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Abstract: We begin the process of unitarizing the Pomeron at large ’t Hooft coupling.

We do so first in the conformal regime, which applies to good accuracy to a number of real

and toy problems in QCD. We rewrite the conformal Pomeron in the J-plane and trans-

verse position space, and then work out the eikonal approximation to multiple Pomeron

exchange. This is done in the context of a more general treatment of the complex J-plane

and the geometric consequences of conformal invariance. The methods required are direct

generalizations of our previous work on single Pomeron exchange and on multiple graviton

exchange in AdS space, and should form a starting point for other investigations. We

consider unitarity and saturation in the conformal regime, noting elastic and absorptive

effects, and exploring where different processes dominate. Our methods extend to confining

theories and we briefly consider the Pomeron kernel in this context. Though there is im-

portant model dependence that requires detailed consideration, the eikonal approximation

indicates that the Froissart bound is generically both satisfied and saturated.
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1 Introduction

Recently there has been considerable effort — much of it using gauge/string duality —

toward understanding high energy hadronic scattering in gauge theories. The conceptual

and experimental importance of this problem is widely known, as is its difficulty. Here we

take a step forward that will allow a number of interesting problems to be addressed.

The goal of this paper is to continue developing methods for implementing unitarity at

finite ’t Hooft coupling λ. In a wide regime of high energy scattering, Pomeron exchange is
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believed to be the dominant, universal process [1–7]. The Pomeron kernel with a leading

J-plane singularity at j0 > 1 contributes to cross sections a growing power sj0−1 (up

to logarithms) in violation of unitarity. The eikonal approximation is an order-by-order

summation of the leading (sj0−1/N2)n contribution to the n-Pomeron exchange process;

here N is the number of colors. This approximation can only be valid in limited regimes,

where the scattering angle is small. But understanding it represents a first step in satisfying

the non-perturbative unitarization of high energy scattering [8–10].

A smaller step toward introducing unitarity corrections was made recently in the

eikonal approximation for pure AdS5 gravity, [11, 12]; earlier related work includes [13, 14].

This limit represents taking λ → ∞ prior to considering large s. The power j0 is exactly

2 in this case.

Here we keep λ large but finite, and consider the richer question of Pomeron exchange

with j0 < 2, which is more relevant for QCD-like theories which have j0 considerably less

than 2. We mainly present results for conformal field theories, but our results can easily be

generalized to nonconformal theories, which we consider here only briefly. More difficult

generalizations will involve including nonlinear effects and/or moving beyond the eikonal

approximation.

The basic concepts involving high-energy hadron scattering in gauge/string duality

have emerged in stages. It was shown in [15] that in exclusive hadron scattering, the dual

string theory amplitudes, which in flat space are exponentially suppressed at wide angle,

instead give the power laws that are expected in a gauge theory. Other related work in-

cludes [16, 17]. It was also argued that at large s and small t that the classic Regge form

of the scattering amplitude, varying as st/t0 , is found in certain kinematic regimes. Next,

deep inelastic scattering was studied [18]. The moderate x regime was shown to be quite

different from that of weak-coupling gauge theories due to much more rapid evolution of

structure functions with q2. The classical-twist-two operators develop large anomalous di-

mensions and (at finite but large N) become subleading compared to double-trace, higher

twist operators. At small x, by contrast, the physics is more similar to that of weak cou-

pling, with a large growth in the structure functions controlled by Regge physics. The

correct equations for the string-theory realization of the gauge-theory Pomeron were iden-

tified, along with the fact that the growth of the structure functions is controlled by a

power j0−1 with j0 very close to, but less than, 2. After several interesting attempts using

other methods [19–22], it was demonstrated in [23] that the Pomeron equations of [18]

could be easily solved and interpreted. The Pomeron was identified as a well-defined fea-

ture of the curved-space string theory. Its mathematical form in the conformal region of

a gauge theory — the “hard” Pomeron — was shown to share many of the feature of the

BFKL Pomeron for weak-coupling gauge theories. The Pomeron in the confining region

was shown to have the features one would expect from QCD; running trajectories with

bound states at integer j. Moreover, the “hard” and “soft” Pomerons were shown to be a

single, unified object, as conjectured in [24, 25]. With this understanding of the Pomeron,

any computation involving single-Pomeron exchange in a confining gauge theory can now,

at least in principle, be carried out.

However, as we mentioned above, single-Pomeron exchange is only appropriate in

limited regimes, since it violates unitarity at high energy. We now turn to the question

– 2 –
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of summing multiple Pomeron exchange where the scattering is sufficiently weak. As a

preliminary, let us recall a result of [23]. In a conformal field theory, the Pomeron exchange

kernel in the gauge theory can be represented in the dual string theory through a kernel

K, a function of s, t and two bulk coordinates z, z′.1 This kernel is akin to a propagator

for the Pomeron. At t = 0 it has the very simple form,

Im K(s, 0, z, z′) ≃ sj0
√

πD ln s
e−(ln z−ln z′)2/D ln s (1.2)

where j0 = 2 − 2/
√

λ and D = 2/
√

λ. This is strikingly similar to the weak BFKL

kernel [3–5],

Im K(p⊥, p′⊥, s) ≈ sj0
√

πD ln s
e−(ln p′

⊥
−ln p⊥)2/D ln s (1.3)

with j0 = 1 + (4 ln 2/π)αN , D = (14ζ(3)/π)αN , α = g2
Y M/4π. This correspondence

identifies diffusion in virtuality (or log p2
⊥ for the off-shell gluons) with diffusion in the

radial co-ordinate log z2 in the dual AdS5 space.2 For t 6= 0 the form is somewhat more

complicated, and is given below.

Our task will be to first reconsider the Pomeron kernel of [23] in the conformal regime.

We will rewrite it in impact parameter space and in the J-plane, which greatly simplifies

its form. In particular, as is the case for graviton exchange [11, 12], it involves an AdS3

scalar Green’s function. We then use this answer to construct the eikonal approximation to

the full amplitude, as we did in [12]. In doing so we include an infinite ladder of Pomeron

exchanges, but neglect all non-linear Pomeron interactions. Of course this approximation

is only valid in limited regimes, but we will not address the region of validity here. Within

the regime in which it applies, the eikonal amplitude satisfies a form of bulk unitarity and

exhibits both elastic and absorptive parts.

Our main results are the following. We begin with a conformal large-N theory. For

definiteness, consider adding a massive probe to such a theory, whose effects on the dy-

namics are subleading in 1/N , such as a massive quark in the fundamental representation.

Then consider 2 → 2 high-energy scattering of gauge-neutral states associated to the probe

(such as massive quarkonium states) at fixed s, t. The string description of this scattering

depends not only on s, t but also on the bulk location z where the scattering occurs. In

fact this is not enough; in general the scattering is not local, and could depend on the

z locations of all four strings. However, there may be some regions of z, z′, and impact

parameter b (where b ≡ x⊥ − x′⊥ is the distance in the two Minkowski space coordinates

transverse to the motion), where the eikonal regime is valid. Let us separate the amplitude

A2→2(s, t) into the region in position space variables where the eikonal approximation is

valid — the “eikonal region” E — and the regime where it is not. The contribution of the

1Here the metric on the Poincare’ patch of AdS5 is

ds2 =
R2

z2

ˆ
ηµνdxµdxν + dz2˜

(1.1)

2In [23] the diffusion was taken with respect to log z, or log p⊥, while standard conventions, to which

we adhere in this paper, take diffusion in the variable log z2 or log p2
⊥. Consequently the diffusion constant

used here is normalized differently, compared to [23], by a factor of 4.

– 3 –
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eikonal region to the amplitude — to which the amplitude in the non-eikonal region, if any,

must be added — is

− 2is

∫

E
d2b dz dz′ P13(z)P24(z

′)e−ib⊥q⊥
[
eiχ(s,x⊥−x′⊥,z,z′) − 1

]
(1.4)

(Here the scattering is of initial states 1, 2 to final states 3, 4.) The wave functions Φi for

the scattered states appear in pairs, evaluated at z for the right-moving states and at z′

for the left-moving states:

P13(z) = (z/R)2
√

g(z)Φ1(z)Φ3(z) and P24(z
′) = (z′/R)2

√
g(z′)Φ2(z

′)Φ4(z
′)

(1.5)

The eikonal kernel χ is then a function of b, z, z′ as well as s. This form of the amplitude is

identical to that found for the eikonal approximation for graviton scattering in AdS5 space,

except that now the function χ is proportional not to the graviton propagator (projected

onto AdS3) but to the Pomeron exchange kernel:

χ(s, x⊥ − x′⊥, z, z′) =
κ2

5R

2(zz′)2s
K(s, x⊥ − x′⊥, z, z′) (1.6)

where κ5 is the gravitational coupling constant in AdS5. In the following, instead of κ2
5,

we will often use instead a dimensionless coupling g2
0 = κ2

5/R
3 ∼ 1/N2.

The kernel, as a function of s and transverse positions, is elegantly expressed through

an inverse Mellin transform

K(s, x⊥ − x′⊥, z, z′) = −
∫

dj

2πi

(
ŝj + (−ŝ)j

sin πj

)
K(j, x⊥ − x′⊥, z, z′) . (1.7)

where

ŝ ≡ zz′s (1.8)

is dimensionless and

K(j, x⊥ − x′⊥, z, z′) = (zz′/R4)G3(j, v) , (1.9)

Here G3(j, v) is the AdS3 Green’s function which has a simple closed form,

G3(j, v) =
1

4π

[
1 + v +

√
v(2 + v)

](2−∆+(j))

√
v(2 + v)

. (1.10)

It depends on the AdS3 chordal distance,

v =
(x⊥ − x′⊥)2 + (z − z′)2

2zz′
(1.11)

and the AdS3 conformal dimension, ∆+(j) − 1, where

∆+(j) = 2 +

√
4 + 2

√
λ(j − 2) = 2 +

√
2
√

λ(j − j0) (1.12)

sets the dimension ∆ as a function of spin j for the BFKL/DGLAP operators. The analytic

continuation from DGLAP to BFKL operators has been discussed at weak coupling for
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Figure 1. Schematic form of the ∆ − j relation for λ ≪ 1 and λ ≫ 1. The dashed lines show the

λ = 0 DGLAP branch (slope 1), BFKL branch (slope 0), and inverted DGLAP branch (slope −1).

Note that the curves pass through the points (4,2) and (0,2) where the anomalous dimension must

vanish. This curve is often plotted in terms of ∆ − j instead of ∆, but this obscures the inversion

symmetry ∆ → 4 − ∆.

some time [26–29]. Recently, it was conjectured to be exact at weak coupling in N = 4

Yang-Mills theory [30]. The demonstration of this relationship in all large-λ conformal

theories, and the derivation of the formula (1.12), is given in section 3 of [23], where the

existence of the single function ∆+(j) with j = j0 at ∆ = 2 (the BFKL exponent) and j = 2

at ∆ = 4 (for the energy-momentum tensor, the first DGLAP operator) was demonstrated.

For clarity, we reproduce figure 1 from [23] showing the essential form of this function for

large and small λ.

The function G3 is shown in figure 2 for the Pomeron and graviton. Naturally it

becomes large as v → 0; there the scattering is head-on in the bulk, χ becomes large and

strongly varying, and the eikonal approximation will break down. Conversely at large v

the eikonal approximation will be good; note this includes both large b compared to z and

z′ (where the scattered objects are at large impact parameter compared to their size) and

at large z − z′ for fixed z and z′ (where their sizes are mismatched.)

We obtain the above form of the kernel as a Fourier transform of the conformal Pomeron

K(j, x⊥ − x′⊥, z, z′) =

∫
d2q⊥
(2π)2

eiq⊥(x⊥−x′⊥)K(j,−q2
⊥, z, z′) (1.13)

which was found in [23] to be

K(j, t, z, z′) =
(zz′)2

π2R4

∫ ∞

−∞
dν(ν sinhπν)

Kiν(qz)K−iν(qz′)

ν2 + (2
√

λ)(j − j0)
. (1.14)

This in turn is a Mellin transform of the imaginary part of the kernel as a function of

s, t, z, z′

K(j, t, z, z′) =

∫ ∞

0
dŝ (ŝ)−j−1 Im K(s, t, z, z′) (1.15)

– 5 –
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Figure 2. The function G3(j, v) for j = j0 (the solid line for the Pomeron, with ∆ = 2) and

for j = 2 (the dashed line for the graviton, with ∆ = 4). Note G3(j, v) ∼ 1/
√

v for v ≪ 1 and

∼ v1−∆+(j) for v ≫ 1. Thus the two functions have the same small-v behavior, but the graviton

falls off faster than the Pomeron.

where again ŝ ≡ zz′s. This strong coupling kernel [23] is a momentum space Green’s

function propagating in AdS5, satisfying

[−z5∂zz
−3∂z − z2t + 2

√
λ(j − 2)]K(j, t, z, z′) = R−4z5δ(z − z′) . (1.16)

It is also convenient to consider the spectral decomposition of the kernel with respect to t,

K(j, t, z, z′) =
(zz′)2

2R4

∫ ∞

0
dk2

Je∆(j)(zk)Je∆(j)(z
′k)

k2 − t − iǫ
. (1.17)

Here ∆̃(j) ≡ ∆+(j) − 2.

Note finally that the full kernel, rather than just its imaginary part, can be recon-

structed from the above expressions through

K(s, t, z.z′) = −
∫

dj

2πi

(
ŝj + (−ŝ)j

sinπj

)
K(j, t, z, z′) . (1.18)

Here, as in the flat-space string theory, the contour of integration is to the left of the

poles at non-negative integers from the 1/ sin πj factor and to the right of singularities of

K(j, t, z, z′).

After deriving these results in sections 2 and 3, we discuss some interesting features

of the single Pomeron exchange kernel in section 4. We examine why the AdS3 Green’s

functions emerge in the form of the kernel, and the algebraic structure which underlies our

formula for ∆+(j). Next, we examine the high-energy behavior of the kernel as a function

of s and b. As s → ∞, with λ fixed, the Pomeron exchange is dominant, with

χ ∼ ei(1−j0/2)π ŝj0−1G3(j = j0, v) ∼ ei(1−j0/2)π ŝj0−1

√
v(2 + v)

(s → ∞) . (1.19)
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Note that the overall phase of the kernel is exp[i(1− j0/2)π], independent of b, z, z′. How-

ever, at large fixed s and λ → ∞, we recover the graviton exchange kernel of [11, 12],

χ ∼ ŝG3(j = 2, v) ∼ ŝ

[1 + v +
√

v(2 + v)]2
√

v(2 + v)
(λ → ∞) . (1.20)

where G3(2, v), called G3(v) in [12], is the dimensionless scalar propagator for a particle of

mass
√

3/R in an AdS3 space of curvature radius R.

