You may also like

Soft supersymmetry breaking terms from A_{4} lepton flavor symmetry

Broken $S_{3} \times S_{3}$ flavor symmetry and leptonic CP violation Zong-guo Si, , Xing-hua Yang et al.

- A review of - flavor symmetry in neutrino physics
Zhi-Zhong Xing and Zhen-Hua Zhao
To cite this article: Hajime Ishimori et al JHEP12(2008)082
- The minimal seesaw and leptogenesis models
Zhi-zhong Xing and Zhen-hua Zhao
View the article online for updates and enhancements.

Hajime Ishimori

Graduate School of Science and Technology, Niigata University,
Niigata 950-2181, Japan
E-mail: ishimori@muse.sc.niigata-u.ac.jp

Tatsuo Kobayashi and Yuji Omura

Department of Physics, Kyoto University, Kyoto 606-8501, Japan
E-mail: kobayash@gauge.scphys.kyoto-u.ac.jp, omura@scphys.kyoto-u.ac.jp

Morimitsu Tanimoto

Department of Physics, Niigata University, Niigata 950-2181, Japan
E-mail: tanimoto@muse.sc.niigata-u.ac.jp

Abstract: We study the supersymmetric model with the A_{4} lepton flavor symmetry, in particular soft supersymmetry breaking terms, which are predicted from the A_{4} lepton flavor symmetry. We evaluate soft slepton masses and A-terms within the framework of supergravity theory. Constraints due to experiments of flavor changing neutral current processes are examined.

Keywords: Supersymmetry Breaking, Discrete and Finite Symmetries.

Contents

1. Introduction 1
2. $A_{4} \times Z_{3}$ model for leptons 2
3. Soft SUSY breaking terms 6
3.1 Slepton mass matrices
3.2 A-terms
3.3 Comparison with other models 11
4. Conclusion 12
A. A_{4} group 13

1. Introduction

Recent experiments of the neutrino oscillation go into the new phase of precise determination of mixing angles and mass squared differences [1], 2]. Those indicate the tri-bimaximal mixing for three flavors in the lepton sector [3]. Indeed, various types of models leading to the tri-bimaximal mixing have been proposed, e.g. by assuming several types of non-Abelian flavor symmetries.

One of natural models realizing the tri-bimaximal mixing has been proposed based on the non-Abelian finite group A_{4}. Since the original papers (4) on the application of the non-Abelian discrete symmetry A_{4} to quark and lepton families, much progress has been made in understanding the tri-bimaximal mixing for neutrinos in a number of specific models [5- 8$]$. Therefore, it is important to clarify the physical implication of the A_{4} model carefully.

The supersymmetric extension of the standard model is one of interesting candidates for physics beyond the weak scale. Within the framework of supersymmetric models, flavor symmetries constrain not only quark and lepton mass matrices, but also mass matrices of their superpartners, i.e., squarks and sleptons. That is, flavor symmetries realizing realistic quark/lepton mass matrices would lead to specific patterns of squark and slepton mass matrices as their predictions, which could be tested in future experiments. For example, D_{4} flavor models [9-12] would also lead to the lepton tri-bimaximal mixing. Their supersymmetric models have been studied in ref. [13] and it is shown that the D_{4} flavor models predict the degeneracy between the second and third families of slepton masses. ${ }^{1}$ The A_{4} model would lead to a different prediction in slepton masses.

[^0]| | $\left(L_{e}, L_{\mu}, L_{\tau}\right)$ | R_{e} | R_{μ} | R_{τ} | H_{u} | H_{d} | $\left(\chi_{1}, \chi_{2}, \chi_{3}\right)$ | $\left(\chi_{1}^{\prime}, \chi_{2}^{\prime}, \chi_{3}^{\prime}\right)$ | χ | Φ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A_{4} | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{1}^{\prime}$ | $\mathbf{1}^{\prime \prime}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{3}$ | $\mathbf{3}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| Z_{3} | ω | ω^{2} | ω^{2} | ω^{2} | 1 | 1 | 1 | ω | ω | 1 |
| $\mathrm{U}(1)_{F}$ | 0 | $2 q$ | q | 0 | 0 | 0 | 0 | 0 | 0 | -1 |

Table 1: A_{4}, Z_{3} and $\mathrm{U}(1)_{F}$ charges for leptons and scalars

Although squarks and sleptons have not been detected yet, their mass matrices are strongly constrained by experiments of flavor changing neutral current (FCNC) processes [16. ${ }^{2}$ When squark and slepton masses are of order of the weak scale, the FCNC experimental bounds, in particular the $\mu \rightarrow e \gamma$ decay, requires strong suppression of offdiagonal elements in squark and slepton mass squared matrices in the basis, where fermion mass matrices are diagonalized. Non-Abelian flavor symmetries and certain types of their breaking patterns are useful to suppress FCNCs. (See e.g. [18, 19, 13].) In addition to flavor symmetries, their breaking patterns are important to derive quark and lepton mass matrices and to predict squark and slepton mass matrices. Thus, it is important to study which pattern of slepton mass matrices is predicted from the A_{4} model and to examine whether the predicted pattern of slepton mass matrices is consistent with the current FCNC experimental bounds. That is the purpose of this paper.

