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1. Introduction

Recent experiments of the neutrino oscillation go into the new phase of precise determina-

tion of mixing angles and mass squared differences [1, 2]. Those indicate the tri-bimaximal

mixing for three flavors in the lepton sector [3]. Indeed, various types of models lead-

ing to the tri-bimaximal mixing have been proposed, e.g. by assuming several types of

non-Abelian flavor symmetries.

One of natural models realizing the tri-bimaximal mixing has been proposed based

on the non-Abelian finite group A4. Since the original papers [4] on the application of

the non-Abelian discrete symmetry A4 to quark and lepton families, much progress has

been made in understanding the tri-bimaximal mixing for neutrinos in a number of specific

models [5 – 8]. Therefore, it is important to clarify the physical implication of the A4 model

carefully.

The supersymmetric extension of the standard model is one of interesting candidates

for physics beyond the weak scale. Within the framework of supersymmetric models, flavor

symmetries constrain not only quark and lepton mass matrices, but also mass matrices of

their superpartners, i.e., squarks and sleptons. That is, flavor symmetries realizing realis-

tic quark/lepton mass matrices would lead to specific patterns of squark and slepton mass

matrices as their predictions, which could be tested in future experiments. For example,

D4 flavor models [9 – 12] would also lead to the lepton tri-bimaximal mixing. Their super-

symmetric models have been studied in ref. [13] and it is shown that the D4 flavor models

predict the degeneracy between the second and third families of slepton masses.1 The A4

model would lead to a different prediction in slepton masses.

1The D4 flavor symmetry can be realized in superstring models [14, 15]. From this viewpoint, the D4

flavor symmetry as well as certain flavor symmetries are interesting, too.
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(Le, Lµ, Lτ ) Re Rµ Rτ Hu Hd (χ1, χ2, χ3) (χ′
1, χ

′
2, χ

′
3) χ Φ

A4 3 1 1′ 1′′ 1 1 3 3 1 1

Z3 ω ω2 ω2 ω2 1 1 1 ω ω 1

U(1)F 0 2q q 0 0 0 0 0 0 −1

Table 1: A4, Z3 and U(1)F charges for leptons and scalars

Although squarks and sleptons have not been detected yet, their mass matrices are

strongly constrained by experiments of flavor changing neutral current (FCNC) pro-

cesses [16].2 When squark and slepton masses are of order of the weak scale, the FCNC

experimental bounds, in particular the µ → eγ decay, requires strong suppression of off-

diagonal elements in squark and slepton mass squared matrices in the basis, where fermion

mass matrices are diagonalized. Non-Abelian flavor symmetries and certain types of their

breaking patterns are useful to suppress FCNCs. (See e.g. [18, 19, 13].) In addition to

flavor symmetries, their breaking patterns are important to derive quark and lepton mass

matrices and to predict squark and slepton mass matrices. Thus, it is important to study

which pattern of slepton mass matrices is predicted from the A4 model and to examine

whether the predicted pattern of slepton mass matrices is consistent with the current FCNC

experimental bounds. That is the purpose of this paper.

The paper is organized as follows. In section 2, we review the A4 model [6], show-

ing values of parameters consistent with neutrino oscillation experiments. In section 3,

we evaluate soft supersymmetry (SUSY) breaking terms of sleptons, i.e. soft scalar mass

matrices and A-terms. We examine FCNC constraints on those SUSY breaking terms as

mass insertion parameters. Section 4 is devoted to conclusion and discussion. In appendix,

we give a brief review on the A4 group.

2. A4 × Z3 model for leptons

Here, we discuss the A4 model [6] leading to the tri-bimaximal mixing and show proper

values of parameters. In the non-Abelian finite group A4, there are twelve group elements

and four irreducible representations: 1, 1′, 1′′ and 3. We consider the supersymmetric A4

model based on [6], with the A4 and Z3 charge assignments listed in table 1. Under the

A4 symmetry, the chiral superfields for three families of the left-handed lepton doublets

LI (I = e, µ, τ) are assumed to transform as 3, while the right-handed ones of the charge

lepton singlets Re, Rµ and Rτ are assigned with 1, 1′, 1′′, respectively. The third row of

table 1 shows how each chiral multiplet transforms under Z3, where ω = e2πi/3. The flavor

symmetry is spontaneously broken by vacuum expectation values (VEV) of two 3′s, χi,

χ′
i, and by one singlet, χ(1), which are SU(2)L ×U(1)Y singlets. Their Z3 charges are also

shown in table 1. Here and hereafter, we follow the convention that the chiral superfield

and its lowest component are denoted by the same letter.