In section 5 we turn to the features of the eikonal sum of multiple Pomeron exchanges.

We discuss the physics of the non-trivial phase of the Pomeron and how the effects of

absorption are distributed over the bulk. Finally we reinterpret our results as those of a

multi-channel eikonalization in the gauge-theory, consider how amplitudes for scattering a

particle off a Pomeron are embedded in our results, and note some relations of our results

with the string theory eikonal approximation [31, 32]. In particular we note that within the

eikonal approximation, well known to be instantaneous in light-cone time, the scattering

process acts on each bit of string independently, giving it its own eikonal phase.

Finally, in section 6 we turn to the question of the saturation of the unitarity bound in

various contexts.3 We do this first for the bulk amplitude in a conformal theory. Next we

consider briefly confining backgrounds, where the continuum spectrum in t at fixed spin-j

in eq. (1.17) becomes a discrete sum over Regge trajectories. Our general methods are

still applicable, though the technical difficulties and model-dependence are much greater,

and our results are very limited. But we will argue from the eikonal approximation that

the cross section appears generically to be proportional to (log s)2, both satisfying and

saturating the Froissart bound.

2 Overview of Regge behavior in string theory

String theory was invented largely to accommodate two phenomenological features of

hadronic scattering related to Regge theory. The first is the existence of narrow reso-

nances of higher and higher spin apparently lying on almost linear “trajectories” (j ∼
m2

j + const). The second is the Regge asymptotic limit for high energy scattering at fixed

momentum transfer,

A(s, t) ∼ sj0+α′t (2.1)

where the trajectory function α(t) = j0 + α′t is an extrapolation to t < 0 of the linear

relation α(m2
j ) ≃ j, for j > 0. While this has proven to be an oversimplification, the proper

relationship between singularities in the complex J-plane and high energy scattering was

thoroughly investigated in this context. Indeed the multi-Regge behavior of the planar limit

of flat space string theory with exactly linear trajectories provides an excellent pedagogical

tool [34]. Consequently, before we extend this analysis to the recently understood Regge

limit for the AdS dual to gauge theories, it is useful to review the arguments briefly in flat

3After the initial version of this paper was released, we noticed an error which invalidated some of the

results of section 6. Our corrected results in the conformal limit now turn out to be reasonably consistent

with those of [33], which studied a different but related problem.
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space. Moreover, as we note below, the general Regge framework introduced here is valid

for any theory with sufficient convergence at high energies.

2.1 Role of J-plane singularities in flat space string theory

In flat space, the tree-level string scattering amplitude has a meromorphic representation in

the complex J-plane. The argument proceeds as follows. The high energy limit of tachyon

scattering amplitude in the closed string sector is

A(s, t) =

∫
d2w|w|−2−α(t)|1 − w|−2−α(s) ≃ 2π

Γ(−α(t)/2)

Γ(1 + α(t)/2)
(e−iπ/2α′s/4)α(t) (2.2)

where α(t) = 2 + α′t/2. Since the original amplitude is crossing symmetric under the

exchange u ↔ s, by virtue of s + t + u = 4m2, eq. (2.2) may be rewritten as,

A(s, t) ≃ −β(t)

[
(−α′s)α(t) + (−α′u)α(t)

sin πα(t)

]
(2.3)

to leading order at high energy, u ≃ −s, where the residue function4 is β(t) =

21−2α(t)π2/Γ2(1 + α/2). This form is preferable, since the separation of the Regge con-

tribution from the right-hand cut, (−α′s)α(t), and the left-hand cut, (−α′u)α(t), obeys

exact crossing symmetry. Moreover it can be shown that the full string amplitude A(s, t),

for large s away from the singularities on the real axis, is given by a sum of powers in s,

without log s corrections. This implies there are poles but not cuts, and hence meromorphy,

in the complex J-plane.

Now let us return to the full amplitude to investigate the source of Regge behavior

in terms of a complex J-plane. To relate this to the singularity structure of the complex

J-plane requires two steps. First, the amplitude A(s, t) must be expressed as a dispersion

relations over the right-hand (s > 0) and left-hand (u > 0) cuts (each of which is actually

a series of delta functions in tree-level string theory). Second, each contribution to the

imaginary parts associated to the cuts, As and Au, must be separately transformed to the

J-plane by

as(j, t) = α′
∫ ∞

0
ds (α′s)−j−1As(s, t) , (2.4)

and similarly for s→u which for our crossing symmetric amplitude (2.2) implies au(j, t)=

as(j, t). Assuming, for some fixed t < 0, that As(s, t) is zero for s ∈ [0, s0], this is merely the

Laplace transform in rapidity y = ln(s/s0), giving an analytic function in j, defined initially

for large enough Re j. The inverse Mellin transform is given by the contour integral,

As(s, t) =

∫ i∞+J0

−i∞+J0

dj

2πi
(α′s)j as(j, t) , (2.5)

choosing J0 to the right of all singularities. This inversion becomes clearer when viewed

as a Fourier transform in Im j.

4For superstring graviton-graviton scattering, the residue β(t) has an extra factor of (α(t)/2)2 to

remove the tachyon [32]. In the open superstring sector the residue function has the simpler form

β(t) = α(t)/Γ[−α(t)].
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For t sufficiently negative such that A(s, t) = 0(1/|s|), the dispersion relation for A(s, t),

A(s, t) =

∫ ∞

0

ds′

π

As(s
′, t)

s′ − s − iǫ
+

∫ ∞

0

du′

π

Au(u′, t)

u′ − u − iǫ
(2.6)

allows us to reconstruct the full amplitude 5

A(s, t) = −
∫ i∞+J0

−i∞+J0

dj

2πi

(−α′s)jas(j, t) + (−α′u)jau(j, t)

sinπj
(2.7)

from the J-plane, where J0 ≃ −1.

As one increases t, poles in j move to the right, and one must distort the contour

to stay to the right of the singularity. Therefore, for general t, the contour should be to

the left of the pole in 1/ sin πj at j = 0 and to the right of all singularities of as(j, t) and

au(j, t). For example, in an amplitude with vacuum quantum numbers in the t-channel,

the leading pole is symmetric in s ↔ u interchange,

as(j, t) ≃
β(t)

j − α(t)
, au(j, t) ≃ β(t)

j − α(t)
(2.8)

with positive charge conjugation C = +1. This leads to an amplitude,

A(s, t) ≃ −(1 + e−iπα(t))β(t)sα(t)

sinπα(t)
∼ Γ[−α(t)/2](e−iπ/2s)α(t) (2.9)

with “positive signature” in the language of Regge theory. This effect of the leading

trajectory reproduces the leading Regge approximation of our string amplitude, eq. (2.3),

for all t. Recall that in flat space closed string theory, the leading trajectory, which contains

the zero mass graviton at j = 2, is the analogue of the Pomeron in gauge theory.

As an aside, we note that the leading negative charge conjugation (C = −1) contribu-

tion is odd under s ↔ u interchange, giving a negative signature factor 1 − e−iπα(t). This

contribution, in the context of weak coupling QCD, is the analogue of the BFKL Pomeron

referred to as the “odderon” with an odd number of gluons exchanged in the t-channel.

Both contributions are present in an oriented close string exchange process.

The generality of the definition of an analytic J-plane should be clear, in spite of our

use of the planar closed string amplitude as a convenient pedagogical example. In general,

complete knowledge of the J-plane singularity structure allows an exact representation of

the full amplitude, if the amplitude has the required convergence for unsubtracted dis-

persion relations at sufficiently negative t. Although Born terms in a perturbative field

theory fail to satisfy this dispersion relation constraint, it is generally believed that full

QCD does satisfy it, as well as a wide class of perturbative string theories, order by order

5There are a variety of closely related transforms that define the J-plane with identical leading singu-

larities. For example from the t-channel partial wave expansion, one is lead to the Sommerfeld-Watson

transform,

A(s, t) = −
X

η=±1

Z
dj

2πi
(2j + 1)

η + e−iπj

2 sin πj
aη(j, t) P (j, (s − u)/t) ,

where η is referred to as the signature: η = ±1 for C = ±1 exchange respectively.

– 9 –



J
H
E
P
0
3
(
2
0
0
9
)
0
9
2

in 1/N or gs. The flat-space critical superstring is the classic example, with an additional

special feature that the tree-level amplitude exhibits meromorphy in both energy and the

J-plane.6 However, one lesson from gauge/string duality is that the gauge theory ampli-

tudes dual to string theory in curved space need not show meromorphy in the J-plane,

even in the planar limit; for instance this is illustrated by the BFKL singularity for the

hard Pomeron in large-N conformal field theories, where conformal invariance assures the

presence of cuts in the J-plane. New branch cuts in the J-plane also show up, for both

flat space string theory and gauge theory, at higher orders in gs or 1/N2, and thus in an

eikonal sum. Nevertheless, the knowledge of the J-plane singularities can in principle allow

a full reconstruction of the full amplitudes.

2.2 An aside on fixed poles

Here we address a general issue which is useful later, but can be omitted at a first reading.

In sections 5.4 and 5.5 we will encounter integrals of the following type:

C1(t) =

∫ i∞

−i∞

ds

2πi
A(s, t) . (2.10)

The integral (2.10) is defined when the amplitude vanishes at large s faster than 1/|s|,
thus satisfying an unsubtracted dispersion relation, eq. (2.6). Such integrals will play a

special role in our subsequent derivation of the eikonal approximation where A(s, t) is the

crossing-even “particle-Pomeron” scattering amplitude, and this has been used extensively

by Amati, Ciafaloni and Veneziano [32] in their discussion of eikonalization for closed

(super)-strings in flat space. We will introduce the notation of a particle-Pomeron ampli-

tude in section 3 and discuss its role for eikonalization further in section 5.4 and 5.5. Here

we point out how integral (2.10) arises from a J-plane perspective.

Because the amplitude is crossing even, its s-channel and u-channel discontinuities are

equal, As = Au. The integration path runs along the imaginary s-axis, crossing the real

axis between the s- and u-cut. With the amplitude vanishing faster than 1/|s|, one can

distort the integration contour, e.g, one can integrate along the real axis, under the left-

hand u-cut and over the right-hand s-cut. Alternatively, one can directly close the contour

either to the right or to the left. When closing the contour, either to the left or to the

right, one would pick up discontinuity across the respective cut, leading to

C1(t) = (1/π)

∫ ∞

0
ds′As(s

′, t) = (1/π)

∫ ∞

0
du′Au(u′, t) (2.11)

Historically, this contribution, C1(t), has been referred to as the j = −1 “fixed-pole”

residue.
6The proof of meromorphy to the closed string tachyon scattering amplitude (2.2) is most easily done

by using a modified J-plane defined by the Beta transform:

eas(j, t) =

Z i∞

−i∞

dsA(s, t)B(α(s)/2 + 1, j + 1) = 2π
Γ[j − α(t)]Γ[j + 1]

Γ[j + 1 − α(t)/2]2
.

It can be shown that this implies that the Mellin transform is an equivalent but less elegant meromorphic

representation of the J-plane.
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To gain a better understanding on this contribution, consider the Regge representation

for the full amplitude (2.7). As one pushes the contour to the left in j, the zero of the

denominator sin πj would appear to give rise to fixed powers s−N , N = 1, 2, . . .. However

for the flat space closed string the leading term is s2+α′t/2 so these contributions must be

absent for sufficiently negative t. This implies zeroes in the numerator to cancel these poles.

On the other hand we can also directly examine the amplitude with only a right-hand cut,

AR(s, t) =
1

π

∫ ∞

0
ds′

As(s
′, t)

s′ − s
→ β(t)(−α′s)α(t) − C1,s(t)

s
− · · · (2.12)

with C1,s(t) = (1/π)
∫∞

o ds′As(s
′, t) , and similarly

AL(u, t) =
1

π

∫ ∞

0
du′

Au(u′, t)

u′ − u
→ β(t)(−α′u)α(t) − C1,u(t)

u
− · · · (2.13)

with C1,u(t) = (1/π)
∫∞

o du′Au(u′, t) . For closed strings, crossing symmetry s ↔ u re-

lates the left- and right-hand discontinuities, and it follows that C1,s(t) = C1,u(t) ≡ C1(t).

Therefore, the fixed-pole residue is simply the coefficient of the fixed 1/s and 1/u contribu-

tions in the asymptotic expansion for AR and AL respectively. Note that the full amplitude,

A(s, t) = AR + AL, does not contain the 1/s term for s large. However, in eq. (2.10), since

the integration path runs between the left- and right-hand cuts, it cannot be distorted to

infinity. As a consequence, the integral leads to a non-vanishing contribution, even if the

full amplitude A(s, t) vanishes faster than 1/|s|.

2.3 The Pomeron in impact parameter space

The J-plane formalism can be applied to the Pomeron as understood in the work of ref. [23].

For N = 4 SYM, or indeed any conformal theory dual to a string theory on AdS5×M5, the

Pomeron propagator, K(s, t, z, z′) in eq. (1.18), can be found at strong coupling. In ref. [23],

we have concentrated on the imaginary part of the full kernel, Im[K]. In this section we

transform the full kernel K to the J-plane, and then to transverse position space. This

leads to remarkable simplifications.

Just as done for the flat space string theory, it is useful to reconstruct the full amplitude

through a J-plane representation. From the s-channel discontinuity, 2i Im K, one can

obtain a J-plane amplitude via a Mellin transform. For the case of the AdS Pomeron, it is

convenient to define the Mellin transform with respect to

ŝ = zz′s , (2.14)

where the dimensionless variable, ŝ, is R2 times the proper center-of-mass energy squared.

Starting from the imaginary part of K(s, t, z, z′), obtained in [23], we can find the kernel

in the J-plane, K(j, t, z, z′), using eq. (1.15). The strong coupling kernel in the J-plane,

K(j, t, z, z′), is a momentum space Green’s function propagating in AdS5

[−z5∂zz
−3∂z − z2t + 2

√
λ(j − 2)]K(j, t, z, z′) = R−4z5δ(z − z′) (2.15)

We can always reconstruct the full amplitude, K(s, t, z.z′), using an inverse Mellin

transform, eq. (1.18). As in the flat-space string theory, the contour of integration must
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be to the left of the poles at positive integers from the 1/ sin πj factor, and to the right of

singularities of K(j, t, z, z′).

From a spectral analysis for eq. (2.15) in momentum space, following [23], we can obtain

K(j, t, z, z′) =
(zz′)2

π2R4

∫ ∞

−∞
dν (ν sinhπν)

Kiν(qz)K−iν(qz′)

ν2 + (2
√

λ)(j − j0)
, (2.16)

where j0 = 2 − 2/
√

λ. This expression masks the simplicity of the conformal invariance,

but illustrates that the J-plane spectrum consists of only a continuum, with a square-root

branch point at j0, i.e., K(j, t, z, z′) ∼ √
j − j0, where j0 is the location of BFKL branch

point in the strong coupling. Although the location of the BFKL cut is t-independent, the

discontinuity depends on t, for fixed z, z′. Also, in the limit t → 0, with z, z′ fixed, the

nature of the singularity changes: as demonstrated in ref. [23], K(j, 0, z, z′) ∼ 1/
√

j − j0,

which leads to an asymptotic behavior s̃j0/ log1/2 s̃, as indicated in eq. (1.2).