The paper is organized as follows. In section 2 , we review the A_{4} model [6], showing values of parameters consistent with neutrino oscillation experiments. In section 3, we evaluate soft supersymmetry (SUSY) breaking terms of sleptons, i.e. soft scalar mass matrices and A-terms. We examine FCNC constraints on those SUSY breaking terms as mass insertion parameters. Section 4 is devoted to conclusion and discussion. In appendix, we give a brief review on the A_{4} group.

2. $A_{4} \times Z_{3}$ model for leptons

Here, we discuss the A_{4} model [6] leading to the tri-bimaximal mixing and show proper values of parameters. In the non-Abelian finite group A_{4}, there are twelve group elements and four irreducible representations: $\mathbf{1}^{\prime} \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}$ and $\mathbf{3}$. We consider the supersymmetric A_{4} model based on [6], with the A_{4} and Z_{3} charge assignments listed in table 1. Under the A_{4} symmetry, the chiral superfields for three families of the left-handed lepton doublets $L_{I}(I=e, \mu, \tau)$ are assumed to transform as $\mathbf{3}$, while the right-handed ones of the charge lepton singlets R_{e}, R_{μ} and R_{τ} are assigned with $\mathbf{1}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}$, respectively. The third row of table 1 shows how each chiral multiplet transforms under Z_{3}, where $\omega=e^{2 \pi i / 3}$. The flavor symmetry is spontaneously broken by vacuum expectation values (VEV) of two $\mathbf{3}^{\prime} s, \chi_{i}$, χ_{i}^{\prime}, and by one singlet, $\chi(\mathbf{1})$, which are $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$ singlets. Their Z_{3} charges are also shown in table 1. Here and hereafter, we follow the convention that the chiral superfield and its lowest component are denoted by the same letter.

[^1]The allowed terms in the superpotential including charged leptons are written by

$$
\begin{align*}
W_{L}= & \frac{y_{e}}{\Lambda}\left(L_{e} \chi_{1}+L_{\mu} \chi_{3}+L_{\tau} \chi_{2}\right) R_{e} H_{d}+\frac{y_{\mu}}{\Lambda}\left(L_{e} \chi_{2}+L_{\mu} \chi_{1}+L_{\tau} \chi_{3}\right) R_{\mu} H_{d} \\
& +\frac{y_{\tau}}{\Lambda}\left(L_{e} \chi_{3}+L_{\mu} \chi_{2}+L_{\tau} \chi_{1}\right) R_{\tau} H_{d}, \tag{2.1}
\end{align*}
$$

where y_{e}, y_{μ} and y_{τ} are couplings, and Λ is the cut-off scale of the effective superpotential. In order to obtain the natural hierarchy among lepton masses m_{e}, m_{μ} and m_{τ}, the FroggattNielsen mechanism [20] is introduced as an additional $\mathrm{U}(1)_{F}$ flavor symmetry under which only the right-handed lepton sector is charged. The $\mathrm{U}(1)_{F}$ charge values are taken as $0, q$ and $2 q$ for R_{τ}, R_{μ} and R_{e}, respectively. By assuming that the flavon Φ, carrying a negative unit charge of $\mathrm{U}(1)_{F}$, acquires a $\operatorname{VEV}\langle\Phi\rangle / \Lambda \equiv \lambda<1$, the following magnitudes of couplings are realized through the Froggatt-Nielsen mechanism,

$$
\begin{equation*}
y_{\tau} \simeq \mathcal{O}(1), \quad y_{\mu} \simeq \mathcal{O}\left(\lambda^{q}\right), \quad y_{e} \simeq \mathcal{O}\left(\lambda^{2 q}\right) \tag{2.2}
\end{equation*}
$$

When $q=1$, we estimate $\lambda \sim 0.02$. The $\mathrm{U}(1)_{F}$ charges are shown in the fourth row of table 1 .

The superpotential of the neutrino sector is given as

$$
\begin{align*}
W_{\nu}=\frac{y_{1}}{\Lambda^{2}}\left(L_{e} L_{e}+L_{\mu} L_{\tau}+L_{\tau} L_{\mu}\right) H_{u} H_{u} \chi & \tag{2.3}\\
& +\frac{y_{2}}{3 \Lambda^{2}}\left[\left(2 L_{e} L_{e}-L_{\mu} L_{\tau}-L_{\tau} L_{\mu}\right) \chi_{1}^{\prime}+\right. \\
& \left(-L_{e} L_{\tau}+2 L_{\mu} L_{\mu}-L_{\tau} L_{e}\right) \chi_{2}^{\prime} \\
& \left.+\left(-L_{e} L_{\mu}-L_{\mu} L_{e}+2 L_{\tau} L_{\tau}\right) \chi_{3}^{\prime}\right] H_{u} H_{u},
\end{align*}
$$

