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1 Introduction

The AdS/CFT correspondence has provided a very powerful and successful paradigm

to analyze relativistic and isotropic fixed points in various quantum field theories [1–4].

On the field theory side, they are described by (d + 1)-dimensional conformal field theo-

ries and are invariant under the homogeneous scaling transformation (t, x1, x2, . . . , xd) →
(λt, λx1, λx2, . . . , λxd). On the gravity side, they are equivalently described by gravity on

a (d + 2)-dimensional AdS space

ds2 = r2

(

−dt2 +

d
∑

i=1

dx2
i

)

+
dr2

r2
. (1.1)

It is natural to try to extend the AdS/CFT correspondence to a holography for the

following anisotropic spacetime

ds2 = r2z

(

−dt2 +

p
∑

i=1

dx2
i

)

+ r2
d
∑

j=p+1

dy2
j +

dr2

r2
, (1.2)

where 0 ≤ p ≤ d − 1, and the parameter z(6= 1) measures the degree of Lorentz symmetry

violation and anisotropy. Since the metric (1.2) is invariant under the scaling (t, xi, yj , r) →
(λzt, λzxi, λyj,

r
λ), we expect that on the field theory side it is dual to a fixed point which

is invariant under the scaling transformation

(t, xi, yj) → (λzt, λzxi, λyj). (1.3)

Notice also that by a coordinate redefinition rz = ρ, we can rewrite the metric (1.2) into

another illuminating form (after rescaling (t, xi, yi) accordingly)

ds2 = ρ2

(

−dt2 +

p
∑

i=1

dx2
i

)

+ ρ
2
z

d
∑

j=p+1

dy2
j +

dρ2

ρ2
. (1.4)

– 1 –
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Thus we can equally argue that the dual background is invariant under an anisotropic scal-

ing transformation (t, xi, yj , ρ) → (λt, λxi, λ
1
z yj,

ρ
λ), where the yj directions are responsible

for the Lorentz symmetry violation and anisotropy.

In general, fixed points with the anisotropic scaling property (1.3) are called Lifshitz(-

like) fixed points1 (see e.g. the textbook [7] for a brief review). This generalization of

AdS/CFT correspondence to Lifshitz-like fixed points (1.2) was first proposed and analyzed

by Kachru, Liu and Mulligan [8] in the particular case of p = 0. The simplest case with

p = 0 represents non-relativistic fixed points with dynamical critical exponent z, which

appear in many examples of quantum criticality in condensed matter physics (see the

references in [8]). See [9–14] for further progress on holographic aspects of this topic.2

The other cases where 1 ≤ p ≤ d− 1 are not only generalizations of p = 0 case but can

also be interpreted as space-like anisotropic fixed points (see also [13]) as is clear from the

expression (1.4). Lifshitz fixed points with space-like anisotropic scale invariance appear in

realistic magnets such as MnP and the axial next-nearest-neighbor Ising model [5]. They

are also realized in models of directed percolation [7].

To understand holographic duals of such gravity backgrounds, it is the best to embed

them into string theory, where microscopic interpretations are often possible by using

D-branes. However, so far there has been no known embedding of (1.2) in string theory.

Motivated by this circumstance, in this paper we will construct such anisotropically scaling

solutions in type IIB supergravity. We mainly focus on the backgrounds generated by

intersections of D3 and D7 branes. They correspond to the choice p = 2 and d = 3

and are expected to be non-supersymmetric. This restriction is imposed not only for the

tractability of the supergravity analysis, but is also due to another motivation, namely

to construct back-reacted D3-D7 solutions that are dual to the pure Chern-Simons gauge

theory in the second setup of [22]. In the end, we find a class of solutions with the exponent

z = 3/2. We also extend them to black brane solutions dual to finite temperature theories.

Furthermore, we show that there exist solutions which interpolate between our

anisotropic solutions and the familiar AdS5×X5 solutions. We also construct their numer-

ical solutions. The holography suggests that our Lifshitz-like fixed points can be obtained

from various four-dimensional CFTs including N = 4 super Yang-Mills via RG flows.3

These flows are triggered by the relevant and anisotropic perturbation which gives a non-

zero θ parameter (i.e. the coefficient in front of the topological Yang-Mills coupling F ∧F )

that depends linearly on one of the three spatial coordinates i.e. θ ∝ x3. Notice that when

x3 is compactified, the perturbation induces the Chern-Simons coupling
∫

A∧ F + 2
3A3 as

in [22], which becomes relevant in the IR.

1 The most standard example is the free scalar field theory with z = 2, known as the Lifshitz model.

Anisotropic fixed points in interacting field theories in general can have z 6= 2 [5, 6]. Even though the

original Lifshitz fixed points were found in anisotropic magnets where three critical lines meet, in this paper

we simply define Lifshitz-like fixed points as any fixed points which have anisotropic scale invariance.
2 Gravity duals of another types of fixed points with non-relativistic scaling symmetry [15] have also

been studied especially for systems with non-relativistic conformal invariance [16–21].
3Here the Lifshitz-like fixed points are realized in the IR limit. It is also intriguing to consider opposite

RG flows, where IR fixed points become relativistic and isotropic z = 1 as in [8, 10].

– 2 –
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This paper is organized as follows. In section 2, we present solutions dual to a class of

Lifshitz-like fixed points based on D3-D7 systems with their black brane generalizations.

In section 3, we show there exist interpolating solutions which approach the Lifshitz-like

scaling solutions in the IR and the standard AdS5 solutions in the UV. In section 4, we

holographically calculate the shear and bulk viscosity. In section 5, we compute their holo-

graphic entanglement entropies and discuss how the scaling behaviors of the entanglement

entropies depend on the direction along which the sub-systems are delineated. In sec-

tion 6, we study the perturbations around these backgrounds and discuss the instabilities.

In section 7, we present anisotropic solutions based on D4-D6 systems. In section 8, we

summarize our conclusions.

2 Holographic duals of Lifshitz-like fixed points in type IIB string

In this section we will present the main result of this paper. We will construct new solutions

in type IIB supergravity with RR 5-form and 1-form fluxes whose Einstein metrics enjoy a

nice scaling property. Since their scaling is anisotropic as opposed to the well-known AdS5

background, we argue that they are dual to Lifshitz-like fixed points described by certain

D3-D7 systems.

2.1 Type IIB supergravity

The IIB supergravity action SIIB = 1
2κ2

10

∫

L in the string frame is defined by the Lagrangian

(we follow the convention in [23])

L =
√−ge−2φ(R + 4∂Mφ∂Mφ) − e−2φ

2
H3 ∧ ∗H3 −

1

2
F1 ∧ ∗F1 −

1

2
F̃3 ∧ ∗F̃3

−1

4
F̃5 ∧ ∗F̃5 −

1

2
C4 ∧ H3 ∧ F3, (2.1)

where F1 = dχ, F̃3 ≡ F3 − χH3, and F̃5 ≡ F5 − 1
2C2 ∧ H3 + 1

2B2 ∧ F3. We set α′ = 1

therefore 2κ2
10 = (2π)7.

The fluxes obey the equations of motion:

d ∗ F1 = ∗F̃3 ∧ H3, d ∗ F̃3 = −H3 ∧ F̃5, d ∗ F̃5 = H3 ∧ F̃3,

d(e−2φ ∗ H3) = F1 ∧ ∗F̃3 + F̃3 ∧ F̃5. (2.2)

plus the Bianchi identities:

dH3 = 0, dF1 = 0, dF̃3 = H3 ∧ F1, dF̃5 = H3 ∧ F̃3, (2.3)

and the self-dual constraint for F̃5:

∗ F̃5 = F̃5. (2.4)

The dilaton equation of motion is

R + 4∇M∇Mφ − 1

12
HMNP HMNP − 4∇Mφ∇Mφ = 0. (2.5)

– 3 –
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And the Einstein equation becomes

RMN + 2∇M∇Nφ +
1

4
gMNA =

1

4
HMABH AB

N +
1

2
e2φFMFN +

1

4
e2φF̃MABF̃ AB

N

+
1

4 · 4!e
2φF̃MABCDF̃ ABCD

N , (2.6)

where

A ≡ e2φ∂Mχ∂Mχ +
1

3!
e2φF̃ABCF̃ABC +

1

2 · 5!e
2φF̃ABCDEF̃ABCDE . (2.7)

2.2 D3-D7 ansatz

We start with the (string frame) metric ansatz that preserves the three-dimensional Lorentz

symmetry SO(2, 1):

ds2 = e2b(r)(−dt2 + dx2 + dy2) + e2h(r)+2a(r)dw2 + e2c(r)−2a(r)dr2 + e2c(r)r2ds2
X5

. (2.8)

We require the five-dimensional compact manifold X5 to be a unit-radius Einstein manifold

with the same Ricci curvature as the unit-radius S5, i.e. it satisfies

Rαβ = 4gαβ . (2.9)

The simplest example of X5 is obviously the unit radius sphere S5. The self-dual 5-form

and 1-from fluxes are given in terms of constants α and β by

F5 = α (ΩX5 + ∗ΩX5) , (2.10)

F1 = dχ = βdw, (2.11)

where χ is the axion field (i.e. the RR 0-form potential) and ΩX5 is the volume form of X5.

The fluxes (2.10) and (2.11) satisfy the equations of motion (2.2). We also assume that

the dilaton φ only depends on r and both 3-form fluxes (H3 and F3) vanish. Our ansatz,

which looks rather different from [8], is motivated in part by an attempt to construct back-

reacted solutions of the D3-D7 intersecting systems introduced in [22], as will be explained

in detail later.

Under this ansatz, the equations of motion for the metric and the dilaton ((2.6)

and (2.5)) are summarized as follows:

[b′e2z]′ =
β2

4
e−2a−h+3b+6cr5 +

α2

4
e−4c+3b+hr−5,

[(a + h)′e2z]′ = −β2

4
e−2a−h+3b+6cr5 +

α2

4
e−4c+3b+hr−5,

[(c + log r)′e2z]′ =
4

r2
e2z−2a +

β2

4
e−2a−h+3b+6cr5 − α2

4
e−4c+3b+hr−5,

[(2z + c − a)′e2z]′ =
20

r2
e2z−2a − β2

4
e−2a−h+3b+6cr5 − α2

4
e−4c+3b+hr−5,

2z′′ + c′′ − a′′ + 2(z′)2 +
1

2
(h′)2 + a′h′ + 2(c′)2

+

(

5

r
+ a′

)

c′ +
3

2
(b′)2 − 10e−2a

r2
+

5

2r2
= 0.

– 4 –
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Here we have defined

z ≡ 3

2
b +

5

2
log r + a + 2c +

1

2
h − φ. (2.12)

The derivative of a function f with respect to r is denoted by f ′(r). An observation, which

will be useful in the next section, is that a linear combination of the first four equations

gives

[(2b − 2a − φ − 2h)′e2z]′ = 0. (2.13)

2.3 D3-D7 scaling solutions: holographic duals of Lifshitz-like fixed points

Since we are looking for scaling solutions (namely solutions invariant under scale transfor-

mations), we require all metric components in (2.8) to be power functions of r. In other

words, the functions a, b, c, z and φ are all logarithmic functions of r. For such a scal-

ing ansatz, the equations of motion (2.5) and (2.6) reduce to algebraic equations and the

solution is easily found to be:

a(r) =
1

2
log

12

11
− log ξs, b(r) =

7ξs

6
log r + b0, c(r) =

(

−1 +
ξs

6

)

log r + c0,

h(r) =
5ξs

6
log r + log ξs + h0, φ(r) =

2ξs

3
log r + φ0,

α = 4e4c0−φ0 , β = 4

√

2

11
eh0−c0−φ0, (2.14)

where b0, c0, h0, φ0 and ξs are arbitrary constants. ξs corresponds to the degrees of freedom

of the reparameterization of r, while b0 and h0 correspond to the rescaling of the (t, x, y, w)

directions.

Without loss of generality, we choose

ξs = 1, b0 = c0 +
1

2
log

11

12
, h0 = c0 + log

11

12
, (2.15)

and the solution in the string frame reads:

ds2
s = R̃2

s

[

r
7
3 (−dt2 + dx2 + dy2) + r

5
3 dw2 +

dr2

r
5
3

]

+ R2
sr

1
3 ds2

X5
, (2.16)

where R2
s = 12

11R̃2
s = e2c0 . And the dilaton scales with r as

eφ = r
2
3 eφ0 , (2.17)

where eφ0 =
√

22
3β .