Now, in preparation for the eikonal application, we move to transverse impact pa-

rameter space: x⊥ = (x1, x2). Introducing the conjugate transverse momentum vector,

q⊥ = (q1, q2) where t = −q2
⊥, we obtain from eq. (1.14)

K(j, x⊥ − x′⊥, z, z′) =

∫
d2q⊥
(2π)2

eiq⊥(x⊥−x′⊥)K(j,−q2
⊥, z, z′) =

(
zz′

R4

)
G3(j, v) , (2.17)

where G3(j, v) is defined in eq. (1.10). This elegant expression deserves an explanation,

which we postpone to section 4, in order to move swiftly to the eikonal expansion.

Now using the impact-parameter-space version of eq. (1.18), namely eq. (1.7), we can

obtain K(s, x⊥−x′⊥, z, z′), which is the kernel in the form needed for the eikonal calculation.

We will return in section 4 to examine its high energy behavior more carefully. Here we

merely remark on its phase. Due to the BFKL branch point,

K(s, x⊥ − x′⊥, z, z′) ∼ − ŝj0 + (−ŝ)j0

sin πj0
= −

(
e−πj0/2

sinπj0/2

)
ŝj0 (2.18)

up to logarithmic corrections.7

3 Eikonal expansion of the AdS Pomeron

We now turn to the problem of the eikonal summation of multiple Regge exchange graphs

for the AdS5 strong coupling Pomeron. It is easy to infer the answer by comparison with

two simpler examples: the well known eikonalization of a single Regge-pole exchange in

the single 2-to-2 elastic unitarity approximation, and the recent eikonal formula [11, 12]

for graviton exchange at infinite coupling in AdS5. The first introduces a non-trivial phase

7The expression second from the right, though less compact than the rightmost expression, will be used

below, in order to continue to exhibit the connection between the Regge phase and the s- and u-channel

discontinuities. Therefore the coefficient of sj0 is complex, and independent of the coordinates b, z, z′, in

the region where the Regge form of amplitude is applicable. Here, (−s)j0 and sj0 separately represent

asymptotic behavior for amplitudes with s- and u-channel discontinuities. The fact that the Pomeron

kernel is complex will be important when we discuss s-channel unitarity in section 5.
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Figure 3. Ladder and crossed ladder diagrams contributing to the eikonal approximation in the

high energy limit.

in the Regge exchange kernel. The second brings into play the the radial co-ordinate

in AdS5, which combines with the Minkowski-space impact parameter to form an AdS3

transverse space, a point we return to in section 4. Here and below, to simplify formulas,

we temporarily set the AdS curvature radius R to 1.

For pedagogical reasons we will begin by presenting the form of the eikonal representa-

tion in AdS5 before providing its derivation and a description of its properties. Also we will

make a comparison in section 5.5 with a third example, namely the eikonal approximation

for the flat space superstring amplitude, due to Amati, Ciafaloni and Veneziano. Together

these examples provide a general intuitive picture to guide further advances beyond the

eikonal approximation.

The standard eikonal formula takes the classic form,

A(s, t) = −2is

∫
d2be−ib⊥q⊥

[
eiχ(s,b⊥) − 1

]
, (3.1)

where t = −q2
⊥. For a single Regge pole exchange, as for the Pomeron, χ(s, b⊥) is the

Fourier transform to impact parameter space of the elastic amplitude in the one-Reggeon

exchange approximation,

χ(s, b⊥) =
1

2s

∫
d2q⊥
(2π)2

eib⊥q⊥A(1)(s, t) , (3.2)

with A(1)(s, t) = −[(e−iπα(t) ± 1)/ sin πα(t)]β(t)sα(t). (See also eq. (2.2) for the closed

string form of A(1)(s, t).) This is the leading contribution to the sum of graphs depicted

in figure 3 below.

Let us compare this with our result for the eikonalization of the AdS5 graviton of

ref. [12]

A2→2(s, t) ≃ −2is

∫
d2b e−ib⊥q⊥

∫
dzdz′P13(z)P24(z

′)
[
eiχ(s,b⊥,z,z′) − 1

]
(3.3)

– 13 –



J
H
E
P
0
3
(
2
0
0
9
)
0
9
2

where b = x⊥ − x′⊥ due to translational invariance. The salient new features relative to

the above four-dimensional expressions are the new transverse co-ordinate for the fifth

dimension in AdS5 and the product of wave functions for right-moving (1 → 3) and

left-moving (2 → 4) states,

P13(z) = (z/R)2
√

g(z)Φ1(z)Φ3(z) and P24(z) = (z′/R)2
√

g(z′)Φ2(z
′)Φ4(z

′) (3.4)

The obvious (and correct) guess for the eikonalization of AdS5 Pomeron is to simply use

the appropriate AdS3 kernel for this exchange as presented above in section 1,

χ(s, x⊥ − x′⊥, z, z′) =
g2
0R4

2(zz′)2s
K(s, x⊥ − x′⊥, z, z′) (3.5)

where g2
0 = κ2

5/R
3. This is a natural generalization of our earlier result for AdS graviton

exchange, whose kernel can be obtained from the same J-plane analysis by taking the

limit λ → ∞, as explained in section 4.3.

3.1 Eikonal graphs

In ref. [12], we have considered the high energy limit of a class of Witten diagrams, illus-

trated in figure 3, where we choose scalar fields for the external lines along two sides of the

ladder and gravitons for the exchanged rungs between these two sides. The sum includes

all possible AdS graviton exchanges, crossed and uncrossed. The treatment of the eikonal

sum for conformal Pomeron exchanges follows exactly as that for the AdS graviton. The

only new ingredient is to replace each AdS graviton propagator by a conformal Pomeron

propagator, K(s, x⊥ − x′⊥, z, z′), eq. (1.7). Because we work in to leading order in strong

coupling, we can again treat the two scattered particles — the sides of the ladder — by

using an AdS5 scalar propagator, as was done in ref. [12]. String excitations on the sides

of the ladder enter at higher order in 1/
√

λ, and can be ignored for our current purposes.

Most of the needed analysis was done in ref. [12] and will not be repeated here. We

only outline briefly how the eikonal sum can be carried out, though we will spell out

explicitly the Feynman rules for the eikonal graphs. For a 2-to-2 amplitude, 1+ 2 → 3+ 4,

let us denote the longitudinal momenta by p±1 + p±2 → p±3 + p±4 , with an all-incoming con-

vention. We will work in a transverse coordinate basis, using p+, p−, x⊥, z as coordinates.

In this representation, after stripping away a wave function for each external particle,

Φi(z)e−ip⊥x⊥

, we will be left to calculate an amputated amplitude, A(p±i , x⊥i , zi), as a

perturbative sum of diagrams illustrated in figure 3.

In the high-energy near-forward limit, p+
1 ≃ −p+

3 and p−2 ≃ −p−4 are large, with q± =

p±1 + p±3 = −(p±2 + p±4 ) = 0(1/
√

p+
1 p−2 ). Therefore, A depends on longitudinal momenta

only through s ≃ 2p+
1 p−2 , and we can simply express the amplitude as A(s, x⊥i , zi). It is in

fact useful to view this as matrix elements of an operator, A, in transverse coordinate basis,

A(s, x⊥i , zi) = 〈x3, z3, x4, z4|A|x1, z1, x2, z2〉 = 〈3, 4|A|1, 2〉 , (3.6)

with states normalized by

〈3, 4|1, 2〉 = [δ2(x⊥1 − x⊥3 )δ(z1 − z3)/
√

g1][δ
2(x⊥2 − x⊥4 )δ(z2 − z4)/

√
g2] . (3.7)
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Figure 4. Sum of box and crossed box diagrams is factorized with combinatoric weight 1/2!.

Perturbative diagrams can be organized by the number of Pomeron propagators exchanged.

Let us begin by examining the simplest diagram — the tree graph. Since this in-

volves a single Pomeron propagator, the amputated amplitude in transverse coordinate

representation is given by

A(1)(s, x⊥i , zi) = 2
(z1z2

R2

)2
s χ(s, x⊥1 − x⊥2 , z1, z2)〈3, 4|1, 2〉 . (3.8)

The 〈3, 4|1, 2〉 factor is supplied so as to reproduce the single Pomeron exchange contribu-

tion obtained in section 2. Note that A(1) is diagonal in the transverse coordinate basis.

3.2 One-loop contribution

Before presenting the result for general graphs with n Pomeron exchanges, we first consider

the one-loop contribution, illustrated in figure 4. There are two independent diagrams,

which are depicted in the upper half of figure 4. For reason to be clarified shortly, the sum

of these two diagrams can be combined as a product of two “Pomeron-particle” amplitudes,

A13 and A24, (see figure 5), connecting through two Pomeron kernels, as schematically

represented by the lower half of figure 4. However, this leads to an over-counting, and a

factor of 1/2! is supplied.

It is important to appreciate the assumptions made in evaluating the one-loop contribu-

tion in the high energy eikonal approximation. We assume that it is proper to factorize the

contribution into exchange Pomeron kernels for the rungs of the ladder and 2-2 Pomeron-

particle scattering amplitudes A13 and A24 on the sides. In an elementary field theory, e.g.,

the eikonal sum for exchanging conformal gravitons, this is a trivial combinatoric fact as

illustrated in figure 4. In string theory this is an assumption on the high energy limit of

the one loop diagram, only proven for the flat space superstring to date [32]. However we

should note that the existence of these Pomeron-particle amplitudes is supported by the
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Figure 5. Reggeon particle scattering amplitude in the planar approximation, A13(M
2, t), with

t = (q1 + q2)
2 and M2 = (p1 + q1)

2.

observation in ref. [23] that the Pomeron vertex is a proper on-shell vertex operator with

conformal weight (1,1) in string theory, both in flat space and to leading order in an AdS

background.

The Pomeron-particle elastic-scattering amplitude in the planar limit can be expressed

through a dispersion relation as a sum of s-channel and u-channel closed string exchanges

(see figure 5). As we noted, at the leading order in strong coupling, we can represent this

amplitude using the scalar propagator, G5(2p
+p−, x⊥ − x′⊥, z, z′), in the bulk of AdS5.

This scalar propagator is the solution of eq. (2.15) at j = 2, but normalized without a

factor of R−4, so it has the scaling dimension of (length)2. Again we use a transverse

coordinate representation, expressing G5 in terms of p± and x⊥ − x′⊥. A useful spectral

representation for G5 is

G5(2p
+p−, x⊥ − x′⊥, z, z′) =

(zz′)2

2

∫
d2p⊥

(2π)2
eip⊥(x⊥−x′⊥)

∫ ∞

0
dk2 J2(zk)J2(z

′k)

k2 + p⊥2 − 2p+p− − iǫ
.

(3.9)

Following a by-now standard procedure [32, 35, 36], the total one-loop contribution at high

energies can be expressed as,

A(2)(p±i , x⊥i , zi) = −i
i4g4

0

2!

∫
dq1dq2A13(p

±
1 , q±1 , x⊥3 − x⊥1 , z3, z1) K(s, x⊥1 − x⊥2 , z1, z2)

K(s, x⊥3 − x⊥4 , z3, z4) A24((p
±
2 , q±2 , x⊥4 − x⊥2 , z4, z2)(3.10)

where the phase space is written symmetrically as

∫
dq1dq2 ≡

∫
dq+

1 dq−1
2π

dq+
2 dq−2
2π

δ(q+
1 + q+

2 − q+)δ(q−1 + q−2 − q−) (3.11)

with q±1 and q±2 the longitudinal momentum associated with the two Pomeron exchanges.

As emphasized earlier, in the near forward limit, we have q± ≃ 0, so in fact, q±1 = −q±2 .

The structure for A(2) is identical to that for the exchange of two AdS gravitons in ref. [12],

with conformal Pomeron propagators replacing AdS graviton propagators. As noted earlier,

the Pomeron propagators, K, are independent of longitudinal momenta, q±i and can be

taken outside of the integrals.
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In eq. (3.10), A13 and A24 are Pomeron-particle amplitudes mentioned earlier and, in

strong coupling, each reduces to a sum of two scalar propagators G5, reflecting direct and

crossed exchanges along each side of the ladder, e.g.,

A13(p
±
1 , q±1 , x⊥3 −x⊥1 , z3, z1) =

1

R3

[
G5(p

±
1 , q±1 , x⊥3 − x⊥1 , z3, z1)+G5(p

±
1 , q±2 , x⊥3 − x⊥1 , z3, z1)

]

(3.12)

At high energy, (p+
1 and p−2 large with p−1 ∼ 0 and p+

2 ∼ 0), A13 depends only on the

integration variable q−1 through the combination p+
1 q−1 and A24 only on q+

1 through p−2 q+
1 ,

so that integrals
∫

dq−1 A13 and
∫

q+
1 A24 can be carried out independently. This “left-right”

factorization is one of the key properties which allows eikonalization to proceed. From the

spectral representation for G5, and the completeness relation, one arrives at a remarkably

simple result,

(∫
dq−1
2πi

A13

)(∫
dq+

1

2πi
A24

)
= (1/2sR6)δ2(x⊥1 −x3

⊥)z3
1δ(z1−z3)δ

2(x⊥2 −x4
⊥)z3

2δ(z2−z4)

(3.13)

Putting all terms together, we obtain

A(2)(s, x⊥i , zi) = < 3, 4|A(2)|1, 2 >

≃ −2i(zz′/R2)2 s
1

2!

[
iχ(s, x⊥ − x′⊥, z, z′)

]2
< 3, 4|1, 2 > (3.14)

This has been discussed carefully in ref. [12], to which the reader is referred for more details.

3.3 Feynman rules and Eikonal sum

Feynman rules for higher order eikonal graphs can be written down fairly simply. In nth

order, there are n AdS3 vertices on each side to the ladder. Each vertex on one side

is connected to one and only one vertex on the opposite side by a conformal Pomeron

propagator; there are n! such distinct graphs. The Feynman rules are:

1. A Pomeron kernel, K(s, x⊥ − x′⊥, z, z′), for each rung across the ladder,

2. An AdS5 scalar propagator, R−3G5(2p
+p−, x⊥i+1 − x⊥i , zi+1, zi), connecting each ad-

jacent vertices along the side of the ladder.