2See also e.g ref. [17] and references therein.
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The allowed terms in the superpotential including charged leptons are written by

WL =
ye

Λ
(Leχ1 + Lµχ3 + Lτχ2)ReHd +

yµ

Λ
(Leχ2 + Lµχ1 + Lτχ3)RµHd

+
yτ

Λ
(Leχ3 + Lµχ2 + Lτχ1)RτHd , (2.1)

where ye, yµ and yτ are couplings, and Λ is the cut-off scale of the effective superpotential.

In order to obtain the natural hierarchy among lepton masses me, mµ and mτ , the Froggatt-

Nielsen mechanism [20] is introduced as an additional U(1)F flavor symmetry under which

only the right-handed lepton sector is charged. The U(1)F charge values are taken as

0, q and 2q for Rτ , Rµ and Re, respectively. By assuming that the flavon Φ, carrying a

negative unit charge of U(1)F , acquires a VEV 〈Φ〉/Λ ≡ λ < 1, the following magnitudes

of couplings are realized through the Froggatt-Nielsen mechanism,

yτ ≃ O(1), yµ ≃ O(λq), ye ≃ O(λ2q) . (2.2)

When q = 1, we estimate λ ∼ 0.02. The U(1)F charges are shown in the fourth row of

table 1.

The superpotential of the neutrino sector is given as

Wν =
y1

Λ2
(LeLe + LµLτ + LτLµ)HuHuχ (2.3)

+
y2

3Λ2
[(2LeLe − LµLτ − LτLµ)χ′

1 + (−LeLτ + 2LµLµ − LτLe)χ
′
2

+(−LeLµ − LµLe + 2LτLτ )χ
′
3]HuHu ,

where y1 and y2 are couplings of O(1). After the A4 × Z3 symmetry is spontaneously

broken by VEVs of χi, χ′
i and χ, the charged lepton mass matrix Ml and the neutrino

mass matrix Mν are obtained as follows,

Ml =
vd

Λ







ye〈χ1〉 ye〈χ3〉 ye〈χ2〉

yµ〈χ2〉 yµ〈χ1〉 yµ〈χ3〉

yτ 〈χ3〉 yτ 〈χ2〉 yτ 〈χ1〉






, (2.4)

and

Mν =
v2
u

3Λ2







3y1〈χ〉 + 2y2〈χ
′
1〉 −y2〈χ

′
3〉 −y2〈χ

′
2〉

−y2〈χ
′
3〉 2y2〈χ

′
2〉 3y1〈χ〉 − y2〈χ

′
1〉

−y2〈χ
′
2〉 3y1〈χ〉 − y2〈χ

′
1〉 2y2〈χ

′
3〉






, (2.5)

where vu and vd denote VEVs of Higgs doublets, i.e. 〈Hu〉 = vu and 〈Hd〉 = vd. Further-

more, we define tan β = vu/vd.

If one can take the VEVs of gauge singlet scalar fields χ, χi and χ′
i as follows

〈χ〉 = V, 〈(χ1, χ2, χ3)〉 = (Vl, 0, 0),
〈

(χ′
1, χ

′
2, χ

′
3)

〉

= (Vν , Vν , Vν), (2.6)
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which are actually one of minima in the scalar potential at the leading order as shown in

ref. [6], the mass matrices of charged leptons and neutrinos are reduced to

Ml =
vdVl

Λ







ye 0 0

0 yµ 0

0 0 yτ






, (2.7)

Mν =
v2
u

3Λ2







3y1V + 2y2Vν −y2Vν −y2Vν

−y2Vν 2y2Vν 3y1V − y2Vν

−y2Vν 3y1V − y2Vν 2y2Vν






. (2.8)

The charged lepton mass matrix is diagonal. The neutrino mass matrix can be simplified as

Mν =
y1v

2
uV

Λ2







1 0 0

0 0 1

0 1 0






+

y2v
2
uVν

3Λ2







2 −1 −1

−1 2 −1

−1 −1 2






. (2.9)

Then, it is easy to find the tri-bimaximal mixing for the lepton flavor mixing matrix

UMNS [21] as,

UMNS =







√

2/3
√

1/3 0

−
√

1/6
√

1/3 −
√

1/2

−
√

1/6
√

1/3
√

1/2






. (2.10)

On the other hand, neutrino masses are given by

mν =
v2
u

Λ2
(y1V + y2Vν , y1V,−y1V + y2Vν), (2.11)

and using the parameter r = y2Vν/y1V the neutrino masses are expressed as

mν =
y1V v2

u

Λ2
(1 + r, 1,−1 + r). (2.12)

Then, the differences between masses squared are evaluated as,

∆m2
atm =

∣

∣

∣

∣

−4r
y2
1V

2v4
u

Λ4

∣

∣

∣

∣

, ∆m2
sol = r(r + 2)

y2
1V

2v4
u

Λ4
, (2.13)

that is,

∆m2
atm

∆m2
sol

=

∣

∣

∣

∣

−4

r + 2

∣

∣

∣

∣

, (2.14)

which is reconciled with the experimental data for r ∼ −1.9 or r ∼ −2.1.