where y_{1} and y_{2} are couplings of $\mathcal{O}(1)$. After the $A_{4} \times Z_{3}$ symmetry is spontaneously broken by VEVs of $\chi_{i}, \chi_{i}^{\prime}$ and χ, the charged lepton mass matrix M_{l} and the neutrino mass matrix M_{ν} are obtained as follows,

$$
M_{l}=\frac{v_{d}}{\Lambda}\left(\begin{array}{lll}
y_{e}\left\langle\chi_{1}\right\rangle & y_{e}\left\langle\chi_{3}\right\rangle & y_{e}\left\langle\chi_{2}\right\rangle \tag{2.4}\\
y_{\mu}\left\langle\chi_{2}\right\rangle & y_{\mu}\left\langle\chi_{1}\right\rangle & y_{\mu}\left\langle\chi_{3}\right\rangle \\
y_{\tau}\left\langle\chi_{3}\right\rangle & y_{\tau}\left\langle\chi_{2}\right\rangle & y_{\tau}\left\langle\chi_{1}\right\rangle
\end{array}\right),
$$

and

$$
M_{\nu}=\frac{v_{u}^{2}}{3 \Lambda^{2}}\left(\begin{array}{ccc}
3 y_{1}\langle\chi\rangle+2 y_{2}\left\langle\chi_{1}^{\prime}\right\rangle & -y_{2}\left\langle\chi_{3}^{\prime}\right\rangle & -y_{2}\left\langle\chi_{2}^{\prime}\right\rangle \tag{2.5}\\
-y_{2}\left\langle\chi_{3}^{\prime}\right\rangle & 2 y_{2}\left\langle\chi_{2}^{\prime}\right\rangle & 3 y_{1}\langle\chi\rangle-y_{2}\left\langle\chi_{1}^{\prime}\right\rangle \\
-y_{2}\left\langle\chi_{2}^{\prime}\right\rangle & 3 y_{1}\langle\chi\rangle-y_{2}\left\langle\chi_{1}^{\prime}\right\rangle & 2 y_{2}\left\langle\chi_{3}^{\prime}\right\rangle
\end{array}\right),
$$

where v_{u} and v_{d} denote VEVs of Higgs doublets, i.e. $\left\langle H_{u}\right\rangle=v_{u}$ and $\left\langle H_{d}\right\rangle=v_{d}$. Furthermore, we define $\tan \beta=v_{u} / v_{d}$.

If one can take the VEVs of gauge singlet scalar fields χ, χ_{i} and χ_{i}^{\prime} as follows

$$
\begin{equation*}
\langle\chi\rangle=V, \quad\left\langle\left(\chi_{1}, \chi_{2}, \chi_{3}\right)\right\rangle=\left(V_{l}, 0,0\right), \quad\left\langle\left(\chi_{1}^{\prime}, \chi_{2}^{\prime}, \chi_{3}^{\prime}\right)\right\rangle=\left(V_{\nu}, V_{\nu}, V_{\nu}\right), \tag{2.6}
\end{equation*}
$$

which are actually one of minima in the scalar potential at the leading order as shown in ref. [6], the mass matrices of charged leptons and neutrinos are reduced to

$$
\begin{align*}
M_{l} & =\frac{v_{d} V_{l}}{\Lambda}\left(\begin{array}{ccc}
y_{e} & 0 & 0 \\
0 & y_{\mu} & 0 \\
0 & 0 & y_{\tau}
\end{array}\right), \tag{2.7}\\
M_{\nu} & =\frac{v_{u}^{2}}{3 \Lambda^{2}}\left(\begin{array}{ccc}
3 y_{1} V+2 y_{2} V_{\nu} & -y_{2} V_{\nu} & -y_{2} V_{\nu} \\
-y_{2} V_{\nu} & 2 y_{2} V_{\nu} & 3 y_{1} V-y_{2} V_{\nu} \\
-y_{2} V_{\nu} & 3 y_{1} V-y_{2} V_{\nu} & 2 y_{2} V_{\nu}
\end{array}\right) . \tag{2.8}
\end{align*}
$$

The charged lepton mass matrix is diagonal. The neutrino mass matrix can be simplified as

$$
M_{\nu}=\frac{y_{1} v_{u}^{2} V}{\Lambda^{2}}\left(\begin{array}{lll}
1 & 0 & 0 \tag{2.9}\\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\frac{y_{2} v_{u}^{2} V_{\nu}}{3 \Lambda^{2}}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right) .
$$

Then, it is easy to find the tri-bimaximal mixing for the lepton flavor mixing matrix $U_{M N S}$ [21 as,

$$
U_{M N S}=\left(\begin{array}{ccc}
\sqrt{2 / 3} & \sqrt{1 / 3} & 0 \tag{2.10}\\
-\sqrt{1 / 6} & \sqrt{1 / 3} & -\sqrt{1 / 2} \\
-\sqrt{1 / 6} & \sqrt{1 / 3} & \sqrt{1 / 2}
\end{array}\right)
$$

