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1 Introduction

Hydrodynamics organizes the description of the macroscopic evolution of systems in lo-

cal, but not global, equilibrium in terms of a derivative expansion. For concreteness, we

will consider a four-dimensional relativistic fluid here. In the simplest situation (with no

conserved charges), the dynamics of the hydrodynamic fluctuations in the fluid is simply

governed by conservation of the stress-energy tensor T µν ,

∇νT
µν = 0 . (1.1)

The stress-energy tensor includes both an equilibrium part (with local energy density ε

and pressure P ) and a dissipative part Πµν ,

T µν = ε uµuν + P∆µν + Πµν where ∆µν = gµν + uµuν . (1.2)

Above, uµ is the local four-velocity of the fluid with uµuµ = −1. Further, Πµνuν = 0.

In phenomenological hydrodynamics, the dissipative term Πµν can be represented as an

infinite series expansion in velocity gradients (and curvatures, for a fluid in a curved back-

ground), with the coefficients of the expansion commonly referred to as transport coeffi-

cients. The familiar example of the Navier-Stokes equations are obtained by truncating

Πµν at linear order in this expansion

Πµν = Πµν
1 (η, ζ) = −η σµν − ζ∆µν ∇·u , (1.3)

where

σµν = 2∇〈µuν〉 ≡ ∆µα∆νβ (∇αuβ + ∇βuα) − 2

3
∆µν

(

∆αβ∇αuβ

)

. (1.4)

– 1 –
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Notice that at this order in the hydrodynamic approximation we need to introduce only

two transport coefficients, namely the shear η and bulk ζ viscosities. In the following

discussion, we will be particularly interested in describing conformal fluids, in which case

we must also impose the vanishing of the trace of the stress tensor. This restriction fixes

ζ = 0, as well as P = ε/3 in the equilibrium contribution.

As noted above, hydrodynamics can be regarded as giving a systematic derivative

expansion. Within this framework, it is then straightforward to extend Πµν to the next

order to including terms of order ∇2u or (∇u)2. In general, this extension would require

the introduction thirteen new transport coefficients [1]. However, if we again restrict our

attention of conformal fluids, the second-order term Π2 only depends on five of these new

transport coefficients [2]. While the interested reader can find the complete description

in [2], we only illustrate the extension here by showing the first few new terms:

Πµν = Πµν
1 (η) + Πµν

2 (η, τΠ, κ, λ1, λ2, λ3) (1.5)

= −η σµν − η τΠ

[

〈u·∇σµν〉 +
1

3
(∇·u) σµν

]

+ λ1 σ
〈µ

α σ
ν〉α + · · · .

The terms controlled by λ2,3 involve the vorticity while κ term is proportional to the

spacetime curvature. Hence the terms explicitly given above are sufficient to describe the

vorticity-free flow of a conformal fluid in a flat background spacetime. As noted in [2],

the first term proportional to τΠ essentially captures the second-order formalism of Müller,

Israel and Stewart (MIS) [3] while the subsequent nonlinear terms already represent an

extension of their approach. However, this linear term is sufficient to address the question

of causality within the hydrodynamic framework. It is well known that if the dissipative

contribution is truncated as in (1.3), for any viscosity coefficients {η, ζ}, there are always

linearized fluctuations for which the wave-front speed is superluminal [4]. The primary

motivation of MIS was then to eliminate this acausality in the hydrodynamic equations.

Indeed the MIS term is sufficient to tame the superluminal propagation with an appro-

priate choice of the relaxation time τΠ, as we demonstrate below [5]. However, we add

that, as will become evident, the constraints on τΠ emerge from the behaviour of modes

outside the regime of validity of the second-order hydrodynamic framework, i.e., from very

short wavelength modes. Hence, one should keep in mind that these constraints do not

signal any fundamental pathologies but rather only indicate where a certain approximate

mathematical framework describing the fluid becomes problematic. Nevertheless, a causal

system of second-order hydrodynamic equations is still required in many situations, such

as, numerical simulations [6] which implicitly extrapolate the hydrodynamic equations to

the smallest numerical scales, even though the physics of interest is in the long wavelength

regime.

