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Abstract: We study Wilson loop operators in three-dimensional, N = 6 superconformal

Chern-Simons theory dual to IIA superstring theory on AdS4 × CP
3. Novelty of Wilson

loop operators in this theory is that, for a given contour, there are two linear combinations

of Wilson loop transforming oppositely under time-reversal transformation. We show that

one combination is holographically dual to IIA fundamental string, while orthogonal com-

bination is set to zero. We gather supporting evidences from detailed comparative study of

generalized time-reversal transformations in both D2-brane worldvolume and ABJM the-

ories. We then classify supersymmetric Wilson loops and find at most 1
6 supersymmetry.

We next study Wilson loop expectation value in planar perturbation theory. For circular

Wilson loop, we find features remarkably parallel to circular Wilson loop in N = 4 super

Yang-Mills theory in four dimensions. First, all odd loop diagrams vanish identically and

even loops contribute nontrivial contributions. Second, quantum corrected gauge and scalar

propagators take the same form as those of N = 4 super Yang-Mills theory. Combining

these results, we propose that expectation value of circular Wilson loop is given by Wil-

son loop expectation value in pure Chern-Simons theory times zero-dimensional Gaussian

matrix model whose variance is specified by an interpolating function of ‘t Hooft coupling.

We suggest the function interpolates smoothly between weak and strong coupling regime,

offering new test ground of the AdS/CFT correspondence.
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1 Introduction

The proposal of holographic principle put forward by Maldacena [1] has changed funda-

mentally the way we understand quantum field theory and quantum gravity. In particular,

the AdS-CFT correspondence between N = 4 super Yang-Mills theory and Type IIB su-

perstring on AdS5 × S
5, followed by diverse variant setups thereafter, enormously enriched

our understanding of nonperturbative aspects of gauge and string theories. In exploring

holographic correspondence between gauge and string theory sides, an important class of

physical observable is provided by semiclassical fundamental strings and D-branes in string

theory side and by topological defects in gauge theory side. In particular, the Wilson loop

operator [2] extended to N = 4 super Yang-Mills theory was proposed and identified with

macroscopic fundamental string on AdS5 × S
5 [3, 4]. During the ensuing development

of holographic correspondence between gauge and string theories, the proposal of [3, 4]

became an essential toolkit for extracting physics from diverse variants of gauge-gravity

correspondence. Among those further developments, one important step was the obser-

vation that the exact expectation value of the 1
2 -supersymmetric circular Wilson loop is

computable by a Gaussian matrix model [5–7].

Recently, Aharony, Bergman, Jafferis and Maldacena (ABJM) [8] put forward a new

account of the AdS-CFT correspondence: three-dimensional N = 6 superconformal Chern-

Simons theory dual to Type IIA string theory on AdS4 × CP
3. Both sides of the corre-

spondence are characterized by two integer-valued coupling parameters N and k. On

the superconformal Chern-Simons theory side, they are the rank of product gauge group

U(N)×U(N) and Chern-Simons levels +k,−k, respectively. On the Type IIA string theory

side, they are related to spacetime curvature and Ramond-Ramond fluxes, all measured

in string unit. Much the same way as the counterpart between N = 4 super Yang-Mills

theory and Type IIB string theory on AdS5 × S
5, we can put the new correspondence into

precision tests in the planar limit:

N → ∞, k → ∞ with λ ≡ N

k
fixed (1.1)

by interpolating ‘t Hooft coupling parameter λ between superconformal Chern-Simons

theory regime at λ≪ 1 and semiclassical AdS4 × CP
3 string theory regime at λ≫ 1.

The purpose of this paper is to identify Wilson loop operators in the ABJM theory

which corresponds to a macroscopic Type IIA fundamental string on AdS4 × CP
3 and put

them to a test by studying their quantum-mechanical properties. The proposed Wilson

loop operators involve both gauge potential and a pair of bi-fundamental scalar fields,

a feature already noted in four-dimensional N = 4 super Yang-Mills theory. Typically,

functional form of the Wilson loop operator is constrained severely by the requirement of

affine symmetry along the contour C, by superconformal symmetry on R
1,2, and by gauge

and SU(4) symmetries. We shall find that, in the ABJM theory, there are two elementary

Wilson loop operators determined by these symmetry requirement:

WN [C,M ] =
1

N
TrP exp i

∮

C
dτ

(
Amẋ

m(τ) +MI
J(τ)Y IY †

J

)

WN[C,M ] =
1

N
TrP exp i

∮

C
dτ

(
Amẋ

m(τ) +MJ
I(τ)Y †

I Y
J
)
. (1.2)

– 2 –
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We first determine conditions on xm(τ),MI
J(τ) in order for the Wilson loop to keep unbro-

ken supersymmetry. We shall find that there is a unique Wilson loop preserving 1
6 of N = 6

superconformal symmetry. We shall then study vacuum expectation value of these Wilson

loops both in planar perturbation theory of the ABJM theory and in minimal surface of

the string worldsheet in AdS4 × CP
3. We also study determine functional form of MI

J

from various symmetry considerations. We shall then propose that the linear combination

of Wilson loops:

WN[C,M ] :=
1

2

(
WN[C,M ] +WN[C,M ]

)
(1.3)

is identifiable with appropriate Type IIA fundamental string configuration and that the

opposite linear combination is mapped to zero. We gather evidences for these proposal

from detailed study for relation between the ABJM theory and the worldvolume gauge

theory of D2-branes, from identification of time-reversal invariance in these theories, and

from explicit computation of Wilson loop expectation values in planar perturbation theory.

Out of these elementary Wilson loops, we can also construct composite Wilson loop

operators encompassing the two product gauge groups, for example, WN[C,M ]±W
N

[C,M ]

or WN[C,M ] ·W
N

[C,−M ], etc. As in four-dimensional N = 4 super Yang-Mills theory, we

expect that these Wilson loop operators constitute an important class of gauge invariant

observables, providing an order parameter for various phases of the ABJM theory. In fact,

even in pure Chern-Simons theory (obtainable from ABJM theory by truncating all matter

fields), it was known that expectation value of Wilson loop operators yields nontrivial

topological invariants [9, 10].1

We organized this paper as follows. In section 2, we collect relevant results on macro-

scopic IIA fundamental string in AdS4, adapted from those obtained in AdS5 previously.

We discuss two possible configurations with different stabilizer subgroup and number of

supersymmetries preserved. In section 3, we formulate Wilson loop operators in ABJM

theory. In subsection 3.2, we propose Wilson loop operators and constrain their struc-

tures by various symmetry considerations. We find from these that, up to SU(4) rotation,

functional form of the Wilson loop operator is determined uniquely. Still, this leaves sep-

arate Wilson loops for U(N) and U(N) gauge groups, respectively. To identify relation

between the two, in subsection 3.3, we first recall the argument of [12–16] relating three-

dimensional super Yang-Mills theory and ABJM superconformal Chern-Simons theory.2

We then identify that fundamental IIA string ending on D2-brane couples to diagonal lin-

ear combination of U(N) and U(N). In section 4, we study supersymmetry condition of the

Wilson loop operator and deduce that tangent field along the contour should be constant.

From this, we find that unique supersymmetric Wilson loop operator is the one preserv-

ing 1
6 of the N = 6 superconformal symmetry. In section 5, we revisit the time-reversal

symmetry in ABJM theory. Based on the results of sections 3 and 4, we find that one

combination of the elementary Wilson loops with a definite time-reversal transformation

1See [11] for an earlier discussion on Wilson loops in ABJM theory.
2This procedure is first proposed by Mukhi and Papageorgakis for relating (variants of) Bagger-Lambert-

Gustavsson (BLG) theory [17, 18] to 3-dimensional N = 8 super Yang-Mills theory.
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is dual to a fundamental IIA string on AdS4, while orthogonal combination is mapped to

zero. In section 6, we study expectation value of the Wilson loop operator to all orders

in planar perturbation theory. For straight Wilson loop operator, we find that Feynman

diagrams vanish identically at each loop order. For circular Wilson loop operator, we find

that Feynman diagrams vanish at one loop order, nonzero at two loop order and zero again

at three loop order. Remarkably, the two loop contribution consists of a part exactly the

same as one-loop part of Wilson loop in N = 4 super Yang-Mills theory and another part

exactly the same as unknotted Wilson loop in pure Chern-Simons theory. Up to three-loop

orders, all Feynman diagrams involve gauge and matter kinetic terms only. Features of

full-fledged N = 6 superconformal ABJM theory, in particular Yukawa and sextet scalar

potential, begin to enter at four loops and beyond. Nevertheless, we show that the Feyn-

man diagrams vanish identically for all odd number of loops. In other words, expectation

value of the ABJM Wilson loop operator is a function of λ2. In section 7, based on the

results of section 6 and under suitable assumptions, we make a conjecture on the exact

expression of circular Wilson loop expectation value in terms of a Gaussian matrix model

and of unknot Wilson loop of the pure Chern-Simons theory. To match with weak and

strong coupling limit results, variance of the matrix model ought to be a transcendental

interpolating function of the ‘t Hooft coupling. Since this is different from N = 4 super

Yang-Mills theory, we discuss issues associated with the interpolating function. Section 8

is devoted to discussions for future investigation. In appendix A, we collect conventions,

notations and Feynman rules. In appendix B, we give details of analysis for Wilson loops

of generic contour. In appendix C, we recapitulate the one-loop vacuum polarization in

ABJM theory, obtained first in [19]. In appendix D, we give details for the analysis of

three-loop contributions.

While writing up this paper, we noted the papers [20, 21] posted on the arXiv archive,

which have some overlap with ours. We also found [22] discuss some closely related issue.

2 Macroscopic IIA fundamental string in AdS4

We begin with strong ‘t Hooft coupling regime, λ ≫ 1. In this regime, by the AdS/CFT

correspondence, IIA string theory on AdS4 × CP
3 is weakly coupled and provides dual

description to strongly coupled ABJM theory. As shown in [3, 4], correlation function

of the Wilson loop operators is calculated by the on-shell action of fundamental string

whose worldsheet boundaries at the boundary of AdS space are attached to each Wilson

loop operators. Following this, we shall consider a macroscopic IIA fundamental string in

AdS4 × CP
3 and compute expectation value of the Wilson loop operator for a straight or

a circular path.

The radius of the AdS4 is L = (2π2λ)1/4
√
α′ as measured in unit of the IIA string

tension. IIA string worldsheet configurations corresponding to straight and circular Wilson

loops are exactly the same as the corresponding IIB string worldsheet configurations in

– 4 –
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AdS5 background. The results are3

〈W [Rt]〉 ≃ N

〈W [S1]〉 ≃ N exp(L2/α′). (2.1)

for timelike straight path C = Rt [3, 4] and spacelike circular path C = S
1 [23], respectively.

Extended to n multiply stacked strings of same orientation, the ratio between the two

Wilson loops is given by

〈Wn[S1]〉
〈Wn[Rt]〉

= exp(n
√

2π2λ) . (2.2)

In IIB string theory, both string configurations are known to be supersymmetric. In sec-

tion 7, we shall try to relate these string theory results with perturbative computations in

superconformal Chern-Simons theory side.