3. A factor of g0 for each vertex, and a factor of i for each propagator.

4. An overall factor of −i.

To calculate the nth order amputated amplitude, A(n)(s, x⊥i , zi), one integrates over all loop

longitudinal momenta, with momentum conservation at each vertex. One also integrates

all internal transverse coordinates, except for (x⊥i , zi), i = 1, 2, 3, 4, to which external

momentum p±i are attached. Summing over n leads to the total amputated amplitude

A(s, x⊥i , zi). To obtain the momentum space scattering amplitude, A(s, t) from A(s, x⊥i , zi),

one supplies external wave functions, e−iq⊥i x⊥
i Φ(zi), and integrates over the transverse

coordinates.

It suffices to point out that the evaluation for higher order contributions proceeds

also as has been done for AdS graviton exchange. As stressed in ref. [12], for each order
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in a perturbative eikonal sum, one can again demonstrate the feature of “zero transverse

deflection,” and the amplitudes becomes diagonal in the transverse basis. To be precise,

we find that the amputated amplitude, at each order, takes on the form

A(n)(s, x⊥i , zi) = < 3, 4|A(n)|1, 2 >

≃ −2i(zz′)2 s
1

n!

[
iχ(s, x⊥ − x′⊥, z, z′)

]n
< 3, 4|1, 2 > (3.15)

Summing over n = 1, 2, . . ., leads to the desired eikonal representation. After integrating

out (x⊥i , zi), i = 1, ··, 4, and removing a two-dimensional delta-function associated with the

center-of-mass motion in impact space, we arrive at the eikonal representation, eq. (3.3),

with the eikonal given by eq. (3.5), as promised.

4 Conformal geometry at high energies

We now turn to a more detailed consideration of the Pomeron kernel with an emphasis

on the consequences of conformal invariance for high energy amplitudes. This not only

explains the simple properties of the kernel, it also gives a geometrical picture of Regge

scattering in AdS space.

To see intuitively how this picture comes about let us reconsider the Regge limit for a

general n-particle scattering amplitude: A(p1, p2, . . . pn). As argued in ref. [23], the general

Regge exchange corresponds to a large rapidity gap separating the n particles into two sets:

the right movers and left movers, with large p+
r = (p0

r +p3
r)/

√
2 and large p−ℓ = (p0

ℓ −p3
ℓ)/

√
2

momenta respectively. The Pomeron exchange kernel is obtained by applying this limit

to the leading diagram, in the 1/N expansion, that carries vacuum quantum numbers in

the t-channel. The Pomeron exchange graph in string theory is a cylinder, a t-channel

closed string.

The rapidity gaps, ln(p+
r p−ℓ ), between any right- and left-moving particles are all

O(log s), i.e., a large Lorentz boost, exp[yM+−], with y ∼ log s, is required to switch from

the frame comoving with the left movers to the frame comoving with the right movers.

The J-plane is conjugate to rapidity, and as such is identified with the eigenvalue of the

Lorentz boost generator M+−. In the context of the AdS/CFT correspondence, it is

illuminating to consider the boost operator relative to the full O(4, 2) conformal group,

which are represented as isometries of AdS5.

The conformal group O(4,2) has 15 generators: Pµ,Mµν ,D,Kµ. In terms of transfor-

mations on light-cone variables, there are two interesting 6 parameter subgroups: The first

is the well known collinear group SLL(2, R)×SLR(2, R) used in DGLAP, with generators

SLL(2, R), SLR(2, R) generators: D ± M+− , P± , K∓ , (4.1)

which corresponds in the dual AdS5 bulk to isometries of the Minkowski AdS3 light-cone

sub-manifold. The second is SL(2, C) (or Möbius invariance used in solving the weak

coupling BFKL equations) with generators

SL(2, C) generators: iD ± M12 , P1 ± iP2 , K1 ∓ iK2 , (4.2)
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corresponding to the isometries of the Euclidean (transverse) AdS3 subspace of AdS5;

Euclidean AdS3 is the hyperbolic space H3. Indeed SL(2, C) is the subgroup generated

by all elements of the conformal group that commute with the boost operator, M+− and

as such plays the same role as the little group which commutes with the energy operator

P0. For example we note that the BFKL Pomeron kernel in the J-plane is a solution of an

SL(2, C) invariant operator equation in both strong and weak coupling. Very likely this is

a generic property for the Pomeron in all conformal gauge theories.

4.1 SL(2, C) invariance of Pomeron kernel

In high energy small-angle scattering, the problem separates into the longitudinal and

transverse directions relative to the momentum direction of the incoming particles. The

transverse subspace of AdS5 is AdS3. We shall show that this is reflected in the co-ordinate

representation for the Pomeron kernel of ref. [23] as a bulk-to-bulk scalar propagator in

the transverse Euclidean AdS3 with SL(2, C) isometries.

Recall that our conformal strong coupling Pomeron kernel (or “Reggized AdS5 gravi-

ton”) from ref. [23] was written in momentum space as an AdS5 Green’s function,

[−z5∂zz
−3∂z − z2t + 2

√
λ(j − 2)]K(j, t, z, z′) = R−4z5δ(z − z′) . (4.3)

with AdS5 mass squared 2
√

λ(j − 2)/R2. However in practice one can use an impact

parameter representation in which the Pomeron kernel can be re-expressed in terms of an

AdS3 Green’s function,

K(j, x⊥ − x′⊥, z, z′) =

(
zz′

R4

)
G3(j, v) , (4.4)

as noted in the Introduction. Here G3(j, v) has a simple closed-form expression (1.10) as a

function of the AdS3 chordal distance, v = [(x⊥ − x′⊥)2 + (z − z′)2]/2zz′, that greatly sim-

plified our subsequent analysis of multi-Pomeron exchange. Let us explain this “accident”

in more geometrical terms.

The singularities in the J-plane must be determined by the eigenvalues of the boost

operator, which for our AdS Pomeron8 is approximated by M+− = 2−H+−/(2
√

λ)+O(1/λ)

to leading order in strong coupling. In this context we find that the AdS3 Green’s function

for the Pomeron obeys the differential equation,

[H+− + 2
√

λ(j − 2)]G3(j, x⊥ − x′⊥, z, z′) = z3δ(z − z′)δ2(x⊥ − x′⊥) (4.5)

for the boost operator, where

H+− = −z3∂zz
−1∂z − z2∇2

x⊥
+ 3 . (4.6)

To relate this to our earlier expression [23] for the Pomeron co-ordinate space kernel as an

AdS5 Green’s function,

[−z5∂zz
−3∂z +z2(∂+∂−−∇2

⊥)+2
√

λ(j−2)]G5(j, x−x′, z, z′) = z5δ(z−z′)δ4(x−x′) , (4.7)

8In ref. [23] the eigenvalue condition M+− = j was also identified with the on-shell condition for the

world sheet dilatation: L0 + L̄0 − 2 = 0. Here we are concerned with the target space isometries.
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we need to recognize that in the Regge limit this exchange kernel couples exclusively to

nearly light-like left- and right-moving sources. Consequently to compute the high energy

amplitude, we only need the AdS5 kernel projected onto these sources,

∫
dx+dx−

zz′
G5(j, x − x′, z, z′) = G3(j, x⊥ − x′⊥, z, z′) , (4.8)

which is precisely the AdS3 kernel as can be readily seen by integrating eq. (4.7). The

integration measure, dx+dx−/(zz′), ensures the result is both Lorentz boost and scale

invariant. Equivalently this approximation can be stated as restricting the exchanged

momentum to the transverse plane, so that t = −q2
⊥. Then the AdS5 momentum-space

equation of motion for Pomeron kernel, eq. (2.15), becomes

[−z5∂zz
−3∂z + z2q2

⊥ + 2
√

λ(j − 2)]K(j, t, z, z′) = (z5/R4)δ(z − z′) . (4.9)

Merely setting q± = 0 reduces this to the AdS3 transverse momentum space AdS3 kernel,

G3(j, q⊥, z, z′) = (R4/zz′)K(j, t, z, z′), as it must.

In order to gain a better understanding on the emergence of the AdS3 algebra, let us dis-

cuss the symmetry of the scalar propagator, G3(j, v), in terms of the Euclidean AdS3 metric,

ds2 =
R2

z2
[dz2 + dx1dx1 + dx2dx2] = ds2 =

R2

z2
[dz2 + dwdw̄] , (4.10)

where the transverse subspace is (w = x1 + ix2, z). The generators of the SL(2, C)

isometries of AdS3 are

J0 =w∂w +
1

2
z∂z , J− = − ∂w , J+ =w2∂w + wz∂z − z2∂w̄

J̄0 =w̄∂w̄ +
1

2
z∂z , J̄− = − ∂w̄ , J̄+ =w̄2∂w̄ + w̄z∂z − z2∂w . (4.11)

In the conformal group, this corresponds to the identification,

J0 , J+ , J− ↔ (−iD + M12)/2 , (P1 + iP2)/2 , (K1 − iK2)/2

J̄0 , J̄+ , J̄− ↔ (−iD − M12)/2 , (P1 − iP2)/2 , (K1 + iK2)/2 ,

so that the non-zero commutators in SL(2, C) must be [J0, J±] = ±J±, [J+, J−] = 2J0,

and [J̄0, J̄±] = ±J̄±, [J̄+, J̄−] = 2J̄0. In general, unitary representations of SL(2, C) are

labeled by h = iν + (1 + n)/2, and h̄ = iν + (1 − n)/2, which are the eigenvalues for the

highest-weight state of J0 and J̄0. The principal series is given by real ν and integer n.

The quadratic Casimirs J2 and J̄2 have eigenvalues h(h − 1) and h̄(h̄− 1) respectively. In

the representation (4.11) they are

J2 = J2
0 +

1

2
(J+J− + J−J+) =

1

4
[z2∂2

z − z∂z + 4z2∂w∂w̄] (4.12)

with J̄2 = J̄2
0 + 1

2(J̄+J̄+ + J̄−J̄+) = J2 in this representation. ( A consequence of J2 = J̄2,

for our leading order strong coupling Pomeron, is that we are restricted to n = h − h̄ = 0
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and are insensitive to rotations in the impact parameter plane by M12; we will learn more

about this below.) So the boost Hamiltonian H+− is

H+− = 3 − 2J2 − 2J̄2 (4.13)

expressed in terms of SL(2, C) Casimirs. This equation realizes the fact that the boost

M+− commutes with all the generators of SL(2, C) in the conformal group. The quadratic

form of the strong-coupling boost operator M+− then determines the J-plane eigenvalues

to quadratic order in ν,

j(ν) = j0 −Dν2 + 0(ν4) . (4.14)

As first pointed out in ref. [23] the strong coupling BFKL intercept is j0 = 2 − 2/
√

λ and

the diffusion constant9 is D = 2/
√

λ.

It is interesting to note that this structure is similar to the weak coupling one-loop

ng gluon BFKL spin chain operator in the large N limit. Here the boost operator is

approximated by M+− = 1−(αN/π)HBFKL, where HBFKL = 1
4

∑ng

i=1[H(J2
i,i+1)+H(J̄2

i,i+1)],

a sum over two-body operator with holomorphic and anti-holomorphic functions of the

Casimir. The Yang Mills coupling is defined as α = g2
Y M/4π. Even numbers of gluons (ng)

contribute to the BFKL Pomeron with charge conjugations C = +1 and the odd number

of gluons to the so called “odderon” [37–41] with charge conjugations C = −1. To be more

specific, the operator is defined by its action on two body eigenstates [4, 42, 43],

H(J2)Φn,ν =
1

2
[Ψ(h) + Ψ(1 − h) − 2Ψ(1)]Φn,ν . (4.15)

The symmetry h → 1 − h implies that this is a function of h(h − 1) or equivalently the

quadratic Casimir, which to first order is

H(J2) + H(J̄2) ≃ 2Ψ

(
1

2

)
− 2Ψ(1) +

1

2
Ψ′′
(

1

2

)
[J2 + J̄2 + 1/2] . (4.16)

Consequently in the two gluon channel with ng = 2 and HBFKL = 1
2 [H(J2

1,2) + H(J̄2
1,2)],

the leading eigenvalue with n = 0 for the boost is given by

j(ν) = j0 −Dν2 + 0(ν4) , (4.17)

with j0 = 1 + 4 ln 2αN/π and D = 14ζ(3)αN/π. The two-gluon eigenvectors, written in

terms of complex transverse positions bi = xi + iyi for gluon i, are

Φn,ν(b1 − b0, b2 − b0) =

[
b1 − b2

(b1 − b0)(b2 − b0)

]iν+(1+n)/2 [ b̄1 − b̄2

(b̄1 − b̄0)(b̄2 − b̄0)

]iν+(1−n)/2

.

(4.18)

They are given as a products of conformal and anti-conformal factors with weights h =

iν + (1 + n)/2 and h̄ = iν + (1 − n)/2 respectively. Expanding in a Taylor series in

b0 and b̄0 the wave function is easily seen as a sum of products of infinite-dimensional

9A cautionary note: in ref. [23] the integration variable used in solving the Pomeron equation (1.14) is

2ν and this has the effect that the diffusion constant defined in ref. [23] is D/4 compared with the constant

defined here.
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representations of a two-body Lie algebra. This algebra has ~J1,2 = ~J (1) + ~J (2) represented

by J
(i)
0 = bi∂bi

, J
(i)
− = −∂bi

, J
(i)
+ = b2

i ∂bi
and similarity for the antiholomorphic sector. In

this representation the Casimirs are J2
1,2 = −(b1 − b2)

2∂b1∂b2 and J̄2
1,2 = −(b̄1 − b̄2)

2∂b̄1∂b̄2 .

Let us note some differences between the strong-coupling and weakbrained-coupling

limits. First, j0 moves from 1 to 2 as λ moves from small to large. Also, the formulas for j(ν)

given above have different regimes of validity; at strong coupling the energy-momentum

tensor at j = 2 (along with the nearby j ∼ 2 DGLAP operators) lies within the region of

validity of the strong-coupling expression, while the explicit factor of λ in M+− at weak

coupling implies that eq. (4.16) breaks down before j = 2. Also, there is the fact that any

n is allowed at weak-coupling, but we see at strong coupling only n = 0. Presumably this

reflects the nearly point-like nature of a string in this limit, which leaves it unable to undergo

rotation in the transverse plane within this approximation. In strong coupling perhaps one

should visualize the Pomeron as the exchange of single trace planar diagram with an infinite

number of t-channel gluons whose interactions are treated via a mean field approximation.

4.2 Pomeron kernel at high energies

With the J-plane Pomeron kernel, K(j, b⊥, z, z′), expressed in terms of the AdS3 propagator

G3(j, v), we would also like to examine the structure of a single Pomeron exchange at high

energies, K(s, b⊥, z, z′). This is the kernel which is used in the eikonal resummation, as

reviewed in section 3.