Let us estimate numerical values of αl, αν and α, which are determined by putting

the neutrino experimental data. By using eqs. (2.7), (2.13) and (2.14), we obtain the

following relations,

αl =
mτ

yτvd
, α2 =

∣

∣

∣

∣

−
∆m2

atmΛ2

4ry2
1v

4
u

∣

∣

∣

∣

,
y2αν

y1α
= −2 ± 4

∆m2
sol

∆m2
atm

, (2.15)
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where

αl =
Vl

Λ
, αν =

Vν

Λ
, α =

V

Λ
. (2.16)

We use the experimental data,

mτ ≃ 1.8GeV, ∆m2
atm ≃ 2.4 × 10−3eV2, ∆m2

sol ≃ 7.6 × 10−5eV2. (2.17)

For example, in the case with tan β = 3 and |yτ | ≃ |y1| ≃ |y2| ≃ 1, we can estimate

αl ∼ 0.03, α ∼ 6 × 10−16 ×
Λ

1GeV
, αν ≃ 2α . (2.18)

Moreover, if the breaking scales are assumed to be approximately the same Vl ∼ Vν ∼ V ,

the scale Λ ≃ 1014GeV is determined. As the value of tan β becomes larger, αl increases.

For example, for tan β = 30 and |yτ | ≃ 1, we obtain αl ∼ 0.3. Similarly, αl increases as

|yτ | decreases. Thus, the above value αl ∼ 0.03 is the smallest value for |yτ | ≤ O(1). On

the other hand, if we allow a large value of |yτ | like |yτ | ∼ 4π, the value of αl would be

estimated as αl ∼ 0.002. Hereafter, we restrict ourselves to the case with αl ∼ αν ∼ α and

we denote their magnitudes by α̃.

In the above scenario, it is crucial to choose the proper VEVs, i.e., (2.6). Indeed, such

VEVs can be realized by a certain form of superpotential at the leading order, as shown

in ref. [6]. Also, in ref. [6] it has been shown that when the next leading terms are taken

into account, VEVs shift in the order of 〈χi〉/Λ and 〈χ′
i〉/Λ. Actually, one can obtain

〈(χ1, χ2, χ3)〉 = (1 + gl1α̃, gl2α̃, gl3α̃)Vl,
〈

(χ′
1, χ

′
2, χ

′
3)

〉

= (Vν + gν1
α̃, Vν + gν2

α̃, Vν + gν3
α̃),

〈χ〉 = V (1 + gα̃) . (2.19)

Here, the parameters, gli , gνi
and g, are of O(1) when αl ∼ αν ∼ α and couplings in the

superpotential are of O(1). With these VEVs, the mass matrices are modified as,

Ml = vdαl







ye(1 + gl1α̃) yegl3α̃ yegl2α̃

yµgl2α̃ yµ(1 + gl1 α̃) yµgl3α̃

yτgl3α̃ yτgl2 α̃ yτ (1 + gl1α̃)






, (2.20)

for the charged leptons, and

Mν =
y1v

2
uα̃(1 + gα̃)

Λ







1 0 0

0 0 1

0 1 0






+

y2v
2
uα̃

3Λ







2 + 2gν1
α̃ −1 − gν3

α̃ −1 − gν2
α̃

−1 − gν3
α̃ 2 + 2gν2

α̃ −1 − gν1
α̃

−1 − gν2
α̃ −1 − gν1

α̃ 2 + 2gν3
α̃






, (2.21)

for neutrinos. These modified mass matrices give the deviation from the tri-bimaximal

mixing.3 That changes the lepton mixing angles by O(α̃). That implies that a large

value of tan β, tan β ≫ 1 and/or a small value of coupling |yτ |, |yτ | ≪ 1 are unfavored

3Numerical analyses of the deviation from the tri-bimaximal mixing were presented in ref. [22]
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in this scenario. On the other hand, if α̃ < O(0.1), the above deviations in the lepton

mass matrices would not be important to the current accuracy of neutrino oscillation

experiments. However, such deviations, in particular the deviation from the diagonal form

in the charged lepton mass matrix, are important from the viewpoint of supersymmetry

breaking terms as shown in the next section. For the later convenience, here we show the

diagonalizing matrix of the charged lepton mass matrix, that is, we diagonalize the charged

lepton mass matrix Ml in eq. (2.4) by the matrices VL and VR,

Ml =V T
R (θR12, θR23, θR13)







me 0 0

0 mµ 0

0 0 mτ






VL(θL12, θL23, θL13). (2.22)