Since the dilaton depends on r non-trivially, it is helpful to discuss the metric in the

Einstein frame. Indeed, later we will see explicitly that a large class of scalar fluctuations

around this solution can be described by Klein-Gordon equations on curved spacetimes

based on the Einstein frame metric instead of on the string frame metric. The above

solution in the Einstein frame is

ds2
E = R̃2

[

r2(−dt2 + dx2 + dy2) + r
4
3 dw2 +

dr2

r2

]

+ R2ds2
X5

, (2.18)

– 5 –
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where the radii

R2 =
12

11
R̃2 = e−

φ0
2

+2c0 =

√
α

2
. (2.19)

The metric (2.18) is invariant under the scaling

(t, x, y, w, r) →
(

λt, λx, λy, λ
2
3 w,

r

λ

)

, (2.20)

and therefore is expected to be holographically dual to Lifshitz-like fixed points with space-

like anisotropic scale invariance. Note that the metric (2.18) is equivalent to (1.4) with

z = 3/2, p = 2 and d = 3.

By redefining the radius coordinate ρ ≡ r
2
3 and rescaling (t, x, y, w) accordingly, we

can rewrite the metric (2.18) into another illuminating form

ds2
E = R̃2

[

ρ3(−dt2 + dx2 + dy2) + ρ2dw2 +
dρ2

ρ2

]

+ R2ds2
X5

. (2.21)

This can be regarded as gravity duals of Lifshitz-like fixed points with z = 3/2. It coincides

with the metric (1.2) with p = 2 and d = 3.

2.4 Holographic interpretation in terms of D3-D7 system

Since our solution (2.18) is sourced by the RR 5-form (2.10) and 1-form flux (2.11), we

expect it to be interpreted as a D3-D7 system in string theory. When we compactify the w

direction such that w ∼ w + L and place N D3-brane along the (t, x, y, w) directions and

k D7-branes along the (t, x, y,X5) directions:

M4 × S1 × X5 t x1 y r w s1 s2 s3 s4 s5

N D3 × × × ×
k D7 × × × × × × × ×

these N D3 and k D7 branes can source the desired RR 5-form and 1-form fluxes with

α =
(2π)4N

Vol(X5)
, β =

k

L
. (2.22)

This brane configuration is the same as the one constructed to model the fractional quantum

Hall effect in [22].

The number of the D3-branes determines the radii R and R̃ in the scaling solu-

tion (2.18):

R2 =
12

11
R̃2 = 2

√

π4

Vol(X5)
N. (2.23)

For X5 = S5 (whose volume is π3), R2 = 12
11 R̃2 = 2

√
πN . The number of the D7-branes

gives the string coupling at r = 1:

eφ0 =

√
22

3

L

k
. (2.24)

Now we say a few words about the field theory living on this D3-D7 system. We take

X5 = S5 to simplify the arguments. If we start with N D3-branes, whose low energy theory

– 6 –
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is the four-dimensional N = 4, SU(N) super Yang-Mills theory, then the additional k D7-

branes will source a non-trivial axion field χ = k
Lw, which in turn induces a w-dependent

θ term (i.e. the topological term) of the Yang-Mills theory

1

4π

∫

χ(w)TrF ∧ F. (2.25)

For finite β and k, w-direction is compactified. After integrating over w, the 4D

topological term (2.25) becomes a 3D Chern-Simons term at level k:

k

4π

∫

R1,2

Tr

[

A ∧ F +
2

3
A3

]

. (2.26)

Now we have two choices of the boundary condition for the w-circle: periodic or anti-

periodic. If we impose the anti-periodic one, all fermions will become massive. This breaks

all supersymmetries and gives masses to scalar fields through quantum corrections. In the

IR limit, only a pure Yang-Mills term is left of the original 4D N = 4 super Yang-Mills

part of the action. Since in the IR limit, the Chern-Simons term dominates this Yang-Mills

term, the final three-dimensional theory is a pure Chern-Simons theory. In [22], this D3-D7

system was constructed to holographically model the FQHE precisely because it flows to the

pure Chern-Simons gauge theory in the IR. In this model, the AdS/CFT correspondence

in the IR limit manifests itself as the level-rank duality of the pure Chern-Simons gauge

theory.

On the other hand, if we take k → ∞ (and simultaneously L → ∞) while keeping β

finite, the w-direction is non-compact and the field theory is four-dimensional. Even though

the interaction (2.25) looks non-local at the first sight, its contribution to the equations

of motion is actually local. This remarkable property occurs only when χ(w) is a linear

function of w (as is the case here).

One might still doubt any relations of our new background (2.18) to the N = 4

super Yang-Mills theory as it is not asymptotically AdS5. One might also worry that the

dilaton (2.17) blows up near the boundary r → ∞. However, as we will show in the next

section, we can in fact construct solutions which interpolate between the AdS5 and our

scaling solution (2.18). This interpolating solution can be considered as the dual of the RG

flow between the two systems. Notice that this caps off the strongly coupled region of the

scaling solution. We will also present anisotropic solutions for analogous D4-D6 systems in

section 7.

2.5 Black brane solutions and entropy

One more interesting fact about our scaling solutions is that we can straightforwardly

generalize them to black brane solutions which have regular event horizons. The metric in

the Einstein frame is

ds2
E = R̃2

[

r2(−F (r)dt2 + dx2 + dy2) + r
4
3 dw2 +

dr2

r2F (r)

]

+ R2ds2
X5

, (2.27)

where

F (r) = 1 − µ

r
11
3

. (2.28)

– 7 –
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The constant µ represents the mass parameter of the black brane. The dilaton and RR

fields remain the same.

Requiring the smoothness of the Euclidean geometry of (2.27) gives the

Hawking temperature

TH =
11

12π
µ

3
11 . (2.29)

The Bekenstein-Hawing entropy is then

SBH = γ ·
(

π3

Vol(X5)

)

· N2 · T
8
3

H · V2 · L, (2.30)

where γ is a numerical factor

γ = 2
4
3 · 3 7

6 · 11− 7
6 · π 5

3 ≃ 3.729 (2.31)

and V2 represents the area in the (x, y) direction. The entropy (2.30) is proportional to N2

and thus is consistent with the planar limit of a certain gauge theory.

Notice that the power 8/3 of temperature in (2.30) can also be obtained from a simple

dimension counting. From the metric (2.27), the coordinate w has the fractional dimension

2/3, while each of (t, x, y) carries the unit dimension.

3 RG flow in AdS5/CFT4 and scaling solution

In the previous section, we find a new scaling solution of the D3-D7 system in type IIB su-

pergravity. To clarify its physical interpretation, we will show below that we can construct

interpolating solutions that approach the AdS5 × X5 solutions in the r → ∞ limit (i.e.

UV limit of the holographic duals) and the scaling solutions in the opposite limit r → 0.

Then via the AdS/CFT correspondence, we can argue that the system dual to our scaling

solution is connected to the one dual to the AdS5 through the RG flow.

3.1 Further reduction of equations of motion

To find the interpolating solution, we start with the general form (2.8). To simplify the

problem we impose some extra constraints which are consistent with both the AdS5 and

the scaling solutions.

First, we can make the function a(r) vanish by a reparametrization of r:

a(r) = 0. (3.1)

Secondly, recall that we showed [(2b − 2a − φ− 2h)′e2z]′ = 0 for generic solutions. In fact,

both the AdS5 and the scaling solution satisfy a much stronger condition

(2b − 2a − φ − 2h)′ = 0. (3.2)

Since we are looking for a solution that interpolates between the AdS5 and the scaling

solution, it is reasonable to impose (3.2) as a simplifying ansatz, namely

h(r) = b(r) − a(r) − 1

2
φ(r) + h̃0, (3.3)
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where h̃0 is a constant. Similarly, since both the AdS5 and the scaling solution have the

nice property that in the Einstein frame the radius of S5 is a constant, we will also impose

this condition on our interpolating solution, namely we require

φ(r) = 4c(r) + 4 log r + φ̃0, (3.4)

where φ̃0 is a constant. These relations (3.1), (3.3) and (3.4) are the constraints mentioned

and are assumed throughout this section.

Under this ansatz, the Einstein frame metric becomes

ds2
E =

e2b(r)−2c(r)− φ̃0
2

r2
(−dt2+dx2+dy2) + e−

3
2
φ̃0+2h̃0

e2b(r)−6c(r)

r6
dw2 + e−

φ̃0
2

dr2

r2
+ e−

φ̃0
2 ds2

X5
,

(3.5)

and the equations of motion are greatly simplified:

α = 4e−φ̃0 , (3.6)

b′′ =
2

r2
+

23

r
b′ − 10b′2 − 16c′

r
+ 24b′c′ − 8c′2, (3.7)

c′′ =
4

r2
+

14

r
b′ − 6b′2 − 5c′

r
+ 14b′c′ − 2c′2, (3.8)

1

4
e−2h̃0+3φ̃0−2b+14cr14β2 = 6 − 8 − 6r2b′2 − 16rc′ − 8r2c′2 + 18rb′(1 + rc′). (3.9)

We can confirm that the derivative of the r.h.s of (3.9) is vanishing if (3.7), (3.8) and (3.9)

are satisfied. This means that the constraint (3.9) is consistent with (3.7) and (3.8).

3.2 Interpolating solution between AdS5 and D3-D7 scaling solution

Now the problem amounts to solving the system of two coupled first-ordered nonlinear

ODEs (3.7) and (3.8) under the constraint (3.9). First, notice that (3.7) and (3.8) involve

only the derivatives of b and c, thus once we find a solution to them, we can simply choose

the integration constants of b(r) and c(r) such that they satisfy the constraint (3.9) — as

long as it allows the r.h.s of (3.9) to be positive.4 Therefore essentially we only need to

solve (3.7) and (3.8).

Next we redefine the radial coordinate r and the derivatives of the functions b(r) and

c(r) as follows

s ≡ log r, B(s) ≡ ∂b(r)

∂ log r
, C(s) ≡ ∂c(r)

∂ log r
. (3.10)

Then the equations (3.7) and (3.8) are simply a pair of first-ordered non-linear ODEs:

Ḃ = 2 + 24B − 16C − 10B2 + 24BC − 8C2, (3.11)

Ċ = 4 + 14B − 4C − 6B2 + 14BC − 2C2. (3.12)

where Ḃ ≡ dB
ds . A physical solution also needs to satisfy

(9B − 8C − 8)2 − (33B2 + 48) < 0, (3.13)

4However as we will show later this requirement is actually automatically satisfied by the interpolating

solution we are looking for; thus it does not impose any additional constraint.
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due to the constraint (3.9).

The dynamical system (3.11) and (3.12) has four fixed points (B,C)∗ which can be

classified into two pairs:

(B,C)∗ = (±1,−1) and (B,C)∗ =

(

± 7√
33

,± 1√
33

− 1

)

. (3.14)

Inside each pair, the two fixed points are related by a coordinate redefinition r → 1
r thus

are equivalent. The fixed point

(B,C)∗AdS5
= (1,−1) (3.15)

corresponds the standard AdS5 × X5 solution.5

Our scaling D3-D7 solution (at zero temperature) corresponds to the fixed point

(B,C)∗scaling =

(

7√
33

,
1√
33

− 1

)

≃ (1.2185,−0.8259). (3.16)

One can easily see that the metric (3.5) with (3.16) is equivalent to (2.18) via the redefinition

of radial coordinate r → r
√

33/6. Since the two fixed points with “−” sign are equivalent

to the two with “+” sign and are disconnected from them, we will not consider those any

further.

Now let’s study the behavior of this dynamical system (3.11) and (3.12). Near the

AdS5 fixed point (3.15), the eigensystem of the linear perturbations (defined by B(s) =

B∗
AdS5

+ ǫb(s) and C(s) = C∗
AdS5

+ ǫc(s) for ǫb, ǫc ≪ 1) is

ǫ̇b = −20ǫb + 24ǫc, ǫ̇c = −12ǫb + 14ǫc, (3.17)

and both eigenvalues are negative: λ1 = −4 and λ2 = −2; therefore the AdS5 solution is a

stable fixed point as the system flows to the UV (i.e. r → ∞).

On the other hand, the eigensystem of the linear perturbation near the D3-D7 scaling

fixed point (defined by B(s) = B∗
scaling + ηb(s) and C(s) = C∗

scaling + ηc(s) for ηb, ηc ≪ 1) is

η̇b = − 116√
33

ηb +
152√

33
ηc, η̇c = − 70√

33
ηb +

94√
33

ηc. (3.18)

In contrast to the stable AdS5 fixed point, this scaling solution fixed point has one negative

eigenvalue (λ1 = −
√

33+
√

105
3 ) and one positive one (λ2 =

√
105−

√
33

3 ). Therefore the fixed

point corresponding to the scaling solution is unstable. Near the neighborhood of this

scaling fixed point, there exist two special trajectories: one corresponding to the negative

eigenvalue λ1 and one to the positive λ2. The fixed point behaves like a UV (resp. IR) fixed

point when approached along the trajectory corresponding to the negative (resp. positive)

eigenvalue. When the fixed point is approached along a generic direction, the trajectory

only passes near it and then turns to flow to infinity — only one fine-tuned trajectory can

reach the fixed point.