On the other hand, neutrino masses are given by

$$
\begin{equation*}
m_{\nu}=\frac{v_{u}^{2}}{\Lambda^{2}}\left(y_{1} V+y_{2} V_{\nu}, y_{1} V,-y_{1} V+y_{2} V_{\nu}\right), \tag{2.11}
\end{equation*}
$$

and using the parameter $r=y_{2} V_{\nu} / y_{1} V$ the neutrino masses are expressed as

$$
\begin{equation*}
m_{\nu}=\frac{y_{1} V v_{u}^{2}}{\Lambda^{2}}(1+r, 1,-1+r) . \tag{2.12}
\end{equation*}
$$

Then, the differences between masses squared are evaluated as,

$$
\begin{equation*}
\Delta m_{\mathrm{atm}}^{2}=\left|-4 r \frac{y_{1}^{2} V^{2} v_{u}^{4}}{\Lambda^{4}}\right|, \quad \Delta m_{\mathrm{sol}}^{2}=r(r+2) \frac{y_{1}^{2} V^{2} v_{u}^{4}}{\Lambda^{4}} \tag{2.13}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\frac{\Delta m_{\mathrm{atm}}^{2}}{\Delta m_{\mathrm{sol}}^{2}}=\left|\frac{-4}{r+2}\right|, \tag{2.14}
\end{equation*}
$$

which is reconciled with the experimental data for $r \sim-1.9$ or $r \sim-2.1$.
Let us estimate numerical values of α_{l}, α_{ν} and α, which are determined by putting the neutrino experimental data. By using eqs. (2.7), (2.13) and (2.14), we obtain the following relations,

$$
\begin{equation*}
\alpha_{l}=\frac{m_{\tau}}{y_{\tau} v_{d}}, \quad \alpha^{2}=\left|-\frac{\Delta m_{\mathrm{atm}}^{2} \Lambda^{2}}{4 r y_{1}^{2} v_{u}^{4}}\right|, \quad \frac{y_{2} \alpha_{\nu}}{y_{1} \alpha}=-2 \pm 4 \frac{\Delta m_{\mathrm{sol}}^{2}}{\Delta m_{\mathrm{atm}}^{2}}, \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{l}=\frac{V_{l}}{\Lambda}, \quad \alpha_{\nu}=\frac{V_{\nu}}{\Lambda}, \quad \alpha=\frac{V}{\Lambda} . \tag{2.16}
\end{equation*}
$$

We use the experimental data,

$$
\begin{equation*}
m_{\tau} \simeq 1.8 \mathrm{GeV}, \quad \Delta m_{\mathrm{atm}}^{2} \simeq 2.4 \times 10^{-3} \mathrm{eV}^{2}, \quad \Delta m_{\mathrm{sol}}^{2} \simeq 7.6 \times 10^{-5} \mathrm{eV}^{2} \tag{2.17}
\end{equation*}
$$

For example, in the case with $\tan \beta=3$ and $\left|y_{\tau}\right| \simeq\left|y_{1}\right| \simeq\left|y_{2}\right| \simeq 1$, we can estimate

$$
\begin{equation*}
\alpha_{l} \sim 0.03, \quad \alpha \sim 6 \times 10^{-16} \times \frac{\Lambda}{1 \mathrm{GeV}}, \quad \alpha_{\nu} \simeq 2 \alpha \tag{2.18}
\end{equation*}
$$

Moreover, if the breaking scales are assumed to be approximately the same $V_{l} \sim V_{\nu} \sim V$, the scale $\Lambda \simeq 10^{14} \mathrm{GeV}$ is determined. As the value of $\tan \beta$ becomes larger, α_{l} increases. For example, for $\tan \beta=30$ and $\left|y_{\tau}\right| \simeq 1$, we obtain $\alpha_{l} \sim 0.3$. Similarly, α_{l} increases as $\left|y_{\tau}\right|$ decreases. Thus, the above value $\alpha_{l} \sim 0.03$ is the smallest value for $\left|y_{\tau}\right| \leq \mathcal{O}(1)$. On the other hand, if we allow a large value of $\left|y_{\tau}\right|$ like $\left|y_{\tau}\right| \sim 4 \pi$, the value of α_{l} would be estimated as $\alpha_{l} \sim 0.002$. Hereafter, we restrict ourselves to the case with $\alpha_{l} \sim \alpha_{\nu} \sim \alpha$ and we denote their magnitudes by $\tilde{\alpha}$.