In the usual convention of θR(L)ij , we get

θR12 ∼
ye〈χ3〉

yµ〈χ1〉
∼

me

mµ
O(α̃), θR23 ∼

yµ〈χ3〉

yτ 〈χ1〉
∼

mµ

mτ
O(α̃), θR13 ∼

ye〈χ2〉

yτ 〈χ1〉
∼

me

mτ
O(α̃),

θL12 ∼
〈χ2〉

〈χ1〉
∼ O(α̃), θL23 ∼

〈χ2〉

〈χ1〉
∼ O(α̃), θL13 ∼

〈χ3〉

〈χ1〉
∼ O(α̃),

(2.23)

where we take 〈χ2〉 ∼ 〈χ3〉 ∼ α̃〈χ1〉 taking account of non-leading corrections as given in

eq. (2.19). Here we have assumed α̃ < O(0.1). Values of θLij are large compared with

those of θRij .

3. Soft SUSY breaking terms

We study soft SUSY breaking terms, i.e. soft slepton masses and A-terms, which are

predicted from the A4 model discussed in the previous section. We consider SUSY breaking

within the framework of supergravity theory, where some moduli fields Z and χ, χi and χ′
i

would have non-vanishing F-terms.4 F-terms are given as

FΦk = −e
K

2M2
p KΦk Ī

(

∂ĪW̄ +
KĪ

M2
p

W̄

)

, (3.1)

where K denotes the Kähler potential, KĪJ denotes second derivatives by fields, i.e. KĪJ =

∂Ī∂JK and K ĪJ is its inverse. In general, the fields Φk in our notation include A4 × Z3-

singlet moduli fields Z and χ, χi, χ′
i. Furthermore, VEVs of FΦk

/Φk are estimated as

〈FΦk
/Φk〉 = O(m3/2), where m3/2 denotes the gravitino mass, which is obtained as m3/2 =

〈eK/2M2
p W/M2

p 〉.

3.1 Slepton mass matrices

First let us study soft scalar masses. Within the framework of supergravity theory, soft

scalar mass squared is obtained as [23]

m2
ĪJKĪJ = m2

3/2KĪJ + |FΦk |2∂Φk
∂Φ̄k

KĪJ − |FΦk |2∂Φ̄k
KĪL∂Φk

KM̄JKLM̄ . (3.2)

4SUSY breaking might be mediated through the gauge mediation and anomaly mediation. They are

flavor-blind. Only if the gravity mediation has a sizable contribution with and without other SUSY breaking

mediations, we would have a prediction of sfermion spectra from each flavor mechanism.

– 6 –
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The flavor symmetry A4 × Z3 requires the following form of Kähler potential for left-

handed and right-handed leptons

K
(0)
matter = a(Z,Z†)(L†

eLe + L†
µLµ + L†

τLτ )

+be(Z,Z†)R†
eRe + bµ(Z,Z†)R†

µRµ + bτ (Z,Z†)R†
τRτ , (3.3)

at the leading order, where a(Z,Z†) and bI(Z,Z†) for I = e, µ, τ are generic functions of

moduli fields Z. Then, using eq. (3.2), the slepton mass squared matrices of left-handed

and right-handed sleptons can be found to be

m2
L =







m2
L 0 0

0 m2
L 0

0 0 m2
L






, m2

R =







m2
R1

0 0

0 m2
R2

0

0 0 m2
R3






, (3.4)

where all of mL and mRi
for i = 1, 2, 3 would be of O(m3/2). These forms would be

obvious from the flavor symmetry A4, that is, three families of left-handed leptons are the

A4 triplet, while right-handed leptons are A4 singlets. At any rate, it is the prediction of

the A4 model that three families of left-handed slepton masses are degenerate.

However, the flavor symmetry A4 × Z3 is broken to derive the realistic lepton mass

matrices and such breaking introduces corrections in the Kähler potential and the form of

slepton masses. Let us study such corrections in the Kähler potential. Because χ′
i and χ

have nontrivial Z3 charges, their linear terms do not appear in the Kähler potential of lepton

multiplets. In addition, because of 〈χ2〉, 〈χ3〉 ∼ α̃〈χ1〉, the most important correction terms

would be linear terms of χ1. That is, the correction terms in the matter Kähler potential

are obtained

∆Kmatter =
χ1

Λ′

[

a′1(Z,Z†)(2L†
eLe − L†

µLµ − L†
τLτ ) + a′2(Z,Z†)(L†

µLµ − L†
τLτ )

]

+ h.c.,

(3.5)

up to O(α̃2Λ/Λ′), where a′1(Z,Z†) and a′2(Z,Z†) are generic functions of moduli fields. The

cut-off scale Λ′ might be independent of Λ, which appears in the effective superpotential.