5The fixed point (B, C)∗ = (−1,−1) can be considered as its conjugate since they are connected under

a coordinate redefinition r → 1
r
.
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Figure 1 shows the global behavior of this dynamical system (3.11) and (3.12). Fig-

ure 1(a) is generated by numerical computations and the salient features are schematically

highlighted in the hand-rendered figure 1(b). The arrows point in the direction from the

UV (s = ∞) to the IR (s = −∞). It is easy to see from the direction fields that the AdS5

fixed point (the green dot at (1,−1)) is a stable UV fixed point while the scaling fixed

point (the blue dot at ( 7√
33

, 1√
33

− 1)) is unstable. Recall that a physical solution needs

to satisfy (3.13). The allowed region in the flow diagram are between two hyperbolic lines

given by 9B − 8C − 8 = ±
√

33B2 + 48. The black curve in figure 1(a) is the one with

the “+” sign; and the other one with the “−” sign is its mirror image in the upper-left

corner but is out of the range of figure 1(a). It is clear that both the AdS5 fixed point and

the scaling solution fixed point are in the allowed region. And since the AdS5 is a stable

UV fixed point and there is no critical surface separating it from the scaling solution fixed

point, there exists a trajectory emanating from the AdS5 fixed point and flowing to the

scaling solution fixed point. Namely there exists a solution that interpolates between the

AdS5 ×X5 solution in the UV (r → ∞) and the D3-D7 scaling solution in the IR (r = 0).

Now to solve the interpolating solution, we first choose the integration constant. First,

φ̃0 is determined only by the 5-form flux: φ̃0 = − log α
4 = − log ( 4π4

Vol(X5)
N). Then without

loss of generality, we set h̃0 = φ̃0

2 and choose the boundary condition for (b, c) to be

b(r) → log r, c(r) → − log r at r → +∞, (3.19)

b(r) → 7√
33

log r + b0, c(r) →
(

1√
33

− 1

)

log r + b0 at r → 0, (3.20)

where b0 ≡ 1
6 log ( 4π4

Vol(X5)
N) − 1

12 log 3
8 − 1

6 log β. Then the dynamical system (3.11)

and (3.12) plus the constraint

1

8
[(9B − 8C − 8)2 − (33B2 + 48)] = − β2

64
(

π4

Vol(X5)

)2
N2

e−2b(r)+14c(r)r14 < 0, (3.21)

and the boundary conditions (3.19) determine an interpolating solution that approaches

the AdS5 × X5 solution

ds2
E = R2

[

r2(−dt2 + dx2 + dy2 + dw2) +
dr2

r2

]

+ R2ds2
X5

,

eφ = eφ̃0 , (3.22)

in the UV and the D3-D7 scaling solution

ds2
E = R2

[

r
12√
33 (−dt2 + dx2 + dy2) +

dr2

r2

]

+ ρ2r
8√
33 dw2 + R2ds2

X5
, (3.23)

eφ = e4b0eφ̃0r
4√
33 , (3.24)

in the IR. Here R2 = e−φ̃0/2 = 2
√

π4

Vol(X5)
N and ρ2 = e−4b0R2. And the fluxes are

F5 = 4R4 (ΩX5 + ∗ΩX5) , F1 = βdw,

throughout the system.
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(a)

(b)

Figure 1. The (B, C) flow diagram. The horizontal and vertical axes are B ≡ ḃ and C ≡ ċ,

respectively. The arrows point in the direction from the UV (r = ∞) to the IR (r = 0). In the

left figure, the blue dot at ( 7
√

33
, 1
√

33
− 1) ≃ (1.22,−0.83) is the unstable fixed point corresponding

to the scaling solution; the green dot at (1,−1) is the stable UV fixed point corresponding to the

AdS5 solution. The green line running through the scaling fixed point corresponds to the negative

eigenvalue λ1 while the red line corresponds to the positive one λ2. The black curve is given by

9B − 8C − 8 =
√

33B2 + 48 and corresponds to a pure D3 solution; the allowed D3-D7 solutions

are above this curve.

We can easily solve (b, c) numerically for arbitrary fluxes. Systems with different flux

numbers differ only in their speeds in approaching the fixed points. Figure 2 shows the

system with β2

64( π4

Vol(X5)
)2N2

= 1 as an example. Figure 2(a) graphs the behavior of (ḃ, ċ),
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(a) (B, C) of the interpolating solution. (b) Scalings of the interpolating solution in

the Einstein Frame.

Figure 2. An interpolating solution with fluxes satisfying β2

64( π4

Vol(X5)
)2N2

= 1. In the left figure,

(B, C) ≡ (ḃ, ċ) flow from ( 7
√

33
, 1
√

33
− 1) ≃ (1.22,−0.83) in the IR to (1,−1) in the UV. The right

figure shows that, in the Einstein frame, the scalings of the (t, x, y)-directions, the w-direction, and

eφ flow from ( 8
√

33
, 4
√

33
, 4
√

33
) ≃ (1.04, 0.70, 0.70) in the IR to (1, 1, 0) in the UV.

and more directly, figure 2(b) presents the scalings of the (t, x, y)-directions, w-direction,

and eφ in the Einstein frame as the interpolating solution flows from the D3-D7 scaling

solution in the IR (r = 0) to the AdS5 in the UV (r → ∞).

3.3 Interpolating solutions as holographic RG flows

Here we try to interpret our interpolating solutions via AdS/CFT. To make the argument

simple we focus on X5 = S5. Consider the standard AdS5/CFT4 for the N = 4 super

Yang-Mills. We can perturb the N = 4 super Yang-Mills by many relevant operators

O1,O2, · · · as δS =
∫

dx4[g1O1 + g2O2 + · · ·].
Our solution which flows from the AdS5×S5 to the scaling D3-D7 solution is dual to an

anisotropic RG flow triggered by a non-supersymmetric relevant deformation (2.25), called

O1. This RG-flow eventually ends at the IR fixed point that is dual to the scaling solution.

Therefore O1 becomes irrelevant in the IR limit. However, our sketch of the holographic

RG flow (see figure 1) tells us that this flow is unstable and signals the presence of another

relevant operator O2 which becomes relevant even at the IR fixed point. So if we slightly

perturb this flow by O2, then the RG flow passes near the IR fixed point and eventually

goes to infinity. Its asymptotic behavior will be derived analytically in the next subsection.

However, we can still fine tune such that there is no O2 generated (i.e. g2 = 0) to realize

the IR fixed point governed by the scaling solution. This is exactly what experimentalists

usually do to realize an unstable fixed point.6

6It is feasible because as long as the starting point is close enough to the critical line (which corresponds

to the fine-tuned trajectory that hits the fixed point), the trajectory will stay for a very long time near the

fixed point to allow the measurements [7].
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A similar situation occurs when we perturb the Heisenberg model by an anisotropic

Ising-like interaction: H = −J
∑

〈ij〉(σ
x
i σx

j + σy
i σy

j + σz
i σ

z
j ) − D

∑

〈ij〉 σz
i σ

z
j , where D > 0.

In this analogy, the UV fixed point is the Heisenberg model fixed point and the IR one

is the Ising model fixed point. This structure of the RG flow is rather generic and is one

example of the phenomenon called crossover [7].

3.4 Exact solutions without D7-brane charge

In our interpolating solution, the flow from the UV AdS5 fixed point reaches the IR D3-D7

scaling solution fixed point only if it starts along a specific direction. One wonders where

the flow would end up if its initial direction slightly deviates from the fine-tuned one. A

closer look at figure 1(a) tells us that if it deviates from the desired direction slightly to

the left, it will turn back before reaching the scaling solution fixed point and asymptote

to the B < 1 part of the black curve given by 9B − 8C − 8 =
√

33B2 + 48 (due to the

constraint (3.13)). On the other hand, if it deviates slightly to the right, it will pass near

(but not hitting) the scaling solution fixed point and then bend slightly downward and

finally asymptote to the B > 1 part of the same black curve.

The curve given by 9B−8C−8 =
√

33B2 + 48 is the solution interpolating between the

AdS5 in the UV and some other solution in the IR. Since it saturates the inequality (3.21),

there is no D7 brane charge (β = 0): it is a solution of the pure D3-brane system. Not

only is it important because it gives the asymptotic form of what our interpolating solution

decays into when perturbed by a relevant operator, it is also interesting as a pure D3-brane

solution other than AdS5. In this subsection, we will solve it analytically.

First, eliminating C from equations (3.11) and (3.12) gives

dB

ds
= 4 +

11

4
B2 − 3

4
B
√

48 + 33B2, (3.25)

which can actually be solved analytically. There are two solutions distinguished by the

± sign:

B±(s) =
e8s ∓ 6

√

3
11e4s + 1

e8s − 1
,

C±(s) = −
e8s ± 4

√

3
11e4s − 1

e8s − 1
, (3.26)

which lead to

b±(s) = b̃0 − s ± 3

4

√

3

11
log

e4s + 1

e4s − 1
+

1

4
log(e8s − 1),

c±(s) = c̃0 − s ± 1

2

√

3

11
log

e4s + 1

e4s − 1
. (3.27)

We can choose h̃0 = φ̃0

2 and b̃0 = c̃0 = 0; then the metric in the Einstein frame and the
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dilaton are simply

ds2
E = R2

[
√

r8 − 1

r4

(

r4 + 1

r4 − 1

)± 1
2

q

3
11

(−dt2 + dx2 + dy2)

+

√

r8 − 1

r4

(

r4 + 1

r4 − 1

)∓ 3
2

q

3
11

dw2 +
dr2

r2
+ ds2

X5

]

,

eφ =

(

r4 + 1

r4 − 1

)±2
q

3
11

eφ̃0 , (3.28)

with R2 = 2
√

π4

Vol(X5)
N .

Both solutions in (3.28) become AdS5 × X5 in the UV fixed point (r → ∞); however

when going towards the IR, they become singular at r = 1. The solution with “ + ” (resp.

“− ”) sign covers B > 1 (resp. B < 1) part of the curve 9B − 8C − 8 =
√

33B2 + 48. Even

though these zero temperature solutions become singular ar r = 1, their corresponding

black brane solutions at finite temperature are expected to be smooth. An explicit con-

struction of such black brane solutions is left as a future problem. Also it would be very

interesting to understand what anisotropic relevant deformations of the N = 4 Yang-Mills

are dual to this background.

4 Hydrodynamics

As we obtained the black brane solutions (2.27), we can consider the hydrodynamic behav-

ior of their dual field theories from the supergravity side [24]. In this section, we especially

determine the shear and bulk viscosities from dispersion relations for the corresponding

quasinormal modes of fluctuations around the background (2.27), following [25, 26].

For this purpose, we first reduce S5 part and consider fluctuations around the result-

ing five-dimensional background. The procedure of the reduction and derivation of the

linearized equations of motion for the fluctuations are summarized in appendix A.8.1. In

these equations, fluctuation of the resulting five-dimensional metric δg
(5)
µν = Hµν , dilaton

δφ = ϕ, axion δχ = η, the trace part of the S5 metric π and the five-form flux δF5 = f5

appear generally.

In this section, we assume that the w direction is compactified and the neglect the

momentum in this direction so that we extract the effective 2 + 1 dimensional holographic

dual theories from the total 3 + 1 dimensional ones. In this situation we can choose

the momentum in y direction. By considering the symmetry of the background, we can

decompose the fluctuation into channels decoupled from each other in the linear order:

shear channel Htx,Hxy,Hxr, (4.1)

scalar channel Hxw, (4.2)

sound channel Htt,Hty,Htr,Hxx,Hyy,Hyr,Hww,Hrr, ϕ, π, ftxywr , (4.3)

“axion channel” Htw,Hyw,Hrw, η. (4.4)
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In this paper, we consider the shear and sound channel only, since we can read off the shear

and bulk viscosity from dispersion relations for the quasinormal modes of these channels.

Before deriving the dispersion relation, we need to consider the gauge fixing of the

fluctuations. Let us assume that the fluctuations are of the form

Hµν = H̃µν(r)e
−i(ωt−qy), ϕ = ϕ(r)e−i(ωt−qy),

η = η(r)e−i(ωt−qy), π = π(r)e−i(ωt−qy), (4.5)

fµνρσλ = fµνρσλ(r)e−i(ωt−qy).

Especially, for later convenience, we rewrite some of their components as

H̃tt(r) = R̃2c2
t Htt(r), H̃ab(r) = R̃2c2

xHab(r), (4.6)

H̃ta(r) = R̃2c2
xHta(r), H̃ww(r) = R̃2c4/3

x Hww(r), (4.7)

where a, b = x or y, and c2
t = r2F (r) and c2

x = r2; the function F (r) is defined by (2.28).

As in appendix A.8.1, we then take the radial gauge Hµr = 0 in the following discussion.