We briefly recapitulate how to get the above result. In the limit λ → ∞, the string

becomes semiclassical and sweeps out a macroscopic minimal surface in AdS-space. The

metric of AdS4 is expressed in Poincaré coordinates as

ds2 =
L2

y2

[
− (dx0)2 + (dx1)2 + (dx2)2 + (dy)2

]
. (2.3)

In this coordinate system, the boundary R
1,2 is located at y = 0. We choose a macroscopic

string configuration in the static gauge x0 = τ, y = σ and it corresponds to a timelike

straight Wilson loop sitting at x1 = x2 = 0. Here, following the prescription of [3, 4], we

regularize the AdS-space to y = [ǫ,∞], remove 1
ǫ divergence (corresponding to self-energy)

and finally lift off the regularization ǫ → 0.4 The renormalized string worldsheet action is

Sren = 0 and the result (2.1) follows.

After Wick rotation, timelike straight Wilson loop can be conformally transformed to

spacelike circular Wilson loop. Let us examine this string configuration in Euclidean AdS4.

The metric of Euclidean AdS4 is written as

ds2 =
L2

y2

[
(dy)2 + (dr)2 + r2(dθ)2 + (dx)2

]
. (2.4)

We choose the fundamental string configuration in the static gauge θ = τ and y = σ, and

we also take an ansatz r = r(σ), x = 0. It corresponds to a circular Wilson loop whose

center sits at r = 0. The string worldsheet action is given by

Sws =
1

2πα′

∫ √
detX∗G =

L2

α′

∫
dy

r

y2

√
1 + r′2, (2.5)

where r′ := ∂r/∂y. The solution with circular boundary is r =
√

1 − y2, and its on-shell

action is written as

Sws =
L2

α′

∫ 1

ǫ
dy

1

y2
=
L2

α′

(
−1 +

1

ǫ

)
. (2.6)

3Our convention for the relation between the IIA string coupling and rank of ABJM theory is gst = 1/N .
4Alternatively, we can prescribe renormalization scheme by adding a boundary counter-term, as in [24].

The result is the same.
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Here again, we regularized the AdS-space to y = [ǫ,∞]. After removing the 1
ǫ divergent

part, we obtain the renormalized on-shell action as Sren = −L2/α′. Expectation value of

the Wilson loop is 〈W 〉 ∼ exp(−Sren) = exp(+L2/α′) and the result (2.1) follows.

We now would like to identify spacetime symmetries preserved by these classical string

solutions. Each classical string configuration wraps a suitably foliated AdS2 submanifold

in AdS4, so it preserves SL(2,R)×SO(2) symmetry of the isometry SO(2,3) of AdS4. If the

string were sitting at a point in CP
3, the isometry group SU(4) of CP

3 is broken to stabilizer

subgroup U(1)× SU(3). If the string were distributed over CP
1 in CP

3, the isometry

group SU(4) is broken further to stabilizer subgroup U(1)×SU(2)×SU(2). Variety of other

configurations are also possible, but we shall primarily focus on these two configurations.

In the background AdS4 ×CP
3, there are 24 supercharges. They form a multiplet (4,6) of

the SO(2,3)≃Sp(4,R) and the SU(4) isometry groups. We can see that these two strings

are supersymmetric by identifying supercharges that annihilate each configurations.

The first configuration turns out 1
2 supersymmetric. Unbroken supersymmetries ought

to be organized in multiplets of the stabilizer subgroup SL(2,R)× SU(3). Branching rules

of SO(2,3)×SU(4) into SL(2,R)× SU(3) follows from

(4,6) → (2 + 2,3 + 3̄). (2.7)

Therefore, the minimal possibility is (2,3) of SL(2,R)× SU(3). Noting that 3 of SU(3) is a

complex representation, we deduce that the number of unbroken supercharges is either 12 or

24. There is no possibility that all the 24 supercharges are preserved since the configuration

does not preserve the SU(4) symmetry. So, we conclude that the string sitting at a point

on CP
3 preserves 12 of the 24 supercharges.

The second configuration is 1
6 supersymmetric. Branching rules of SO(2,3)×SU(4) into

SL(2,R)×SU(2)×SU(2) follow from

(4,6) → (2 + 2, (2,2) + (1,1) + (1,1)). (2.8)

The minimum possibility is (2,1,1). Since each pair are charged oppositely under U(1),

we deduce that possible number of unbroken supercharges are 4, or 16 (apart from 12 or

24 we have already analyzed). We see that a supersymmetric string distributed over CP
1

preserves at least 4 of the 24 supercharges.

In summary, for both straight and circular string, we identified two representative

supersymmetric configurations. A configuration localized in CP
3 preserve 12 supercharges

(corresponding to 1
2 -BPS) and SL(2,R)×SO(2)× U(1) × SU(3) isometries. A configuration

distributed over CP
1 in CP

3 preserves at least 4 supercharges (corresponding to 1
6 -BPS)

and SL(2,R)×SO(2)×U(1)×SU(2)×SU(2) isometries.

3 Wilson loop: proposal and simple picture

3.1 Wilson loop in N = 4 super Yang-Mills theory

We first recapitulate a few salient features of Wilson loop operator in four-dimensional N =

4 super Yang-Mills theory and its holographic dual, macroscopic Type IIB superstring in

– 6 –
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AdS5×S
5. On R

3,1, the Wilson loop operator for defining representation was proposed [3, 4]

to be

WN[C,M ] =
1

N
TrP exp i

∫

C
dτ

(
ẋm(τ)Am(x) +M I(τ)ΦI(x)

)
. (3.1)

Here, ẋm(τ) is a vector specifying C in R
3,1, M I(τ) is a vector in SO(6) internal space,

Am = Aa
mT

a (m = 0, 1, 2, 3) and ΦI = Φa
IT

a (I = 1, 2, 3, 4, 5, 6) where T as are a set of Lie

algebra generators, and Tr is trace in fundamental representation. It is motivated by ten-

dimensional Wilson loop operator 1
N TrP exp(i

∫
dτẊM (τ)AM (X)) over a path specified

by XM (τ) (M = 0, 1, · · · , 9) on D9-brane worldvolume. T-dualizing to D3-brane, the

gauge potential and the path are split to (Am(x),ΦI(x)) and (xm(τ), yI(τ)), (m = 0, 1, 2, 3

and I = 1, · · · , 6), respectively. We then obtain (3.1), where the vector M I is described in

terms of internal coordinates as:

M I(τ) = ẏ I(τ) . (3.2)

We can also motivate that this Wilson loop operator is related to Type IIB fundamen-

tal string in AdS5 × S
5 by noting that R

9,1 that the gauge potential AM (X) lives in is

conformally equivalent to AdS5 × S
5:

ds2 = (dxm)2 + (dyI)2

= r2
(

1

r2
[(dxm)2 + (dr)2] + (dΩ5)

2

)
. (3.3)

In this situation, the Wilson loop sweeps out a path in R
9,1 or its conformal equivalent

in AdS5 × S
5.

Depending on the choice of the velocity vector M I(τ), the Wilson loop preserves dif-

ferent subgroup of the SO(6) R-symmetry. If M I(τ) = (0, 0, 0, 0, 0, 0), the Wilson loop

preserves SO(6). If M I(τ) is τ -independent, the Wilson loop preserves SO(5) subgroup of

SO(6) since M I can be rotated by a rigid SO(6) rotation to, say, (|M |, 0, 0, 0, 0, 0). More-

over, M I(τ) may also develop a discontinuity at some τ . In holographic dual, the Wilson

loop expectation value is given by a saddle-point of the string worldsheet whose boundary

at AdS5 infinity is prescribed by the vectors (ẋm(τ),M I(τ)) of the Wilson loop. In gen-

eral, there can be a continuous family of string worldsheets satisfying the same boundary

condition, parametrized by zero-modes. In that case, each worldsheet preserves a subgroup

smaller than the subgroup preserved by the corresponding Wilson loop. In order to restore

the subgroup preserved by the Wilson loop, one then needs to integrate over a parameter

space of the zero-modes for the string worldsheet.

One can also study the Wilson loop operators averaged over the boundary condition

M I(τ). For example,

WN[C, 〈M〉] =
1

Vol(D(M))

∑

M∈D(M)

WN[C,M ] (3.4)

is an averaged Wilson loop operator in which the vector M I(τ) is averaged to 〈M〉 over a

domain D(M). Each configuration of M I(τ) preserves different subgroup of SO(6) symme-

try, so the above average Wilson loop operator would retain a stabilizer subgroup common

to each of M I(τ) in D(M).

– 7 –
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3.2 Wilson loops in N = 6 superconformal Chern-Simons theory

In this subsection, paving steps parallel to the four-dimensional N = 4 super Yang-

Mills theory, we shall construct a Wilson loop operator in the ABJM theory and find an

interpretation from holographic dual side. In particular, we pay attention to features that

contrast the ABJM Wilson loop operators against the Wilson loop operators in N = 4

super Yang-Mills theory.

Our proposal for the Wilson loop operators in the ABJM theory is as follows. Denote

coordinates of R
1,2 as xm and of SU(4) internal space as zI , zI . With two gauge fields

Am and Am of U(N) and U(N) gauge groups, respectively, we can construct two types of

Wilson loop operators associated with each gauge fields. Consider the U(N) gauge group.

Our proposal of the U(N) Wilson loop operator is

WN[C,M ] =
1

N
TrP exp i

∫

C
dτ

(
ẋm(τ)Am(x) +MI

J(τ)Y I(x)Y †
J (x)

)
. (3.5)

Here, Am = Aa
mT

a and Y IY †
J = (Y IY †

J )aT a, where T a’s are Lie algebra generators of U(N)

gauge group. Again, the vector field ẋm(τ) specifies the path C in R
1,2 and MI

J(τ) is a

tensor in SU(4) internal space. A choice that is a direct counterpart of (3.1) is

MI
J(τ) = ±

[
2
żI ż

J

|ż| − δJ
I |ż|

]
. (3.6)

Since MI
JMJ

K = δK
I |ż|2, eigenvalues of MI

J are ±|ż|.
We also motivate functional form of the Wilson loop from the following sym-

metry considerations:

• Wilson loop describes a trajectory of a heavy particle probe. Charge of the particle

is characterized by a representations under U(N) and U(N) gauge groups. Mass of

the particle is set by scalar fields and should carry scaling dimension 1. In (2+1)

dimensions, the scalar fields Y, Y † have scaling dimension 1/2. It also should trans-

form in adjoint representation of U(N). These requirements fix uniquely the requisite

combination as Y IY †
J .

• Functional form of the tensorMI
J(τ) given in (3.6) is largely determined by spacetime

translational symmetry and by affine reparametrization and parity symmetries along

the path C. Transitive motion on embedding space C
4 is described by zI → zI +ξI for

a constant ξI . The tensor is manifestly invariant under such motion since it depends

only on ż, ż.

• Affine reparametrization is induced by τ → τ̃(τ). The tensor MI
J is manifestly

invariant under such motion since it transforms with Jacobian |dτ̃ /dτ |. This cancels

against the Jacobian induced by the measure dτ .