For example, if Λ′ is the Planck scale, the above corrections would be negligible. Hereafter,

we concentrate to the case with Λ′ ∼ Λ. Note that linear correction terms of χi do not

appear for the Kähler potential of right-handed lepton multiplets. All of off-diagonal Kähler

metric entries for both left-handed and right-handed leptons appear at O(α̃2),

∂2Kmatter

∂L†

Ī
∂LJ

= O(α̃2),
∂2Kmatter

∂R†

Ī
∂RJ

= O(α̃2), (3.6)

where I, J = e, µ, τ and I 6= J . For example, the (1,2) and (2,1) entries for left-handed

leptons are induced by (χ3/Λ
′)L†

eLµ, (χ2/Λ
′)L†

µLe, etc. Similarly, other entries for both

left-handed and right-handed leptons are induced. Furthermore, corrections including Φ

do not violate the structure of K
(0)
matter because Φ has a trivial charge under A4 × Z3.
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Including these corrections, the slepton masses are written by

m2
L =







m2
L 0 0

0 m2
L 0

0 0 m2
L






+ m2

3/2







2ā′1α̃ 0 0

0 (ā′2 − ā′1)α̃ 0

0 0 −(ā′1 + ā′2)α̃






+ O(α̃2m2

3/2),

m2
R =







m2
R1

0 0

0 m2
R2

0

0 0 m2
R3






+ O(α̃2m2

3/2), (3.7)

in the flavor basis, where ā′1, ā
′
2 = O(1).

The leptonic FCNC is induced by off diagonal elements of scalar mass squared matrices

in the diagonal basis of the charged lepton mass matrix. The following discussion presents

that the off diagonal elements are enough suppressed in the left-handed slepton and the

right-handed slepton mass matrices in the diagonal basis of the charged lepton mass matrix,

i.e., m̃2
R = VRm2

RV T
R and m̃2

L = VLm2
LV T

L . In this basis, the slepton mass squared matrices

are obtained as

m̃2
L =







m2
L 0 0

0 m2
L 0

0 0 m2
L






+ m2

3/2







O(α̃) O(α̃2) O(α̃2)

O(α̃2) O(α̃) O(α̃2)

O(α̃2) O(α̃2) O(α̃)






,

m̃2
R =







m2
R1

0 0

0 m2
R2

0

0 0 m2
R3






+ O(α̃2m2

3/2), (3.8)

when α̃ > me/mµ.

We have a strong constraint on (m̃2
L)12 and (m̃2

R)12 from FCNC experiments [16], i.e.

(m̃2
L)12

m2
SUSY

≤ O(10−3),
(m̃2

R)12
m2

SUSY

≤ O(10−3), (3.9)

for mSUSY ∼ 100 GeV, where mSUSY denotes the average mass of slepton masses and it

would be of O(m3/2). The above prediction (3.8) of the A4 model leads to (m̃2
L)12/m

2
SUSY =

O(α̃2). Because of α̃ ∼ 0.03 for yτ ≃ 1, our prediction, (m̃2
L)12/m

2
SUSY = O(α̃2) = O(10−3),

would be consistent with the current experimental bound. When we consider a larger

value of yτ , e.g. yτ ∼ 3, the predicted value of (m̃2
L)12/m

2
SUSY would be suppressed like

(m̃2
L)12/m

2
SUSY = O(10−4). On the other hand, a large value of α̃ like α̃ = O(0.1), which is

obtained for a large value of tan β and/or a small value of yτ would be ruled out. Similarly,

we can estimate (m̃2
R)12/m

2
SUSY by using eq. (3.8) and results are the same.

We have studied soft scalar masses induced by F-terms. If we gauge U(1)F , another

contribution to scalar masses would be induced through U(1)F breaking, that is, contribu-

tions due to the D-term of the U(1)F vector multiplet. Such D-term contributions m2
D are

proportional to U(1)F charges Q of matter fields,5

m2
D = Q〈D〉. (3.10)

5See e.g. [24].
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In general, such D-term contributions may be dangerous from the viewpoint of FCNC.