Here we notice that there still exist residual gauge degrees of freedom under an infinitesimal

diffeomorphism xµ → xµ + ξµ with ξµ = ξµ(r)e−i(ωt−qy):

Hµν → Hµν −∇µξν −∇νξµ, ϕ → ϕ − ξµ∂µφ, (4.8)

η → η − ξµ∂µχ, π → π − ξµ∂µg α
α . (4.9)

Here the covariant derivative is defined by the background metric. In [25], it has been

noticed that one can derive the dispersion relation for the quasinormal modes by defining

gauge invariant quantities, instead of performing the gauge fixing completely. Following

this, we define the gauge invariant quantities as

Z1(r) = qHtx(r) + ωHxy(r), (4.10)

for the shear channel and

Z0(r) = q2 c2
t

c2
x

Htt(r) + 2qωHty(r) + ω2Hyy(r)

+
3

5

(

q2 c′tct

c′xcx
− ω2

)

(Hxx(r) + Hww(r)), (4.11)

Zϕ(r) = ϕ(r) − 1

2
Hww(r), (4.12)

Zπ(r) = π(r), (4.13)

for the sound channel. Below, we derive equations for these quantities by using linearized

equations of motion summarized in appendix B and then the dispersion relations for the

quasinormal modes by imposing an appropriate boundary condition.

4.1 Shear viscosity

From the equations (B.1),(B.2) and (B.3), we obtain the equation for Z1 as

Z ′′
1 +

14F (r)(q2F (r) − w2) − 3w2rF ′(r)
3rF (r)(q2F (r) − w2)

Z ′
1 +

121µ
6
11 (w2 − F (r)q2)

36r4(F (r))2
Z1 = 0, (4.14)
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where the dimensionless frequency w and momentum q are defined by

w =
w

2πTH
, q =

q

2πTH
, (4.15)

respectively.

In order to solve this equation, we consider the asymptotic behavior of Z1 first. As

r → ∞, Z1 ∼ Ar0+Br−
11
3 with constants A, B generally. For the quasinormal modes, A is

set to zero, or, in other words, we should impose the Dirichlet boundary condition Z1 = 0

at r = ∞. As r → µ
3
11 , Z1 ∼ (F (r))±iw/2 and, in order to ensure that only incoming waves

exist at the horizon, we take the one with negative sign.

By taking the hydrodynamic limit q ≪ 1 and w ≪ 1, we can perturbatively determine

Z1 as

Z1 = C(F (r))−iw/2

(

1 +
iq2

2w
F (r) + O(q2,w)

)

, (4.16)

where C is a constant. Here we assumed that q2 and w are of the same order as usual for

the shear channel. Then by imposing the Dirichlet condition Z1 = 0 at r = ∞, we find

w = − iq2

2 . Comparing with the hydrodynamic relation for the shear channel

ω = − iη

THs
q2, (4.17)

we can find that the universal bound for the shear viscosity η to the entropy density s

ratio [27] is saturated for the current case:

η

s
=

1

4π
. (4.18)

4.2 Bulk viscosity

From the equations derived in appendix B.2, we obtain the differential equations for Zϕ,

Zπ and Z0 as

Z ′′
ϕ + ln′(c2

t c
8/3
x )Z ′

ϕ +
1

c2
t

(

ω2

c2
t

− q2

c2
x

)

Zϕ+

− 44

9c2
t

Zϕ +
11(µ3 − 2µ2r11/3 + 2r11)

27r28/3(r11/3 − µ)
Zπ = 0, (4.19)

Z ′′
π + ln′(c2

t c
8/3
x )Z ′

π +
1

c2
t

(

ω2

c2
t

− q2

c2
x

)

Zπ − 32

c2
t

Zπ = 0, (4.20)

Z ′′
0 + F(r)Z ′

0 + G(r)Z0 + H(r)Zϕ = 0, (4.21)
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where

F(r) =
625µ3q4 − 3584(q2 − ω2)2r11

3r(µ − r11/3)(5µq2 − 16r11/3(q2 − ω2))2

+
−20µ2q2(157q2 − 112ω2)r11/3 + 32µ(149q2 − 24ω2)(q2 − ω2)r22/3

3r(µ − r11/3)(5µq2 − 16r11/3(q2 − ω2))2
, (4.22)

G(r) =
3025µ4q4 − 5µ2q2r16/3(333q2 − 1936r2)(q2 − ω2) − 2304r38/3(q2 − ω2)3

9r2(µ − r11/3)2(5µq2 − 16r11/3(q2 − ω2))2

+
3744µr9q2(q2 − ω2)2 + 5µ3q2r5/3(45q4 − 2541q2r2 + 1936r2ω2)

9r2(µ − r11/3)2(5µq2 − 16r11/3(q2 − ω2))2
, (4.23)

H(r) = −22(1536r11(q2 − ω2)3 − 1440µr22/3q2(q2 − ω2)2)

45r2(µ − r11/3)(5µq2 − 16r11/3(q2 − ω2))2

−22(−µ3(425q2 − 550ω2)q4 + 20µ2q2r11/3(83q4 − 171q2ω2 + 88ω4))

45r2(µ − r11/3)(5µq2 − 16r11/3(q2 − ω2))2
. (4.24)

Then, as in the case of the shear channel, all we have to do next is to solve these equations by

imposing the incoming wave boundary condition at the horizon and the Dirichlet boundary

condition at infinity to derive the dispersion relation for the quasinormal mode of the sound

channel. We also take the hydrodynamic limit and assume that q and w are of the same

order, as is expected for the sound channel. For Zπ = 0, we can see that the nonsingular

solution for (4.20) is a constant, which turns out to be zero due to the Dirichlet boundary

condition Zπ = 0 at the boundary r = ∞. By substituting this into (4.19), we obtain

Zϕ = 0 in a similar manner. Then from these results and (4.21), by using a similar ansatz

Z0 = (F (r))−iw/2Y0(r), we can perturbatively determine Z0 as

Z0 = C̃(F (r))−iw/2

(

1 − 5(1 + 2iw)q2

11q2 − 16w2
F (r) + O(q2,w2, qw)

)

, (4.25)

where C̃ is a normalization constant. As a result of the Dirichlet boundary condition

Z0 = 0 at r = ∞, we obtain the dispersion relation for the sound channel

w =
1

2

√

3

2
q − i

5

16
q
2 + · · · . (4.26)

Let us recall a hydrodynamic relation for the sound channel in the noncompact (d + 1)-

dimensional spacetime

ω = csq − i
η

THs

(

d − 1

d
+

ζ

2η

)

q2 + · · · , (4.27)

where cs and ζ are the sound velocity and the bulk viscosity, respectively. Since there are

two noncompact spatial dimensions for the dual field theory now, d = 2 for the current

case. Therefore, by comparing (4.26) with (4.27) with d = 2, we obtain

c2
s =

3

8
,

ζ

η
=

1

4
. (4.28)
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As for ζ/η and cs of strongly coupled gauge theory plasma in d noncompact spatial dimen-

sions, it is conjectured in [28] that they satisfy an inequality

ζ

η
≥ 2

(

1

d
− c2

s

)

. (4.29)

In our case, this inequality is saturated.

5 Entanglement entropy of D3-D7 scaling solutions

When a quantum system is divided into two subsystems: A and its complement B, the von

Neumann entropy SA = −TrρA log ρA (where ρA is the reduced density matrix after tracing

out B) is called the entanglement entropy. The scaling behaviors and certain universal7

coefficients of the entanglement entropy encode important information on the degrees of

freedom and non-local correlations of the system [29, 30].

For an anisotropic system, an interesting question is “how does the scaling behavior

of the entanglement entropy depend on the direction along which the subsystems are de-

lineated?” In this section, we will study the entanglement entropy of various subsystems

A of the (x, y,w) space at the boundary (r → ∞) of the 5D part of the D3-D7 scaling

solution (2.18). The field theoretical computation of the entanglement entropy is expected

to be difficult as the system will be strongly coupled. We will instead compute its holo-

graphic dual on the gravity side. The holographic dual of the entanglement entropy of a

subsystem A is given by

SEE =
Areamin

4G5
, (5.1)

where Areamin is the area of the three-dimensional minimal surface that lives inside the

(r, x, y, w) space and borders on the boundary ∂A of the subsystem A [31].

After a coordinate transformation r = 1
z , the metric of the D3-D7 scaling solu-

tion (2.18) becomes

ds2 = R̃2

(−dt2 + dx2 + dy2 + dz2

z2
+

dw2

z4/3

)

+ R2ds2
X5

. (5.2)

For X5 = S5, R2 = 2
√

πN and R̃2 = 11
12R2. We consider the full boundary system given by

x ∈ [0, Lx], y ∈ [0, Ly ], w ∈ [0, Lw]. (5.3)

Among the various types of subsystems, we will only study the easiest types: stripes with

either x or (inequivalently) w restricted to a smaller length.

5.1 Entanglement entropy for subsystem along x-direction

Let’s first consider the subsystem A cut out along the x-direction:

x ∈ [0, ℓx < Lx], y ∈ [0, Ly], w ∈ [0, Lw]. (5.4)

7Here “universal” means the independence from the choice of different delineations of subsystems.
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The three-dimensional minimal surface bordering on ∂A is given by the embedding function

z = z(x):

Areamin
x =

∫ ℓx

0
dx

∫ Ly

0
dy

∫ Lw

0
dw

R̃

z
· R̃

z2/3
·

√

√

√

√

(

R̃

z

)2

+

(

R̃

z
z′

)2

= R̃3LyLw

∫ ℓx

0
dx

1

zd

√

1 + z′2, (5.5)

where d = 1 + 1 + 2
3 = 8

3 is the total scaling of the boundary system.

This is a Lagrangian system with L = R̃3LyLw
1
zd

√
1 + z′2. The z(x) that minimizes

the surface area is then given by the equation of motion

z′ = ±
√

(z∗
z

)2d
− 1, (5.6)

where z∗ is the peak of z on the minimal surface, across which z′ changes sign. It can be

solved from ℓx = 2
∫ z∗
0

dz
z′ , which gives z∗ = ℓx

2

Γ( 1
2d

)√
πΓ( 1

2d
+ 1

2
)
. The minimal surface is then

Areamin
x = 2R̃3LyLw

1

zd−1
∗

· In with In ≡
∫ 1

0
du

1

ud

1√
1 − u2d

. (5.7)

In has a UV divergence at z → 0. Imposing the UV cutoff by choosing the lattice

spacing a for the boundary system, we get

In =
1

d − 1

(

1

(a/z∗)d−1
−

√
πΓ( 1

2d + 1
2 )

Γ( 1
2d )

)

. (5.8)

Then plugging the value of z∗ and the five-dimensional Newton’s constant G5 = G10
VX5

with

G10 = 8π6ℓ8
s, we finally obtain the holographic entanglement entropy for the subsystem

divided out along the x-direction:

SEE−x =

(

11

12

)3 π2

Vol(X5)
· N2LyLw

1

d − 1





1

ad−1
−
(

2

ℓx

)d−1
(√

πΓ(1+d
2d )

Γ( 1
2d )

)d




= N2LyLw

[

γ1

a5/3
− γ2

(ℓx)5/3

]

, (5.9)

with d = 8
3 . γ1 and γ2 are numerical constants.

Now let’s interpret the result. First, the holographic entanglement entropy is propor-

tional to the area of the boundary of the subsystem ∂A = LyLw — as expected from the

“area law” [29] for the entanglement entropy from direct field theory computations. Second,

the first term of the holographic entanglement entropy diverges and is cutoff-dependent.

The scaling of a is given by the total scalings of the y and w directions relative to that of

the t-direction: (1 + 2
3 )/1 = 5

3 .

The second, finite term of the holographic entanglement entropy is more interesting:

it is cutoff-independent therefore can be compared with the field theoretic computation of
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the entanglement entropy. Its coefficient γ2 gives a measure of the total degrees of freedom.

The scaling of ℓx is simply the total scalings of the y and w directions relative to that of

the x-direction: (1 + 2
3)/1 = 5

3 . Since the scaling of the x-direction is the same as that of

the t-direction, the exponents of a and ℓx are the same.

5.2 Entanglement entropy for subsystem along w-direction

The next easiest subsystem we can consider is to divide along the w-direction:

w ∈ [0, ℓw < Lw]. (5.10)

The three-dimensional minimal surface bordering on ∂A is given by the embedding function

z = z(w):

Areamin
w = R̃3LxLy

∫ ℓw

0
dw

1

z3

√

z2/3 + z′2. (5.11)

Then we could follow the line of the previous subsystem along the x-direction. The compu-

tation is straightforward but more complicated so we present here instead a simpler route

which utilizes the result for the x-direction subsystem.

The coordinate transformation

z = z̃
3
2 , (t, x, y, w) =

3

2
(t̃, x̃, ỹ, w̃), (5.12)

results in the metric

ds2 =

(

3

2
R̃

)2(−dt̃2 + dx̃2 + dỹ2

z̃3
+

dz̃2

z̃2
+

dw̃2

z̃2

)

+ R2ds2
X5

. (5.13)

Thus we can simply use the result from the x-direction case, with d = 8
3 replaced by

dw = 4. First, we write down the dictionary between values in the original coordinates and

the new one.