Likewise, our proposal for the Wilson loop operator of U(N) gauge group is

WN[C,M ] =
1

N
TrP exp i

∫

C
dτ

(
ẋm(τ)Am(x) +MJ

I(τ)Y †
I (x)Y J(x)

)
, (3.7)

– 8 –
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where Am = A
a
mT

a
, Y †

I Y
J = (Y †

I Y
J)aT a.

From ABJM theory viewpoint, various composites of these Wilson loop operators are

possible (in addition to the choice of C and M). Taking the above Wilson loop operators

as building blocks, composite Wilson loops involving both gauge groups are constructible.

For example, one can construct

WN[C,M ] +WN[C,M ], WN[C,M ] +W
N

[C,M ] and (N ↔ N) (3.8)

WN[C,M ] ·WN[C,M ], WN[C,M ] ·W
N

[C,M ] and (N ↔ N) (3.9)

etc. However, under suitable conditions, they turn out not independent one another.

For example, at large N limit, expectation values of these composite Wilson loop opera-

tors are all equal because of large N factorization property. One might have expected

that the composites are further restricted if the Wilson loops are to preserve part of

the N = 6 supersymmetry. This is not so, since supersymmetry acts on WN[C,M ] and

WN[C,M ] independently.

In comparison with N = 4 super Yang-Mills theory, one distinguishing feature of

the ABJM theory is that there are two sets of Wilson loops, one for U(N) gauge group

and another for U(N) gauge group. From holographic perspectives, this raises a puzzle.

We expect that these Wilson loops are mapped to a string. While there are two variety

of Wilson loops in the ABJM theory, there is one and only one fundamental string in

AdS4 × CP
3. We first resolve this puzzle by analyzing the way a fundamental string is

coupled to a stack of D2-branes, whose worldvolume gauge theory is in turn related to the

ABJM theory by moving away appropriately from conformal point.

3.3 Fundamental string ending on D2-brane

Consider a D2-brane and a macroscopic IIA fundamental string ending on it. From IIA

supergravity field equations in the presence of the string and the D2-brane, we see that the

string endpoint on the D2-brane carries an electric charge of the worldvolume gauge field

Cm of the D2-brane. How is the electric charge related to charges in the ABJM theory?

Answer to this question is obtainable simply by identifying relation between the D2-

brane worldvolume gauge field Cm and the two gauge fields Am, Am in the ABJM theory.

The identification is in fact already made in [12]. By giving a nonzero vacuum expectation

value to one of the bi-fundamental scalar fields in ABJM theory, one linear combination

of the gauge fields becomes massive. Integrating out the massive gauge field, we are left

with orthogonal linear combination of the gauge fields. This is identified with the D2-brane

worldvolume gauge field Cm. Relevant part of the ABJM Lagrangian is

L =
k

4π
ǫmnpTr

(
Am∂nAp +

2i

3
AmAnAp

)
− k

4π
ǫmnpTr

(
Am∂nAp +

2i

3
AmAnAp

)

−Tr|∂mY
I + iAmY

I − iY IAm|2 − Tr|∂mY
†
I + iAmY

†
I − iY †Am|2

+TrAmJ
m + TrAmJ

m
. (3.10)

The last line is to indicate how an external source with gauge currents Jm, Jm couples to

the two ABJM gauge potentials.
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Turn on vacuum expectation value of one of the scalar fields, say, the real part of Y 1, Y †
1 :

〈Y 1〉 = 〈Y †
1 〉 = V IN . (3.11)

We also decompose the two gauge potentials as

A(±)
m =

1

2
(Am ±Am) . (3.12)

The corresponding field strengths are

G(±)
mn = ∂mA

(±)
n − ∂nA

(±)
m + i[A(±)

m , A(±)
n ] . (3.13)

We then find that the Chern-Simons terms are reduced to

k

2π
ǫmnpTr (A(−)

m G(+)
np +

2i

3
A(−)

m A(−)
n A(−)

p ) + (total derivative) , (3.14)

while the kinetic terms are reduced to

4V 2Tr(A(−)
m )2 + · · · . (3.15)

The equations of motion for A
(−)
m

A(−)
m =

k

8πV 2
ǫm

np(G(+)
np + 2iA(−)

n A(−)
p + · · · ) (3.16)

can be solved perturbatively at large k. Collecting terms in increasing power of derivatives

and redefining gYM = 4πV/k, we find that the Lagrangian L is reduced to

L = − 1

2g2
YM

Tr(G(+)
mn)2 + TrA(+)

m (Jm + J
m

) + · · ·

+
4π2

k2
O

(
1

g8
YM

(G(+))3
)

+
2π

k

1

g2
YM

ǫmnpTrG(+)
mn(Jp − Jp). (3.17)

To retain nontrivial gauge dynamics at quadratic order and suppress all higher order terms,

we take the scaling limit:

k → ∞, V → ∞ and gYM =
4πV

k
= fixed. (3.18)

We see that, around the vacuum given by the above expectation value, the ABJM theory

is reduced to maximally supersymmetric U(N) gauge theory of the gauge potential A
(+)
m

below the energy scale set by gYM, viz. it describes worldvolume dynamics of the D2-brane.

From the Lagrangian, we derive equations of motion for the gauge potential A
(+)
m as

DmG(+)
mn = g2

YM(Jn + Jn) − 2π

k
ǫnpqDp(Jq − Jq) + O(D(G(+))2). (3.19)

If a fundamental string ends on the D2-brane, it acts as a source to the worldvolume gauge

field A
(+)
m . In the scaling limit that reduces ABJM theory to (2+1)-dimensional super

Yang-Mills theory, all but the first term drop out. This in turn implies that the string

endpoint creates one unit (in unit of g2
YM) of (Jm + J

m
) from ABJM currents. We also
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note that the non-minimal coupling of A
(+)
m to the current (Jm − J

m
) is suppressed in the

above scaling limit.

In this section, we identified that A
(+)
m = (Am + Am) is the gauge field for the D2-

brane worldvolume dynamics, while A
(−)
m = (Am − Am) is decoupled from the dynamics.

Therefore, a fundamental string ending on D2-brane is described by the Wilson loop oper-

ator composed solely of A
(+)
m (plus an appropriate combination of eight scalar fields). We

emphasize that, under time-reversal, this Wilson loop operator transforms in the standard

way. For timelike C, the representation N of the Wilson loop is mapped to conjugate rep-

resentation N but the internal tensor M remains intact. For spacelike C, representation

N remains intact but the internal tensor M is mapped to conjugate tensor −M .

4 Supersymmetric Wilson loop

We now would like to understand under what choices of C and MI
J(τ) the proposed

Wilson loop preserves some of the N = 6 superconformal symmetry. The same question

was addressed previously for N = 4 super Yang-Mills theory [25] and for the holographic

dual [26]. There, assuming that the Wilson loop sweeps a calibrated surface in R
3,1 × R

4,

it was found that the Wilson loop preserving 1/2 of the N = 4 superconformal symmetry

ought to lie in R
3,1 on either a timelike straight path or a spacelike circular path. Here, we

shall check if the same choice of C of the ABJM Wilson loop operators is supersymmetric.

More general choice of the contour C will be discussed later in this section.

Begin with the ABJM Wilson loop over a timelike straight path. By a Lorentz boost,

we can always bring the path to xm(τ) = (τ, 0, 0), so ẋm = (1, 0, 0). We first focus on the

U(N) Wilson loop operator:

WN[C,M ] =
1

N
TrP exp

(
i

∫ ∞

−∞

dτ (A0 +MI
JY IY †

J )

)
. (4.1)

As in [25, 26], we take the ansatz that MI
J is a τ -independent, constant tensor.

The N = 6 Poincaré supersymmetry transformations for the gauge and scalar fields

are [30–32]

δY I = 2iξIJψ†
J , δY †

I = 2iξIJΨJ , (4.2)

δAm = 2ξIJγmY
IψJ + 2ψ†

JY
†
I γmξ

IJ , (4.3)

where ξIJ , ξIJ are supersymmetry parameters satisfying the following relations:

ξIJ = −ξJI , ξIJ :=
1

2
ǫIJKLξKL, (ξIJ)∗ = ξIJ . (4.4)

Consider a point τ along the contour C. The supersymmetry variation of the integrand in

the exponent of (4.1) becomes

δ
(
A0 +MI

JY IY †
J

)
= 2

(
ξIJγ0 + iMI

KξKJ

)
Y IψJ − 2

(
ξIJγ0 − iMK

IξKJ
)
ψ†

JY
†
I . (4.5)
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In order to be supersymmetric, the following two equations must be satisfied for some of

the supersymmetry parameters:

ξIJγ0 + iMI
KξKJ = 0, ξIJγ0 − iMK

IξKJ = 0. (4.6)

By unitary transformation, diagonalize the constant Hermitian matrix MI
J as

M = UΛU−1, where Λ = diag(λ1, λ2, λ3, λ4). (4.7)

In this frame, the supersymmetry condition (4.6) reads

ξIJγ0 + iλIξIJ = 0; ξIJγ0 − iλIξ
IJ = 0 (no summation over I). (4.8)

We see that each eigenvalues λI must take values ±1 in order to satisfy the conditions (4.8).

If one of the eigenvalues, say λ1, is not ±1, since the eigenvalues of γ0 are ±i, (4.8) implies

ξ1J = 0, ξ1J = 0, (J = 2, 3, 4). In this case, the second relation of (4.4) reads ξIJ = ξIJ = 0

for I, J = 2, 3, 4 as well and no supersymmetry is preserved.

Modulo overall sign and permutations of the eigenvalues, there are three possible com-

binations. We examine each of them separately.

• M = diag(+1,+1,+1,+1):

This configuration preserves full SU(4) symmetry. The supersymmetry condi-

tions (4.8) now read

ξIJγ0 + iξIJ = 0, ξIJγ0 − iξIJ = 0. (4.9)

These two equations cannot be satisfied simultaneously because of the reality condi-

tion (4.4). So, there is no supersymmetric Wilson loop with unbroken SU(4) symme-

try. The same conclusion holds for M = diag(−1,−1,−1,−1).

• M = diag(−1,+1,+1,+1):

This configuration breaks SU(4) to SU(3)×U(1). From the supersymmetry condi-

tion (4.8) for (I, J) = (1, J) and (2, J) and the first relation of (4.4), it follows that

ξ1J = ξ1J = 0. This and the second relation of (4.4) imply that ξIJ = ξIJ = 0 for

all I, J = 1, 2, 3, 4. Again, there is no supersymmetric Wilson loop with unbroken

SU(3)×U(1) symmetry. The same conclusion holds for M = diag(+1,−1,−1,−1).