However, those D-term contributions in the A4 model do not violate the above form of soft

scalar masses, (3.4), (3.7) and (3.8), because U(1)F charges in table 1 are consistent with

the A4 flavor symmetry, that is, LI (I = e, µ, τ) have the same U(1)F charge, while three

of RI (I = e, µ, τ) have different U(1)F charges. Thus, the predictions on (m̃2
L)12/m

2
SUSY

and (m̃2
R)12/m

2
SUSY do not change.

Here, we give a comment on radiative corrections. The slepton masses, which we

have studied above, are induced at a high energy scale such as the Planck scale or the

GUT scale. The slepton masses have radiative corrections between such a high energy

scale and the weak scale, although those have been neglected in the above analyses. In

those radiative corrections to slepton masses, the gaugino contributions are dominant. For

example, slepton masses at the weak scale are related with ones at the GUT scale MX as

m2
L(MZ) = m2

L(MX) + 0.5M2
W̃

+ 0.04M2
B̃

,

m2
R(MZ) = m2

R(MX) + 0.2M2
B̃

, (3.11)

where MB̃ and MW̃ are bino and wino masses, respectively. These radiative corrections

do not change drastically the above results when these gaugino masses are of O(m3/2).

On the other hand, FCNC constraints would be improved when these gaugino masses are

much larger than initial values of slepton masses.

3.2 A-terms

Now, let us examine the mass matrix between the left-handed and the right-handed slep-

tons, which is generated by the so-called A-terms. The A-terms are trilinear couplings of

two sleptons and one Higgs field, and are obtained as [23]

hIJLJRIHd = h
(Y )
IJ LJRIHd + h

(K)
IJ LJRIHd, (3.12)

where

h
(Y )
IJ = FΦk〈∂Φk

ỹIJ〉,

h
(K)
IJ LJRIHd = −〈ỹLJ〉LJRIHdF

ΦkKLL̄∂Φk
KL̄I (3.13)

−〈ỹIM 〉LJRIHdF
ΦkKMM̄∂Φk

KM̄J

−〈ỹIJ〉LJRIHdF
ΦkKHd∂Φk

KHd
,

where KHd
denotes the Kähler metric of Hd, and ỹIJ denotes the effective Yukawa couplings

given as

ỹIJ =
1

Λ







yeχ1 yeχ3 yeχ2

yµχ2 yµχ1 yµχ3

yτχ3 yτχ2 yτχ1






. (3.14)

Furthermore, when we use the U(1)F Froggatt-Nielsen mechanism in order to obtain the

lepton mass hierarchy, the couplings, ye, yµ and yτ , are expressed as

yI = cI

(

Φ

Λ

)QI

(I = e, µ, τ), (3.15)
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where QI is U(1)F charges. Here we assume that couplings, ce, cµ and cτ , do not include the

moduli Z, i.e. ∂ZcI = 0 for I = e, µ, τ . After the electroweak symmetry breaking, these A-

terms provide us with the left-right mixing mass squared (m2
LR)IJ = hIJvd. Furthermore,

we use the basis (m̃2
LR)IJ = (VRm2

LRV T
L )IJ . The third term in the right hand side of

eq. (3.14) is diagonalized in this basis. Thus, we do not take the third term into account

in the following discussion.

When we consider the leading order of Kähler potential K
(0)
matter, the second terms in

the right hand side of eq. (3.14), h
(K)
IJ , is written by [25]

h
(K)
IJ = 〈ỹIJ〉(A

R
I + AL

J ), (3.16)

where AR
I = −FZ∂Z ln bI(Z,Z†) and AL

J = −FZ∂Z ln a(Z,Z†), that is, AL
I are degenerate

up to O(α̃). Thus, the (2,1) entry of (m̃2
LR)IJ vanishes at the leading order. However, such

a behavior is violated at the next order, that is, AL
1 −AL

2 = O(α̃m3/2), because the diagonal

(1,1) and (2,2) entries of Kähler metric ∆Kmatter for the left-handed lepton multiplets (3.5)

have non-degenerate corrections of O(α̃). Then, the h
(K)
IJ contribution to the (2,1) entry

of (m̃2
LR)IJ is estimated as

(m̃2
LR)21 ∼ 〈ỹµ〉v

d(AL
1 − AL

2 )θL12 = O(α̃2mµm3/2). (3.17)

Furthermore, the off-diagonal elements of Kähler metric have O(α̃2) of corrections (3.6),

and these corrections also induce the same order of (m̃2
LR)21, i.e. (m̃2

LR)21 = O(α̃2mµm3/2).