1. In the new coordinates, the full boundary system is

x̃ ∈
[

0,
2

3
Lx

]

, ỹ ∈
[

0,
2

3
Ly

]

, w̃ ∈
[

0,
2

3
Lw

]

, (5.14)

while the subsystem A is

x̃ ∈
[

0,
2

3
Lx

]

, ỹ ∈
[

0,
2

3
Ly

]

, w̃ ∈
[

0,
2

3
ℓw <

2

3
Lw

]

. (5.15)

2. The lattice spacing in the new coordinates is related to that in the old coordinates by

ã = a
2
3 . (5.16)

3. The turning point of z is z̃∗ = 2
3z∗.
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Using the result from the x-direction case, we find the minimal surface in the new

coordinates to be

Areamin = 3R̃3LxLy
1

dw − 1

[

1

ãdw−1
− 1

z̃dw−1
∗

√
πΓ( 1

2dw
+ 1

2)

Γ( 1
2dw

)

]

. (5.17)

After translated back into the original coordinates, it gives the entanglement entropy of

subsystem along the w-direction

SEE−w =

(

11

12

)3 π2

Vol(X5)
·

·N2LxLy
1

D − 1





1

aD−1
−
(

3

2

)dw−1( 2

ℓw

)dw−1
(√

πΓ( 1
2dw

+ 1
2)

Γ( 1
2dw

)

)dw





= N2LxLy

[

γ′
1

a2
− γ′

2

(ℓw)3

]

, (5.18)

where D − 1 ≡ 2(dw−1)
3 = 2. The negative finite part has the same form as the result for

the subsystem divided along the x-direction with d = 8
3 replaced by dw = 4.8

Now let’s compare this result with the one for the subsystem along the x-direction.

The essential features are the same. It is proportional to the boundary area LxLy. There

are one cut-off dependent, divergent term and one cut-off independent, finite term. The

scaling of the cutoff a is given by the total scalings of the x and y directions relative to

that of the t-direction: (1 + 1)/1 = 2. The scaling of the ℓw is given by the total scalings

of the x and y directions relative to that of the w-direction: (1 + 1)/(2/3) = 3. Unlike the

case for the subsystem along the x-direction, since the scaling of the w-direction is different

from that of the t-direction, the exponents of a and ℓw are different.

6 Perturbative analysis

In order to know the details of the holographic dual field theories, a basic thing to do

is to analyze the perturbative spectra around their supergravity solutions. This offers us

the information on scale dimensions [2, 3]. For example, scalar perturbations are dual to

scalar operators Oi in the dual field theory. These perturbative modes in supergravity are

described by Klein-Gordon equations with various masses in the curved spacetime. Since

we have the nontrivial dilaton in our D3-D7 scaling solutions (2.18), it is not clear a priori

whether the Klein-Gordon equation should be obtained from the string frame metric or the

Einstein frame metric. Actually our scaling property (2.20) of the gravity solutions is only

available in the Einstein frame. Also the study of the perturbative spectrum is necessary

to determine the stability of the background. Motivated by these, below we will examine

the perturbations around our scaling backgrounds (2.18).

8This might be understood as follows: when all scalings are normalized with respect to the w-direction,

then the total scaling of the (x, y,w)-space is

λx + λy + λw =
3

2
+

3

2
+ 1 = 4. (5.19)
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6.1 Description of perturbations

Let us analyze the perturbations of bosonic fields around the D3-D7 scaling solutions

defined by (2.18), (2.17), (2.10) and (2.11) in the Einstein frame . We will closely follow

the analysis of AdS5 ×S5 in [32, 33]. We will denote the total ten-dimensional coordinates

by M,N, . . . = 0, 1, 2, · · ·, 9. The five-dimensional Lorentzian spacetime (called M5) is

described by the coordinate µ, ν, ··· = 0, 1, 2, 3, 4 and the five-dimensional compact manifold

X5 by α, β, · · · = 5, 6, 7, 8, 9.

As is clear from the IIB supergravity action in our background, the 3-form fluxes F3

and H3 are decoupled from the other fields (i.e. the metric, the dilaton, F5, and F1) thus we

can concentrate on the latter ones. Then the Lagrangian in the Einstein frame is written

as follows

L =
√−g

(

R − 1

2
e2φ∂Mχ∂Mχ − 1

2
∂Mφ∂Mφ − 1

4 · 5!FMNPQRFMNPQR

)

. (6.1)

To make analysis more tractable, let us assume X5 = S5 here. Then we can define

the scalar, vector, traceless symmetric, and antisymmetric spherical harmonics on S5 by

Y I , Y I
α , Y I

(αβ), and Y I
[αβ], respectively [32]. Using these spherical harmonics, the metric

perturbations δgMN = hMN can be decomposed as follows [32]

h(µν) = hI
(µν)Y

I , hµ
µ = hIY I , hµα = BI

µY I
α , h(αβ) = φIY I

(αβ), hα
α = πIY I ,(6.2)

where (αβ) denotes the traceless symmetric part. We also denoted all indices of the spher-

ical harmonics simply by I. We fix the gauge by requiring

∇αh(αβ) = ∇αhµα = 0. (6.3)

The perturbations of the dilaton and axion are defined as follows:

δφ = ϕIY I , δχ = ηIY I . (6.4)

Finally, the perturbation of the 5-form flux F5 = dC4 can be express as follows [32]:

Cµ1µ2µ3µ4 = bI
µ1µ2µ3µ4

Y I , Cµ1µ2µ3α = bI
µ1µ2µ3

Y I
α ,

Cµ1µ2α1α2 = bI
µ1µ2

Y I
[α1α2],

Cµα1α2α3 = bI
µǫ β1β2

α1α2α3
∇β1Y

I
β2

, Cα1α2α3α4 = bIǫ β
α1α2α3α4

∇βY I . (6.5)

They satisfy the gauge fixing condition ∇αCα··· = 0, and the self-duality of F5 allows us to

eliminate bI
µ1µ2µ3µ4

and bI
µ1µ2µ3

.

Next we substitute (6.2), (6.4), and (6.5) into equations of motion of (6.1) and derive

the perturbative differential equations. We omit the details of analysis here and put them

in appendix A as many parts of the calculations are essentially the same as those in [32].

In the end, we find that the following modes

Scalar modes : φI , (hI , πI , bI),

Vector modes : (BI
µ, bI

µ),

Tensor modes : bI
µν , (6.6)
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satisfy free massive field equations which are precisely the same expressions as those in the

AdS5 × S5 background.9 In the above, the fields in the same parenthesis mix with each

other. Therefore, these perturbations (6.6) obey free field equations of motion constructed

from the Einstein frame metric (2.18) instead of the string frame metric.

As an example, let us concentrate on the scalar mode φI . Its equation of motion is

written as
(

�x + �y −
2

R2

)

φIY I
(αβ) = 0, (6.7)

where �x and �y are the Laplacians of the Lorentzian part M5 and the sphere part S5,

respectively. Using the eigenvalues of Y I
(αβ), we eventually obtain10

(

�x − k(k + 4)

R2

)

φI = 0, (k = 2, 3, 4, · · ·). (6.8)

On the other hands, the other modes ϕI , ηI , and hµν mix with each other and obey

equations of motion more complicated than those in the AdS5 ×S5 case (see appendix A).

6.2 Scaling dimensions and stability

We have observed that a large class of supergravity modes (6.6), though not all of them,

satisfy the conventional free field equations with various masses via the Kaluza-Klein com-

pactification on S5. The scalar modes in (6.6) satisfy the equations of motion of the form

(we denote such a scalar field by Φ here)

(

�x − m2
)

Φ = 0, (6.9)

where the Laplacian �x = gµν∇µ∇ν is constructed from the Einstein frame metric (2.18).

Now let us consider a scalar field Φ on a slightly generalized scaling background

ds2 = R̃2

(

dz2

z2
+

−dt2 + dx2 + dy2

z2
+

dw2

z2ν

)

, (6.10)

where the scaling exponent ν is related to the scaling exponent z in (1.4) by ν = 1
z . Espe-

cially, our scaling background (2.18) corresponds to ν = 2
3 . The equation of motion (6.9)

is written as follows:

− Φ′′ +
ν + 2

z
Φ′ +

(

m2R̃2

z2
+ p2 − ω2 + p2

w z2(ν−1)

)

Φ = 0. (6.11)

Here ω, p, and pw are the frequency, the momenta in (x, y)- and w-direction, respectively.

After redefining the wave function by Φ(z) = z
ν+2
2 Ψ(z), we obtain the Schrodinger-

like equation

− Ψ′′ + V (z)Ψ = ω2Ψ, (6.12)

9 In other words, for these modes the differences from AdS5 ×S5 only come from the background metric

which is employed to write down the free field equations.
10 Please distinguish the total angular momentum k of the spherical harmonics of S5 from the number k

of D7-branes.
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where

V (z) =
m2R̃2 + (3+ν)2−1

4

z2
+ p2 + p2

w z2(ν−1). (6.13)

When z is small, the third term in (6.13) is small compared to the first term, assuming

ν > 0. Thus, as in the AdS/CFT case (i.e. ν = 1), we can expect11 that the stability

against the (normalizable) perturbations is the same as that of Schrodinger problem with

the potential V (z) =
λ− 1

4
z2 . It is well-known that the latter system is stable iff λ ≥ 0.

In this way, we speculate that in the background (6.10), the stability condition requires

m2R̃2 ≥ −(3 + ν)2

4
. (6.14)

Notice that if we set ν = 1 in (6.14), we obtain m2R̃2 ≥ −4, which is the well-known

Breitenlohner-Freedman (BF) bound of AdS5.

This condition can equally be implied from the behavior of the scalar field near the

boundary z → 0

φ(z) ∼ Az∆+ + Bz∆− + · · ·, (6.15)

where

∆± =
ν + 3

2
±
√

(ν + 3)2

4
+ m2R̃2. (6.16)

The quantity ∆± is holographically interpreted as the scaling dimension in the dual

anisotropic scale invariant theory. Notice that the condition (6.14) requires that the scaling

dimension should be real-valued.

Now let us go back to our D3-D7 scaling solutions (2.18). In this case we obtain the

stability condition by setting ν = 2/3 and R2 = 11
12R̃2 as follows

m2R2 ≥ −11

3
. (6.17)

We can apply this condition to the scalar modes in (6.6). As is clear from (6.8), all the

scalar modes φI satisfy this condition. However, we find that one of the infinitely many

mixed modes of (hI , πI , bI) actually has the largest tachyonic mass m2R2 = −4, which

saturates the BF bound of AdS5. This occurs only for the second spherical harmonics

k = 2. Even though this tachyonic mode is stable in the AdS5 spacetime, it seems to

become an unstable mode in our D3-D7 scaling background as (6.17) is violated.12

Nevertheless, we can replace S5 with an arbitrary Einstein manifolds X5 with the

same Ricci curvature, keeping the same scaling solution (2.18). Define the eigenvalues Λ

of Laplacian of a scalar function Y such that −R2
�yY = ΛY . In this case, if

Λ

16
+ 1 −

√

Λ

4
+ 1 ≥ −11

48
, (6.18)

11We are very grateful to Andreas Karch for illuminating explanations on the stability analysis in Poincaré

AdS spaces.
12A perturbative instability has also been noticed in [21] for type IIB backgrounds dual to the non-

relativistic CFT when the 3-form fluxes are vanishing.
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is always satisfied, then the above lowest mass mode becomes stable. In other words, if

there is no eigenvalue between

37 − 8
√

3

3
(≃ 7.71) < Λ <

37 + 8
√

3

3
(≃ 16.95), (6.19)

then the background can be perturbatively stable. Notice that Λ = 12 saturates the BF

bound and it is the unstable mode when X5 = S5. It is intriguing whether there exists

such a stable (Sasaki-)Einstein manifold.

7 D4-D6 Scaling Solutions

In type IIA string, the closest analogue to the previous D3-D7 system is the following

D4-D6 system:

M4 × T 2 × X4: t x y r w1 w2 s1 s2 s3 s4

N D4: × × × × ×
k D6: × × × × × × ×

Here (w1, w2) span a two-manifold that supports the D6 flux (we will choose it to be T 2

for simplicity) and (s1, s2, s3, s4) span a four-dimensional Einstein manifold X4 with the

same Ricci curvature as that of S4. However, as we will see, this system does not support

a scaling-invariant solutions. In this section, we will present a gravity solution that is

closest to a scaling solution: under (t, x, y, r, w1, w2) → (λt, λx, λy, r
λ , λ

2
3 w1, λ

2
3 w2), the

line element ds2 → λ− 1
3 ds2. We will also give its black brane generalization.