Linearized fluctuations of the second-order truncated hydrodynamics in conformal flu-

ids were discussed in [2]:

• The dispersion relation of the shear channel fluctuations is given by (see eq. (3.27)

of [2])

− w
2 τΠT − iw

2π
+ k

2 η

s
= 0 , (1.6)

– 2 –
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where w = ω/(2πT ) and k = k/(2πT ). Now the speed with which a wave-front

propagates out from a discontinuity in any initial data is governed by [7]

lim
|k|→∞

Re(w)

k

∣

∣

∣

∣

[shear]

=

√

η

s τΠT
≡ vfront

[shear] . (1.7)

Hence causality in this channel imposes the restriction

τΠT ≥ η

s
. (1.8)

• The dispersion relation of the sound channel fluctuations is given by (see eq. (3.20)

of [2])

− w
3τΠT − iw2

2π
+

1

3
τΠT wk

2 +
4η

3s
wk

2 +
ik2

6π
= 0 . (1.9)

Hence

lim
|k|→∞

Re(w)

k

∣

∣

∣

∣

[sound]

=

√

1

3
+

4η

3s

1

τΠT
≡ vfront

[sound] . (1.10)

From (1.10), causality in the sound channel imposes the following condition

τΠT ≥ 2
η

s
. (1.11)

From (1.7) and (1.10) above, we might note that both vfront
[shear] and vfront

[sound] diverge as τΠ → 0.

We may also see that the front velocity in the sound channel is always larger than that in

the shear channel1 and hence the former provides a more stringent constraint (1.11) on the

transport coefficients of the second-order hydrodynamics. Again, we note that as should

be evident from (1.7) and (1.10), these restrictions arise from pushing the second-order

hydrodynamic framework beyond its natural regime of validity, i.e., |k| ≪ 1. We return to

this point in greater detail in section 4.

In principle, all the transport coefficients are determined by parameters of the under-

lying microscopic theory. In practice, such computations are prohibitively complicated as

one has to derive the effective theory of hydrodynamics for a given microscopic system.

The difficulties become even more insurmountable for strongly coupled plasmas, as might

be of interest at RHIC (or the LHC). However, the AdS/CFT correspondence of Malda-

cena [9, 10] provides a new framework in which transport coefficients are readily calculable

at least for certain strongly coupled gauge theories [2, 11, 12]. Furthermore, it is a context

where the discussion of conformal fluids becomes particularly relevant. With reference

to the constraints above, one has η/s = 1/(4π) [13] and τΠT = (2 − log 2)/(2π) [2, 11]

for N = 4 super-Yang-Mills or any strongly coupled four-dimensional gauge theory for

which the holographic dual is described by Einstein gravity [14]. Hence a second-order

hydrodynamic analysis of such holographic plasmas does not suffer from any problems

with acausality.2

1In fact, this is a general result which extends to nonconformal fluids as well [8].
2A full analysis of causality in these holographic plasmas was also discussed in [15].

– 3 –



J
H
E
P
0
8
(
2
0
0
9
)
0
1
6

In this paper we extend this analysis using a particular effective model in the gauge

theory/string theory correspondence. Specifically, we consider a holographic model with a

Gauss-Bonnet (GB) gravity dual,

I =
1

2ℓ3P

∫

d5x
√−g

[

12

L2
+R+

λGB

2
L2
(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

]

. (1.12)

The corresponding conformal gauge theory is distinguished by having two distinct central

charges [16, 17] — see section 4 for details. The effect of such curvature-squared interac-

tions on holographic hydrodynamics was examined in the context of string theory in [18],

however, only within a perturbative framework. The GB gravity theory (1.12) is particu-

larly well-behaved allowing the holographic analysis to be extended to finite values of the

coupling λGB. In particular, the ratio of the shear viscosity to the entropy density is found

to be [19]
η

s
=

1

4π

[

1 − 4λGB

]

. (1.13)

Below we compute the relaxation time of the CFT plasma dual to GB gravity (1.12),

τΠ = τΠ(λGB). We find that the causality condition (1.11) then constrains λGB both from

above and below. Note that in this case, the constraints are imposed to avoid fundamental

inconsistencies in the theory. Further, these constraints on λGB would in turn lead to

bounds on the viscosity in GB hydrodynamics.

The analysis of the second-order hydrodynamics in GB gravity is interesting because

causality violations were already used to produce an upper bound on the GB coupling

in [20]. The analysis there also examined the propagation of signals through the dual

gauge theory plasma but made no restriction to second-order hydrodynamics. Hence we

turn to the study of causality violation in an exact analysis of the GB theory in section 3.