In the above scenario, it is crucial to choose the proper VEVs, i.e., (2.6). Indeed, such VEVs can be realized by a certain form of superpotential at the leading order, as shown in ref. [6]. Also, in ref. [6] it has been shown that when the next leading terms are taken into account, VEVs shift in the order of $\left\langle\chi_{i}\right\rangle / \Lambda$ and $\left\langle\chi_{i}^{\prime}\right\rangle / \Lambda$. Actually, one can obtain

$$
\begin{align*}
& \left\langle\left(\chi_{1}, \chi_{2}, \chi_{3}\right)\right\rangle=\left(1+g_{l_{1}} \tilde{\alpha}, g_{l_{2}} \tilde{\alpha}, g_{l_{3}} \tilde{\alpha}\right) V_{l}, \\
& \left\langle\left(\chi_{1}^{\prime}, \chi_{2}^{\prime}, \chi_{3}^{\prime}\right)\right\rangle=\left(V_{\nu}+g_{\nu_{1}} \tilde{\alpha}, V_{\nu}+g_{\nu_{2}} \tilde{\alpha}, V_{\nu}+g_{\nu_{3}} \tilde{\alpha}\right), \\
& \langle\chi\rangle=V(1+g \tilde{\alpha}) . \tag{2.19}
\end{align*}
$$

Here, the parameters, $g_{l_{i}}, g_{\nu_{i}}$ and g, are of $\mathcal{O}(1)$ when $\alpha_{l} \sim \alpha_{\nu} \sim \alpha$ and couplings in the superpotential are of $\mathcal{O}(1)$. With these VEVs, the mass matrices are modified as,

$$
M_{l}=v_{d} \alpha_{l}\left(\begin{array}{ccc}
y_{e}\left(1+g_{l_{1}} \tilde{\alpha}\right) & y_{e} g_{l_{3}} \tilde{\alpha} & y_{e} g_{l_{2}} \tilde{\alpha} \tag{2.20}\\
y_{\mu} g_{l_{2}} \tilde{\alpha} & y_{\mu}\left(1+g_{l_{1}} \tilde{\alpha}\right) & y_{\mu} g_{l_{3}} \tilde{\alpha} \\
y_{\tau} g_{l_{3}} \tilde{\alpha} & y_{\tau} g_{l_{2}} \tilde{\alpha} & y_{\tau}\left(1+g_{l_{1}} \tilde{\alpha}\right)
\end{array}\right)
$$

for the charged leptons, and

$$
M_{\nu}=\frac{y_{1} v_{u}^{2} \tilde{\alpha}(1+g \tilde{\alpha})}{\Lambda}\left(\begin{array}{lll}
1 & 0 & 0 \tag{2.21}\\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)+\frac{y_{2} v_{u}^{2} \tilde{\alpha}}{3 \Lambda}\left(\begin{array}{c}
2+2 g_{\nu_{1}} \tilde{\alpha}-1-g_{\nu_{3}} \tilde{\alpha}-1-g_{\nu_{2}} \tilde{\alpha} \\
-1-g_{\nu_{3}} \tilde{\alpha} 2+2 g_{\nu_{2}} \tilde{\alpha}-1-g_{\nu_{1}} \tilde{\alpha} \\
-1-g_{\nu_{2}} \tilde{\alpha}-1-g_{\nu_{1}} \tilde{\alpha} 2+2 g_{\nu_{3}} \tilde{\alpha}
\end{array}\right)
$$

for neutrinos. These modified mass matrices give the deviation from the tri-bimaximal mixing. ${ }^{3}$ That changes the lepton mixing angles by $\mathcal{O}(\tilde{\alpha})$. That implies that a large value of $\tan \beta, \tan \beta \gg 1$ and/or a small value of coupling $\left|y_{\tau}\right|,\left|y_{\tau}\right| \ll 1$ are unfavored

[^2]in this scenario. On the other hand, if $\tilde{\alpha}<\mathcal{O}(0.1)$, the above deviations in the lepton mass matrices would not be important to the current accuracy of neutrino oscillation experiments. However, such deviations, in particular the deviation from the diagonal form in the charged lepton mass matrix, are important from the viewpoint of supersymmetry breaking terms as shown in the next section. For the later convenience, here we show the diagonalizing matrix of the charged lepton mass matrix, that is, we diagonalize the charged lepton mass matrix M_{l} in eq. (2.4) by the matrices V_{L} and V_{R},
\[

M_{l}=V_{R}^{T}\left(\theta_{R 12}, \theta_{R 23}, \theta_{R 13}\right)\left($$
\begin{array}{ccc}
m_{e} & 0 & 0 \tag{2.22}\\
0 & m_{\mu} & 0 \\
0 & 0 & m_{\tau}
\end{array}
$$\right) V_{L}\left(\theta_{L 12}, \theta_{L 23}, \theta_{L 13}\right) .
\]