• M = diag(−1,−1,+1,+1):

This configuration breaks SU(4) to SU(2)×SU(2)×U(1). In this case, supersymmetry

parameters ξ12 and ξ34 satisfying the projection conditions:

ξ12γ0 + iξ12 = 0, ξ34γ0 − iξ34 = 0. (4.10)

exists. Other components of ξIJ should vanish. We thus find that this Wilson

loop preserves 2 real supercharges. Since conformal supersymmetry transforma-

tions of Am, Y
I , Y †

I are obtainable from Poincaré supersymmetry by the substitu-

tion ξIJ → γmx
mξ̃IJ , we also find that this Wilson loop preserves 2 real conformal

supercharges. We conclude that this Wilson loop preserves 1
6 of the N = 6 supercon-

formal symmetry.
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In summary, the supersymmetric Wilson loop in ABJM theory is unique: it has the tensor

MI
J which has maximal rank M = diag(−1,−1,+1,+1), preserves SU(2)×SU(2)×U(1)

symmetry of SU(4), and corresponds to a 1
6 -BPS configuration of the N = 6 superconfor-

mal symmetry.5

Actually, the Wilson loop operator (3.5) is closely related to the Wilson loop considered

in [33] in N = 2 superconformal Chern-Simons theory. The 1
6 -BPS configuration we found

above is the same as the 1
2 -BPS configuration of the N = 2 superconformal symmetry: for

a straight timelike path, both preserves two Poincaré supersymmetries and two conformal

supersymmetries. So, features we find in this paper ought to hold to various N = 2

superconformal Chern-Simons theories.

Notice that the tensor MI
J of the 1

6 -BPS configuration has the properties (n = posi-

tive integer)

TrM2n−1 = 0 and TrM2n = 4. (4.11)

Though trivial looking, these properties will play a crucial role when we evaluate in the

next section the Wilson loop expectation value explicitly in planar perturbation theory.

We can also generalize the supersymmetric Wilson loops to a general contour C spec-

ified by tangent vector ẋm(τ). The supersymmetry condition now reads

ξIJγmẋ
m(τ) +MI

K(τ)iξKJ = 0, ξIJγmẋ
m(τ) −MK

I(τ)iξKJ = 0 . (4.12)

We assume that C is smooth, implying that ẋm(τ) is a smooth function of τ . We also set

|ẋ(τ)| = 1 using the reparametrization invariance. The important point is that (4.12) ought

to satisfy the supersymmetry conditions at each τ . Without loss of generality, we assume at

τ = 0 that M(0) = diag(−1,−1,+1,+1) and the only non-zero components of ξIJ are ξ12
and ξ34: these are the eigenstates of γmẋ

m(0) with eigenvalue +i and −i, respectively. It is

then possible to show that (4.12) allows only a constant M(τ) and xm(τ). The details of the

proof of this statement is given in appendix B. In plain words, tangent vector ẋm along the

contour C should remain constant. We conclude that the Wilson loop is supersymmetric

only if C is a straight line. The circular Wilson loop, which is a conformal transformation

of this supersymmetric Wilson loop, is annihilated not by the Poincaré supercharges, but

by linear combinations of the Poincaré supercharges and the conformal supercharges. The

conformal transformation on R
1,2 cannot affect MI

J . So, M = diag(−1,−1,+1,+1) is also

the tensor relevant for the circular supersymmetric Wilson loops.

Still, the above result poses a puzzle. We argued that the Wilson loops proposed are

unique in the sense that the supersymmetry considerations fix its structure completely.

We also found that these Wilson loops preserve 1
6 of the N = 6 supersymmetry, but

no more. On the other hand, the macroscopic IIA fundamental string preserves 1
2 of

5There are other supersymmetric configurations. For example, a 1

3
-BPS configuration is obtainable by

ẋm = 0 and MI
J = δ1

I δJ
4 . However, since ẋm = 0, this configuration is actually a generating functional

of all 1

3
-BPS local operators. A direct counterpart in N = 4 super Yang-Mills theory is the ẋm = 0 and

MI = (0, 0, 0, 0, 1, i) configuration. Again, with ẋm = 0, this Wilson loop is a generating functional of
1

2
-BPS local operators [27] (see also [28, 29]).
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the N = 6 supersymmetry. At present, we do not have a satisfactory resolution. We

expect that the supersymmetric Wilson loop corresponds to a string worldsheet whose

location on CP
3 is averaged over, perhaps, in a manner similar to the prescription (3.4). An

encouraging observation is that the R-symmetry preserved by the Wilson loop is the same as

the isometry preserved by the string smeared over CP
1 in CP

3, and the number of preserved

supercharges also match. This also fits to the observation that M = diag(−1,−1,+1,+1)

above cannot be written as (3.6) for any choice of zI(τ) since the trace of (3.6) does

not vanish.

5 Consideration of time-reversal symmetry

Though it involves Chern-Simons interactions, the ABJM theory is invariant under (suit-

ably generalized) time-reversal transformations. This also fits well with the observation in

section 3.2 that, by vacuum expectation value of scalar fields, the ABJM theory is con-

tinuously connected to the worldvolume gauge theory of multiple D2-branes. The latter

theory is invariant under parity and time-reversal transformations. In section 3.2, we also

identified A
(+)
m = 1

2(Am +Am) as the right combination of the ABJM gauge potentials that

couples to the current (Jm+J
m

) of the string endpoint on D2-brane. We shall now combine

this observation and time-reversal transformation properties to identify 〈WN[C,M ]〉, where

WN[C,M ]
∣∣∣
timelike

:=
1

2

(
WN[C,M ] +WN[C,M ]

)

timelike
, (5.1)

as the timelike Wilson loop dual to the fundamental IIA string. We shall now show

that (5.1) transforms under the time-reversal precisely the same as the D2-brane world-

volume gauge potential that couple to the fundamental string. Moreover, since the other

orthogonal combination A
(−)
m = 1

2 (Am −Am) is not present in the worldvolume gauge the-

ory of multiple D2-branes, we are led to identify that expectation value of Wilson loops for

the other combination vanishes identically:
〈
WN[C,M ] −WN[C,M ]

〉
timelike

= 0. (5.2)

Consider a timelike Wilson loop WN[C,M ] in R
1,2. We take its path C along the time

direction, ẋm = (1, 0, 0). By definition,

WN[C,M ] =
1

N
TrP exp i

∫

C
dτ(Φ(τ))

:=
1

2

∞∑

n=0

in
∫

τ1>···>τn

Tr〈Φ(τ1) · · ·Φ(τn)〉, (5.3)

where Φ denotes exponent of the Wilson loop:

Φ(τ) = T a
[
Aa

0(x) +MI
J(Y IY †

J )a(x)
]

x=x(τ)
. (5.4)

Under the time-reversal transformation, xm = (x0, x1, x2) → x̃m = (−x0, x1, x2). In

the ABJM theory, this is adjoined with Z2 involution that exchanges the two gauge groups

– 14 –



J
H
E
P
0
3
(
2
0
0
9
)
1
2
7

U(N) and U(N). The resulting generalized time-reversal transformation T then acts on

relevant fields as

T
(
Aa

0(x), A
a
0(x), Y

I(x), Y †
I (x)

)
T−1 =

(
A

a
0(x̃), A

a
0(x̃), Y

†
I (x̃), Y I(x̃)

)
. (5.5)

Being anti-linear, T also acts as

T (i)T−1 = −i. (5.6)

Moreover, since the path C is timelike, T also reverses ordering of the path. To bring the

path ordering back, we take transpose of products of Φ(τ)s inside trace. Together with

minus sign from time reversal, the generators T a are mapped to −(T a)T = T
a
. These

are the generators for the complex conjugate representation. Thus, the exponent of the

timelike Wilson loop transforms as

T Φ(τ)T−1 = Φ(−τ), (5.7)

where

Φ(τ) = T
a
[A

a
0(τ) +M I

J(Y †
I Y

J)a(τ)]. (5.8)

We see that the time-reversal T acts on the Wilson loop WN[C,M ] as

T
(
WN[C,M ]

)
T−1 = W

N
[C,M ]; T

(
WN[C,M ]

)
T−1 = W

N
[C,M ]. (5.9)

Notice, however, that T does not change the path C and the internal tensor MI
J .

With (5.9), we identify that (5.1) is the linear combination of elementary Wilson loops

that transform under the generalized time-reversal transformation T :

T : WN[C,M ]
∣∣∣
timelike

−→ W
N

[C,M ]
∣∣∣
timelike

. (5.10)

This is precisely how the Wilson loop operator on D2-brane worldvolume behaves (as

derived at the end of section 3): under the time-reversal, the Wilson loop of A
(+)
m gauge

field in the representation N transforms to the Wilson loop in representation N. Moreover,

by expanding the Wilson loops, we see that the contour C couples to (Aa
m + A

a
m)T a. In

section 3.2, we identified this combination with the gauge field A
(+)
m on the D2-brane

worldvolume that couples to the fundamental string. As such, the path C is identifiable

with trajectory of the fundamental string endpoint at the boundary of AdS4. On the other

hand, we see that the linear combination of Wilson loops in (5.2) represent (Aa
m −A

a
m)T a

along the contour C. This is the gauge field A
(−)
m that was lifted up nondynamical out of the

D2-brane worldvolume dynamics. We thus conclude that vacuum expectation value (5.2)

ought to vanish identically.

Consider next the Wilson loop with path C a spacelike circle in R
1,2. By con-

formal transformation, we can put radius of the circle to 1 and parametrize C by

ẋm(s) = (0, cos s, sin s), s = [0, 2π]. In this case, the exponent Φ(s) is given by

Φ(s) = T a[ẋiAa
i (x) +MI

J(Y IY †
J )a(x)]x=x(s). (5.11)
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Now, under T , the spatial components of the gauge potential are transformed by

T
(
Aa

i (x), A
a
i (x)

)
T−1 =

(
−A

a
i (x̃),−Aa

i (x̃)
)
. (5.12)

Since the path C is spacelike, under T , its path ordering and hence the Lie algebra gen-

erators T as remain unchanged. Thus, with the anti-linearity (5.6) taken into account, the

exponent of the spacelike circular Wilson loop transforms as

T Φ(s)T−1 = Φ(s), (5.13)

where

Φ(s) = T a[ẋi(s)A
a
i (s) −M I

J(Y †
I Y

J)a(s)]. (5.14)

We see that the time-reversal T acts on the spacelike Wilson loop WN [C,M ] as

T
(
WN[C,M ]

)
T−1 = WN[C,−M ]; T

(
WN[C,M ]

)
T−1 = WN[C,−M ]. (5.15)

Notice that T now flips sign of the internal tensor MI
J .

With the transformation (5.15), we now identify for spacelike circular Wilson loops that

WN[C,M ]
∣∣∣
spacelike

:=
1

2

(
WN[C,M ] +WN[C,M ]

)
spacelike

(5.16)

is the linear combination that transforms requisitely under the generalized time-reversal

transformation T : under time-reversal, spacelike Wilson loop operator on the D2-brane

worldvolume transforms as

T : WN[C,M ] −→ WN[C,−M ]. (5.17)

By expanding the Wilson loops, we again find that the spacelike path C couples to the

correct linear combination of gauge potentials, (Aa
m + A

a
m)T a. On the other hand, by a

reasoning parallel to the timelike Wilson loops, we learn that

〈
WN[C,M ] −WN[C,M ]

〉
spacelike

= 0. (5.18)

6 Perturbative computation

In this section, we compute expectation value of the elementary Wilson loop operator

〈WN[C,M ]〉 in planar perturbation theory. Prompted by the conclusions of previous sec-

tions, we choose the contour C either a timelike line or a spacelike circle. For this purpose,

we expand the Wilson loop expectation value in powers of the phase factor. Start with the

definition of the Wilson loop operator in Lorentzian spacetime R
1,2:

〈WN[C,M ]〉 =
1

N

∞∑

n=0

in

∫ +∞

−∞

dτ1

∫ τ1

−∞

· · ·
∫ τn−1

−∞

dτn (6.1)

〈
Tr

[
{A0(τ1) +MI

JY IY †
J (τ1)} · · · {A0(τn) +MI

JY IY †
J (τn)}

]〉
.
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Figure 1. The Feynman diagrams contributing at order λ1.