Similarly, we can estimate the (1,2) entry and obtain the same result, i.e., (m̃2
LR)12 =

O(α̃2mµm3/2) when α̃ > me/mµ. These entries have the strong constraint from FCNC

experiments as (m̃2
LR)12/m

2
SUSY ≤ O(10−6) and the same for the (2,1) entry for mSUSY =

100 GeV. However, the above prediction of the A4 model leads to (m̃2
LR)12/m

2
SUSY =

O(10−7) for mSUSY = 100 GeV and α ∼ 0.03 and that is consistent with the experi-

mental bound.

Now, let us estimate the first term in the right hand side of (3.12), h
(Y )
IJ , which can be

written by,

(h
(Y )
IJ ) =

(

1

Λ

)







ye〈χ1〉A1 ye〈χ3〉A3 ye〈χ2〉A2

yµ〈χ2〉A2 yµ〈χ1〉A1 yµ〈χ3〉A3

yτ 〈χ3〉A3 yτ 〈χ2〉A2 yτ 〈χ1〉A1







+

(

A0

Λ

)







Qe 0 0

0 Qµ 0

0 0 Qτ













ye〈χ1〉 ye〈χ3〉 ye〈χ2〉

yµ〈χ2〉 yµ〈χ1〉 yµ〈χ3〉

yτ 〈χ3〉 yτ 〈χ2〉 yτ 〈χ1〉






,

(3.18)

where

A0 ≡
FΦ

Φ
, Ai ≡

Fχi

χi
, (i = 1, 2, 3). (3.19)

These would be of O(m3/2). Since the second term of (3.18) is exactly the form of eq. (3.16)

with the degenerate AL
I , the second term does not change the above estimation of (m̃2

LR)12
and (m̃2

LR)21.
6

6Indeed, the Kähler metric bI(Z, Z†) and couplings yI = cI(Φ/Λ)QI lead to the same A-terms as the

Kähler metric bI(Z, Z†)(Φ/Λ)−QI and couplings yI = cI .
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The first term of (3.18) contributes to (m̃2
LR)21 as

(m̃2
LR)21 = yµvdχ2(A2 − A1)/Λ ∼ mµα̃(A2 − A1). (3.20)

That is, we estimate (m̃2
LR)21/m

2
SUSY ∼ 10−5 × (A2 − A1)/m3/2 for α̃ ∼ 0.03. Thus, if

A2 6= A1 and Ai = O(m3/2), this value of (m̃2
LR)21/m

2
SUSY would not be consistent with the

experimental bound for mSUSY = 100 GeV. Hence, a smaller value of α̃ like α̃ = O(0.001)

would be favorable to be consistent with the experimental bound and that implies yτ ∼ 4π.

Alternatively, for α̃ ∼ 0.03 it is required that A1 = A2 up to O(0.1). If the non-trivial

superpotential leading to SUSY breaking does not include χi, i.e. 〈∂χi
W 〉 = 0, we can realize

Ai = −
(

K
(χ)

īi

)−1
m3/2, (3.21)

where K
(χ)

īi
is the Kähler metric of the fields χi. Note that the Kähler metric for χi

are degenerate at the leading order, because χi are the A4 triplet. Hence, we obtain the

degeneracy between Ai, i.e., A1 = A2 = A3 up to O(α̃m3/2). In this case, (m̃2
LR)21 is

suppressed and we can estimate (m̃2
LR)21/m

2
SUSY ∼ α̃2mµ/m3/2 = O(10−6) for α̃ ∼ 0.03.

This value is consistent with the experimental bound. However, the parameter region with

larger α like α̃ = O(0.1) is still ruled out. Obviously, the value of (m̃2
LR)21 depends on the

difference between A1 and A2. If the difference A1−A2 is smaller than O(α̃m3/2), (m̃2
LR)21

would be suppressed more.

Here we give a comment on radiative corrections. Similarly to slepton masses, radiative

corrections to A-terms do not change drastically the above results. Note that Yukawa

couplings are small, in particular the first and second families.

3.3 Comparison with other models

Here we give briefly comments comparing the A4 model and other models. First, let us

compare with the D4 models [9, 12, 13], which also lead to the tri-bimaximal mixing for

the lepton sector by choosing proper values of parameters. In both of the A4 model and

the D4 models, the charged lepton mass matrices, Ml, are diagonal at the leading order,

but there are small corrections at the next order. That is, in the A4 model, the (1,2)

entries, θL12 and θR12, of diagonalizing matrices of Ml are estimated as θL12 = O(α̃) and

θR12 = O(α̃me/mµ) with α̃ ∼ 0.03 for the typical values, while in the D4 models, both of

those entries are estimated as θL12 = θR12 = O(10−2) - O(10−3). Thus, these angles would

be smaller in the D4 models.