In the usual convention of $\theta_{R(L) i j}$, we get

$$
\begin{align*}
\theta_{R 12} & \sim \frac{y_{e}\left\langle\chi_{3}\right\rangle}{y_{\mu}\left\langle\chi_{1}\right\rangle} \sim \frac{m_{e}}{m_{\mu}} \mathcal{O}(\tilde{\alpha}), & \theta_{R 23} \sim \frac{y_{\mu}\left\langle\chi_{3}\right\rangle}{y_{\tau}\left\langle\chi_{1}\right\rangle} \sim \frac{m_{\mu}}{m_{\tau}} \mathcal{O}(\tilde{\alpha}), & \theta_{R 13} \sim \frac{y_{e}\left\langle\chi_{2}\right\rangle}{y_{\tau}\left\langle\chi_{1}\right\rangle} \sim \frac{m_{e}}{m_{\tau}} \mathcal{O}(\tilde{\alpha}), \\
\theta_{L 12} & \sim \frac{\left\langle\chi_{2}\right\rangle}{\left\langle\chi_{1}\right\rangle} \sim \mathcal{O}(\tilde{\alpha}), & \theta_{L 23} \sim \frac{\left\langle\chi_{2}\right\rangle}{\left\langle\chi_{1}\right\rangle} \sim \mathcal{O}(\tilde{\alpha}), & \theta_{L 13} \sim \frac{\left\langle\chi_{3}\right\rangle}{\left\langle\chi_{1}\right\rangle} \sim \mathcal{O}(\tilde{\alpha}), \tag{2.23}
\end{align*}
$$

where we take $\left\langle\chi_{2}\right\rangle \sim\left\langle\chi_{3}\right\rangle \sim \tilde{\alpha}\left\langle\chi_{1}\right\rangle$ taking account of non-leading corrections as given in eq. (2.19). Here we have assumed $\tilde{\alpha}<\mathcal{O}(0.1)$. Values of $\theta_{\text {Lij }}$ are large compared with those of $\theta_{R i j}$.

3. Soft SUSY breaking terms

We study soft SUSY breaking terms, i.e. soft slepton masses and A-terms, which are predicted from the A_{4} model discussed in the previous section. We consider SUSY breaking within the framework of supergravity theory, where some moduli fields Z and χ, χ_{i} and χ_{i}^{\prime} would have non-vanishing F-terms. ${ }^{4}$ F-terms are given as

$$
\begin{equation*}
F^{\Phi_{k}}=-e^{\frac{K}{2 M_{p}^{2}}} K^{\Phi_{k} \bar{I}}\left(\partial_{\bar{I}} \bar{W}+\frac{K_{\bar{I}}}{M_{p}^{2}} \bar{W}\right) \tag{3.1}
\end{equation*}
$$

where K denotes the Kähler potential, $K_{\bar{I} J}$ denotes second derivatives by fields, i.e. $K_{\bar{I} J}=$ $\partial_{\bar{I}} \partial_{J} K$ and $K^{\bar{I} J}$ is its inverse. In general, the fields Φ_{k} in our notation include $A_{4} \times Z_{3}$ singlet moduli fields Z and $\chi, \chi_{i}, \chi_{i}^{\prime}$. Furthermore, VEVs of $F_{\Phi_{k}} / \Phi_{k}$ are estimated as $\left\langle F_{\Phi_{k}} / \Phi_{k}\right\rangle=\mathcal{O}\left(m_{3 / 2}\right)$, where $m_{3 / 2}$ denotes the gravitino mass, which is obtained as $m_{3 / 2}=$ $\left\langle e^{K / 2 M_{p}^{2}} W / M_{p}^{2}\right\rangle$.

3.1 Slepton mass matrices

First let us study soft scalar masses. Within the framework of supergravity theory, soft scalar mass squared is obtained as (23]

$$
\begin{equation*}
m_{\bar{I} J}^{2} K_{\bar{I} J}=m_{3 / 2}^{2} K_{\bar{I} J}+\left|F^{\Phi_{k}}\right|^{2} \partial_{\Phi_{k}} \partial_{\bar{\Phi}_{k}} K_{\bar{I} J}-\left|F^{\Phi_{k}}\right|^{2} \partial_{\bar{\Phi}_{k}} K_{\bar{I} L} \partial_{\Phi_{k}} K_{\bar{M} J} K^{L \bar{M}} \tag{3.2}
\end{equation*}
$$

[^3]The flavor symmetry $A_{4} \times Z_{3}$ requires the following form of Kähler potential for lefthanded and right-handed leptons

$$
\begin{align*}
K_{\text {matter }}^{(0)}= & a\left(Z, Z^{\dagger}\right)\left(L_{e}^{\dagger} L_{e}+L_{\mu}^{\dagger} L_{\mu}+L_{\tau}^{\dagger} L_{\tau}\right) \\
& +b_{e}\left(Z, Z^{\dagger}\right) R_{e}^{\dagger} R_{e}+b_{\mu}\left(Z, Z^{\dagger}\right) R_{\mu}^{\dagger} R_{\mu}+b_{\tau}\left(Z, Z^{\dagger}\right) R_{\tau}^{\dagger} R_{\tau}, \tag{3.3}
\end{align*}
$$

at the leading order, where $a\left(Z, Z^{\dagger}\right)$ and $b_{I}\left(Z, Z^{\dagger}\right)$ for $I=e, \mu, \tau$ are generic functions of moduli fields Z. Then, using eq. (3.2), the slepton mass squared matrices of left-handed and right-handed sleptons can be found to be