Given eq. (2.17), it follows from eq. (1.7) that the single Pomeron amplitude can be
expressed, after wrapping the J-plane contour to the left, as

K(s, b⊥, z, z′) = −(zz′/R4)G3(j0, v) × ŝj0

∫ j0

−∞

dj

π

(1 + e−iπj)

sin πj
ŝ(j−j0) sin

[
ξ(v)

√
2
√

λ(j0 − j)

]

(4.19)

where we have exposed the dominant BFKL singularity at j0. We have also introduced

ξ(v) where cosh ξ = v + 1, in order to simplify our expressions.10

There are two distinct high energy limits of interest to us: (1) log ŝ → ∞ with
√

λ

large but fixed and (2) log ŝ → ∞, λ → ∞ with log ŝ/
√

λ → 0. The first is the Regge limit

which is dominated by the Pomeron exchange, and the second is dominated by the graviton

exchange. Let us give an approximate expression for K valid in both these regions.

We begin by separating K into its real and imaginary parts, K = Re[K] + iIm[K],

Re[K] = −(zz′/R4)G3(j0, v)ŝj0

∫ j0

−∞

dj

π

(1 + cos πj)

sin πj
ŝj−j0 sin

[
ξ(v)

√
2
√

λ(j0 − j)

]

Im[K] = (zz′/R4)G3(j0, v)ŝj0

∫ j0

−∞

dj

π
ŝj−j0 sin

[
ξ(v)

√
2
√

λ(j0 − j)

]
. (4.20)

With the change of integration variable to y2 = 2
√

λ(j0 − j), the imaginary part is recog-

10In terms of the new variable ξ, the combination 1 + v +
p

v(2 + v) = eξ and therefore G3(j, v) also

takes on a simpler form, G3(j, v) = e[2−∆+(j)]ξ/(4π sinh ξ).
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nized as a Gaussian integral that is easily integrated exactly,

Im[K] = (zz′/R4)G3(j0, v)ŝj0

∫ ∞

−∞

dy

2πi
√

λ
y e−τy2/2

√
λ eiξ(v) y

= (zz′/R4)G3(j0, v)(
√

λ/2π)1/2ξ ej0τ e−
√

λξ2/2τ

τ3/2
. (4.21)

The real part is more difficult. However we can find an approximation to Re[K] that is

uniformly valid for the region of interest, where both log ŝ and
√

λ are large. Large log ŝ

implies that the cut in the J-plane is probed near the end point for j − j0 < O(1/ log ŝ).

Combined with large
√

λ, this allows us to expand the prefactor in j − 2,

(1 + cos πj)

sin πj
≃ 2

π(j − 2)
+ O(j − 2) . (4.22)

The leading term implies the identity, ∂τ [e
−2τRe[K]] = −(2/π)e−2τ Im[K] or an approxi-

mation for the real part,

Re[K] ≃ (zz′/R4)G3(j0, v)(
√

λ/2π)1/2ξ ŝ2

∫ ∞

τ
dτ ′

2e−2τ ′/
√

λ−
√

λξ2/2τ ′

πτ ′3/2
. (4.23)

Corrections are easily computed in a standard perturbation series. The first order

corrections to eq. (4.23) are O(Im[K]/ log ŝ) and O(Im[K]/
√

λ), but they are not needed

in our present analysis.

Let us first focus on the Regge limit: τ = log ŝ → ∞ at fixed large
√

λ. In this

limit the end point dominates the integral in the expression (4.23) for Re[K] and can be

approximated by

∫ ∞

τ
dτ ′

2e−2τ ′/
√

λ−
√

λξ2/2τ ′

πτ ′3/2
= (

√
λ/π) e−2τ/

√
λ e−

√
λξ2/2τ

τ3/2

(
1 + O(

√
λ/τ)

)
(4.24)

Combining this approximation for Re[K] with Im[K], we have the leading term in the

Regge limit,

K ≃ (zz′/R4)G3(j0, v)ej0τ
[
(
√

λ/π) + i
]
(
√

λ/2π)1/2 ξ
e−
√

λξ2/2τ

τ3/2
(4.25)

valid for
√

λ/ log ŝ → 0 and for general value of (
√

λξ2)/ log ŝ. This is our key result.

Up to the log factors, the single Pomeron contribution in a transverse representation at

high energy is proportional to an AdS3 propagator at j = j0 and a diffusion factor in

ξ. This amplitude is complex, with its phase consistent with the Regge signature factor,

(1 + e−iπj0)/2 = (1 + e2πi/
√

λ)/2 ≃ 1 + iπ/
√

λ, to leading order in 1/
√

λ.

Before discussing in detail the graviton limit, let us make a few additional comments.

Let’s return to momentum space,

K(s, t, z, z′) =

∫
d2b⊥e−iq⊥b⊥K(s, b⊥, z, z′) , (4.26)

and examine the high energy behavior at fixed t. With t = −q⊥
2 6= 0, one easily verifies that

our large ŝ result, ŝj0/ log3/2 ŝ in eq. (4.25), is consistent with a
√

j − j0 BFKL singularity,
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as derived in [23]. The limit t = 0, however, requires a more careful treatment. After a

more refined analysis, one can verify that eq. (4.25) leads to eq. (1.2) and is consistent with

the 1/
√

j − j0 singularity at t = 0 found in ref. [23].

4.3 Connection with graviton exchange

Next we turn to the regime dominated by graviton exchange. For λ → ∞, the dual theory

approaches pure gravity, without stringy corrections. For log ŝ → ∞ and
√

λ/ log ŝ → ∞,

the Pomeron exchange should smoothly become graviton exchange. We recall that the

amplitude for the one-graviton-exchange Witten diagram in momentum representation, for

scalar sources on the boundary of AdS5, is [44]

κ2
5

∫
dz

√
g

∫
dz′
√

g′ T̃MN (p1, p3, z)G̃MNM ′N ′(q, z, z′)T̃M ′N ′

(p2, p4, z
′) (4.27)

where κ5 is the gravitational coupling in AdS5, T̃MN is the energy-momentum tensor for

the scalar source in the bulk and G̃MNM ′N ′ is the graviton propagator, both in momentum

representation. At high energies, keeping the leading ++,−− component, we have shown

in ref. [12] that the corresponding amputated amplitude in transverse representation is

K(s, x⊥ − x′⊥, z, z′) ∼ ŝ2

(
zz′

R4

)
G3(x

⊥ − x′⊥, z, z′) (4.28)

where G3 is the dimensionless scalar propagator for a particle of mass
√

3/R in an AdS3

space of curvature radius R, and in the conformal regime is equal to the function G3(j =

2, v) defined in eq. (1.10). We will now recover this from the Pomeron kernel.

First let us understand where the transition to this regime occurs. For λ sufficiently

large, the integral in the expression (4.23) for Re[K] gets its dominant contribution not from

the end point at τ but at an internal value, at the saddle point determined by 2τ ′/
√

λ =√
λξ2/2τ ′. The crossover between the Regge and the graviton regimes is determined by

the collision of this saddle point with the end point,

ξ = 2τ/
√

λ = (2/
√

λ) log ŝ . (4.29)

To determine the kernel in this regime, let us return to the J-plane representation,

eq. (4.19), obtained by closing the contour around the BFKL branch point at j0. The pole

at j = 2 in the integrand, although outside the integration range, plays an increasingly

important role in the limit λ → ∞. The dominant contribution to the J-integral now comes

from the region j = j0−0(1/
√

λ) and the cutoff for the integral, instead of due to the ŝ(j−j0)

factor, now comes from the last sine factor. In terms of the variable y = [2
√

λ(j0 − j)]1/2,

the singularity at j = 2 corresponds to poles at y = ±2i.

We first note that, due to the diffusion factor in eq. (4.21), Im[K] vanishes in this

limit. This is not surprising since this j = 2 kinematic singularity does not contribute to

Im[K], (see eq. (4.20)), and we therefore only need to focus on the real part, which can

be expressed as eq. (4.23). Changing integration variable to τ ′ = 2τ/
√

λ, the integral in

eq. (4.23) becomes

∫ ∞

τ
dτ

e−2τ/
√

λ−
√

λξ2/2τ

τ3/2
=

√
2λ−1/4

∫ ∞

2τ/
√

λ
dτ ′

e−τ ′−ξ2/τ ′

τ ′3/2
(4.30)
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In the limit τ/
√

λ → 0, the integral yields
√

2πλ−1/4ξ−1e−2ξ , and

K → Re[K] =
2

π
ŝ2

(
zz′

R4

)
G3(j0, v)e−2ξ(v) =

2

π
ŝ2

(
zz′

R4

)
G3(2, v) . (4.31)

This is the graviton result obtained in ref. [12], where G3(2, v) ≡ G3(v), recovered through

a J-plane analysis.

5 Aspects of the Eikonal representation

In this section, we highlight several interesting features of the eikonal approximation for

multiple Pomeron exchange. We focus especially on issues of unitarity in the s-channel,

and on the phase of the amplitude, emphasizing its physical interpretation. We also discuss

how particle-Pomeron amplitudes are embedded in our calculations, and some connections

with the eikonal approximation in flat-space string theory.

Of course the eikonal approximation is commonly used to obtain a manifestly unitary

amplitude for a study of unitarity. An S-matrix element which can be approximated by an

eikonal sum automatically satisfies the unitarity bound as long as the imaginary part of χ

is negative. If the eikonal amplitude χ for elastic scattering is real, then the eikonal sum

precisely saturates the unitarity bound; the elastic amplitude gives the total cross-section.

Otherwise, the imaginary part is related to inelastic processes not explicitly described by

the elastic amplitude.

Here, the situation is more subtle. We want to compute four-dimensional gauge am-

plitudes. However, our methods involve the bulk eikonal approximation, requiring us to

integrate over bulk coordinates, z, z′, for fixed b, as in eq. (3.3). In general, the bulk eikonal

approximation is valid in only part of the integration region, the “eikonal region” for short.

For this reason, for most values of b, the gauge-theory amplitude cannot be computed

purely within the bulk eikonal approximation, and unitarity of the gauge amplitude can-

not be fully studied. Nevertheless, as we will see, unitarity of the bulk amplitude is still

conceptually useful and provides some important physical intuition. Later we will consider

large values of b where the eikonal region makes the dominant contribution to the gauge

theory amplitude.

5.1 Inelastic production and AdS

We begin by reviewing familiar aspects of unitarity in four dimensions, and their extension

in the present context to physics in the relevant five bulk dimensions.

The unitarity condition for the S matrix, S†S = I, can be diagonalized through the

s-channel partial-wave expansion. The 2 → 2 amplitude can be written

A(s, t) = 16π
∑

l

(2l + 1)al(s)Pl(cos θ) , (5.1)

where al(s) ≡ (sl − 1)/2i, sl ≡ e2iδl(s). The components of the diagonal scattering matrix,

sl = e2iδl(s), are unitary for a real phase-shift δl(s). In this case elastic scattering in this

partial wave saturates unitarity. More generally, if inelastic production is allowed, s∗l sl < 1,

and the phase-shift δl(s) is complex, with Im[δl(s)] > 0.
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Figure 6. Perturbative expansion for a four-point string amplitude: The planar approximation (a)

has s-channel closed string excitation dual t-channel complex Regge exchange. The torus diagram

(b) has s-channel threshold for both single closed string excitations and a pairs of closed strings

dual to Regge cuts. The two loop diagram gives one, two and three closed string production dual

to Regge and multi-Regge cuts, etc.

For high-energy small-angle scattering, t ≃ −(s/4)θ2, and with the identification l ≃
b
√

s/2, the sum becomes approximately an integral over impact parameter b, so the partial-

wave expansion becomes approximately

A(s, t) ≃ −2is

∫
d2b⊥e−iq⊥b⊥

(
e2iδ(s,b) − 1

)
(5.2)

For a real phase shift δ(s, b⊥) at high energy, unitarity for the the transverse amplitude,

Ã(s, b⊥) =

∫
d2q⊥
(2π)2

eib⊥q⊥A(s, t), (5.3)

becomes a scalar condition:

Im Ã(s, b⊥) = (1/4s)|Ã(s, b⊥)|2 . (5.4)

In general, at large s, the on-shell amplitude is an integral of an off-shell position-space

Green’s function, which depends on the four transverse positions of the two incoming and

two outgoing particles. Three of these transverse-position variables are independent; the

fourth is removed by translation invariance. In the eikonal approximation, the scattering

amplitude at each order in χ is proportional to a product of χ and two delta functions,

δ2(x⊥1 − x⊥3 )δ2(x⊥2 − x⊥4 ), which ensures that neither scattered particle is deflected by a

transverse shift in position. This effect of “zero-transverse-deflection” removes two more

of the transverse-position variables, leaving an eikonal kernel χ that is a function of only

one. When the eikonal amplitude is exponentiated, the effect of zero-transverse-deflection

is to ensure the full amplitude remains a function of only one transverse position variable.

If the eikonal approximation is valid for a given partial wave, that is for a given b⊥ (at

fixed s), then the eikonal kernel is nothing but the phase-shift, χ(s, b⊥) = 2δ(s, b⊥). The

general requirements of unitarity on the phase shift δ, partial wave by partial wave, thus

descend to requirements of unitarity on χ which are local in b. For this reason, we can

cease to worry as to whether the eikonal approximation applies to the entire S matrix; it

is enough for us that there are some partial waves to which it applies.

Up to this point we have been discussing standard ideas in four dimensions. Now

we turn to the calculation which we have addressed in this paper, which has so far been
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performed only in conformal four-dimensional field theories (a condition which we will relax

later, but which we may retain for now.) Although the conformal theory has no S-matrix,

this is not relevant, since we can add a heavy quark as a probe of the conformal theory and

study onium-onium scattering. More important, most gauge theory amplitudes cannot be

computed fully within the eikonal approximation; only in some regions of the scattering

phase space can it be used. But the eikonal approximation allows us to apply notions of

unitarity locally in five dimensions.

To make this statement precise would require a generalization of the notion of partial

waves, as in eq. (5.1), to the bulk. We sidestep this by noting that our form of the amplitude

is already a generalization of its high-energy limit eq. (5.2). Thus we should again view

χ(s, b⊥, z, z′) as proportional to the phase shift in the high-energy limit of the bulk partial

wave expansion,

A2→2(s, t) ≃
∫

d2b e−ib⊥q⊥

∫
dzdz′P13(z)P24(z

′)Ã(s, b⊥, z, z′) , (5.5)

Ã(s, b⊥, z, z′) = −2is
[
eiχ(s,b⊥,z,z′) − 1

]
. (5.6)

The key difference between this and the previous case is that the z coordinate is not

translationally invariant, with two important consequences. First, the bulk amplitude in

transverse position space is a function of four z coordinates, which in the eikonal approxi-

mation are reduced to two (z and z′), as in eq. (3.15). Second, the wave functions for the

incoming and outgoing particles are not simply plane waves in the z coordinate, and instead

of the simple factor e−ib⊥q⊥ which is left over from the wave functions in the Minkowski co-

ordinates, we have the more complicated products of wave functions P13(z)P24(z
′), defined

in eq. (1.5).