Following [21], the dispersion relation of physical fluctuations in a gauge theory plasma is

identified with the dispersion relation of the quasinormal modes of a black hole in a dual

gravitational description. Extending analysis of [20], we study dispersion relation of the

GB BH quasinormal modes in the shear and the sound channels. As was done for the

scalar channel in [20], we show that requiring that these modes are not superluminar, i.e.,

the phase velocity remains less than one in the infinite momentum limit, constraints λGB.

We find that combined these constraints are more stringent than the causality constraints

coming from the second-order truncated GB hydrodynamics.

2 Causality of second-order Gauss-Bonnet hydrodynamics

We are interested in determining when the second-order hydrodynamics dual to GB gravity

satisfies the causality constraint (1.11). Since the ratio of shear viscosity to entropy density

is already given in (1.13), it only remains to determine the relaxation time τΠ for the dual

plasma. The simplest approach to discover τΠ(λGB) is to examine the dispersion relation

of the sound quasinormal mode of a GB black hole. Here, the field theory considerations

establish that [2]:

w = csk − 2πi ΓT k
2 +

4π2ΓT

cs

(

c2s τΠT − 1

2
ΓT

)

k
3 + O(k4) . (2.1)

– 4 –
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With

ΓT =
2η

3s
and cs =

1√
3
, (2.2)

this expression is simply the Taylor series solution of the dispersion relation (1.9).

In the dual gravitational description the dispersion relation (2.1) is obtained by im-

posing the incoming wave boundary condition at the horizon and the Dirichlet condition

at the boundary on the sound channel quasinormal mode wavefunction. The technique is

clearly explained in [21]. Here, we only present the salient steps in our analysis.3

The planar black hole solution in GB gravity can be written as [22, 23]

ds2 =
r2+
uL2

(

−f(u)A2dt2 +

3
∑

i=1

dx2
i

)

+
L2

f(u)

du2

4u2
, (2.3)

where

f(u) =
1 −

√

1 − 4λGB(1 − u2)

2λGB

, (2.4)

and

A2 =
1

2

(

1 +
√

1 − 4λGB

)

. (2.5)

The horizon is located at u = 1 and asymptotic boundary is reached with u → 0.4 Note

that the normalization constant A is chosen so that A2 f(u = 0) = 1. Hence the asymp-

totic behaviour of the metric shows that the AdS curvature scale is AL. The Hawking

temperature, entropy density, and energy density of the black hole are

T = A r+
πL2

, s =
1

4GN

(r+
L

)3
, ε =

3

4
Ts . (2.6)

Now the sound channel quasinormal mode satisfies the following equation

Z ′′
[sound](u) + C(1)

sound Z
′
[sound](u) + C(2)

sound Z[sound](u) = 0 , (2.7)

where the coefficients C(i)
sound are presented in appendix A. In the hydrodynamic limit, k,

w → 0 with w

k
kept fixed, the incoming wave boundary condition at the horizon implies

Z[sound] = (1 − u2)−
iw

2

(

z0(u;w,k) + ik z1(u;w,k) + k
2 z2(u;w,k) + O(k3)

)

, (2.8)

with

zi(u;µ w, µ k) = zi(u;w,k) , for any µ , i = 0, 1, 2

lim
u→1

zi(u;w,k) = δ0i .
(2.9)

3Further computational details are available from the authors upon request.
4A more conventional radial coordinate [19, 22] would be given by r2 = r2

+/u. Implicitly we have also

chosen the branch of well-behaved solutions and we are restricting our considerations to λGB < 1/4 —

see [22, 23] for details.

– 5 –
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In (2.8) we kept terms in the hydrodynamic expansion to the order necessary to iden-

tify (2.1). The sound wave dispersion relation (2.1) is then obtained by imposing the

Dirichlet condition on Z[sound] at the boundary

lim
u→0

Zsound = 0 . (2.10)

To leading order in the hydrodynamic approximation we find

z0 =
k

2(x+ 4λGB − 1)A2 − 6λGBw
2x

2λGB(2A2k2 − 3w2)x
, (2.11)

where we used a more convenient radial coordinate

x =
(

1 − 4λGB + 4λGBu
2
)1/2

. (2.12)

Imposing the Dirichlet condition (2.10) at this order recovers the conformal sound speed:

cs = 1/
√

3.

To order O(k) in (2.8), we find

z1 =
w

8k

(

λGB(2A2
k

2 − 3w2) x

)−1

×
(

2(A2
k

2(x+ 4λGB − 1) − 6w2λGBx) ln
1 + x

2

+ (1 − x)A2
k

2(x2 − 6x+ 36λGBx+ 12λGB − 3) + 6w2λGBx(x+ 3)(x− 1)

)

.

