= − 1

4g2

∫

d3xdt
√

gN

[

− 2

N2
gij(F0i − NkFki)(F0j − N lFlj)

−m2

N2
(A0 − N iAi)(A0 − N jAj) + G

[

FijF
ij , AiA

i
]

]

. (9)

Here F0i = ∂tAi − ∂iA0, Fij = ∂iAj − ∂jAi is the field strength. The scaling dimensions

of the fields are [Ai] = 0, [A0] = 2. For renormalisability in the UV we may consider the

function G to be, at most, cubic in F 2, but here, for simplicity we ignore higher derivative

terms, considering solely G = FijF
ij and also m = 0.

We are interested in static, spherically symmetric solutions and adopt the same metric

ansatz that appeared in [7, 9],

ds2 = −N(r)2dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2),

Fr0 = A(r)′, Fθφ = p sin θ, (10)

1The Einstein-Hilbert action in ADM formalism is given by

SEH =
1

16πG

Z

d
4
x
√

gN(KijK
ij
− K

2 + R − 2Λ).

– 3 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
1

where the flux ansatz is chosen to respect the SO(3) action on the S2 and to satisfy the

equations coming from varying Sm with respect to A0 and Ai respectively:

1√
g

(√
gfA′

N

)′

= 0,

∂θ

(√
gF θφ

)

= ∂φ

(√
gF θφ

)

= 0. (11)

For this choice of ansatz, the Cotton tensor disappears Cij = 0 and the vanishing of the Ni

also present a considerable simplification. Considering only the Lagrangian L0, one obtains

the AdS Schwarzchild black hole solution

N2 = f = 1 − ΛW

2
r2 − M

r
. (12)

The general solution may be most easily obtained by by-passing the equations of motion

and instead placing the ansatz into the full Lagrangian L0 + L1 + L2. We focus on the

λ = 1 limit of the Hořava-Lifshitz action where usual Einstein description of gravity should

be restored. As may be seen from (11), when m = 0, one has

A(r)′ =
N(r)q
√

f(r)r2
(13)

with q a constant introduced, which we will later confirm to be the electric charge. Sub-

stituting this expression into the Lagrangian, the equations of motion may be determined

from varying the following reduced action with respect to N and f . Up to an overall factor,

the reduced one-dimensional action is

L = − κ2µ2

4(3λ − 1)

N√
f

(

2 − 3ΛW r2 − 2f − 2rf ′ +
λ − 1

2ΛW

f ′2 − 2λ(f − 1)

ΛW r
f ′

+
(2λ − 1)(f − 1)2

ΛW r2

)

+
1

g2

2N

r2
√

f
(q2 + p2). (14)

The resulting equations of motion are satisfied for the following solution

f = 1 − ΛW r2 −
√

8(q2 + p2)

(κµg)2
+ α2r,

N =
√

f , A = −q

r
, (15)

where α2 is an integration constant, which is up to an additive constant, the mass [9, 10].

Note that when p = q = 0, we recover the solution of [7], as expected. Here one can can

confirm both q and p as the electric and magentic charge respectively by preforming the

following integrals over the two-sphere,

q =
1

4π

∫

S2

Fvol(S2), p =
1

4π

∫

S2

⋆Fvol(S2). (16)

– 4 –



J
H
E
P
0
8
(
2
0
0
9
)
0
2
1

We note that the solution is asymptotically AdS4, but there is a horizon at the largest

root of f(r). The Hawking temperature of the black hole is given by

T =
1

4π
f(r)′|r=r+

,

=
−3Λwr2

+ − 1

8πr+

+
1

(κµg)2
(q2 + p2)

πr+(1 − Λwr2
+)

, (17)

where r+ the largest root of f determines the location of the horizon.

Bearing in mind that Λ < 0, we note that there is an extremal limit with T = 0 when

− Λwr2
+ = −1

3
+

2

3

√

1 − 6(p2 + q2)

(κµg)2
. (18)

Following [7], it is possible to relax this detailed balance condition by considering

the Lagrangian

L = L0 + (1 − ǫ2)L1, (19)

where ǫ represents a slight deviation. With this slight adjustment, one may repeat the

previous analysis and find the solution

f = 1 − Λr2

1 − ǫ2
− 1

(1 − ǫ2)

√

[

8(q2 + p2)

(κµg)2
+ α2r

]

(1 − ǫ2) + ǫ2Λ2r4,

N2 = f, A = −q

r
. (20)

The large distance behaviour of the function is given by

f = 1 − Λr2

1 + ǫ
+

α2

2ǫrΛ
+ O

(

1

r4

)

. (21)

Here, for non-vanishing ǫ i.e. away from detailed balance set-up, we see the metric has

a finite mass by comparing with (12). This mass diverges for the detailed balance value

ǫ = 0, in which case we recover (15). In the other limit where ǫ = 1, L1 disappears from

the Lagrangian and one gets this solution in AdS space

N2 = f = 1 − ΛW

2
r2 − M

r
+

4(q2 + p2)

rΛ(κµg)2
. (22)
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