$$
m_{L}^{2}=\left(\begin{array}{ccc}
m_{L}^{2} & 0 & 0 \tag{3.4}\\
0 & m_{L}^{2} & 0 \\
0 & 0 & m_{L}^{2}
\end{array}\right), \quad m_{R}^{2}=\left(\begin{array}{ccc}
m_{R_{1}}^{2} & 0 & 0 \\
0 & m_{R_{2}}^{2} & 0 \\
0 & 0 & m_{R_{3}}^{2}
\end{array}\right),
$$

where all of m_{L} and $m_{R_{i}}$ for $i=1,2,3$ would be of $\mathcal{O}\left(m_{3 / 2}\right)$. These forms would be obvious from the flavor symmetry A_{4}, that is, three families of left-handed leptons are the A_{4} triplet, while right-handed leptons are A_{4} singlets. At any rate, it is the prediction of the A_{4} model that three families of left-handed slepton masses are degenerate.

However, the flavor symmetry $A_{4} \times Z_{3}$ is broken to derive the realistic lepton mass matrices and such breaking introduces corrections in the Kähler potential and the form of slepton masses. Let us study such corrections in the Kähler potential. Because χ_{i}^{\prime} and χ have nontrivial Z_{3} charges, their linear terms do not appear in the Kähler potential of lepton multiplets. In addition, because of $\left\langle\chi_{2}\right\rangle,\left\langle\chi_{3}\right\rangle \sim \tilde{\alpha}\left\langle\chi_{1}\right\rangle$, the most important correction terms would be linear terms of χ_{1}. That is, the correction terms in the matter Kähler potential are obtained

$$
\begin{equation*}
\Delta K_{\text {matter }}=\frac{\chi_{1}}{\Lambda^{\prime}}\left[a_{1}^{\prime}\left(Z, Z^{\dagger}\right)\left(2 L_{e}^{\dagger} L_{e}-L_{\mu}^{\dagger} L_{\mu}-L_{\tau}^{\dagger} L_{\tau}\right)+a_{2}^{\prime}\left(Z, Z^{\dagger}\right)\left(L_{\mu}^{\dagger} L_{\mu}-L_{\tau}^{\dagger} L_{\tau}\right)\right]+\text { h.c. }, \tag{3.5}
\end{equation*}
$$

up to $\mathcal{O}\left(\tilde{\alpha}^{2} \Lambda / \Lambda^{\prime}\right)$, where $a_{1}^{\prime}\left(Z, Z^{\dagger}\right)$ and $a_{2}^{\prime}\left(Z, Z^{\dagger}\right)$ are generic functions of moduli fields. The cut-off scale Λ^{\prime} might be independent of Λ, which appears in the effective superpotential. For example, if Λ^{\prime} is the Planck scale, the above corrections would be negligible. Hereafter, we concentrate to the case with $\Lambda^{\prime} \sim \Lambda$. Note that linear correction terms of χ_{i} do not appear for the Kähler potential of right-handed lepton multiplets. All of off-diagonal Kähler metric entries for both left-handed and right-handed leptons appear at $\mathcal{O}\left(\tilde{\alpha}^{2}\right)$,

$$
\begin{equation*}
\frac{\partial^{2} K_{\text {matter }}}{\partial L_{\bar{I}}^{\dagger} \partial L_{J}}=\mathcal{O}\left(\tilde{\alpha}^{2}\right), \quad \frac{\partial^{2} K_{\text {matter }}}{\partial R_{\bar{I}}^{\dagger} \partial R_{J}}=\mathcal{O}\left(\tilde{\alpha}^{2}\right) \tag{3.6}
\end{equation*}
$$

where $I, J=e, \mu, \tau$ and $I \neq J$. For example, the $(1,2)$ and $(2,1)$ entries for left-handed leptons are induced by $\left(\chi_{3} / \Lambda^{\prime}\right) L_{e}^{\dagger} L_{\mu},\left(\chi_{2} / \Lambda^{\prime}\right) L_{\mu}^{\dagger} L_{e}$, etc. Similarly, other entries for both left-handed and right-handed leptons are induced. Furthermore, corrections including Φ do not violate the structure of $K_{\text {matter }}^{(0)}$ because Φ has a trivial charge under $A_{4} \times Z_{3}$.