(2.13)

Imposing the Dirichlet condition (2.10) at order O(k2) identifies

η

s
=

1

4π

[

1 − 4λGB

]

, (2.14)

in precise agreement with the result (1.13) which was originally determined with a Kubo

formula computation in [19].

Unfortunately, we were not able to evaluate z2 (and as a result τΠ) analytically. Thus,

we had to resort to numerical analysis. For the question of causality, we are not interested

here in τΠ per se, but rather in the relation (1.11). Hence figure 1 presents the difference
(

τΠT − 2η
s

)

as a function of λGB. We find that unless λGB ∈ [λmin, λmax], where λmin =

−0.711(2) and λmax = 0.113(0), causality of the second-order truncated hydrodynamics

of the GB plasma is violated. In figure 2, we also present the front velocities in the

shear (1.7) and sound (1.10) channels. Note that we find that the relaxation time vanishes

for λGB = 0.165(5), which causes both of the front velocities to diverge at this point in the

figure. The graph also demonstrates that vfront
[shear] < vfront

[sound], as noted above.

3 Causality of full Gauss-Bonnet theory

In the previous section we showed that depending on the value of a the GB coupling, λGB, or

equivalently on the values of the microscopic parameters in the dual CFT, causality of the

second-order truncated hydrodynamics of the dual theory can be lost. In this section, we

– 6 –
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-0.6 -0.4 -0.2

0.02

0.04

0.06

λGB

λmin
λmax

τΠT − 2η
s

Figure 1. Causality of the second-order Gauss-Bonnet hydrodynamics is violated once τΠT < 2 η

s
.

Thus, λGB ∈ [λmin, λmax], where λmin = −0.711(2) and λmax = 0.113(0).

-2.5 -2.0 -1.5 -1.0 -0.5

0.7

0.8

0.9

1.0

1.1

1.2

vfront

λGB

Figure 2. (Colour online) Front velocity for the shear (red) and sound (blue) channels for the

second-order hydrodynamics, as given in (1.7) and (1.10). The dashed vertical lines indicate λmin

and λmax, where vfront
[sound] reaches one.

wish to compare those results to causality violations found with the analysis of [20]. While

the latter also looks for the appearance of superluminal signals propagating in the dual

plasma, it makes no reference to truncating the derivative expansion in the hydrodynamic

framework. We will find that the constraints on λGB arising from the exact analysis are

– 7 –
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more restrictive than those found in the truncated second-order hydrodynamic analysis in

the previous section.

Dispersion relation of the linearized fluctuations in plasma is identified with the disper-

sion relation of the quasinormal modes of a black hole in the dual gravitational description.

There are three types of quasinormal modes in gravitational geometries with translationary

invariant horizons [21, 24]:

• a scalar channel (helicity-two graviton polarizations);

• a shear channel (helicity-one graviton polarizations);

• a sound channel (helicity-zero graviton polarizations).

While the shear and sound channels correspond to those considered in the previous discus-

sion of second-order hydrodynamics, the scalar channel was not mentioned there because it

contains no modes whose frequency vanishes as k → 0. Of course, this is in agreement with

the standard hydrodynamic analysis [4]. However, the scalar channel quasinormal modes

of the GB black holes in the limit k → ∞ were studied in detail in [20]. It was found there

that requiring

lim
k→∞

w

k

∣

∣

∣

∣

[scalar]

≤ 1 , (3.1)

constraints λGB as follows

λGB ≤ λscalar
GB

=
9

100
. (3.2)

Note that λscalar
GB

< λmax found in the context of the second-order truncated hydrodynamics.

In the remainder of this section we extend analysis of [19, 20] to the shear and the sound

channel quasinormal modes.

3.1 Causality in the shear channel

It is straightforward to derive the shear channel quasinormal equation for the GB

black holes:

Z ′′
[shear](u) + C(1)

shear Z
′
[shear](u) + C(2)

shear Z[shear](u) = 0 , (3.3)

where the coefficients C(i)
shear are presented in appendix B. Following [20], we now caste

(3.3) into the form of the Schrödinger equation. Towards this end, we introduce a new

radial coordinate y

dy

du
= − 1

u1/2f(u)
, (3.4)

and rescale the radial profile as

Z[shear] =
1

B ψ[shear] , (3.5)

– 8 –
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with

d

du
lnB =

(

4u(2λGBf − 1)2(α2(2λGBf − 1)2 + A2f(4λGB − 1))