Just as the eikonal approximation may not apply in an ordinary four-dimensional scat-

tering amplitude, but may apply in certain partial waves, so here the eikonal approximation

will apply only in the limited region we called the “eikonal region”. Where it does, the full

amplitude can be expressed through Ã(s, b⊥, z, z′), a function of one relative Minkowski

coordinate and two bulk radial positions, and unitarity applies to it as before.

Im Ã(s, b⊥, z, z′) ≥ (1/4s)|Ã(s, b⊥, z, z′)|2 . (5.7)

A real amplitude χ, as for the pure gravity case, saturates the bound, while the complex

amplitude of the Pomeron χ satisfies a corresponding inequality.

5.2 Physical consequences

We now consider the meaning both of the imaginary part of χ and of the imaginary part

of −2is(eiχ − 1). Let us expand the eikonal sum in powers of χ:

ImÃ(s, b, z, z′) = −2s Re

[
∑

n=1

(iχ(s, b, z, z′))n/n!

]

= s
{
2 Im[χ(s, b, z, z′)] + Re[χ2(s, b, z, z′)] + · · ·

}
. (5.8)

If χ is real, as in graviton exchange, contribution to ImÃ begins at one-loop; if χ is complex,

as for the Pomeron, there is a tree-level contribution.
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Whereas the magnitude of the eikonal, (up to log factors), grows as G3(b
⊥, z, z′)ŝj0−1,

its phase is a constant, depending only on j0. From eqs. (3.5) and (4.19),

χ(s, b, z, z′) ≃ ei(1−j0/2)π|χ(s, b⊥, z, z′)| . (5.9)

Recall j0 is the intercept of the leading J-plane singularity, which moves from j0 ≃ 1 at

weak coupling to j0 ≃ 2 at strong coupling. This expression requires large energy, so it

fails at small z, z′ where the locally measured center-of-mass energy is comparable to or

less than the string scale; there the phase goes to zero, for reasons to become clear in a

moment.

From the perspective of a J-plane analysis, an eikonal sum represents an approximate

treatment for multi-Pomeron J-plane singularities, with the n-loop diagram giving rise to

an n-Pomeron cut at j = n(j0 − 1) + 1. For example, the one-loop diagram grows like

s2j0−1 and has a two-Pomeron cut at 2j0 − 1. Were j0 < 1, higher order contributions

would be subleading and the eikonal sum would be a rapidly convergent expansion at

large s, but this is not the case for 1 < j0 < 2, the range of interest here. Therefore,

where the eikonal expansion is reliable, it is interesting to discuss the relative importance

of the various perturbative contributions to the absorptive part of the forward amplitude,

Im[A(s, 0)], and, thus to the total cross section σtotal(s), through the optical theorem,

σtotal(s) ≃ (1/s)Im[A(s, 0)].

It is important first to elucidate the physical meaning of the phase. In potential

theory, elastic scattering dominates when χ is real. On the other hand, a black disk (total

absorption) gives a pure-imaginary χ. A potential with a real and an imaginary part

gives a complex χ, corresponding to partial absorption.11 At weak ’t Hooft coupling, as

in QCD itself, Pomeron exchange corresponds to j0 → 1, for which Re[χ] → 0; there

is nearly complete absorption, and Pomeron exchange approximates a black disk. For

graviton exchange, j0 = 2 and there is no absorption, but at finite large ’t Hooft coupling

j0 = 2 − 2/
√

λ the imaginary part of the tree-level amplitude is nonzero, Im [2χ] ∝ 1√
λ
.

This absorptive part arises from averaging the effect of massive s-channel string resonances

that arise in the tree-level string amplitude, figure 6a. A cut across an exchanged Pomeron

looks like a massive string in the s channel, which gives a pole if s is equal to the mass

of a string; averaging over these poles at large s gives the Pomeron exchange a nontrivial

phase. This inelastic process represents a form of absorption out of the two-string Hilbert

space and into the one-string Hilbert space. Other forms of absorption cannot contribute

at leading order in the string coupling and at the leading power of s.12

11For a short-range potential with non-vanishing real and imaginary parts, V (s, r) = VR(s, r) − iVI(s, r)

the eikonal at high energy is given by

χ(s, b⊥) = −(2µ/
√

s)

Z
∞

−∞

dz V
“
s,

p
b⊥2 + z2

”
(5.10)

where r2 = x2+y2+z2 = b⊥
2
+z2 and µ is the particle mass. (See, for instance, Schiff, Quantum Mechanics,

page: 339-343.)
12This type of cut across a large closed string representing, in a confining field theory, a highly excited

state that will decay to many hadrons, is called an AGK cut [45, 46].
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When we move to the one-loop graph, a number of interesting issues arise. On the

one hand the imaginary part of the one-loop amplitude is proportional, in the expansion of

2is[eiχ − 1], to Re[χ2]. On the other hand, this same quantity should be given by looking

at all the cuts through the one-loop graph, of which there are several. If χ is real, as in the

exchange of an elementary particle such as a graviton, then the only cut is the obvious one,

cutting through both of the scattered particles. This cut is proportional to χ∗χ, which is

obviously equal to Re[χ2] in this case.

If χ is complex, then one might at first glance add to this first cut two more cuts, one

through each Pomeron, which summed together give

iχIm [2χ] + Im [2χ](iχ)† = −(Im[2χ])2 . (5.11)

That this is insufficient can be seen by considering the following identity,

Re [χ(s, b, z, z′)χ(s, b, z, z′)]

= χ†(s, b, z, z′)χ(s, b, z, z′) + iχ(s, b, z, z′)Im [2χ(s, b, z, z′)]

+Im [2χ(s, b, z, z′)](iχ(s, b, z, z′))† +
1

2!
(Im [2χ(s, b, z, z′)])2 (5.12)

which, from eq. (5.9), reads

cos(j0π)|χ|2 = [1 − 2 sin 2(j0π/2) − 2 sin 2(j0π/2) + 2 sin 2(j0π/2)] |χ|2 (5.13)

The left hand side is the contribution to Im[Ã] from the second term in −ieiχ; the first

(positive) term on the right is the cut through the scattered particles, and the second

and third (negative) terms are the cuts through the left and right Pomeron respectively in

figure 6b. Consistency with eq. (5.8) requires the last term must be present. It arises in

string theory from cutting the torus diagram as one would slice a bagel, with the incoming

states on one slice and the outgoing on the other.13 This positive contribution to the

imaginary part corresponds to a new on-shell process not yet included: 2 massive strings

propagating in the s-channel. Only with all four cuts do we obtain the correct second term

in eq. (5.8).14

This feature generalizes: for the n-loop amplitude, one finds 2n+1 terms corresponding

to up to n + 1 strings propagating in the s channel. In fact all the statements made

here for the two-Pomeron exchange graph generalize to all orders, through straightforward

combinatorics that build up the exponential.

It is interesting to compare these features with those arising in the QCD literature

regarding the phases in single and multiple Pomeron exchange processes. We have just

13Long ago, in Regge theory, this contribution was identified within field theory. Corresponding to a

“Mandelstam diagram” [47, 48], it is the essential mechanism to generate j-plane cuts from the exchange

of two Regge poles.
14In string theory there are really only three cuts when viewed topologically, but the first and fourth

term above become independent cuts in the limit in which we are working, where we separate massless

closed string states in the s-channel from massive ones. Corresponding subtleties also arise at higher loops.

Phenomenologically, this separation identifies “diffractive” vs “non-diffractive” production. Here, diffractive

production refers to final states having a large rapidity gap.
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seen that five-dimensional Pomeron exchange, at leading order, gives a four-dimensional

amplitude which is proportional to Im[sj0], where j0 is slightly less than 2. QCD data has

long been modeled [49] with a similar single four-dimensional Pomeron exchange with j0

slightly larger than 1. In both cases this poses a problem, since the total cross section,

proportional to the imaginary part of the forward amplitude, grows too fast to be consistent

with unitarity. In QCD one remedy has been to consider the correction from two-Pomeron

exchange, which goes as s2j0−1, and whose imaginary part is negative, from the left-hand

side of eq. (5.13). This correction therefore gives a negative contribution to the growing

single-Pomeron total cross-section. But for j0 > 1.5, this picture cannot survive, since

the imaginary part of the two-Pomeron exchange correction is positive. Thus, while it is

often sufficient at weak coupling to treat the absorptive correction to Pomeron exchange

by keeping only the two-Pomeron cut, in strong coupling the totality of the whole eikonal

sum must become important.15

5.3 A multi-channel interpretation

We have, up to now, discussed χ(s, b, z, z′), and considered phases and unitarity as applied

locally in the bulk. But it is interesting to return to the four-dimensional gauge theory,

and to consider what our current discussion means in that context. In particular, in those

limited computations where the eikonal region includes the entire bulk, it is possible to

reinterpret the bulk eikonal amplitude, a function of z and z′, as a field theoretic eikonal

amplitude which is a matrix representing transitions between Kaluza-Klein modes. That

is, if n1, n2 are Kaluza-Klein modes which scatter into modes n3, n4, the amplitude for that

transition is a matrix, which is itself the exponential of a matrix eikonal kernel χ̂:

− 2is {exp [iχ̂] − 1}n4,n3;n2,n1
(5.14)

This represents a multi-channel eikonal approximation, which one could have attempted

from the start within quantum field theory. From such a point of view, it would hardly be

obvious that the matrix χ̂ could be simply diagonalized by representing the modes labeled

by ni as functions on a new bulk z coordinate. In this sense, the gauge-gravity duality

performs a small miracle.

Technically, this issue is most easily discussed in the presence of a discrete hadron

spectrum, but this requires more formalism than we have presented here. Instead we will

simply regulate our conformal field theory with a hard infrared cutoff, which is for many

purposes effectively the same thing. We temporarily introduce an IR cut-off in the AdS5

space, 0 < z < zIR. The AdS5 spectrum is now discrete, consisting of an infinite sequence

of stable KK modes with normalized orthogonal wave functions, Φ(n)(z),
∫ zIR

0
dz

√
g(z/R)2Φ(n)(z)Φ(m)(z) = δn,m (5.15)

Instead of enumerating them by the co-ordinate z ∈ [0, zIR], we can change basis to the

physical on-shell scattering states, using the completeness relation,
∑

n Φ(n)(z)Φ(n)(z′) =

15That the character of diffractive scattering should change as one moves from the region j0 < 1.5 to

j0 > 1.5 was noted in ref. [23] in comments relating to black hole production.
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(z/R)3δ(z− z′). In this basis we have a matrix eikonal expression for all the 2-to-2 on-shell

scattering amplitudes,

An4,n3←n2,n1(s, t) = −2is

∫
d2be−ibq⊥

[
eibχ(s,b) − 1

]
n4,n3;n2,n1

, (5.16)

where χ̂ is a matrix for all possible 2-to-2 scattering amplitudes with a single Regge

exchange kernel,

χn4n3;n2n1(s, b) =

∫
dz dz′ Pn3n1(z)Pn4n2(z

′)χ(s, b, z, z′) (5.17)

with χ(s, b, z, z′) given by eq. (3.5), and Pij are “overlap functions”, defined in eq. (1.5).

Note that the eikonal matrix is symmetric, χn4n3;n2n1(s, b) = χn2n1;n4n3(s, b). If χ(s, b, z, z′)

is real, the eikonal matrix is hermitian, χn4n3;n2n1(s, b) = χ∗n2n1;n4n3
(s, b), hence the theory

is unitary after incorporating all 2-body inelastic channels made of KK modes. The s-

channel unitarity now takes on a matrix form,

Im An4n3;n2n1(s, b
⊥) = (1/4s)

∑

n,m

A†(s, b⊥)n4n3;nmA(s, b⊥)nm;n2n1 (5.18)

From the field theory point of view, it is remarkable that the scattering matrix of the

KK modes can be diagonalized by introducing a single geometric co-ordinate z. The eikonal

amplitude in this basis leads directly back to eq. (3.3). Indeed, using the orthonormal

condition, eq. (5.15) and the associated completeness relation, one can convert the multi-

channel unitarity condition, eq. (5.18), into the local unitarity condition, eq. (5.7), with

equality if χ is real and inequality if Imχ > 0.

Finally we may let zIR go to infinity; the modes become continuous but the above

relations survive unchanged. Local elastic unitarity remains meaningful when the IR cut-

off is removed. In the conformal limit this diagonalization may be viewed a consequence of

a conformal partial wave expansion as described in ref. [43]. However, it is more general,

and applies in nonconformal theories.

The multichannel expression in eq. (5.18) includes the effects of the Kaluza-Klein modes

of the bulk graviton, but not those of the higher-mass (and higher-spin) string states. One

might hope that this expression can be generalized to include them, and even that the

simplicity of the bulk eikonal phase might generalize to the full string theory. While we

have not shown this, we will note in section 5.5 that there are interesting and suggestive

simplifications in the eikonal approximation to scattering of flat-space strings. It remains to

be seen how to incorporate these into a fuller understanding of eikonal scattering of strings

in curved space, and whether the difficulties of quantizing strings in Ramond-Ramond

backgrounds can be evaded.

5.4 Two-Pomeron cut and particle-Pomeron amplitude

The strength of the two-Pomeron cut, which we have evaluated in section 3, can be in-

terpreted as proportional to the square of the“fixed-pole” residue of the particle-Pomeron

amplitude. This then provides a connection to the discussion of closed string eikonalization
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of ref. [32], which we will turn to in section 5.5, and also allows a generalization of our

treatment to include additional corrections such as triple-Pomeron interactions which have

been left out of our current analysis.

We have pointed out in section 5.2 that an eikonal sum provides an approximate treat-

ment for the strengths of multi-Pomeron J-plane singularities. In a d = 4 field theoretic

setting, the existence of multi-Pomeron J-plane singularities was demonstrated by a care-

ful analysis of the analytic structure of non-planar Feynman graphs [47, 48]. This can

be generalized to strings through the notion of fixed-pole residues for particle-Pomeron

amplitudes. As explained in section 2.2, a fixed-pole residue at J = −1 corresponds to

extracting certain spectral weight for an analytic function, e.g., eq. (2.11). For this residue

not to vanish, the amplitude must satisfy an unsubstracted dispersion relation and has

both left- and right-hand cuts.