Figure 2. The Feynman diagrams contributing at order λ2.

We shall perform perturbative evaluation in Euclidean spacetime R
3. In this case, the

exponent of the Wilson loop is changed to

A0(τ)dτ → Am(x(τ))ẋm(τ)dτ, MI
J → iMI

J . (6.2)

Computations of 〈W
N

[C,M ]〉, 〈WN[C,M ]〉 or 〈W
N

[C,M ]〉 etc. proceed exactly the same.

To evaluate Feynman diagrams in momentum space,6 we rewrite the above expansion

of the Wilson loop as follows:

〈WN[C,M ]〉 =
1

N

∞∑

n=0

in

∫ +∞

−∞

dτ1

∫ τ1

−∞

· · ·
∫ τn−1

−∞

dτn

∫

p1

· · ·
∫

pn

ei(p
0

1
t1+···+p0

ntn)

〈
Tr

[
{A0(p1) + Y Y †(p1)} · · · {A0(pn) + Y Y †(pn)}

]〉
, (6.3)

Action, Feynman rules and conventions of the ABJM theory needed for perturbation theory

are summarized in appendix A.

Planar perturbative contribution to WN[C,M ] is organized in powers of the ’t Hooft

coupling λ in (1.1) as

〈WN[C,M ]〉 =

∞∑

n=0

Wn[C]λn, (6.4)

with W0[C] = 1. We shall evaluate W1,W2,W3 explicitly, and then establish vanishing

theorem that Wn vanishes for odd n to all orders in planar perturbation theory.

6.1 W1[C]

It is straightforward to check that all one-loop diagrams contributing to W1[C] vanish

identically. The relevant diagrams are depicted in figure 1.7

6Evaluation of Feynman diagrams in coordinate space are completely parallel and equally efficient.
7 For C a timelike line, the relevant Feynman diagrams are obtained by cutting the contour C in the

figures at a point and identifying the two ends with τ = ±∞. Different choices of the point generate all

combinatorially different diagrams.
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Figure 3. One loop photon self energy diagrams from bosons, Faddeev-Popov ghosts, gauge

bosons, fermions, respectively. Contributions of boson tadpole vanishes identically. Contributions

of Faddeev-Popov ghosts and gauge bosons cancel each other.

The first diagram vanishes by itself. For C the timelike line, the diagram is proportional

to ǫ00m and vanishes trivially. For C the spacelike circle, the diagram is proportional to

ẋm(τ1)ẋ
n(τ2)〈Am(τ1)An(τ2)〉 ∝ ẋm(τ1)ẋ

n(τ2)ǫmnk
(x(τ1) − x(τ2))

k

|x(τ1) − x(τ2)|3
. (6.5)

As the vector ẋm(τ) is contained within R
2, this again vanishes identically.

The second diagram in figure 1 also vanishes by itself. For C both the timelike line

and the spacelike circle, the diagram is proportional to TrM . In the previous section, we

found that supersymmetry of the Wilson loop imposes TrM to vanish. It is also worth

mentioning that the operator MI
JY IY †

J is automatically normally-ordered if TrM = 0.

6.2 W2[C]

The two-loop Feynman diagrams contributing to W2[C] are summarized in figure 2.

Begin with C the timelike line. The first diagram in figure 2 involves the vacuum

polarization tensor Πmn(p) depicted in figure 3. At one loop, it gives parity and time-

reversal invariant contribution:

N

2|p| (p
mpn − ηmnp2) , (6.6)

The derivation is recapitulated from [19] (see also [33]) in appendix C. Utilizing this, the

first diagram in figure 2 yields

i2

N
4π2λ2 ǫ0lmp

l

p2

N

2|p| (p
mpn − ηmnp2)

ǫ0knp
k

p2
= 2π2λ2 1

|p|

[
1 +

(p0)2

p2

]
. (6.7)

The first term in (6.7) is canceled by the second diagram in figure 2. In computing the

second diagram in figure 2), we used the supersymmetry condition TrM2 = 4, which

counts the number of matter flavors in ABJM theory. However, this should not be taken

as a restriction on the matter content of the theory. The first diagram in figure 2 is also

proportional to the number of matter flavors, so the cancelation persists for any number

of matter flavors. The non-covariant term in (6.7) vanishes since the contour integral

generates δ(p0).

The remaining diagrams in figure 2 vanish separately. The third diagram vanishes

since it involves TrM = 0. The fourth diagram vanishes since it is proportional to ǫ00m.

– 18 –



J
H
E
P
0
3
(
2
0
0
9
)
1
2
7

Consider next C the spacelike circle. In this case, a remarkable structure emerges. Re-

call that the one-loop correction to gluon propagator is parity and time-reversal invariant.

In Feynman gauge, it takes the form [33]

〈Aa
m(x)Ab

n(y)〉 =
2N

k2
δab

[
ηmn

(x− y)2
− 1

2
∂m∂n log(x− y)2

]
. (6.8)

Treating this as gauge boson skeleton propagator, the first diagram in figure 2 is obtained.

Likewise, the second diagram in figure 2 is obtained by treating the one-loop as scalar-pair

skeleton propagator:

〈MI
JY IY †

J (x)MK
LY KY †

L(y)〉 = N TrM2

[
2π

k

1

4π|x− y |

]2

. (6.9)

Taking account of Tr M2 = 4 and (6.2), these skeleton propagators put the contribution

from the first two diagrams in figure 2 to8

1

N
Nλ2

∫

τ1>τ2

−ẋ(τ1) · ẋ(τ2) + |ẋ(τ1)||ẋ(τ2)|
(x(τ1) − x(τ2))2

=
1

22
(2π)2 λ2. (6.10)

Here, we used the fact that the second term in (6.8) vanishes after the contour integration.

Remarkably, this two-loop contribution has exactly the same functional form in configura-

tion space as the one-loop contribution to supersymmetric Wilson loops in four-dimensional

N = 4 super Yang-Mills theory [5]. In the latter theory, assuming that all vertex-type di-

agrams do not contribute, the circular Wilson loop expectation value was mapped to a

zero-dimensional Gaussian matrix model. Strong ‘t Hooft coupling limit of the Gaussian

matrix model matched well with minimal surface result in string theory side. In the next

section, we will take the same assumption on vertex-type diagrams, utilize the above obser-

vation on skeleton propagators, and propose a conjecture concerning circular Wilson loop

in ABJM theory in terms of a Gaussian matrix model.

The fourth diagram in figure 2 is also encountered in the context of pure Chern-Simons

theory, and its value is well-known [10]. We obtain

i2

N

Nλ2

16π

∫

τ1>τ2>τ3

ẋ(τ1)
lẋ(τ2)

mẋ(τ3)
nǫabcǫlaiǫmbjǫnckI

ijk = −π
2λ2

6
, (6.11)

where

Iijk =

∫
d3x

(x− x(τ1))
i(x− x(τ2))

j(x− x(τ3))
k

|x− x(τ1)|3|x− x(τ2)|3|x− x(τ3)|3
. (6.12)

We summarize the computations so far. For the timelike line,

〈WN[C,M ]〉 = 1 + O(λ3). (6.13)

For the spacelike circle,

〈WN[C,M ]〉 =
(
1 + π2λ2 + · · ·

)(
1 − π2λ2

6
+ · · ·

)
+ O(λ3). (6.14)
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Figure 4. The diagrams of order λ3 which vanish by themselves.

The first part is identical to the circular Wilson loop in four-dimensional N = 4 super

Yang-Mills theory, while the second part is identical to the unknotted Wilson loop in pure

Chern-Simons theory.

6.3 W3[C]

We next analyze three-loop diagrams contributing to W3[C] and show that they

all vanish.

Consider the timelike line first. All Feynman diagrams listed in figure 4 vanish identi-

cally because they are proportional to the supersymmetry conditions

TrM = 0 and TrM3 = 0, (6.15)

respectively.

For the Feynman diagrams in figure 5, one easily finds that each of them vanish sep-

arately. For instance, for the second to the last diagram, the skeleton two-loop integral is

given by
1

N
32π2 TrM2 ·Nλ3 piǫimn

∫

k,l

kmln

k2l2(k − p)2(k − l)2(l + p− k)2
. (6.16)

Evidently, the two-loop integral should yield a result of the form:

A(p2)pmpn +B(p2)ηmn. (6.17)

Contracted with piεimn, this contribution vanishes identically. Many of the diagrams in

figure 5 vanish because self-energy of scalars and fermions are zero at one-loop. For the

Feynman diagram in figure 6, the contribution is proportional to

ǫ0mnp
m
1

∫

k

kn

k2(k − p1)2
= 0 (6.18)

so vanishes identically. The Feynman diagrams in figure 7 cancel among themselves. To see

this, we need to manipulate loop integrals judiciously. For instance, although they contain

8This formula holds for any contour C. For the timelike line, the integrand vanishes identically, repro-

ducing the result obtained below (6.7).
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Figure 5. The Feynman diagrams contributing to order λ3. They all have two vertices of the

Wilson loop along the contour C.

Figure 6. The Feynman diagram at order λ3 that vanish by itself. It has three vertices of the

Wilson loop along the contour C.

Figure 7. The Feynman diagrams at order λ3 that cancel one another. They have three vertices

of the Wilson loop along the contour C.
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Figure 8. The Feynman diagram at order λ3 that vanish identically. It has four maximal vertices

of the Wilson loop along the contour.

a different number of epsilon tensors and gauge boson propagators, nontrivial cancelation

occurs between the diagrams (2) and (3). The cancelation is possible because of various

identities such as

(pm1

2 pm2

1 − ηm1m2p1 · p2)ǫ0l1m1
pl1
1 ǫ0l2m2

pm2

2 = −p2
1p

2
2 + (non-covariant terms). (6.19)

In this way, two epsilon tensors cancel two gluon propagators in the diagram (2). It then

cancels the diagram (3). The non-covariant terms vanish after the contour integration, as

we have seen for two loop diagrams in subsection 6.2. Through judicious manipulations,

one can show all terms coming from the diagrams in figure 7 cancel among themselves. We

show details of the cancelation in appendix D.

The Feynman diagram 8 vanishes identically since it is proportional to ǫ00m.