)−1

×
(

A2(1 − 4λGB)(12f3λ2
GB

− 16f2λGB − 4 + 7f) − (20f2λ2
GB

− 20λGBf

+ 8λGB + 3)(2λGBf − 1)2α2

)

,

(3.6)

where α = w/k. The quasinormal equation (3.3) can then be rewritten as

−~
2 ∂2

y ψ[shear] + U[shear] ψ[shear] = α2 ψ[shear] , ~ ≡ 1

k
,

where U[shear] = U0
[shear] + ~

2 U1
[shear] .

(3.7)

The first part of the effective potential has the simple form when expressed in terms of u

U0
[shear](u) =

fA2(1 − 4λGB)

(2λGBf − 1)2
(3.8)

=
(1 − 4λGB) (1 −

√

1 − 4λGB(1 − u2))

(1 − 4λGB(1 − u2)) (1 −
√

1 − 4λGB)
,

while the expression for U1
shear is too long to be presented here, but we note that the latter

is a function only of u, λGB and α. What is important is that in the limit k → ∞ (or

~ → 0), everywhere except in the tiny region y & − 1
k

the dominant contribution to Ushear

comes from U0
shear. Thus in this limit we simply replace

~
2 U1

[shear] =

{

0 y < 0 ,

+∞ y ≥ 0 .
(3.9)

Figure 3 illustrates the general behaviour of the leading potential (3.8). For any val-

ues of λGB, we have in the asymptotic region, U0
[shear](u = 0) = 1 while at the horizon,

U0
[shear](u = 1) = 0. Now for small values of |λGB|, U0

[shear] is a monotonically decreasing

function between these two points. However, for larger negative values of λGB, the potential

develops a (single) maximum at intermediate value of u:

U0
max =

1 − 4λGB

4(
√

1 − 4λGB − 1)
at umax = −

√

λGB (3 + 4λGB)

2λGB

. (3.10)

As might be inferred from umax above, the critical coupling for the appearance of this

maximum is λGB = −3/4. At this stage, the analysis is identical to that for the scalar

channel studied in [20]. Once the effective potential in the Schrödinger problem (3.7)

develops this new maximum, there always exist quasinormal modes with Re
(

α2
)

≃ U0
max >

1. This implies then that in the limit of infinte k, Re(w)/k > 1 for these modes and hence

they lead to a violation of causality. Hence requiring the excitations in the shear channel

to be well behaved imposes the constraint:

λGB ≥ λshear
GB

= −3

4
. (3.11)

– 9 –
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0.2 0.4 0.6 0.8 1.0
u

0.5

1.0

1.5

U0

Figure 3. (Colour online) Typical behaviour of U0, the leading contribution to the Schrödinger

potential, for both the shear (blue) and sound (red) channels. The solid and dashed curves show the

behaviour for large and small |λGB|, respectively. (Our representative values here are: λGB = −1.5

and −0.15.)

3.2 Causality in the sound channel

The quasinormal equation for the sound channel is given in (2.7). Following [20] (as

reviewed in the previous section), we arrive at the corresponding Schrödinger problem in

the sound channel

− ~
2 ∂2

y ψ[sound] + U[sound] ψ[sound] = α2 ψ[sound] . (3.12)

Once again, in the limit k → ∞, potential U[sound] is given by

U[sound] =

{

U0
[sound] y < 0 ,

+∞ y = 0 .
(3.13)

where

U0
[sound] =

(1 − 8λGB − 4fλGB(λGBf − 1))A2f

(2λGBf − 1)2
(3.14)

=
(1 − 4λGB(1 + u2)) (1 −

√

1 − 4λGB(1 − u2))

(1 − 4λGB(1 − u2)) (1 −
√

1 − 4λGB)
.

The general behaviour of this potential is the same as described in the previous section, as

can be seen in figure 3. In particular, to avoid the appearance of an intermediate maximum

in the potential (3.14) and the corresponding causality-violating quasinormal modes, we

must impose the constraint

λGB ≥ λsound
GB

= − 7

36
. (3.15)

– 10 –
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Note that λsound
GB

> λshear
GB

found above and also λsound
GB

> λmin found in the context of the

second-order truncated hydrodynamics.

4 Conclusion

In this paper, we have shown how causality of the near-equilibrium phenomena in the

quantum field theory can be used to distinguish “healthy” models from the “sick” ones.