The fluxes given by these N D4-branes and k D6-branes are:

F2 =
(2π)k

L2
dw1 ∧ dw2, F4 = (2π)3N

1

Vol(X4)
ΩX4 , B2 = 0, (7.1)

where X4 is a unit-radius Einstein 4-manifold (whose Ricci tensor satisfies Rij = 3gij)

and ΩX4 is its volume-form; L is the periodicity of wi. This flux profile satisfies the flux

equations of motion. The corresponding (string frame) metric ansatz is:

ds2
s = e2B(r)(−dt2 + dx2 + dy2) + e−2A(r)dr2 + e2T (r)(dw2

1 + dw2
2) + e2Z(r)ds2

X4
, (7.2)

with a possibly non-constant dilaton φ(r).

For a scaling solution, {A,B, T,Z, φ} are

A(r) = a1 log r + a0, B(r) = b1 log r + b0, T = t1 log r + t0,

Z = z1 log r + z0, φ(r) = ηs log r + φ0. (7.3)
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There are one equation of motion from the dilaton and five from the gravity part. For the

scaling ansatz, they all reduce to algebraic equations and the solution is easily found to be:

A(r) =

(

1 − 1

3
ηs

)

log(r) − 1

3
log

(

8π3

3Vol(X4)
eφ0N

)

− 1

2
log

(

17

18

)

− log ηs,

B(r) =
5

6
ηs log r + b0,

T (r) =
2

3
ηs log r +

1

6
log

(

8π3

3Vol(X4)
eφ0N

)

+
1

2
log

(

2π

L2
eφ0k

)

, (7.4)

Z(r) =
1

3
ηs log(r) +

1

3
log

(

8π3

3Vol(X4)
eφ0N

)

,

φ(r) = ηs log r + φ0.

(ηs, b0, φ0) are three gauge parameters. ηs corresponds to the gauge freedom of r → rα, b0

corresponds to that of rescaling the (t, x, y) directions, and φ0 gives the string coupling at

r = 1 thus corresponds to rescalings of the r and T 2 directions.

Without loss of generality, we choose

ηs = 2, b0 =
1

3
log

(

8π3

3Vol(X4)
eφ0N

)

+
1

2
log

34

9
, φ0 =

1

2
log

(

L6N

3Vol(X4)k3

)

+
3

2
log

34

9
.

(7.5)

The solution in the string frame is

ds2
s = R̃2

s

[

r
10
3 (−dt2 + dx2 + dy2) +

dr2

r
2
3

+ r
8
3 (dw2

1 + dw2
2)

]

+ R2
sr

4
3 ds2

X4
, (7.6)

with R2
s = 9

34R̃2
s = 8π2

3Vol(X4)
· 17

9 · N L2

k . In the Einstein frame, it is

ds2
E = R̃2

[

r
7
3 (−dt2 + dx2 + dy2) +

dr2

r
5
3

+ r
5
3 (dw2

1 + dw2
2)

]

+ R2r
1
3 ds2

X4
, (7.7)

with R2 = 9
34R̃2 = ( 8π2

3Vol(X4)
)

3
4 (17π2

9 · N3 L2

k )1/4.

This background is no longer scaling invariant. Under the scaling transformation

(t, x, y, r, w1, w2) →
(

λt, λx, λy,
r

λ
, λ

2
3 w1, λ

2
3 w2

)

, (7.8)

the metric scales as

ds2 → λ− 1
3 ds2, (7.9)

instead of staying invariant. This is not surprising since the D4-brane theory is not con-

formal in the first place.

Generalizing to finite temperature, the corresponding black brane solution (in the

Einstein frame) is

ds2
E = R̃2

[

r
7
3 (−F (r)dt2 + dx2 + dy2) +

dr2

F (r)r
5
3

+ r
5
3 (dw2

1 + dw2
2)

]

+ R2r
1
3 ds2

X4
, (7.10)
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with

F (r) = 1 − µ

r
17
3

, (7.11)

where µ is the mass parameter of the black hole. Its Hawking temperature is

TH =
17

12π
µ

3
17 . (7.12)

The Bekenstein-Hawing entropy is

S = γ ·
(

8π2

3Vol(X4)

)2

· T
14
3

H · N3 · V2 ·
L4

k
, (7.13)

with γ = 2
28
3 · 3− 7

3 · 17− 5
3 · π 8

3 and V2 is the area in the (x, y) directions.

8 Conclusions and discussions

In this paper, we presented a class of gravity duals of Lifshitz-like fixed points in type IIB

supergravity. They represent backgrounds with intersecting D3 and D7-branes and their

Einstein frame metrics (2.18) enjoy anisotropic scale invariance. We also extended them

to black brane solutions dual to finite temperature theories. Moreover, we showed the

existence of solutions which interpolate between our anisotropic solutions in the IR and

the familiar AdS5×X5 solutions in the UV. Then the holography asserts that our Lifshitz-

like fixed points can be obtained from various four-dimensional CFTs including N = 4

super Yang-Mills via RG flows. These flows are triggered by the relevant and anisotropic

perturbation which makes the θ-angle (the coefficient in front of the topological Yang-Mills

coupling F ∧F ) linearly dependent on one of the space-like coordinates i.e. θ ∝ w. When w

is compactified, the perturbation induces the Chern-Simons coupling
∫

A∧F + 2
3A3. This

theory itself seems an intriguing model worth pursuing in a future work, as the equation

of motion becomes local in spite of the violation of the Lorentz invariance.

Employing our supergravity solutions we studied the thermal entropy and the entan-

glement entropy to measure the degrees of freedom of the holographic dual theories. We

found characteristic scaling properties in both quantities. We also holographically com-

puted the shear and bulk viscosities. A more general analysis of hydrodynamics with the

momentum in the w-direction taken into account was left as an interesting future problem.

Moreover, we performed a perturbative analysis around our solutions and found that

a large class of scalar modes obey the Klein-Gordon equation in the curved spacetime

which has the expected scaling property. Also we found an unstable scalar mode when the

compact manifold X5 is S5. Since this unstable mode occurs only for a ‘d-wave’ spherical

harmonics, S5 might decay into a less symmetric Einstein manifold and be stabilized. Thus

we have reason to hope that there exists a class of (Sasaki-)Einstein manifolds with which

our scaling solutions become stable. Even the background with X5 = S5 is still useful at

least in capturing qualitative properties of gravity duals of Lifshitz-like fixed points, with

unstable modes simply neglected. The construction of manifestly stable and non-dilatonic

gravity duals of Lifshitz-like fixed points still remains as a very interesting future problem.
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The three-form fluxes which we assume to be vanishing in our solution might play an

important role.

It is also intriguing to generalize our solutions to other values of p and d in (1.2). For

example, the simplest case p = 0 deserves particular attention. It can be formally obtained

from our solution (2.18) by the double Wick rotation t → iw and w → it. However, the

axion field χ and its flux become imaginary-valued therefore the solution is not physical

in the ordinary type IIB supergravity. A slightly better example which realizes the case

p = 0 is a background based on D3-D5 systems, where D5-branes are regarded as the

baryons [34]. We cannot get any consistent solution if we restrict to the ordinary type IIB

supergravity because the tadpole for the H-flux is generated by F-stings which attach to

D5-branes and stretch into the boundary [34]. To construct a solution in this background

we need to add the F-string action as an extra term to the type IIB supergravity. Under

this slightly unusual assumption, we can indeed find the following black brane solution in

the Einstein frame [35]

ds2
E = −A(ρ)ρ14dt2 + ρ2(dx2 + dy2 + dz2) + L̃2 dρ2

ρ2A(ρ)
+ L2dΩ2,

eφ(ρ) = eφ0ρ6, A(ρ) = 1 − µ

ρ10
, L̃2 = 10L2, (8.1)

with constant 3-form fluxes H3, F3 and the RR 5-form F5. A derivation of this solution is

briefly reviewed in appendix C. At zero temperature, this corresponds to the metric (1.2)

with p = 0, d = 3 and z = 7.

Finally, it is also intriguing to apply our backgrounds to realistic condensed matter

systems. Our D3-D7 model was originally introduced to model the holographic dual of

fractional quantum Hall effects in string theory [22] (refer to [36–38] for other holographic

realizations of quantum Hall effects). Therefore one of the future problems is to calculate

physical quantities such as finite temperature corrections to the Hall and longitudinal

conductivities in this theory. The anisotropic critical points we found in this paper may

also be useful to analyze the systems like liquid crystals and some anisotropic spin systems.
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A Perturbative analysis

In this appendix, we consider perturbative fluctuations around the D3-D7 back-

ground (2.10), (2.11), (2.17), and (2.18) in the Einstein frame with X5 = S5, and analyze

the stability of it by using the linearized equations of motion. Our analysis below mostly

follows [32, 33]. Here we notice that RR 3-form flux F3 and NSNS 3-form flux H3 vanish

on this background, and their fluctuations do not mix with that of the other fields in the

linear order. Thus we start with the action (6.1). The fluctuation of the metric, dilaton,

axion, and RR 5-form flux dC4 = F5 along with their decompositions in terms of spherical

harmonics on S5 are summarized in (6.2), (6.4), and (6.5). Here we consider the fluc-

tuations satisfying the gauge fixing conditions ∇αh(αβ) = ∇αhµα = 0 for the metric and

∇αCαIJKL = 0 for the RR 5-form flux F5 = dC4. For simplicity, we denote the background

metric, dilaton, axion, and 5-form flux by gMN , φ, χ, and F5, respectively. In this section

we define α̃ = α/R5 = 4/R.

A.1 Some conventions

Before writing down linearized equations of motion, we summarize some of our conventions.

We normalized the ǫ tensor on the five-dimensional Lorentzian part M5 and the S5

part in (2.18) by

ǫ01234 =
√

−gM5, ǫ01234 = − 1√−gM5

,

ǫ56789 =
√

gS5 , ǫ56789 =
1√
gS5

. (A.1)

In this convention,

ǫµ1µ2µ3µ4µ5ǫ
µ1µ2µ3µ4µ5 = −5! , ǫα1α2α3α4α5ǫ

α1α2α3α4α5 = 5! . (A.2)

We also define the ten-dimensional ǫ tensor by

ǫ0123456789 =
√−g10 = ǫ01234 · ǫ56789. (A.3)

It is also useful to define the Laplacian for M5 and S5 by

�x = gµν∇µ∇ν , �y = gαβ∇α∇β. (A.4)

A.2 Spherical harmonics on S5

In this appendix, we decompose the linearized equations of motion for the fluctuations

by using the spherical harmonics on S5. Thus we define Y I , Y I
α , Y I

(αβ), and Y I
[αβ], which

represent scalar, vector,traceless symmetric, and antisymmetric spherical harmonics, re-

spectively. They satisfy the transverse conditions

∇αY I
α = ∇αY I

(αβ) = ∇αY I
[αβ] = 0. (A.5)

For the vector spherical harmonics, we define the Hodge-de Rham operator ∆y by

∆yY
I
β = �yY

I
β −Rα

βY I
α . We can define the Hodge-de Rham operators for the other spherical
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harmonics in the similar manner and the eigenvalues of ∆y on the S5 with the radius R

are given by13 [32]

∆yY
I = �yY

I = −k(k + 4)

R2
Y I , (k = 0, 1, 2, · · ·) (A.6)

∆yY
I
α =

(

�y −
4

R2

)

Y I
α = −(k + 1)(k + 3)

R2
Y I

α , (k = 1, 2, · · ·) (A.7)

∆yY
I
(αβ) =

(

�y −
10

R2

)

Y I
(αβ) = −k2 + 4k + 8

R2
Y I

(αβ), (k = 2, 3, 4, · · ·) (A.8)

∆yY
I
[αβ] =

(

�y −
6

R2

)

Y I
[αβ] = −(k + 2)2

R2
Y I , (k = 1, 2, · · ·). (A.9)

A.3 Five-form flux equation

Let us first consider the perturbation for the RR 5-form flux F5. It satisfies the self-

duality constraint

FPQRST =
1

5!
ǫ ABCDE
PQRST FABCDE . (A.10)

from which the equation of motion d ∗ F5 = 0 follows automatically. By denoting the

fluctuation of the 5-form around the background as δF5 = f5, (A.10) in the linear order is

written as

fPQRST =
1

5!
ǫ ABCDE
PQRST fABCDE +

1

2 · 5!h
M

M ǫ ABCDE
PQRST FABCDE

− 1

4!
ǫ BCDE
PQRSTA1

FA2BCDEhA1A2. (A.11)

By substituting (6.2) and (6.5) into this equation and then decomposing it by the spherical

harmonics on S5, we obtain five equations:
[

5∇µ1b
I
µ2µ3µ4µ5

− ǫµ1µ2µ3µ4µ5

(

α̃

2
hI − α̃

2
πI + bI

�y

)]

Y I = 0, (A.12)

[

4∇µ1b
I
µ2µ3µ4

+ ǫ ν
µ1µ2µ3µ4

(bI
ν�y − α̃BI

ν)
]

Y I
α = 0, (A.13)

[

bI
µ1µ2µ3µ4

+ ǫ ν
µ1µ2µ3µ4

∇νb
I
]

∇αY I = 0, (A.14)

∇µ1b
I
µ2µ3

Y I
[αβ] −

1

12
ǫ ν1ν2
µ1µ2µ3

bI
ν1ν2

ǫ γ1γ2γ3

αβ ∇γ1Y
I
[γ2γ3]

= 0, (A.15)

[

bI
µ1µ2µ3

+ ǫ ν1ν2
µ1µ2µ3

∇ν1b
I
ν2

]

∇[αY I
β] = 0. (A.16)

Here α̃ = α/R5 = 4/R. Now, we can simply solve (A.14) and (A.16) algebraically, assuming

k ≥ 1. Then, we obtain the following three equations from (A.12) and (A.14), (A.13)

and (A.16), and (A.15) respectively:
[

(�x + �y)b
I +

α̃

2
hI − α̃

2
πI

]

Y I = 0, (A.17)

[

�xbI
µ −∇ν∇µbI

ν + ∆yb
I
µ − α̃BI

µ

]

Y I
α = 0, (A.18)

[

3∇µ1b
I
µ2µ3

∓ i

2
ǫ ν1ν2
µ1µ2µ3

bI
ν1ν2

√

−∆y

]

Y ±
[αβ] = 0. (A.19)

13 Please distinguish the total angular momentum k of the spherical harmonics of S5 from the number k

of D7-branes.
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A.4 Einstein equations

Let us next consider the perturbation for the Einstein equation. The Einstein equation

itself can be obtained from the action (6.1) as

RMN − 1

2
gMN

(

R − 1

2
e2φ∂P χ∂P χ − 1

2
∂P φ∂P φ − 1

4 · 5!FPQRST FPQRST

)

(A.20)

−1

2
e2φ∂Mχ∂Nχ − 1

2
∂Mφ∂Nφ − 1

4 · 4!FMPQRSF PQRS
N = 0.