In the D4 models, the second and third families of left-handed and right-handed

charged leptons correspond to D4 doublets and the first families correspond to D4 sin-

glets. Then, the second and third families of left-handed and right-handed slepton masses

are degenerate at the leading order, while the first families of sleptons masses are, in gen-

eral, independent of the others. On the other hand, in the A4 model, all the three families

of left-handed slepton masses are degenerate at the leading order, while the three families

of right-handed slepton masses are, in general, different from each other. That is, we have

different predictions in slepton mass spectra between the A4 model and the D4 models.
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In the A4 model, a large value of the entry θL12 = O(α̃) like θL12 ∼ α̃ ∼ 0.03 would not

be favorable from the viewpoint of FCNC experimental bounds. However, the triplet struc-

ture of left-handed leptons is helpful to suppress (m̃2
LL)12 and (m̃2

LR)12 and the predicted

values in a wide parameter space become consistent with the FCNC experimental bounds.

On the other hand, in the D4 models, small values of mixing angles θL12 = θR12 =

O(10−3) are helpful to suppress (m̃2
LL)12, (m̃2

RR)12 and (m̃2
LR)12, although the first and

second families of slepton masses are not degenerate. This situation is the same as one

for the right-handed sleptons in the A4 model. Then, both models are consistent with the

current FCNC experimental bounds.

Next, we give a comment on other A4 models. Indeed, several A4 models have been

proposed. For those SUSY A4 models, we can evaluate soft SUSY breaking terms in a way

similar to section 3.1 and 3.2. We would obtain similar results in the models that left-

handed and right-handed leptons are assigned to a triplet and singlets, respectively, and

the angles, θL12 and θR12, are similar to the above values. Alternatively, we could construct

the supersymmetric model, where three families of right-handed leptons are assigned with

an A4 triplet, while three families of left-handed leptons are assigned with three singlets, 1,

1′ and 1′′, that is the opposite assignment of the A4 model of [6].7 In such a model, three

families of right-handed slepton masses would be degenerate at the leading order, since the

right-handed leptons are a triplet. On the other hand, three families of left-handed slepton

masses would be different from each other. Thus, the prediction on soft SUSY breaking

terms depend on flavor symmetries and assignments of matter fields.

4. Conclusion

We have studied soft SUSY breaking terms, which are derived from the A4 model. Three

families of left-handed slepton masses are degenerate, while three families of right-handed

slepton masses are, in general, different from each other. That is the pattern different

from slepton masses in the D4 model, where only the second and third families of both

left-handed and right-handed slepton masses are degenerate [13].

In the wide parameter region, the FCNCs predicted in the SUSY A4 model are consis-

tent with the current experimental bounds. Thus, the non-Abelain flavor symmetry in the

A4 model is useful not only to derive realistic lepton mass matrices, but also to suppress

FCNC processes. If the bound of BR(µ → eγ) is improved in future, e.g. by the MEG

experiment [26], the allowed parameter space would be reduced, that is, a smaller value of

α̃, i.e. a larger value of yτ like yτ ∼ 4π, would become favorable.

Note to be added. While this paper was being completed, ref. [27] appeared, where a

similar issue was studied.
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A. A4 group

The group A4 has two generators S and T , which satisfies S2 = (ST )3 = T 3 = 1. In the

representation, where T is taken to be diagonal, the elements S and T are expressed as

S =







−1 2 2

2 −1 2

2 2 −1






, T =







1 0 0

0 ω2 0

0 0 ω






. (A.1)

Then, twelve elements of the A4 group are given by

1, S, T, ST, TS, T 2,

ST 2, STS, TST, T 2S, TST 2, T 2ST. (A.2)

The product of two triplets 3× 3, where

a = (a1, a2, a3), b = (b1, b2, b3). (A.3)

is decomposed as

3× 3 = 1 + 1′ + 1′′ + 3 + 3′, (A.4)

where

1 : (a1b1 + a2b3 + a3b2), 1′ : (a3b3 + a1b2 + a2b1), 1′′ : (a2b2 + a1b3 + a3b1),

3 : (2a1b1 − a2b3 − a3b2, 2a3b3 − a1b2 − a2b1, 2a2b2 − a1b3 − a3b1), (A.5)

3′ : (a2b3 − a3b2, a1b2 − a2b1, a1b3 − a3b1).
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S.F. King and M. Malinský, A4 family symmetry and quark-lepton unification, Phys. Lett. B

645 (2007) 351 [hep-ph/0610250];

G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl.

Phys. B 775 (2007) 31 [hep-ph/0610165];

F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A4 model for fermion masses and mixings,

JHEP 03 (2008) 063 [arXiv:0707.3032];
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