To illustrate the point, we studied the fluctuations in the CFT plasmas, holographically

dual to Gauss-Bonnet gravity (1.12). Our analysis found two sets of constraints on the

GB coupling:

second-order hydrodynamics: −0.711 ≤ λGB ≤ 0.113 , (4.1)

exact analysis: − 7
36 ≤ λGB ≤ 9

100 . (4.2)

It is clear that the exact analysis of section 3 produced more stringent restrictions than the

analysis of the truncated second-order hydrodynamic equations in section 2. While both

of these approaches are examining the behaviour of gravitational fluctuations in the GB

black hole background (2.3), the relevant quasinormal modes are very different in the two

cases. The second-order hydrodynamics is focussed entirely on the behaviour of the sound

mode, i.e., the lowest quasinormal mode in the sound channel. In contrast, the potential

causality violation by highly excited quasinormal modes in the scalar channel set the upper

bound in (4.2) while the lower bound arises from a similar set of quasinormal modes in the

sound channel.

We must emphasize that the status of these constraints differs at a very basic level.

Theories outside of the bounds given in (4.2) are fundamentally pathological. In contrast,

the constraints (4.1) simply indicate where a certain approximate description of the fluid

becomes problematic. As such, it is somewhat remarkable then that the bounds coming

from these two very different approaches seem to be fairly close to each other. It is also sat-

isfying that the fundamental constraints (4.2) are the most restrictive so that the truncated

second-order hydrodynamics will be stable in any of the cases where the underlying theory

is physically sound at a fundamental level. A priori, this does not seem to be required by

any basic principles.

We consider the second-order hydrodynamics and the behaviour of the lowest sound

quasinormal mode in more detail in figures 4 and 5, which show results for λGB = −2.5

— note that the latter is outside the “healthy” ranges in both (4.1) and (4.2). Using the

truncated second-order equations only yields physically reliable results for k ≪ 1, where

the dispersion relation can be Taylor-expanded as in (2.1). These Taylor expansions for

the phase velocity and the width, i.e., Re(w)/k and Im(w), keeping only the O(k2) terms

are illustrated with the green curves in the two figures. On the other hand, the causality

analysis of section 2 treats the dispersion relation (1.9) as exact and the results are shown

with the red curves. In this case as k → ∞, the phase velocity rises to Re(w)/k = vfront
[sound] ≃

1.126 and the width also reaches a finite value asymptotically

lim
|k|→∞

Im(w)

k

∣

∣

∣

∣

[sound]

= − 1

π τΠT

η/s

τΠT + 4 η/s
≃ −0.047 . (4.3)

– 11 –
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Re(w)/k

Figure 4. (Colour online) The phase velocity Re(w)/k for λGB = −2.5: The blue line shows

the behaviour of the lowest quasinormal mode calculated numerically. The red curve corresponds

the second-order hydrodynamic approximation (1.9). The green curve corresponds the next order

Taylor expansion (2.1) arising from the second-order dispersion relation.

As is evident in the figures, these “exact” dispersion relations only match the Taylor ex-

pansion (2.1) for small values of k.5

To emphasize the limitations of treating (1.9) as an “exact” dispersion relation, fig-

ures 4 and 5 also show numerical results for the behavior of the sound mode, i.e., the

lowest quasinormal mode with the blue curves. As expected, all of the different curves

agree at small k but not at large k. While not unexpected, we wish, in particular, to point

out that the striking differences between the actual behaviour of the sound mode and the

second-order hydrodynamic dispersion relation (1.9). Figure 5 shows that the actual width

decays rapidly to zero in contrast to the finite asymptotic limit, given in (4.3) above, for

the second-order dispersion relation. Similarly in figure 4, the actual phase velocity rises

beyond vfront
[sound] ≃ 1.126, the asymptotic limit found for second-order hydrodynamics, but

then appears to decay back towards one as k → ∞. While the numerical results shown are

already becoming less reliable for k > 1,6 it seems that the limit k → ∞ should produce a

front velocity which respects causality.7

Despite the fact that the results of (1.9) may have little resemblance to the physical be-

haviour of the sound mode at large k, it remains important that the truncated second-order

5In fact, it may seem that, in figures 4 and 5, the two sets of curves begin to separate at surprisingly small

wave numbers (i.e., k ∼ 0.05 to 0.10). This observation can be explained by examining the Taylor series to

higher orders. We find roughly an expansion in [(1 − 4λGB)2k2]n for large λGB and so with λGB = −2.5,

the Taylor series should only be expected to match the “exact” result for k ≪ 1/11.
6These numerical difficulties are correlated to the dramatic decrease in |Im(w)|.
7Of course, the higher quasinormal modes are expected to violate causality with vmax ≃ 1.415, using the

analysis of the effective Schrödinger potential (3.14).
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0.2 0.4 0.6 0.8 1.0 1.2 1.4