Recall that in our one-loop analysis in section 3, we are left with two integrals,
∫

dq−1 A13

and
∫

dq+
1 A24, where A13 and A24 are particle-Pomeron amplitudes. Let us focus on the

integral over A13, which, in strong coupling, is the a sum of two AdS5 scalar propagators,

G5, figure 5. As a function of M2 = 2p+
1 q−1 , A13 has both a right-hand cut, from the

s-channel propagator, and a left-hand cut, from the u-channel propagator. It can be

represented through a dispersion relation, eq. (2.6), as the sum of two analytic functions,

A13(M
2) = AR(M2) + AL(M2), with a right- and left-hand cut in M2 respectively. Up to

a common factor of R−3, the first term, AR, is G5(M
2) and the second, AL, is G5(−M2),

where we have suppressed their dependence on transverse coordinates. It can easily be

shown that G5(M
2) = 0(1/M2), whereas the sum A13(M

2) is even in M2, from which we

deduce that A13(M
2) = 0((1/M2)2) for |M2| → ∞.

From the one-loop integral, the path of q−1 -integration goes over the s- and u-channel

physical regions of the amplitude A13. It leads to an integral in M2 which goes over the

right-hand cut and under the left-hand cut of A13(M
2). Since A13 vanishes at infinity as

0((1/M2)2), the integration contour can be freely rotated into the complex M2 plane, and

the integral
∫

dq−1 A13 , after multiplying by p+
1 /(iπ), becomes

1

2πi

∫ i∞

−i∞
dM2A13(M

2) (5.19)

Note that the integral is precisely of the form eq. (2.10), discussed in section 2.2, and it is

the j = −1 fixed-pole residue for the particle-Pomeron amplitude, A13. Here, G5(M
2) and

G5(−M2) play the role of one-sided analytic functions AR and AL respectively.

The spectral representation for G5, and a completeness relation for Bessel functions,

leads to
1

2πi

∫ i∞

−i∞
dM2A13(M

2) = C13 = δ2(x⊥1 − x3
⊥)(z/R)3δ(z1 − z3) (5.20)

where we have put back the dependence on transverse coordinates. Together with a

similar integral over A24, it leads to a remarkable result

1

π2

∫
dq−1 A13

∫
dq+

1 A24 = (2/s)C13C24 = (2/s)(zz′/R2)−2〈3, 4|1, 2〉 (5.21)
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from which eq. (3.14) follows. Since this corresponds to the contribution for the 2-Pomeron

cut, we see that the strength of this cut is proportional to the product of two fixed-pole

residues for the respective particle-Pomeron amplitude.

5.5 Frozen string bits in flat space

It is interesting to compare our strong coupling results in AdS space with the eikonal

formula of Amati, Ciafaloni and Veneziano [31, 32] for the superstring in flat space. The

flat space solution does not require a truncation of the infinite number of normal modes

of a full string world sheet description, so similarities with the general mechanism for

eikonalization in string theory found in our strong coupling AdS example suggest further

generalization beyond strong coupling. In flat space the superstring eikonal phase χ̂ is a

matrix for all 2 to 2 particle scattering amplitudes in the planar approximation. Similarly

to our multichannel eikonal amplitude, this matrix can be re-expressed geometrically, this

time by a change of basis to an infinite dimensional “impact parameter” space for the

transverse positions of individual string “bits” x⊥(σ) of the colliding strings.

Let us review a few of the results of refs. [31, 32]. Consider the eikonal approximation

for graviton-graviton elastic scattering. The first term is the Regge approximation to the

planar diagram for graviton scattering,

A(s, t) = (ǫ3 · ǫ1)(ǫ4 · ǫ2)g
2
sKP (s, q⊥) , (5.22)

where ǫi are the graviton polarization tensors. The kernel for a t-channel Reggeized graviton

exchange is

KP(s, q⊥) = 2
Γ(1 − α(t)/2)

Γ(α(t)/2)
(e−iπ/2α′s/4)α(t) , (5.23)

where t = −q2
⊥, α(t) = 2 + α′t/2.

As before, the key step for the eikonal approximation of each term in the expansion is

well illustrated by the one-loop diagram. In the high-energy small-angle limit, this diagram

can be expressed as a box diagram, figure 5, with two Pomeron exchange kernels (5.23)

for the rungs, coupled to the 2-to-2 Pomeron-graviton scattering amplitudes, A13 and A24,

on the sides of the ladder. Indeed for the flat space superstring, the legitimacy of this

approximation has been demonstrated by Sundborg [50] through a detailed analysis of the

high energy limit of the exact one loop superstring diagram.

As a result it is proven [31, 32] that the leading two Pomeron cut contribution reduces

to the analysis of the Pomeron-particle scattering amplitudes

A13(M
2, q1, q2) =

∫
d2z

π
|w|−2−α′M2/2|1 − w|α′q1q2 (5.24)

on the left side of the ladder, and similarly for A24(M
′2, q1, q2) on the right side, as il-

lustrated in figure 4. Here we have defined M2 = −(p1 + q1)
2, M ′2 = −(p2 − q1)

2 and

α′q1q2 = α′(t1 + t2 − t)/2. The box diagram is evaluated by rotating the contour in M2

for A13 (and in M ′2 for A24) in direct analogy with our discussion in section 5.4. Parame-

terizing the world sheet by w = exp[τ + iσ], the result is

C13 =
1

4πi

∫ i∞

−i∞
dM2A13(M

2, q1, q2) =

∫ 2π

0

dσ

2π
|1 − exp(iσ)|α′q1q2 (5.25)
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and similarly C24. As noted above, these integrals define the residue of the J = −1

fixed pole for a Pomeron-particle scattering amplitude, which sets the strength of the two

Pomeron cut at 2j0 − 1.

Now to make the comparison with our AdS eikonal result, it is useful to recast the

derivation of ref. [32] in light-cone gauge [10, 23]. In light-cone gauge, by suitable worldsheet

diffeomorphism, the longitudinal modes are fixed so that X+(σ, τ) = τ and X−(σ, τ) is

dependent on transverse modes via the Virasoro constraint. There are similar conditions

on the world sheet fermions, although they don’t contribute to the leading eikonal limit.

The result is that the transverse coordinates of the string in target space, X⊥(τ, σ), form a

complete set of independent bosonic degrees of freedom. One consequence is that the fixed

pole integral, eq. (5.25), demonstrates again that the leading contribution to the eikonal

approximation of the one-loop diagram is instantaneous in target space light-cone time:

x+ = τ . Moreover, as demonstrated in ref. [32], this observation holds order by order.

For the n-Pomeron exchange graph, the leading contribution to the n-Pomeron cut in the

J-plane, which is of order (g2n
s sn(j0−1)+1), is instantaneous in x+.

Next, following steps similar to our eikonal derivation above, one arrives at the eikonal

amplitude [31, 32],

T4(s, t) = −2is(ǫ3 · ǫ1)(ǫ4 · ǫ2)

∫
dD−2b⊥eib⊥q⊥ 〈0; 0|[eibχ(s,b⊥;X̂⊥,X̂′

⊥
) − 1]|0; 0〉 (5.26)

with the matrix phase,

χ̂(s, b⊥; X̂⊥, X̂ ′⊥) =
g2
s

2s

∫
dD−2q⊥
(2π)D−2

KP (s, q⊥)

∫
dσdσ′

(2π)2
eiq⊥[b⊥ + X̂⊥(σ) − X̂ ′⊥(σ′)] . (5.27)

The state |0; 0〉 is the string vacuum [51] and X̂⊥(σ) are the non-zero mode transverse

position operators for the string.16

Here we also note that one can exactly diagonalize this matrix by changing basis from

the eigenstate of the light-cone string Hamiltonian,

P− =
1

2p+

∮
dσ[(Π̂⊥(σ))2 +

1

(2πα′)2
(∂σX̂⊥(σ))2] (5.28)

to the string bit basis, |x⊥(σ)〉, that diagonalizes the transverse position operators X̂⊥(σ).

In light-cone gauge, both bases are a complete representation of all the physical bosonic

(non-spurious) modes of the superstring. We change basis for both the right-moving string

x⊥(σ) and the left-moving string x′⊥(σ′), obtaining

T4 ∼ −2is

∫
Dx⊥Dx′⊥dD−2b⊥P13[x⊥(σ)]P24[x

′
⊥(σ′)]eib⊥q⊥

[
eiχ(s,b⊥;x⊥,x′

⊥
) − 1

]
. (5.29)

The string bit probability distributions for flat space string theory

P31[x⊥(σ)] = |Φ[x⊥(σ)]|2 and P42[x
′
⊥(σ′)] = |Φ[x′⊥(σ′)]|2 (5.30)

16At |w| = 1 or τ = 0, the zero mode x̂⊥
0 =

R
dσX̂⊥/2π gives the delta function δD−2(p⊥

1 +p⊥
2 +p⊥

3 +p⊥
4 ).
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are then expressed as the square of Gaussian wavefunctionals [23],

Φ[x⊥(σ)] = 〈x⊥(σ)|0; 0〉 = exp[− 1

16π2α′

∮
dσ1

∮
dσ2

x⊥(σ1)x⊥(σ2)

sin2(σ1−σ2
2 ) + ǫ2

] , (5.31)

for the overlap of the string vacuum state, |0; 0〉, and the string bit distribution at the time

of impact x+ = 0. Note that by the state-operator correspondence [51] the graviton wave

function also includes a factor : ∂Xµ(w)∂̄Xν(w) exp[ipX(w)] : at |w| = 0 (or τ = −∞)

but this factor has already been properly included in the spin-momentum factors for each

graviton external state in the planar amplitude (5.22).

Thus we see that the geometrical extension of the transverse dimensions that we saw

above, where the KK radial mode z allowed us to rewrite a multi-channel problem in

four dimensions using a transverse AdS3, has an analogue here. For the string, the exact

flat space eikonal amplitude, a multi-channel problem involving a tower of massive string

states, is diagonalized using an infinite dimensional space which is a product of transverse

impact-parameter spaces, one for each string bit. During the collision, each string bit

interacts instantaneously in light-cone time X+ = τ undergoing zero deflection. The string

bits are frozen.

6 Unitarity, confinement and Froissart bounds

In this section we address questions relating to unitarity, confinement and the Froissart

bound, in regimes where the eikonal approximation in the bulk is believed to give the dom-

inant contribution to the field theory amplitude. If b is sufficiently large compared to z, z′,

which indicate the sizes (at the moment of collision) of the scattering objects, then the scat-

tering interaction is weak and causes small deflections. In this limit the eikonal approxima-

tion is believed in some theories, including gravity, to be a good estimate of the amplitude.

Our discussion below will be brief and we will not consider in detail the effect of the

hadron wave functions. Instead we will just discuss the bulk amplitudes at a given z

and z′. This is a key input for a computation of the full gauge theory amplitude. The

wave functions for hadron states peak near a value of z corresponding to their typical size.

The probability that a hadron fluctuates to a smaller size (i.e., is found at smaller z) is

suppressed by a power law. Meanwhile, the wave functions cut off very quickly at larger

z. Typically the bulk wave functions for hadrons have no support above some maximal z;

for example all hadrons in a confining theory are cut off at some zmax, and a quarkonium

state of mass M has a wave function with no support for z > 1/M . Thus, at large b the

properties of the field theory amplitude are to a degree dominated by the properties of the

bulk eikonal amplitude at a particular z and z′, corresponding to the most likely sizes of the

scattering hadrons. However, some of the physics can only be captured after integrating

over z and z′.

At a given z and z′, the cross-section for the partial wave corresponding to b

approaches its unitarity bound when |χ| ∼ 1. Since interactions become stronger at

smaller b, ∂|χ|/∂b tends to be negative, so typically the bound is reached for all b less than

some bmax, except possibly for interference fringes. If Im[χ] > Re[χ], as is the case for the
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weak-coupling Pomeron, the point bmax is where absorption becomes of order one, and one

speaks of a black disk of radius bblack where unitarity is saturated. If the reverse is true,

as for the strong-coupling Pomeron, then outside the black disk, whose radius is set by

Im[χ] ∼ 1, is a “diffractive disk”, where one finds large average cross-sections modulated

by fringes. The radius of this disk, bdiff , is set roughly by the condition Re[χ] ∼ 1.

We emphasize however that we are speaking of disks in the bulk, for fixed z, z′; the

corresponding disks in the gauge theory can be found only be integrating over z and z′.

6.1 Scattering in the conformal case

Within a conformal theory on Minkowski space, there is no S-matrix for the conformal

modes themselves, but in the case of a large-N gauge theory we may add heavy quarks,

build quarkonium states out of them, and scatter these states off each other. The technique

of using “onium-onium” scattering to probe the (near-)conformal part of QCD has a long

history [52]. Quarkonium states have been studied in AdS/CFT (see for example [53,

54]) and so this study could be carried out in detail. The calculation would reduce to

integrations over z and z′ of the bulk eikonal formula, weighted by the wave-functions of

the onium states.

Preliminary to carrying out such a computation, we will focus some attention on the

properties of the bulk eikonal formula −2iŝ[eiχ − 1] itself. The parametric dependence of

the various physically interesting scales is quite intricate. Their interplay, and the physics

for λ closer to 1, deserves further exploration than we will present here.

The kernel is obviously small if b is much larger than z and z′, meaning that the two

onium states are far apart compared to their size. Requiring the eikonal phase be of order

1 tells us the radius bdiff where diffraction sets in, for this value of z, z′. Although the

cut in the J-plane dominates at any fixed b, z, z′ as s becomes large, the spin-2 exchange

dominates at large b for any fixed s, z, z′. In eq. (4.28), we saw that the graviton exchange

kernel [11, 12] is proportional to G3(2, v) ∼ 1/b6 at very large b. The condition Re[χ] ∼ 1

determines the radius of the diffractive disk, and if ŝ = zz′s ≫ N2 and b ≫ z − z′ this

takes the form:

bdiff ∼
√

zz′ (zz′s/N2)1/6 . (6.1)

Since the graviton exchange is real, the disk has diffractive fringes and is non-absorptive.

Note however that integrals over z and z′ will wash out the fringes, giving full absorption.

This is interpretable as due to the multi-channel 2 → 2 process discussed in section 5.3.

At a different radius, the effect of the higher-spin states becomes important and the cut

beginning at j = j0 will dominate over the spin-2 exchange. Here we focus on the regime

log s >
√

λ/2, which is where long-range effects from the diffusive effect of the Pomeron

can become important. The transition between the two regions occurs, from eq. (4.29), at

v ∼ ŝ2/
√

λ (where v is the chordal distance defined in eq. (1.11)), that is, for z ≈ z′,

bcross ∼
√

zz′ sinh log[(zz′s)1/
√

λ] . (6.2)

At b smaller than this, χ is determined by eq. (4.25); its real part now grows slower than

s2 and its imaginary part is nonzero due to s-channel production of heavy hadrons. We
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may now ask where Im[χ] ∼ 1, using eq. (4.25). For log s >
√

λ/2, this occurs at ξ > 1

and thus b/
√

zz′ > 1. For z = z′, the disk may become black at b < bcross, in which case

bblack ∼
√

zz′
(zz′s)(j0−1)/2

λ1/4N
, (6.3)

an expression which for self-consistency also requires sj0−1 >
√

λN2. But even though

the graviton exchange dominates Re[χ] at b > bcross, the diffusive tail of the Pomeron

can extend into this region and dominate the imaginary part. It is in fact possible that

bblack > bcross, in which case

bblack ∼
√

zz′
(

(zz′s)j0−1

λ1/4N

)1/
√

2
√

λ(j0−1)

, (6.4)

Again we emphasize that these formulas are at fixed z and z′ with z − z′ ≪
√

zz′ < b.