By using

R − 1

2
e2φ∂P χ∂P χ − 1

2
∂P φ∂P φ = 0. (A.21)

and

FPQRST FPQRST = 0, (A.22)

derived from the trace part of (A.20) and the self-duality condition (A.10) respectively, we

can reduce the Einstein equation (A.20) to a simpler form:

RMN − 1

2
e2φ∂Mχ∂Nχ − 1

2
∂Mφ∂Nφ − 1

4 · 4!FMPQRSF PQRS
N = 0. (A.23)

By linearly perturbing (A.23) and decomposing it in terms of the spherical harmonics on

S5, we obtain some equations for the fluctuations around the background. We summarize

the resulting equations below.

A.4.1 αβ components

From (α, β)-components of (A.23), we obtain the following four equations:

[

�x + �y −
2

R2

]

φIY I
(αβ) = 0, (A.24)

∇µBI
µ∇(αY I

β) = 0, (A.25)
[

hI +
3

5
πI

]

∇(α∇β)Y
I = 0, (A.26)

[

1

10
�xπI +

4

25
πI

�y +
1

10
hI

�y +
α̃

2
bI�y −

α̃2

5
πI

]

Y I = 0. (A.27)

A.4.2 µα components

In a similar way, from (µ, α)-component of (A.23), we obtain the following equations:

[

1

2
(�xBI

µ −∇ν∇µBI
ν) +

1

2
BI

µ∆y +
α̃

4
bI
µ∆y +

α̃

4!
ǫ ρ1ρ2ρ3ρ4
µ ∇ρ1b

I
ρ2ρ3ρ4

]

Y I
α = 0. (A.28)

[

−1

2
∇νhI

νµ +
1

2
∇µhI +

2

5
∇µπI +

α̃

4
∇µbI +

α̃

96
ǫ ρ1ρ2ρ3ρ4
µ bI

ρ1ρ2ρ3ρ4

+ δµ,w
1

2
e2φ∂wχ ηI + δµ,r

1

2
∂rφ ϕI

]

∇αY I = 0. (A.29)
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A.4.3 µν components

Finally, from (µ, ν)-component of (A.23), we obtain the following equations:

0 = −1

2
(�x + �y)hµν − 1

2
∇µ∇ν(h + π) +

1

2
(∇µ∇ρhρν + ∇ν∇ρhρµ) + Rµρσνhρσ

+
1

2
(Rρ

µhνρ + Rρ
νhµρ) − e2φ(∂µχ∂νχ)ϕ − e2φ

2
(∂µχ∂νη + ∂νχ∂µη)

−1

2
∂µφ∂νϕ − 1

2
∂νφ∂µϕ − α̃

48
gµνǫρ1ρ2ρ3ρ4ρ5∇ρ1b

I
ρ2ρ3ρ4ρ5

Y I − α̃2

4
gµνh +

α̃2

4
hµν .

(A.30)

A.5 Dilaton and axion equations

Let us then move to the linear perturbation for the dilaton and axion equations of motion.

They are given by

∂M (
√−ggMN∂Nφ) −√−ge2φgMN∂Mχ∂Nχ = 0, (A.31)

∂M (
√−ge2φgMN∂Nχ) = 0. (A.32)

respectively. When fluctuating around our background, these equations are rewritten as

(�x + �y)ϕ +
1

2
grr∂rφ∂r(h + π) − (∂rφ)(∇µhµr) − (∇I∂Jφ)hIJ (A.33)

−2ϕe2φgww(∂wχ)2 + e2φhww(∂wχ)2 − 2e2φgww(∂wχ)(∂wη) = 0,

(�x + �y)η + 2(∂rφ)(∂rη)grr + 2gww(∂wϕ)(∂wχ) +
1

2
gww∂w(h + π)∂wχ (A.34)

−(∇µhµw)(∂wχ) − hIJ(∇I∂Jχ) − 2hrw(∂rφ)(∂wχ) = 0.

A.6 Spectrum for decoupled modes

As we derived the linearized equations of motion for the fluctuations in the ap-

pendix A.3, A.4, and A.5, we then analyze the spectrum for them. We start with the

one for those modes which do not mix with other modes in a complicated way. The anal-

ysis turns out to be essentially the same as the case of AdS5 × S5 [32].

A.6.1 φI mode from h(αβ)

First we consider the scalar mode h(αβ) = φIY I
(αβ) from the fluctuation of the metric. It

obeys the equation of motion (A.24) and, by using (A.8), we obtain
(

�x − k(k + 4)

R2

)

φI = 0. (k = 2, 3, 4, · · ·) (A.35)

Thus we find its mass m2 = k(k+4)
R2 , which obviously satisfies the stability condition.

A.6.2 bI
µν mode from Cµναβ

For bI
µν from the fluctuation of Cµναβ , (A.19) leads to

(Maxx + ∆y)b
I
µνY I

[αβ] = 0. (A.36)

The Maxwell operator Maxx on M5 is defined by MaxxbI
µ = �xbµ1 −∇ν∇µbν for the vector

bI
µ and we can generalize the definition for teonsors. Since the mass for this mode is given

by m2 = −∆y = (k+2)2

R2 (k = 1, 2, · · ·), this mode turns out to be stable.
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A.6.3 bI
µ and BI

µ modes from gµα and Cµαβγ

Let us next consider bI
µ and BI

µ from the fluctuation of gµα and Cµαβγ respectively.

From (A.18), (A.28), and (A.16), we obtain the equations for these modes as

((Maxx + ∆y)b
I
µ − α̃BI

µ)Y I
α = 0, (A.37)

((Maxx + ∆y)B
I
µ − α̃

2
(Max − ∆y)b

I
µ)Y I

α = 0. (A.38)

or, by denoting in a different expression, as

Maxx ·
(

bI
µ

BI
µ

)

+

(

∆y −α̃

α̃∆y ∆y − α̃2

2

)

·
(

bI
µ

BI
µ

)

= 0. (A.39)

The eigenvalues of 2 × 2 matrix in the second term are

− m2
± = ∆y −

α̃2

4
±
√

α̃4

16
− α̃2∆y . (A.40)

More explicitly, by using (A.7), we get the masses for these vector fields

m2
+ =

k2 − 1

R2
, m2

− =
(k + 3)(k + 5)

R2
, (k = 1, 2, 3, · · ·). (A.41)

Therefore we can find that these modes are stable, too.

A.7 Spectrum for mixed modes: hI , πI , and bI

Let us determine the spectrum for the scalar perturbation hI , πI , and bI here. We first

assume k ≥ 2 and then find hI = −3
5πI from (A.26). Thus we can rewrite (A.17) and (A.27)

as follows:

�x ·
(

bI

πI

)

+

(

�y −4
5 α̃

5α̃�y �y − 2α̃2

)

·
(

bI

πI

)

= 0. (A.42)

The matrix in the second term is diagonalized and the eigenvalues are given by

− m2
± = �y − α̃2 ±

√

α̃4 − 4α̃2�y, (A.43)

or, more explicitly, by

m2
+ =

k2 − 4k

R2
, (A.44)

m2
− =

(k + 4)(k + 8)

R2
. . (A.45)

Even for k = 0, 1, we can see that the expression (A.45) is correct. Thus we find the lowest

mass in this mode is m2
+ = − 4

R2 when k = 2. This violates the stability bound.
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A.8 Spectrum for other modes: hµν , ϕ, and η

Now, the remaining modes are hµν , ϕ, and η. Since the analysis of massive modes looks

highly complicated, below we would like to consider only zero modes on S5 of hµν and

ϕ, η. They are useful to the calculations of the viscosity in section 4. For this reason, we

generalize the background to the black brane metric (2.27) and write down the linearized

equations for the fluctuation around it. By taking µ → 0, we can reproduce those for the

background metric (2.18).

A.8.1 Zero modes on S5

We concentrate on the zero modes on S5 i.e. k = 0 modes of the spherical harmonics.

Notice that in this case, we have b = 0 and bµ1µ2µ3µ4 is expressed in terms of h and π as

5∇µ1bµ2µ3µ4µ5 =
2

R
ǫµ1µ2µ3µ4µ5 (h − π) , (A.46)

from (A.10). From (A.27), the mode π satisfies

(

�x − 32

R2

)

π = 0. (A.47)

It is also useful to define the Weyl shifted metric Hµν by

Hµν = hµν +
1

3
gµνπ, (A.48)

which corresponds to the metric perturbation around the five-dimensional background

obtained by the reduction of S5. Then the Einstein equation (A.30) can be rewritten

as follows:

δR(5)
µν +

4

R2
Hµν−e2φ(∂µχ∂νχ)ϕ−e2φ

2
(∂µχ∂νη+∂νχ∂µη)−1

2
(∂µφ∂νϕ+∂νφ∂µϕ) = 0. (A.49)

Here δR
(5)
µν is the perturbation of the purely five dimensional Ricci tensor (neglecting the

S5 contributions) due to the metric perturbation Hµν . Notice that when µ, ν 6= w, r, we

obtain the simple Einstein equation δR
(5)
µν + 4

R2 Hµν = 0. This simplification is applicable,

for example, to the shear modes Htx and Hxy.

For the dilaton equation of motion (A.33) with k = 0, by using the results

∇t∂tφ = −2

3
r2
(

1 − µ

r11/3

)

(

1 +
5µ

6r11/3

)

≡ ft,

∇x∂xφ = ∇y∂yφ =
2

3
r2
(

1 − µ

r11/3

)

≡ fx,

∇w∂wφ =
4

9
r

4
3

(

1 − µ

r11/3

)

≡ fw,

∇r∂rφ =
11µ

9r17/3

(

1 − µ

r11/3

)−1
≡ fw, (A.50)
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and the Weyl shifted metric Hµν , we can rewrite it as follows:

�xϕ +
1

3r
grr(∂rH) − ftH

tt − fx(Hxx + Hyy) − fwHww − frH
rr

+
1

3
π(gttft + 2gxxfx + gwwfw + grrfr) −

2

3r
∇µHµr (A.51)

+β2e2φ(Hww − 2gwwϕ − 1

3
πgww) − 2βe2φgww∂wη = 0,

where H ≡ Hµ
µ = h + 5

3π.

On the other hand, for the axion equation of motion (A.34) with k = 0, by using

the values

∇r∂wχ = ∇w∂rχ = − 2k

3Lr
, (A.52)

it can be rewritten as follows

�xη +
4

3r
grr∂rη + βgww∂w

(

2ϕ +
H

2

)

− β∇µHµw = 0. (A.53)

We can take the radial gauge Hµr = 0 and have 5 physical modes for Hµν . Then the

dilaton and axion equations of motion (A.51) and (A.53) become

�xϕ +
1

3r
grr(∂rH) − ftH

tt − fx(Hxx + Hyy)

−fwHww +
1

3
π(gttft + 2gxxfx + gwwfw + grrfr)

+β2e2φ(Hww − 2gwwϕ − 1

3
πgww) − 2βe2φgww∂wη = 0, (A.54)

and

�xη +
4

3r
grr∂rη + βgww∂w

(

2ϕ +
H

2

)

− β∇µHµw = 0. (A.55)

In summary, we need to solve the zero mode equations of mo-

tion (A.46), (A.47), (A.49), (A.54), and (A.55) to find the variables bµνρσ, π, ϕ, η,

and Hµν .