Consider next the spacelike circle case. Except the ones in figure 7, all other Feynman

diagrams vanish by the same reason as for the timelike line case, viz. either due to TrM = 0

or due to contraction of momenta with ǫmnp tensor. After some manipulation, one also

finds that all Feynman diagrams in figure 7 vanish. Start with the diagram (1). This gives

a contribution proportional to
∫

τ1>τ2>τ3

ẋm1(τ1)ẋ
m2(τ2)ẋ

m3(τ3)ǫm1l1k1
ǫm2l2k2

ǫm3l3k3
I l1k1l2k2l3k3 [x(τ1), x(τ2), x(τ3)],

(6.20)

where I l1k1l2k2l3k3[x(τ1), x(τ2), x(τ3)] consists of integrals over positions of the interaction

vertices. One can always choose two epsilon tensors in the integrand and replace them

with a sum of products of ηmns. Then, after carrying out the position integration, the

integral should contain terms with one epsilon tensor whose indices are contracted with (a

derivative of) xm(τ). For instance, it produces a term like

ẋm1(τ1)ẋ
m2(τ2)ẋ

m3(τ3)ǫm1m2m3
. (6.21)

For the spacelike circle, all xmi(τi)s lie on R
2. Therefore, all the terms like (6.21) vanish

identically. By the same argument, the diagram (2) must vanish. Moreover, this argument

implies that any Feynman diagram with odd number of epsilon tensors ought to vanish once

the contour integration is performed. Therefore, the diagrams (3) and (4) must vanish.

In summary, we find that three-loop contributions W3[C] vanish for both the timelike

line case and the spacelike circle case.

6.4 Diagrammatical proof of W2n+1[C] = 0

Drawing from the lower order computations, we emphasize again that the cancelation
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observed among various Feynman diagrams is not specific to the ABJM theory. The

same cancelation would persist even for a theory with a generic number of matter flavor

multiplet, so long as the supersymmetry conditions TrM =TrM3 = 0 hold. In fact, up to

the order O(λ3), only the gauge interaction vertices contributed to the Feynman diagrams.

The quartet Yukawa interactions and the sextet scalar interactions specific to N = 6

supersymmetric ABJM theory will only start to contribute from the next order, viz. order

O(λ4). So, any result at order O(λ4) or higher would be considered as the discriminating

test of the ABJM theory against any others.

In this subsection, we prove one result on higher order terms: W2n+1[C] = 0 for all

n as long as the contour C lies inside R
2. In other words, the Wilson loop expectation

value receives nontrivial contribution only from even loop orders. Coincidentally, ABJM

theory exhibits both infrared and ultraviolet divergences only at even loop orders. Here,

however, we are considering not just these infinities but also finite parts. We begin with

the observation that any Feynman diagram can be drawn through the following two steps:

1. First, draw matter lines only. These diagrams need not be connected.

2. Next, add gluon lines.

In our proof, we shall follow these steps. First, we show that the diagrams with odd power

of λ vanish if there is no gluon propagator. Then, by counting number of λs and the εmnp

tensors as a single gluon propagator is added to a given diagram, we prove inductively that

W2n+1[C] = 0.

Denote by vn the number of n-valent vertices in a given diagram D. Here v1 is the

number of Am insertions from the Wilson loop, and v2 is the number of Y Y † insertions

from the Wilson loop. Evidently, the number I of internal lines is

I =
1

2

6∑

n=1

n vn. (6.22)

The power Nk of λ is given as

Nk = I −
6∑

n=3

vn

=
1

2
(v1 + 2v2) +

1

2

6∑

n=3

(n− 2)vn. (6.23)

6.4.1 No gluon line

If there is no gluon line in D, then the non-zero numbers are v2, v4 (Yukawa coupling) and

v6 (scalar potential). In this case,

Nk = v2 + v4 + 2v6. (6.24)

Due to the supersymmetry conditions of the velocity matrix MI
J , v2 must be even in any

non-vanishing diagram. Then we find that v4 determines whether Nk is even or odd.
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Fermions must appear in D as non-intersecting loops. Let

v4 =
∑

ni (6.25)

be a partition of v4. For each ni, there is a fermion loop which consists of ni fermion

propagators. Since Yukawa terms do not contain gamma matrices, each loop has the trace

of ni gamma matrices coming from the propagators. If ni is odd, then the loop provides the

epsilon tensor. Therefore, if v4 is odd, then there must be odd number of epsilon tensors.

We already proved that such diagram vanishes. This shows that WNk=2n+1[C] = 0 if there

is no gluon line.

6.4.2 Adding gluon lines

We have shown that, if there is no gluon line, then Nk and the number Nǫ of epsilon tensors

are equivalent modulo 2. If we can show that the Nk ≡ Nǫ mod 2 holds whenever a gluon

line is added to a given diagram D which already satisfies that relation, then it proves

W2n+1[C] = 0 in general by induction. The above statement can be show to be true case

by case. For example, if a gluon line is added which connects two matter lines, then the

number of vertices increases by two, the number of propagators increases by three, which

results in the increase of Nk by one, and one epsilon tensor comes from the gluon line.

Therefore, Nk ≡ Nǫ mod 2 still holds.

There might be one subtle point in this argument. Suppose that we have a generic

diagram, and eliminate all the gluon lines. Then the resulting diagram may contain a

matter loop without any vertex, that is, there could be a matter loop to which only gluons

are attached. Such a loop is not included in the discussion given in the previous subsection.

It seems that this causes no problem since the matter loop in question does not give no k

nor epsilon tensor. This can be checked by considering a particular diagram with such a

loop and eliminate the gluon lines.

Summarizing, we proved that W2n+1[C] = 0 to all orders in perturbation theory. Note

that the necessary ingredients for the proof are (1) TrM2n+1 = 0, (2) C lies in R
2 ∈ R

4, and

(3) the action is classically conformally invariant so that the interaction terms consist only

of gauge, quartic Yukawa and sextet scalar couplings. It should be noted that our proof is

insensitive to specific value of the coefficients for each terms in the Yukawa couplings and

the scalar potential.

7 Reduction to the gaussian matrix model

In this section, we revisit planar perturbative evaluation of the circular Wilson loop.

As demonstrated in the previous section, expectation value of the circular Wilson loop

WN[C,M ] contains features similar to the circular Wilson loop of 4-dimensional N = 4

super Yang-Mills theory [5]. The first feature is that, apart from quantum corrections

to gauge and scalar propagators, all other diagrams vanish. Second feature is that sum

of quantum corrected gauge and scalar propagators is reduced to a constant up to total

derivative term. It is remarkable that these features persists despite field contents, interac-

tions and even spacetime dimensions are different between the two conformal field theories.
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A new feature that arose for the ABJM theory was that there is an extra contribution from

Chern-Simons interactions. Combining all these features, we expect that expectation value

of a circular ABJM Wilson loop computed in planar perturbation theory can be brought

into the form

〈WN[C,M ]〉 = 〈WN[C]〉CS〈WN[C,M ]〉ladder . (7.1)

Here, 〈WN[C]〉CS denotes expectation value of an unknotted Wilson loop in pure Chern-

Simons theory, while 〈WN[C,M ]〉ladder is the ladder part9 of the Wilson loop in the

ABJM theory.

In this section, we employ the factorized form (7.1) as an ansatz, and explore possible

exact results concerning the Wilson loop.

7.1 Gaussian matrix model

In extracting Gaussian matrix model, our starting point will be the following assumptions.

• The two point function of gauge boson+scalar bilinear is a constant.

• The Wilson loop has the structure (7.1). All other diagrams than those in (7.1) cancel

each other and do not contribute to the expectation value.

These assumptions are actually true up to the order of O(λ3), as we have demonstrated in

the previous section.

Let us first consider the ladder part. In the planar limit, by large-N factorization,

expectation value 〈WN[C,M ]〉 is given by

〈WN[C,M ]〉 = 〈WN[C,M ]〉 = 〈W
N

[C,M ]〉. (7.2)

Parallel to N = 4 super Yang-Mills theory [5], we now show that 〈WN[C,M ]〉ladder can be

related to the Gaussian matrix model, but with an interesting twist.

Consider the Wilson loop on R
3 and recall the exponential Φ(τ)

Φ(τ) := [iAm(x)ẋm(τ) +M I
J(Y IY †

J )(x)]x=x(τ). (7.3)

This Φ(τ) is in adjoint of U(N), so we expanded it in the basis of Lie algebra generators T a:

Φ(τ) = Φa(τ)Ta. (7.4)

From the assumption, the two point function of Φ is a constant. This is supported by the

two loop result (6.10):

〈Φa(τ1)Φ
b(τ2)〉 =

δab

N
f(λ) =

δab

N
(λ2 +O(λ4)). (7.5)

Therefore, contribution to the Wilson loop expectation value from ladder diagrams of

quantum corrected Φa propagators is obtainable from

〈WN[C,M ]〉ladder =
1

N

∞∑

n=0

∫

τ1>τ2>···>τn

Tr [Ta1
. . . Tan ] 〈Φa1(τ1) . . .Φ

an(τn)〉ladder. (7.6)

9This means ladders of quantum corrected propagators.
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By the assumption, the integrands in the above equation are τ independent, so τ integral

just yield angular volume as

〈WN[C,M ]〉ladder =
1

N

∞∑

n=0

1

n!
(2π)n Tr [Ta1

. . . Tan ] 〈Φa1 . . .Φan〉ladder. (7.7)

Here, the expectation values 〈· · · 〉ladder are evaluated according to the Wick’s theorem using

the propagator (7.5). We now rewrite the above series in a simpler form. Introduce N2

real variables Xa and the Gaussian integral 〈F (X)〉mm for a function F (X) as

〈F (X)〉mm :=
1

Z

∫
dN2

X F (X) exp

[
−1

2

N

(2π)2f(λ)

∑

a

XaXa

]
, (7.8)

Z :=

∫
dN2

X exp

[
−1

2

N

(2π)2f(λ)

∑

a

XaXa

]
. (7.9)

The Wick contracted expectation values can be replaced by the Gaussian integral. This

brings (7.7) to the form

〈WN[C,M ]〉ladder =
1

N

∞∑

n=0

1

n!
Tr [Ta1

. . . Tan ] 〈Xa1 . . . Xan〉mm

=

〈
1

N
Tr

(
eX

)〉

mm

, (7.10)

where we introduced a single Hermitian matrix X := XaTa. The Gaussian integral (7.8)

can then be rewritten as a Gaussian matrix integral:

〈F (X)〉mm =
1

Z

∫
dN2

X F (X) exp

[
− N

(2π)2f(λ)
Tr(X2)

]
. (7.11)

In the planar limit, the expectation value (7.10) can be evaluated in terms of modified

Bessel function I1 as

〈WN[C,M ]〉ladder =

〈
1

N
Tr

(
eX

)〉

mm

=
1

π
√

2f(λ)
I1(2

√
2π

√
f(λ)). (7.12)

In the large f(λ) limit, we obtain asymptote of the Wilson loop expectation value as

〈WN[C,M ]〉ladder ∼ exp(2
√

2π
√
f(λ)) (7.13)

up to computable pre-exponential factors. If large f(λ) limit is also large λ limit, this is a

prediction of the ABJM theory that could be compared with the string theory dual.