Finally, let us recall that the Pomeron kernel is also small if z and z′ are very different,

even if b = 0 (the case of a color-transparent small onium passing through a large one).

Requiring the eikonal phase for the Pomeron to be of order 1 gives a condition which (for

z ≪ z′) is approximately

(z′/z) ∼ (zz′s/N2)1/3 , (6.5)

where again it is the spin-2 exchange which dominates the result at large z′/z. Thus for any

fixed z and z′, saturation takes over from color transparency as s becomes large. However,

here one must treat the hadron wave functions properly to obtain the full picture.

Of course, for these results to be correct, the eikonal approximation must be valid. The

approximation breaks down if the scattering angle is too large. In the bulk coordinates

this is the requirement that ∂χ/∂
√

v ≪
√

ŝ. For v ≫ ŝ2/
√

λ ≫ 1 this requires

v >
ŝ1/7

N4/7
(6.6)

while for ŝ2/
√

λ ≫ v ≫ 1 it requires

v >
ŝ

2
3
j0−1

N4/3
. (6.7)

As written these equations are only valid if v ∼ eξ, which is only true if v ≫ 1, and thus for

self-consistency they require (for j0 ∼ 2) s > N4. For smaller s the formulas are modified.

Note that as s becomes very large compared to N4, the right-hand side is larger than bblack;

there is no region, for λ ≫ 1, where the eikonal approximation is valid and the Pomeron

cut is dominant.

We should note that these physical scales in position-space resemble in many ways

those found at t = 0 in [33], where deep inelastic scattering and saturation were analyzed.

This is because deep inelastic scattering off an onium state, like an onium-onium scattering,

probes the conformal regime.
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t

Figure 7. The analytic behavior of Regge trajectories in the hard-wall model, showing the location

of the bound-state poles at j = 2 and the t-independent continuum cut (shaded) at j = j0 =

2 − 2/
√

λ into which the Regge trajectories disappear. The lowest Regge trajectory intersects the

cut at a small positive value of t. At sufficiently large t each trajectory attains a fixed slope,

corresponding to the tension of the model’s confining flux tubes.

6.2 Confinement and the Froissart bound

Of course there is no Froissart bound in the conformal case because of long-range effects

in the conformal gauge theory. If we want to see cross-sections that grow like (log s)2 we

need to turn to theories with confinement.

With confinement, we can discuss scattering of quarkonia or of ordinary hadrons. We

will only touch on a few key points here, leaving a more complete discussion for future

work. Also, we only consider here the case where the beta function in the ultraviolet is

zero, and the J-plane has a cut at j0; the physically relevant case of a running coupling

adds additional subtleties to an already complex subject.

Although we have spent most of this paper discussing the Pomeron in strictly AdS

space, and our detailed formulas for the kernel (and in particular, their simplicity) depend

on conformal invariance of the dual gauge theory, our methods generalize directly to non-

conformal cases. It is completely straightforward to use the J-plane, and to transform to

transverse position space, in the case of non-conformal gauge theories, including confining

gauge theories. The problems are purely technical. Unfortunately, few non-conformal cases

are known that permit a largely analytic treatment even of the bulk metric. Only one

seems approachable, the duality cascade [55], and its small positive beta function for the

’t Hooft coupling significantly changes the analytic structure in the J-plane. Moreover, it

appears likely that considerable model dependence afflicts the small t (and therefore large-

b) behavior; also there are some subtleties with identifying leading effects. This potentially

means that the various analytically-tractable toy models for confinement, including the

hard-wall, D7-metric, and soft-wall models [15, 54, 56, 57], are not reliable here. However,

we will still be able to draw some general conclusions.

We begin with some general remarks. In a confining theory, the conformal kernel
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K(j, b⊥, z, z′) = (zz′/R4)G3(j, v) must be replaced with a more complicated function, one

which in a spectral representation should exhibit a sum over discrete states and the presence

of a mass gap in the glueball spectrum. In order to see how new scales can enter with

confinement, let us concentrate on the momentum-space Green’s function, K(j, t, z, z′),

which is the two-dimensional Fourier transform of K(j, b⊥, z, z′), and can be obtained as

the solution to eq. (1.16), with t = −q2
⊥.

In the conformal limit, the J-plane consists simply of a single BFKL cut at j0. We

exhibited this using a spectral representation in J , eq. (1.14). Similarly, the lack of a

dimensionful scale leads to a continuous spectrum in t beginning at t = 0. Using a spectral

representation in t, the kernel is

K(j, t, z, z′) =
(zz′)2

2R4

∫ ∞

0
dk2

Je∆(j)(zk)Je∆(j)(z
′k)

k2 − t − iǫ
(6.8)

where ∆̃(j) ≡ ∆+(j) − 2, with j > j0. That is, K(j, t, z, z′) has a branch cut along the

positive t-axis.

Confinement17 leads to bound states in the t-channel, with a discrete spectrum [58–67].

The Green’s function is now given by a discrete sum of poles,

K(j, t, z, z′) = e2A(z)e2A(z′)
∑

n=0

Φn(j, z)Φn(j, z′)

tn(j) − t − iǫ
. (6.9)

At j = 2, these poles correspond to an infinite set of spin-two glueballs. We label these

discrete modes sequentially, n = 0, 1, . . ., with the t0(j) pole interpolating the lightest spin

two glueball.18 In position space,

K(j, b, z, z′) =
1

2π
e2A(z)e2A(z′)

∑

n=0

Φn(j, z)Φn(j, z′)K0(
√

tn(j)b) . (6.10)

Now we would like to understand the properties of K(s, b, z, z′), the inverse Mellin

transform of the previous formula. We focus on z ∼ z′ ∼ zmax, which gives the largest

amplitude for fixed large b. As in the conformal case, the nearby singularity at j = 2

makes an important contribution at very large b, for fixed s. In this case the lightest

spin-two glueball, with mass m0 =
√

t0(2) — makes the most important contribution,

falling exponentially as e−m0b/
√

m0b. At much smaller b, again as in the conformal case,

one needs to account for various contributions to the discontinuity across the cut in the

J plane starting at j = j0. This cut reflects itself in the above formula in multiple ways.

First, the wave functions Φn(j, z) are singular at j = j0, with a square root branch cut of

order
√

2
√

λ(j − j0). That this is true is obvious from the fact that at small b, z, z′ our

17For a confining theory, the five-dimensional metric ds2 = (R/z)2dz2 + e−2A(z)dx2 is asymptotically

AdS5 (eA(z) → z/R as z → 0) and is such that for z large, e−2A(z) leads to an effective infrared cutoff,

z < zmax. Our main results for the eikonal representation, eqs. (1.4), (1.9), remain valid, after appropriate

kinematic modifications due to the confining deformation. All explicit z and z′ in various prefactors should

be replaced by ReA(z) and ReA(z′) respectively, e.g., bs = zz′s becomes bs = R2eA(z)+A(z′)s.
18For each n, inverting tn(j) leads to a Regge trajectory function, αn(t). Due to a linear confining

potential, the trajectory functions are asymptotically linear in t at large j.
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earlier conformal result must be recovered. Second, the trajectories tn(j) will in general

have square root branch cuts, also of order

√
2
√

λ(j − j0).

The hard-wall model, in which the metric is taken to be AdS5 from z = 0 to z = zmax,

and the space is cut off sharply at zmax, illustrates these features. This metric is not a

solution to the supergravity equations and has potentially problematic non-analytic be-

havior at z = zmax, but it does realize confinement and a mass gap, and it is analytically

tractable. The complete J-plane structure of the hard-wall model, as well as the associated

kernel, was worked out in [23], and is shown in figure 7; note in this model all the Regge

trajectories pass below the cut at positive t. The wave-functions at general j are Bessel

functions, Φn(j, z) ∼ Je∆(j)
(
√

tn(j)z), with the infinite set of discrete modes, {tn(j)}, de-

termined by boundary conditions at the infrared cutoff zmax. These wave functions pick up

a square-root branch cut from the model-independent cut in ∆̃(j) = ∆+(j) − 2 at j = j0;

see eq. (1.12) for the definition of ∆+(j). Meanwhile, the basic properties of the branch

cuts of tn(j) in this model can be inferred from figure 9 of [23].

In general, to determine the full form of K(s, b, z, z′) requires calculating the various

contributions to the discontinuity across the cut, and is not trivial. But we also see that

all of the branch cuts are of order
√

2
√

λ(j − j0). For z, z′ held fixed and of order zmax, the

integration over j − j0 will give a diffusion effect in b of order exp[−c
√

λb2m2
0/ ln s], where

c is a constant of order one that is model-dependent. Thus the diffusive effect in b space

extends only out to a distance proportional to (λ)−1/4m−1
0 . The corresponding mass scale is

associated with higher-spin hadrons that lie beyond the supergravity regime. Moreover, it

appears that the leading trajectory typically has the smallest discontinuity (this is certainly

true in the hard wall model) and thus gives the diffusive effect of largest range.

Now let us consider the effect of multiple scattering and unitarization. Since the effects

of the Pomeron cut are short-range, the spin-2 poles dominate the physics at very large b for

fixed s and z, z′ ∼ zmax (where the hadron wave functions are largest), with the corrections

from higher-spin states only becoming important at shorter range. Thus to understand the

behavior of the cross-section, we may focus on the spin-two glueball states. Assuming only

the lightest glueball of mass m0 is important, we find |χ| ∼ 1 inside a radius

bdiff ≃ 1

m0
log(s/N2Λ2) + . . . (6.11)

where Λ ∼ m0 is of order the light glueball masses. This approximation is self-consistent;

the contribution at this value of b from the next-to-lightest glueball state becomes relatively

small as s becomes large.

It is important to check whether the eikonal approximation is self-consistent in the

regimes we are discussing. A weak but necessary condition is that the scattering causes

deflections at small angle, which requires b be larger than

bθ≪1 ∼ 1

2m0
log(s/N4Λ2) + . . . (6.12)

The above formula is not quite right, as in this expression we have assumed that only

the lightest glueball contributes, which is not true for moderately large s. But for our
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immediate purposes, it is enough that the above condition is valid throughout the region

where the lightest glueball dominates χ, and that the overlap of this region with the region

|χ| > 1 has a large area, proportional to (log[s/N2Λ2])2.

In other words, the area in which the scattering amplitude is reaching its unitarity

bound, and in which the eikonal scattering is minimally self-consistent, is of order (log s)2.

The coefficient of this (log s)2 is bounded from above by the inverse mass-squared of the

lightest spin-2 glueball, and from below by an unknown (and model-dependent) but nonzero

coefficient. This provides strong evidence that the Froissart bound on the total cross-section

is not only satisfied, it is saturated.

Of course the eikonal approximation might break down at a radius larger than that

given by the above self-consistency condition. But unless this happens right at the edge of

the diffractive disk, or our formula for the eikonal phase quickly becomes a large overesti-

mate, the above argument that the Froissart bound is saturated remains intact. Moreover,

on physical grounds, any changes to our formulas or breakdown of the eikonal due to so-far

unidentified effects are unlikely to significantly weaken the scattering amplitude and bring

the amplitude below the unitarity bound in any of the region b < bdiff ; in fact, the inter-

actions being gravitational, they are likely to make the scattering amplitude larger. Thus

our conclusion appears robust.19

7 Summary and outlook

In this paper, we have taken a step toward unitarization of high energy scattering using

string/gauge duality. The eikonal approximation is a summation to all orders (in 1/N2, or

gs) of multiple small-angle scatterings. Here we have computed scattering amplitudes (or

partial contributions to scattering amplitudes) in large-λ gauge theories by using the eikonal

approximation for multiple Pomeron exchange. We have seen the required formalism is a

relatively straightforward generalization of our approach to multiple graviton exchange in

AdS5 space. All we needed to do was convert our earlier work on the Pomeron [18, 23]

from momentum space to transverse position space, use a J-plane representation of the

amplitude, and combine it with the techniques of [12].

We carried this program out in its entirety in the case of a conformal field theory,

where the symmetries of the problem make it easy to solve. We showed that in transverse

position space and the J-plane, the Pomeron exchange amplitude is extremely simple: it is

proportional to a scalar AdS3 propagator. We examined the group-theoretic basis of this

result, comparing it to known results at weak coupling. We noted that the Pomeron cut

dominates as s goes to infinity for fixed λ, and recovered a graviton-exchange kernel by

holding s fixed and letting λ grow to infinity. The eikonalization of this amplitude also

19We note that the proposal of Giddings on the role of black holes and the Froissart bound [9, 68, 69]

suggests but does not strictly prove a lower bound. Because of the difficulty of computing the rate of

black-hole production and the efficiency with which the initial energy is converted to black hole mass, it is

not clear to us whether the lower-bound obtained from black hole production would be larger or smaller

than the one we are discussing here. Note also that because there might be other processes with larger

cross-sections, Giddings suggestion provides no upper bound.
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had a number of interesting features which we highlighted: a nontrivial phase compared

to the graviton, corresponding to production in the s-channel of excited strings; a multi-

channel interpretation; and a string-bit interpretation. These multiple viewpoints will be

useful for the next steps in the conformal case: corrections to the one-Pomeron exchange

approximation to the eikonal kernel from triple-Pomeron vertices, and corrections beyond

the eikonal approximation. A further goal is a complete Gribov-Regge effective theory in

the large-λ limit.

We finally turned to issues of unitarity in a bit more detail. We first considered how

the Pomeron appears within the bulk amplitude in the conformal case, noting where the

graviton exchange contribution takes over. We also considered issues of color transparency

and the onset of saturation. We then turned our attention to confining theories. Here

we found unitarity saturated in a disk with radius growing like log s, given by multiple

exchange of light spin-two glueballs. Within the eikonal approximation, it appears that

the Froissart bound is not only satisfied in the generic large-λ theory, it is also saturated.

To establish lower as well as upper bounds on the cross-section in any given theory will

require more careful analysis.

In future, it will be important to compute a variety of scattering amplitudes and in-

terpret the results; [33] has recently begun this program in the context of deep-inelastic

scattering. Eventually one would hope to extract appropriate lessons for QCD, though this

will be a challenge, given the intricate dependence of the physics on s, b, λ and N . In par-

ticular, the approach to the region λ → 1 holds some subtleties that are yet to be explored.
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