B Linearized equations for the shear and sound channel

In this appendix we summarize the linearized equations for the shear and sound channel.

They are useful to derive the differential equations for the gauge invariant combinations in

section 4.

For this purpose, we consider the equations (A.46), (A.47), (A.49), (A.54), and (A.55)

derived in the appendix A.8.1. Then we substitute the fluctuation corresponding to the

shear channel (4.1) or sound channel (4.3) into them and then derive explicit expressions

for the linearized equations of motion. We summarize the resulting equations below.
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B.1 Shear channel

By considering the fluctuations Htx and Hxy which correspond to the shear channel in the

radial gauge Hµr = 0, we obtain the equations for them

H ′′
tx + ln′(c14/3

x )H ′
tx − q

c2
xc2

t

(qHtx + ωHxy) = 0, (B.1)

H ′′
xy + ln′(c2

t c
8/3
x )H ′

xy +
ω

c4
t

(qHtx + ωHxy) = 0, (B.2)

qH ′
xy + ω

c2
x

c2
t

H ′
tx = 0, (B.3)

from (t, x)-, (x, y)-, and (x, r)-component of (A.49), respectively. We can directly show

that two of the three equations are independent.

B.2 Sound channel

Let us next consider the sound mode. The corresponding fluctuations are

Htt,Hty,Hxx,Hyy,Hww, ϕ, π and fµ1µ2µ3µ4µ5 in the radial gauge. In this case the linearized

equations (A.47), (A.49), and (A.54) are summarized as

H ′′
tt + ln′

(

c3
t c

8/3
x

)

H ′
tt − ln′ (ct) (H ′

yy + H ′
ii)

− 1

c2
t

(

ω2

c2
t

(Hyy + Hii) +
2qω

c2
t

Hty +
q2

c2
x

Htt

)

= 0, (B.4)

H ′′
xx + ln′

(

c2
t c

8/3
x

)

H ′
xx − ln′(cx)

(

H ′
tt − H ′

yy − H ′
ii

)

+
1

c2
t

(

ω2

c2
t

− q2

c2
x

)

Hxx = 0, (B.5)

H ′′
yy + ln′(c2

t c
8/3
x )H ′

yy − ln′(cx)(H ′
tt − H ′

yy − H ′
ii)

+
1

c2
t

(

ω2

c2
t

Hyy +
2qω

c2
t

Hty +
q2

c2
x

(Htt − Hii)

)

= 0, (B.6)

H ′′
ww + ln′(c2

t c
8/3
x )H ′

ww − ln′(c2/3
x )(H ′

tt − H ′
yy − H ′

ii)

+
1

c2
t

(

ω2

c2
t

− q2

c2
x

)

Hww +
44

9c2
t

(

ϕ − 1

2
Hww

)

= 0, (B.7)

(H ′′
tt − H ′′

yy − H ′′
ii) + ln′(ctc

2
x)(H ′

tt − H ′
yy − H ′

ii)

+ ln′(c2
t c

−2
x )H ′

tt − ln′ c4/3
x

(

ϕ′ − 1

2
H ′

ww

)

= 0, (B.8)

H ′′
ty + ln′(c14/3

x )H ′
ty +

qω

c2
t c

2
x

Hii = 0, (B.9)
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(H ′
yy + H ′

ii) +
q

ω
H ′

tz + ln′(cxc−1
t )(Hyy + Hii)

+
q

ω
ln′(c2

xc−2
t )Hty + ln(c2/3

x )

(

ϕ − 1

2
Hww

)

= 0, (B.10)

(H ′
tt − H ′

ii) +
ω

q

c2
x

c2
t

H ′
tz − ln′(cxc−1

t )Htt − ln′(c2/3
x )

(

ϕ − 1

2
Hww

)

= 0, (B.11)

ϕ′′ + ln′(c2
t c

8/3
x )ϕ′ − ln′(c1/3

x )(H ′
tt − H ′

yy − H ′
ii) +

1

c2
t

(

ω2

c2
t

− q2

c2
x

)

ϕ

− 44

9c2
t

(

ϕ − 1

2
Hww

)

+
11(µ3 − 2µ2r11/3 + 2r11)

27r28/3(r11/3 − µ)
π = 0,

π′′ + ln′(c2
t c

8/3
x )π′ +

1

c2
t

(

ω2

c2
t

− q2

c2
x

)

π − 32

c2
t

π = 0, (B.12)

where Hii = Hxx + Hww.

C D3-D5 scaling solution with F-string sources

Here we briefly review the D3-D5 scaling solution in type IIB supergravity with F-string

sources [35]. This solution can be regarded as a back-reacted solution dual to a homoge-

neous baryon condensation in N = 4 super Yang-Mills. Each baryon (= D5-brane) situated

near the horizon r = 0 carries N F-strings which extend into the boundary r = ∞ due to

the string creation [34]. Below, we work in the Einstein frame and the supergravity action

is obtained by rewriting the one in the string frame (2.1) by the Einstein frame metric

GE
MN = e−φ/2Gstring

MN .

For this brane setup, it is appropriate to use the following ansatz for the metric

ds2 = −eu(r)A(r)dt2 + eb(r)

(

3
∑

i=1

(dxi)
2

)

+ ec(r)(A−1(r)dr2 + r2ds2
X5

), (C.1)

where X5 represents a Einstein manifold with the same Ricci curvature as the unit radius

S5. For fluxes, the ansatz is

F3 = e
3
2
b(r) · h(r) · dx1 ∧ dx2 ∧ dx3,

F5 = r5e
5
2
c(r)f(r)(ΩX5 + ∗ΩX5), (C.2)

where ΩX5 is the volume form on X5. We also assume that the dilaton is dependent on

the radial coordinate r only. If we treat this solution within supergravity, we will have a

tadpole of the NSNS 3-form flux H3 as is clear from the equation of motion in the presence

of the Chern-Simons term

d(e−φ ∗ H3) = F3 ∧ F5, (C.3)

where F3 and F5 are sourced by the D5 and D3-branes, respectively. Thus we cannot

construct consistent supergravity solutions under the assumption of symmetry of spacetime

implied by (C.1).
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To resolve this problem, we notice that the effective F-string charges are generated

from the D3-brane and D5-brane charges via the Chern-Simons term

SCS = − 1

4κ2
10

∫

C4 ∧ H3 ∧ F3. (C.4)

Therefore, to resolve this problem, we treat the created F-strings as the probe action and

add it to the supergravity action. The probe action for a single F-string in the Einstein

frame is given by

Sstring = − 1

2π

∫

dτdσe
φ

2

√

−GE +
1

2π

∫

dτdσBµν∂τXµ∂σXν . (C.5)

By identifying τ = t and σ = r and taking the sum over infinitely many F-strings, we

obtain the probe action for the created F-strings

∑

i

Sstring(i) =

∫

dx1dx2dx3ΩX5 ρ Sstring, (C.6)

where i labels i-th F-string and the density of F-strings ρ is assumed to be constant. In

the following, we solve the equations of motion derived from the supergravity action with

this probe action added.

C.1 Equation of motions

The Bianchi identity for F3 and the equation of motion for F5 are written as

∂r(r
5e

5
2
c(r)f(r)) = 0, ∂r(e

3
2
b(r)h(r)) = 0. (C.7)

Here we notice that the equation of motion for F3 is automatically satisfied for the ansatz

introduced above. From these equations, we can define the constants F and H as follows:

f(r) = F · r−5e−
5
2
c(r), h(r) = H · e− 3

2
b(r). (C.8)

Then, from (C.3), the density of F-strings turns out to be

ρ =
πFH

2κ2
10

. (C.9)

To derive the dilaton equation of motion, we notice that the F-string action now looks

like

SF−string = − 1

2π

∫

dtdre
φ

2

√

−GE = − 1

2π

∫

dtdre
φ

2
+ c

2
+ u

2 . (C.10)

Thus the equation of motion becomes

∂r(φ
′(r)A(r)e2c(r)+ 3

2
b(r)+

u(r)
2 r5) =

FH

4
e

φ(r)
2

+
c(r)
2

+
u(r)

2 +
1

2
r5eφ(r)+ 3

2
b(r)+3c(r)+

u(r)
2 h(r)2.

(C.11)
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We can also derive the Einstein equations for the type IIB supergravity with the F-

string action. Combined with (C.11), we can summarize the equations of motion as follows:

[A(log A + u)′r5e
3
2
b+2c+ 1

2
u]′ =

3

8
FHe

1
2
φ+ 1

2
c+ 1

2
u +

1

2
F 2r−5e−2c+ 3

2
b+ 1

2
u

+
1

4
H2r5eφ+3c− 3

2
b+ 1

2
u, (C.12)

[b′Ar5e
3
2
b+2c+ 1

2
u]′ = −1

8
FHe

1
2
φ+ 1

2
c+ 1

2
u +

1

2
F 2r−5e−2c+ 3

2
b+ 1

2
u

−3

4
H2r5eφ+3c− 3

2
b+ 1

2
u, (C.13)

[(c + 2 log r)′Ar5e
3
2
b+2c+ 1

2
u]′ = −1

8
FHe

1
2
φ+ 1

2
c+ 1

2
u − 1

2
F 2r−5e−2c+ 3

2
b+ 1

2
u

+
1

4
H2r5eφ+3c− 3

2
b+ 1

2
u + 8r3e2c+ 3

2
b+ 1

2
u, (C.14)

[(log A + u − b − 2φ)′Ar5e
3
2
b+2c+ 1

2
u]′ = 0, (C.15)

2(φ′)2 + 3(b′)2 + 10
c′

r
− 3b′c′ + 6b′′ + 10c′′ − 3b′u′ − 5c′u′ − 10

u′

r
= 0. (C.16)

It is also useful to derive the following equation from a linear combination

of (C.12), (C.13), and (C.14)

[(log A + u + b + 2c + 4 log r)′Ar5e
3
2
b+2c+ 1

2
u]′ = 16r3e2c+ 3

2
b+ 1

2
u. (C.17)

In the above discussion, we have derived five equation of motion for five variables

A(r), u(r), b(r), c(r), φ(r). However, we can eliminate one of them, say u(r), by the

diffeomorphism r → r̃ = r̃(r). In this sense, the independent degree of freedom under the

symmetry ansatz is the four variables. Thus we should show the five equations of motion

are not over constrained. Indeed we can show the following identity from the four equations

of motion (C.12), (C.13), (C.14), and (C.15)

[

r10A(r)2e3b(r)+4c(r)+u(r) · Econstraint(r)
]′

= 0, (C.18)

where Econstraint(r) is the left-hand side of (C.16). This guarantees that the fifth equation

of motion Econstraint(r) = 0 is satisfied if it is vanishing at any particular value of r.

C.2 Scaling solutions

Let us assume the following simple scaling profile for the unknown functions:

u(r) = u1 log r+u0, b(r) = b1 log r+b0, c(r) = c1 log r+c0, φ(r) = φ1 log r+φ0. (C.19)

At first we also assume A(r) = 1, which corresponds to the extremal case.

Using the three equations of motion (C.14), (C.15), and (C.16), we find that the

following coefficients u1, b1, c1 and φ1 satisfy equations of motion

u1 = 7

√

2

5
, b1 =

√

2

5
, c1 = −2, φ1 = 3

√

2

5
. (C.20)
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By substituting (C.19) with (C.20) into (C.12), (C.13) and (C.14), we can find four solutions

for the pair (F , H) in terms of u0, b0, c0 and φ0 as follows:

F = ±e2c0 ·
√

83 −
√

1081√
3

,

H =

√
1081 − 5

44
· e 3

2
b0− 5

2
c0− 1

2
φ0 · F, (C.21)

and

F = ±e2c0 ·
√

83 +
√

1081√
3

,

H = −
√

1081 + 5

44
· e 3

2
b0− 5

2
c0− 1

2
φ0 · F. (C.22)

Thus, in order to realize the fluxes with arbitrary values and sign, we have only to choose

one of the four solutions and tune c0 and φ0 appropriately. We set u0 = b0 = 0 below.

As we constructed the extremal solution, generalization to a black brane solution is

straightforward by considering more general functions A(r). Let us again assume the

ansatz (C.19) with the values (C.20). Then it immediately follows that all equation of

motion are satisfied only if

A(r) = 1 − M

r
√

10
, (C.23)

where M is an arbitrary constant related to the ADM mass of the black brane. We also

notice that the other profiles are the same as the extremal solutions.

In summary we obtain the following metric in the Einstein frame and the dilaton

ds2 = −ru1A(r)dt2 + rb1d~x2 + ec0

(

dr2

r2A(r)
+ (dΩ5)

2

)

, eφ(r)−φ0 = rφ1 . (C.24)

and, after the redefinition of radial coordinate ρ = r
1√
10 , we reach the expression (8.1).
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