7.2 Chern-Simons contribution

In ABJM theory, the Wilson loop expectation value (7.1) contains an additional contri-

bution from pure Chern-Simons interactions. We need to examine large f(λ) limit of this
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contribution as well. By assumption we take 〈WN[C]〉CS is the same as unknotted Wil-

son loop expectation value in pure Chern-Simons theory. Exact answer of the latter is

known [9]:

〈WN[C]〉CS =
1

N

q
N
2 − q−

N
2

q
1

2 − q−
1

2

, q := exp

(
2πi

k +N

)
. (7.14)

In the ’t Hooft limit, this becomes

〈WN[C]〉CS =
1 + λ

πλ
sin

πλ

1 + λ
. (7.15)

We see that large λ asymptote is given by

〈WN[C]〉CS ≡ 〈WN[C]〉CS + (λ→ −λ) =
2π2

3
λ−4 + . . . . (7.16)

We see that this contribution yields exponentially small corrections compared to the ladder

diagram contribution (7.13). The λ−1 asymptote still carries an interesting information,

since it changes leading power of λ in the pre-exponential. In particular, this indicates that

number of zero-modes of the string worldsheet configuration dual to the circular Wilson

loop in the ABJM theory is different from that in the N = 4 super Yang-Mills theory.

7.3 Interpolation between Weak and strong coupling

By AdS/CFT correspondence, large λ behavior of WN[C,M ] was determined from minimal

surface configuration of the string worldsheet in section 2. On the other hand, small λ

behavior of WN[C,M ] was determined from planar perturbation theory in section 6. This

poses an interesting question: what kind of function f(λ) can interpolate between the weak

and strong coupling behavior? We assume that (7.12) can be used for this purpose with a

suitable choice of f(λ). The small λ behavior of f(λ) can be obtained by comparing (7.5)

with (6.10), and the result is already given in (7.5). Assuming that large λ limit is also

large f(λ) limit, the large λ behavior can be extracted by comparing (7.13) with (2.1).

We obtain

f(λ) →





λ2 (λ→ 0)

λ

4
(λ→ ∞)

. (7.17)

When comparing various physical observables at weak coupling limit from the ABJM theory

and at strong coupling limit from the AdS4 × CP
3 string theory, various interpolating

functions analogous to f(λ) were introduced. An interesting question is whether some of

these interpolating functions are actually the same one. To test this possibility, consider

the interpolating function f(λ) introduced in the context of the giant magnon spectra [30,

35, 36]. There, it was noted that dispersion relation of AdS4 giant magnon takes exactly

the same form as that of AdS5 giant magnon except that N = 4 super Yang-Mills ‘t Hooft

coupling g2N is now replaced by a nontrivial interpolating function h(λ) of the N = 6

superconformal Chern-Simons ‘t Hooft coupling:

g2N
∣∣∣
SYM

→ 16πh2(λ)
∣∣∣
ABJM

. (7.18)
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At weak coupling, h(λ) ∼ λ. So, it is encouraging that the interpolating function associated

with the giant magnon and the interpolating function associated with the circular Wilson

loop are relatable each other as h2(λ) = f(λ). But it seems this would not work for all

coupling regime because h(λ) actually interpolates as

h(λ) →





λ (λ→ 0)
√
λ

2
(λ→ ∞) .

(7.19)

We see that it behaves differently at the strong coupling regime, so the two interpolating

functions are not identifiable. Our proposal of the Gaussian matrix model suggests that

there ought to be an independent interpolating function f(λ) specific to the circular Wilson

loop observable. Since f(λ) summarizes all-order corrections to the vacuum polarization of

the ABJM gauge fields, interpolating functions that would enter static quark potential or

total cross section of 2-body boson or fermion matter might be related to f(λ). It would

be very interesting to clarify the relation, if any, and compute higher order terms of f(λ).

8 Discussions

In this section, we discuss several interesting issues left for future investigation.

We identified an elementary Wilson loop WN[C,M ] which transforms correctly under

generalized time-reversal, and we proposed that this is dual to fundamental Type IIA string.

Though the identification is correct from the viewpoint of charge conservation and time-

reversal symmetry, consideration of other symmetries remains to be understood better.

For the Wilson loop, there exists a unique supersymmetric configuration and it preserves
1
6 of the N = 6 superconformal symmetry. On the other hand, the fundamental string

in AdS4 preserves 1
2 supersymmetry. Related, the supersymmetric Wilson loop preserves

SU(2)×SU(2) subgroup of the SU(4) R-symmetry, while the supersymmetric fundamental

string in AdS4 preserves SU(3) subgroup. We also observed that string configuration

preserving 1
6 supersymmetry and SU(2) subgroup is obtainable by smearing string position

in CP
3 over a CP

1. Still, given that a fundamental string preserving 1
2 supersymmetry and

SU(3) subgroup of SU(4) R-symmetry exists, a supersymmetric Wilson loop with the same

symmetry is yet to be identified.

With the Wilson loop and its holographic dual is identified, various physical observ-

ables are computable. By inspection, static quark potential at conformal point is exactly

the same as AdS5 and N = 4 super Yang-Mills counterpart. It would be interesting to

extend the computation to Coulomb branch and compared the two sides. Also, various

lightlike Wilson loops and their cusp anomalous dimensions can be computed. It would be

interesting to see if they are related to scattering amplitudes and the fermionic T-duality

of the ABJM theory.

Another important direction is to compute the O(λ4) contribution to the circular

Wilson loop. The computation will elucidate validity of the factorization hypothesis of

the Wilson loop expectation value in terms of Gaussian matrix model proposed in section

7. The computation is also a nontrivial test of N = 6 supersymmetry since, from this
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order, Feynman diagrams involving Yukawa coupling and sextet scalar interactions specific

to the ABJM theory begin to contribute. So we could find some distinguished features

of N = 6 ABJM model from N = 2 superconformal Chern-Simons models. At the same

time checking the cancellation is highly non-trivial interesting problem. In N = 4 super

Yang-Mills case, the reduction from circular Wilson loop to the Gaussian matrix model is

proved using localization [7]. Similar derivation for the circular Wilson loop in the ABJM

theory is also an interesting problem.

We intend to report progress of these issues in forthcoming publications.
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A Notation, convention and Feynman rules

A.1 Notation and convention

• R
1,2 metric:

gmn = diag(−,+,+) with m,n = 0, 1, 2.

ǫ012 = −ǫ012 = +1

ǫmpqǫmrs = −(δp
rδ

q
s − δp

sδ
q
r); ǫmpqǫmpr = −2δq

r (A.1)

• R
1,2 Majorana spinor and Dirac matrices:

ψ ≡ two-component Majorana spinor (A.2)

ψα = ǫαβψβ, ψα = ǫαβψ
β where ǫαβ = −ǫαβ = iσ2

γm
α

β = (iσ2, σ3, σ1), (γm)αβ = (−I, σ1,−σ3) obeying γmγn = gmn − ǫmnpγp.

A.2 ABJM theory

• Gauge and global symmetries:

gauge symmetry : U(N) · U(N)

global symmetry : SU(4) (A.3)

We denote trace over U(N) and U(N) as Tr and Tr, respectively. We also de-

note generators for U(N) and U(N) gauge groups by the same notation T a, (a =

0, 1, · · · , N2 − 1). They are Hermitian and normalized to

Tr(T aT b) =
1

2
δab. (A.4)
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• On-shell fields are gauge fields, complexified Hermitian scalars and Majorana spinors

(I = 1, 2, 3, 4):

Am : Adj (U(N)); Am : Adj U(N)

Y I = (X1 + iX5,X2 + iX6,X3 − iX7,X4 − iX8) : (N,N;4)

Y †
I = (X1 − iX5,X2 − iX6,X3 + iX7,X4 + iX8) : (N,N;4)

ΨI = (ψ2 + iχ2,−ψ1 − iχ1, ψ4 − iχ4,−ψ3 + iχ3) : (N,N;4)

Ψ†I = (ψ2 − iχ2,−ψ1 + iχ1, ψ4 + iχ4,−ψ3 − iχ3) : (N,N;4) (A.5)

• action: To suppress the cluttering 2π factors, we use the notation κ := k
2π .

I = κ

∫

R1,2

[
ǫmnpTr

(
1

2
Am∂nAp+

i

3
AmAnAp

)
− ǫmnpTr

(
1

2
Am∂nAp+

i

3
AmAnAp

)

+
1

2
Tr

(
−(DmY )†ID

mY I + iΨ†ID/ΨI

)
+

1

2
Tr

(
−DmY

I(DmY )†I + iΨID/Ψ
†I

)

−VF − VB

]
(A.6)

Here, covariant derivatives are defined as

DmY
I = ∂mY

I + iAmY
I − iY IAm , DmY

†
I = ∂mY

†
I + iAmY

†
I − iY †

I Am (A.7)

and similarly for fermions ΨI ,Ψ
†I . Potential terms are

VF = iTr
[
Y †

I Y
IΨ†JΨJ − 2Y †

I Y
JΨ†IΨJ + ǫIJKLY †

I ΨJY
†
KΨL]

−iTr[Y IY †
I ΨJΨ†J − 2Y IY †

J ΨIΨ
†J + ǫIJKLY

IΨ†JY KΨ†L
]

(A.8)

and

VB = −1

3
Tr

[
Y †

I Y
JY †

J Y
KY †

KY
I + Y †

I Y
IY †

J Y
JY †

KY
K

+4Y †
I Y

JY †
KY

IY †
J Y

K − 6Y †
I Y

IY †
J Y

KY †
KY

J
]

(A.9)

At quantum level, since the Chern-Simons term shifts by integer multiple of 8π2, not

only N but also k should be integrally quantized. At large N , we expand the theory

and physical observables in double series of

gst =
1

N
, λ =

N

k
=

N

2πκ
(A.10)

by treating them as continuous perturbation parameters.

A.3 Feynman rules

• We adopt Lorentzian Feynman rules and manipulate all Dirac matrices and ǫmnp

tensor expressions to scalar integrals. For actual evaluation of these integrals, we

shall go the Euclidean space integral by the Wick rotation, which corresponds to

x0 → −iτ . In the momentum space, this means we change the contour of p0 to the

imaginary axis following the standard Wick rotation. Then in terms of integration

measure, we simply replace d2ωk → id2ωkE together with p2 → +p2
E. The procedure

is known to obey Slavnov-Taylor identity, at least to two loop order.
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• We choose covariant gauge fixing condition for both gauge groups:

∂mAm = 0 and ∂mAm = 0 (A.11)

and work in Landau gauge. Accordingly , we introduce a pair of Faddeev-Popov

ghosts c, c and their conjugates, and add to I the ghosts action:

Ighost = κ

∫

R1,2

[
Tr∂mc∗Dmc+ Tr∂mc∗Dmc

]
(A.12)

Here, Dmc = ∂mc+ i[Am, c] and Dmc = ∂mc+ i[Am, c].