-0.08
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-0.02

k

Im(w)

Figure 5. (Colour online) The decay width Im(w) for λGB = −2.5: The blue line shows the

behaviour of the lowest quasinormal mode calculated numerically. The red curve corresponds the

second-order hydrodynamic approximation (1.9). The green curve corresponds the next order Taylor

expansion (2.1) arising from the second-order dispersion relation.

hydrodynamic equations present a robust mathematical framework in certain situations.

For example, numerical simulations of the strongly coupled quark-gluon plasma [6] implic-

itly extrapolate the hydrodynamic equations to the smallest numerical scales, even though

the physics of interest is in the hydrodynamic regime. In this situation, having a system

of hyperbolic equations which is causal is of course essential.

Our holographic construction with Gauss-Bonnet gravity provides a simple toy model

in which the dual CFT is completely specified by two central charges c and a. The exact

relation of these CFT parameters to the gravitational couplings in the action (1.12) is given

by [16, 25]

c =
π2

23/2

L3

ℓ3P
(1 +

√

1 − 4λGB)3/2
√

1 − 4λGB ,

a =
π2

23/2

L3

ℓ3P
(1 +

√

1 − 4λGB)3/2
(

3
√

1 − 4λGB − 2
)

, (4.4)

and hence
c− a

c
= 2

(

1√
1 − 4λGB

− 1

)

. (4.5)

As λGB alone fixes this last combination, we may re-express our causality constraints (4.2)

in terms of the central charges, which yields the elegant result:

− 1

2
≤ c− a

c
≤ 1

2
. (4.6)

Here we have focussed on the fundamental constraint (4.2) rather than the second-order

hydrodynamic constraint (4.1) and have found that if the difference in the central charges
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grows too large, some linearized fluctuations in the model propagate faster than the

speed of light.

These constraints are also intriguing in comparison to the analysis of four-dimensional

CFT’s presented by Hofman and Maldacena [26]. They consider “experiments” in which the

energy flux was measured in various directions at null infinity after a local disturbance was

created in the stress energy. This energy flux was found to be controlled by the three-point

function of the stress tensor in the CFT. Further it was shown that the parameters fixing

this three-point function must be constrained in order that the energy flux was always

positive. The holographic dual describing this CFT “experiment” would involve both

curvature-squared and curvature-cubed interactions. However, if the CFT was restricted

so as to eliminate the curvature-cubed interaction in the gravitational dual,8 then the

positive energy constraint reduced to a constraint on the central charges, which in fact

precisely matches that given in (4.6). The precise agreement of the upper bound was

already noted in [26].

One can go further in that measurements in the above “experiment” can be organized

into three different channels, just as for the graviton fluctuations in section 3. With this

classification, the upper bound in (4.6) comes from the appearance of negative energy

flux in the scalar channel in [26] while it arises from causality violation in the same set

of fluctuations in the holographic calculations [20]. Similarly, the lower bound is set to

avoid problematic behaviour in the sound channel in both approaches. Then we may also

note that while it did not set a fundamental constraint, causality violations also appear

in the shear channel at the critical value given in (3.11): λshear
GB

= −3
4 . This result then

translates to a critical value (c − a)/c|shear = −1, which again precisely matches that for

the appearance of negative energy fluxes in the shear channel. Hence, at least within this

holographic model, we have drawn a precise correlation between the appearance of negative

energy fluxes and of superluminal signals in various channels.

We close with a few comments about other potential instabilities in this holographic

model. It was observed in [19] that a new instability arises in the dual plasma at λGB =

−1/8. At this point, the effective Schrödinger potential develops a small well where U0 < 0

just in front of the horizon (i.e., near u = 1). For sufficiently large k (and |λGB|), this well

will support unstable quasinormal modes, as described in [27].9 Examining (3.14) reveals

similar behaviour and hence instabilities for λGB > 1/8 in the sound channel, however,

this problem only appears outside of the range (4.2) allowed by causality. Formally, the

effective potential (3.8) in the shear channel shows a similar behaviour for λGB > 1/4 but

this is again of no consequence since, as noted before, our entire analysis is only valid

in the regime λGB < 1/4. Hence the instability in the scalar channel is the only one

that appears within the physical regime (4.2). This instability does not correspond to

a fundamental pathology with the theory but rather indicates that the uniform plasma

becomes unstable with respect to certain non-uniform perturbations. It would of course

be interesting to follow the full nonlinear effect of these instabilities. On the gravitational