• Propagators in U(N)×U(N) matrix notation:

gauge propagator : ∆mn(p) = κ−1
I
ǫmnrp

r

p2 − iǫ

scalar propagator : DI
J(p) = κ−1δJ

I

−i
p2 − iǫ

fermion propagator : SI
J(p) = κ−1δI

J

ip/

p2 − iǫ

ghost propagator : K(p) = κ−1 −i
p2 − iǫ

(A.13)

• Interaction vertices are obtained by multiplying i =
√
−1 to nonlinear terms of

the Lagrangian density. Note that the paramagnetic coupling of gauge fields to

scalar fields has the invariance property under simultaneous exchange between Am, Y
I

and Am, Y
†
I .

• Momentum representation:
∫

p
:=

∫
d3p

(2π)3
, (A.14)

Y I(x) =

∫

p
eip·xY I(p) (A.15)

Y Y †(p) :=

∫

q
MI

JY I(q + p)Y †
J (q). (A.16)

B Supersymmetry condition for generic contour

Consider the generalized supersymmetry conditions for the Wilson loop:

ξIJn/(τ) +MI
K(τ)iξKJ = 0. (B.1)

We assume that n(τ)2 = −1 andMI
J(τ) is a hermitian matrix. M(τ) can be decomposed as

M(τ) = U †(τ)Λ(τ)U(τ), (B.2)

where Λ(τ) = Λ is a constant diagonal matrix unless U(τ) is allowed to have discontinuities.

We assume that U(τ) is continuous, and Λ = diag(−1,−1,+1,+1) so that the generalized

supersymmetry conditions have a non-trivial solution.

– 31 –



J
H
E
P
0
3
(
2
0
0
9
)
1
2
7

Let us assume, without loss of generality, that U(τ = 0) is the identity matrix. Then,

non-zero components of ξIJ are ξ12 and ξ34 with

ξ12n/ = iξ12, ξ34n/ = −iξ34, (B.3)

where nm = nm(0). Define

ξIJ(τ) := U(τ)I
KξKJ . (B.4)

Notice that ξIJ(τ) is no longer anti-symmetric. This satisfies

ξIJ(τ)n/(τ) + ΛI
K(τ)iξKJ(τ) = 0. (B.5)

Since nm(τ) is related to nm by a Lorentz transformation Lm
l(τ), we find its spinor repre-

sentation

S(τ)γmS
−1(τ) = γmL

m
l(τ)n

l, (B.6)

with S(0) = 1 by definition. Now the supersymmetry condition becomes

ξIJ(τ)S(τ)n/ + ΛI
KiξKJ(τ)S(τ) = 0. (B.7)

Consider the following condition:

ξ13(τ)S(τ)n/− iξ13(τ)S(τ) = 0 (B.8)

for a generic τ . Since ξ13(τ) = U1
4(τ)ξ43, this condition implies

U1
4(τ) = 0 or ξ34S(τ)n/− iξ34S(τ) = 0. (B.9)

As long as the contour is smooth, that is, S(τ) is continuous, the latter contradicts

with (B.3). Therefore, we conclude that U1
4(τ) = 0 holds. Using similar arguments,

one can show that

U(τ) =

[
u1(τ) 0

0 u2(τ)

]
, (B.10)

where u1(τ), u2(τ) are U(2) matrices. This immediately implies that M(τ) = Λ and

nm(τ) = nm.

C Vacuum polarization

The self-energy correction enters in the same form for the U(N) and the U(N) gauge

fields. Therefore we focus on the correction to A gauge field only. At the one-loop level,

the boson, the fermion, the gauge and the ghost loops may in general contribute to the

gauge self-energy correction. In this appendix, we identify these self-energy contributions.

We begin with the scalar loop contribution. It is the sub-diagram of figure 3. The

momentum k plays the role of the external momentum. The self energy contribution reads

iΠs
ab(k) = (i)2[i ]2(4)i

∫
d2ωℓ

(2π)2ω

(2ℓ+ k)a(2ℓ+ k)b
(k + ℓ)2 ℓ2

, (C.1)
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where the extra factor 4 comes from the fact that 4 complex scalars are coupled to the

gauge field. Using the dimensional regularization, one obtains

iΠs
ab(k) = (4)i

[
kakb − gabk

2

16k

]
. (C.2)

Similarly, for the fermion loop, the self-energy contribution becomes

iΠf
ab(k) = (i)2[i ]2(4)(−)FD i

∫
d2ωℓ

(2π)2ω

tr γa (ℓ/+ k/ ) γb ℓ/

(k + ℓ)2 ℓ2
, (C.3)

where again the extra factor four comes from the fact that there are 4 complex fundamental

fermions. Using the γ matrix identity and the dimensional regularization, the contribu-

tion becomes

iΠf
ab(k) = (4)i

[
kakb − gabk

2

16k

]
. (C.4)

Hence, each complex matter contributes by the same weight and sign.

One can continue the dimensions 2ω to four and obtain the vacuum polarization in

four-dimensional Yang-Mills theories. The integration leads to the logarithmic divergence

in this case contributing positively to the β-function of the Yang-Mills coupling. Again,

boson and fermion contributions add up.

For the gluon self-energy contribution, we have

iΠA
ab(k) = (3) · (3)[i2]

[
iκ

3

]2[1

κ

]2

(i)2[i ]2(4)i

∫
d2ωℓ

(2π)2ω

ǫmbnǫjaiǫimqǫnjr(ℓ+ k)qℓr

(k + ℓ)2 ℓ2
,

= i

∫
d2ωℓ

(2π)2ω

(ℓ+ k)aℓb + (ℓ+ k)bℓa
(k + ℓ)2 ℓ2

. (C.5)

It becomes

iΠA
ab(k) = −i

[
kakb + gabk

2

32k

]
, (C.6)

which alone does not respect the gauge invariance. However, there exists also the ghost

loop contribution,

iΠgh
ab (k) = (i)2[i ]2(−)i

∫
d2ωℓ

(2π)2ω

(ℓ+ k)aℓb + (ℓ+ k)bℓa
(k + ℓ)2 ℓ2

, (C.7)

where we put the extra (−) sign due to the ghost statistics. Therefore, the ghost contri-

bution cancels out precisely the gauge loop contribution, reproducing the well-established

result [34].

Again, analytically continuing to four dimensions, the integral expression for the gauge

part changes while the ghost integral remains intact. With Yang-Mills couplings, both

contributions no longer cancel each other but contribute negatively to the β-function.
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D Feynman integrals for 3-loop diagrams in figure 7

The diagram (2) provides

−32π3λ3Em1m2m3
× (D.1)

×
∫

k

1

k2(k − p1)2(k − p1 − p2)2
[
Tm1m2m3

F1 + Tm1m2m3

F2 + Tm1m2m3

F3 + Tm1m2m3

F4

]

where we defined

Em1m2m3
=

3∏

i=1

ǫ0limi
pli

i

p2
i

, (D.2)

and

Tm1m2m3

F1 = −8km1(k − p1)
m2km3 , (D.3)

Tm1m2m3

F2 = −2(pm1

2 pm2

1 − ηm1m2p1 · p2)k
m3 − 2(pm2

3 pm3

2 − ηm2m3p2 · p3)k
m1

−2(pm3

1 pm1

3 − ηm3m1p3 · p1)(k − p1)
m2 (D.4)

Tm1m2m3

F3 = 2pm1

3 pm2

1 pm3

2 − (ηm1m2pm3

1 p2
3 + ηm2m3pm1

2 p2
1 + ηm3m1pm2

3 p2
2) (D.5)

Tm1m2m3

F4 = −
(
ηm2m3km1 [−k2 − (k − p1 − p2)

2]+ηm1m2km3 [−(k − p1)
2 − (k − p1 − p2)

2]

−ηm1m2(k − p1)
m3 [−k2 − (k − p1 − p2)

2]+ηm1m2km3 [−k2 − (k − p1)
2]

−ηm2m3(k − p2)
m1 [−k2 − (k − p1)

2]+ηm3m1(k − p1)
m2 [−k2 − (k − p1 − p2)

2]

−ηm3m1km2 [−(k − p1)
2 − (k − p1 − p2)

2]+ηm3m1(k − p1)
m2 [−k2 − (k − p1)

2]

+ηm2m3km1 [−(k − p1)
2 − (k − p1 − p2)

2]
)
. (D.6)

The diagram (1) provides

− 32π3λ3Em1m2m3

∫

k

1

k2(k − p1)2(k − p1 − p2)2
[8km1(k − p1)

m2km3 ], (D.7)

which cancels the term Tm1m2m3

F1 in (D.6).

The diagram (4) provides

−4π3iλ3Em1m2m3

[
1

|p3|
(−ηm2m3pm1

3 + ηm3m1pm2

3 ) +
1

|p1|
(−ηm3m1pm2

1 + ηm1m2pm3

1 )

+
1

|p2|
(−ηm1m2pm3

2 + ηm2m3pm1

2 )

]
+ (non-covariant terms). (D.8)

The covariant terms above cancel the covariant terms coming from Tm1m2m3

F4 in (D.6).

One can show that

−2(pm1

2 pm2

1 −ηm1m2p1·p2)Em1m2m3
= 2

[
1 − p0

1p
0
2

p1 · p2

p2
1p

2
2

+
(p0

2)
2

p2
2

+
(p0

1)
2

p2
1

]
ǫ0l3m3

pl3
3

p2
3

. (D.9)
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By using this formula, it turns out that the term Tm1m2m3

F2 in (D.6) provides

−32π3λ3

∫

k

1

k2(k − p1)2(k − p1 − p2)2

[
2km ǫ0lmp

l
3

p2
3

+ 2km ǫ0lmp
l
1

p2
1

+ 2(k − p1)
m ǫ0lmp

l
2

p2
2

]

−32π3λ3

∫

k

1

k2(k − p1)2(k−p1−p2)2

[(
−2p0

1p
0
2
p1 · p2

p2
1p

2
2

+ 2
(p0

2)
2

p2
2

+ 2
(p0

1)
2

p2
1

)
km3

ǫ0l3m3
pl3
3

p2
3

+

(
−2p0

2p
0
3

p2 · p3

p2
2p

2
3

+ 2
(p0

3)
2

p2
3

+ 2
(p0

2)
2

p2
2

)
km1

ǫ0l1m1
pl1
1

p2
1

(D.10)

+

(
−2p0

3p
0
1

p3 · p1

p2
3p

2
1

+ 2
(p0

1)
2

p2
1

+ 2
(p0

3)
2

p2
3

)
(k − p1)

m2
ǫ0l2m2

pl2
2

p2
2

]
.

The first integral is canceled by the diagrams (3).

Finally, the term Tm1m2m3

F3 in (D.6) provides

− 32π3λ3

∫

k

1

k2(k − p1)2(k − p1 − p2)2

[
−ǫ0lmp

l
1p

m
2

p2
1p

2
2p

2
3

(
p2
1(p

0
2)

2 + p2
2(p

0
1)

2 − 2p1 · p2(p
0
1p

0
2)

)]
.

(D.11)

In summary, all the covariant terms from the diagrams in figure 7 cancel among them,

and provide the terms in (D.8), (D.10) and (D.11) which are non-covariant. These non-

covariant terms will vanish if the momentum and contour integrations are performed.

Namely, the contour integrals provide
∏3

i=1 δ(p
0
i ), and therefore, those terms vanish by

the momentum integration.
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