8This restriction would be realized in any supersymmetric CFT.
9It was later observed that this instability seems to be increased by a chemical potential [28].
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side, this instability seems similar in certain respects to the Gregory-Laflamme instability

for black strings [29].
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A Coefficients of (2.7)

C(1)
sound =

(

fu (fA2
k

2 + 2A2
k

2 − 3w2) − 2f2u (fA2
k

2 + 10A2
k

2 − 12w2)λGB

−4f3u (fA2
k

2 − 14A2
k

2 + 18w2)λ2
GB

+ 8f4u (fA2
k

2 − 6A2
k

2 + 12w2)λ3
GB

−48f5uw
2λ4

GB

)−1
×
(

−4A2
k

2 + 6w2 − 3fw
2 + 4fA2

k
2 − 3f2A2

k
2

−2f(12w2 − 3fw
2 + 8f2A2

k
2 − 4A2

k
2 − 14fA2

k
2)λGB + 24f2(−4A2

k
2

+fw
2 + w

2 + f2A2
k

2 + 2fA2
k

2)λ2
GB

− 8f4(fA2
k

2 + 6A2
k

2 + 9w2)λ3
GB

+48f5λ4
GB

w
2
)

(A.1)

C(2)
sound =

(

f2u2
[

−(fA2
k

2 + 2A2
k

2 − 3w2) + 2f(12A2
k

2 + 2fA2
k

2 − 15w2)λGB

−24f2(−5w2 + 4A2
k

2)λ2
GB

− 16f3(15w2 − 10A2
k

2 + fA2
k

2)λ3
GB

+16f4(15w2 − 6A2
k

2 + fA2
k

2)λ4
GB

− 96f5
w

2λ5
GB

]

)−1
×
(

3w4u− 4fA2
k

2

+f2A4
k

4u+ 8f2A2
k

2 − 4f3A2
k

2 − 4w2fA2
k

2u− 2w2A2
k

2u+ 2A4
k

4fu

+2f(5fw
2uA2

k
2 − 8f3A2

k
2 − 15w4u− 28fA2

k
2 − 8A4

k
4u+ 8A2

k
2

+2f2A4
k

4u+ 24w2A2
k

2u− 8fA4
k

4u+ 28f2A2
k

2)λGB − 4f2(−30w4u

−12fw
2uA2

k
2 − 32A4

k
4u− 4f2A2

k
2 + 2f2A4

k
4u+ 12fA4

k
4u+ 40fA2

k
2

+60w2A2
k

2u− 24A2
k

2 − 11f3A2
k

2)λ2
GB

− 8f3(2f2A4
k

4u− 56w2A2
k

2u

+3f3A2
k

2 − 24A4
k

4fu+ 22f2A2
k

2 + 26w2fA2
k

2u− 24fA2
k

2 + 30w4u

+24A4
k

4u)λ3
GB

+ 16f4(16w2fA2
k

2u− 18w2A2
k

2u− 6A4
k

4fu+ 6f2A2
k

2

+f2A4
k

4u+ 15w4u)λ4
GB

− 96f5uw
2(w2 + fA2

k
2)λ5

GB

)

(A.2)

where f is given by (2.4).
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B Coefficients of (3.3)

C(1)
shear =

(

−fu (−w
2 + fA2

k
2) + 4f2u (fA2

k
2 − 2w2 + k

2A2)λGB

−4f3u(fA2
k

2 − 6w2 + 4k2A2)λ2
GB

+ 16f4u(−2w2+A2
k

2)λ3
GB

+ 16f5uw
2λ4

GB

)−1

×
(

f2A2
k

2 − 2w2 + fw
2 − 2f(4fA2

k
2 + fw

2 − 4w2)λGB + 8f2(−fw
2 − w

2

+2k2A2)λ2
GB

+ 24f4λ3
GB

w
2 − 16f5λ4

GB
w

2
)

(B.1)

C(2)
shear =

(

(2λGBf − 1)2f2u
)−1

×
(

w
2 − fA2

k
2 + 4f(k2A2 − w

2)λGB + 4f2λ2
GB

w
2
)

(B.2)

where f is given by (2.4).
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