Including these corrections, the slepton masses are written by

$$
\begin{align*}
& m_{L}^{2}=\left(\begin{array}{ccc}
m_{L}^{2} & 0 & 0 \\
0 & m_{L}^{2} & 0 \\
0 & 0 & m_{L}^{2}
\end{array}\right)+m_{3 / 2}^{2}\left(\begin{array}{ccc}
2 \bar{a}_{1}^{\prime} \tilde{\alpha} & 0 & 0 \\
0 & \left(\bar{a}_{2}^{\prime}-\bar{a}_{1}^{\prime}\right) \tilde{\alpha} & 0 \\
0 & 0 & -\left(\bar{a}_{1}^{\prime}+\bar{a}_{2}^{\prime}\right) \tilde{\alpha}
\end{array}\right)+\mathcal{O}\left(\tilde{\alpha}^{2} m_{3 / 2}^{2}\right), \\
& m_{R}^{2}=\left(\begin{array}{ccc}
m_{R_{1}}^{2} & 0 & 0 \\
0 & m_{R_{2}}^{2} & 0 \\
0 & 0 & m_{R_{3}}^{2}
\end{array}\right)+\mathcal{O}\left(\tilde{\alpha}^{2} m_{3 / 2}^{2}\right), \tag{3.7}
\end{align*}
$$

in the flavor basis, where $\bar{a}_{1}^{\prime}, \bar{a}_{2}^{\prime}=\mathcal{O}(1)$.
The leptonic FCNC is induced by off diagonal elements of scalar mass squared matrices in the diagonal basis of the charged lepton mass matrix. The following discussion presents that the off diagonal elements are enough suppressed in the left-handed slepton and the right-handed slepton mass matrices in the diagonal basis of the charged lepton mass matrix, i.e., $\tilde{m}_{R}^{2}=V_{R} m_{R}^{2} V_{R}^{T}$ and $\tilde{m}_{L}^{2}=V_{L} m_{L}^{2} V_{L}^{T}$. In this basis, the slepton mass squared matrices are obtained as

$$
\begin{align*}
& \tilde{m}_{L}^{2}=\left(\begin{array}{ccc}
m_{L}^{2} & 0 & 0 \\
0 & m_{L}^{2} & 0 \\
0 & 0 & m_{L}^{2}
\end{array}\right)+m_{3 / 2}^{2}\left(\begin{array}{ccc}
O(\tilde{\alpha}) & O\left(\tilde{\alpha}^{2}\right) & O\left(\tilde{\alpha}^{2}\right) \\
O\left(\tilde{\alpha}^{2}\right) & O(\tilde{\alpha}) & O\left(\tilde{\alpha}^{2}\right) \\
O\left(\tilde{\alpha}^{2}\right) & O\left(\tilde{\alpha}^{2}\right) & O(\tilde{\alpha})
\end{array}\right), \\
& \tilde{m}_{R}^{2}=\left(\begin{array}{ccc}
m_{R_{1}}^{2} & 0 & 0 \\
0 & m_{R_{2}}^{2} & 0 \\
0 & 0 & m_{R_{3}}^{2}
\end{array}\right)+\mathcal{O}\left(\tilde{\alpha}^{2} m_{3 / 2}^{2}\right), \tag{3.8}
\end{align*}
$$

when $\tilde{\alpha}>m_{e} / m_{\mu}$.
We have a strong constraint on $\left(\tilde{m}_{L}^{2}\right)_{12}$ and $\left(\tilde{m}_{R}^{2}\right)_{12}$ from FCNC experiments [16], i.e.

$$
\begin{equation*}
\frac{\left(\tilde{m}_{L}^{2}\right)_{12}}{m_{\mathrm{SUSY}}^{2}} \leq \mathcal{O}\left(10^{-3}\right), \quad \frac{\left(\tilde{m}_{R}^{2}\right)_{12}}{m_{\mathrm{SUSY}}^{2}} \leq \mathcal{O}\left(10^{-3}\right) \tag{3.9}
\end{equation*}
$$

for $m_{\text {SUSY }} \sim 100 \mathrm{GeV}$, where $m_{\text {SUSY }}$ denotes the average mass of slepton masses and it would be of $\mathcal{O}\left(m_{3 / 2}\right)$. The above prediction (3.8) of the A_{4} model leads to $\left(\tilde{m}_{L}^{2}\right)_{12} / m_{\text {SUSY }}^{2}=$ $\mathcal{O}\left(\tilde{\alpha}^{2}\right)$. Because of $\tilde{\alpha} \sim 0.03$ for $y_{\tau} \simeq 1$, our prediction, $\left(\tilde{m}_{L}^{2}\right)_{12} / m_{\text {SUSY }}^{2}=\mathcal{O}\left(\tilde{\alpha}^{2}\right)=\mathcal{O}\left(10^{-3}\right)$, would be consistent with the current experimental bound. When we consider a larger value of y_{τ}, e.g. $y_{\tau} \sim 3$, the predicted value of $\left(\tilde{m}_{L}^{2}\right)_{12} / m_{\text {SUSY }}^{2}$ would be suppressed like $\left(\tilde{m}_{L}^{2}\right)_{12} / m_{\text {SUSY }}^{2}=\mathcal{O}\left(10^{-4}\right)$. On the other hand, a large value of $\tilde{\alpha}$ like $\tilde{\alpha}=\mathcal{O}(0.1)$, which is obtained for a large value of $\tan \beta$ and/or a small value of y_{τ} would be ruled out. Similarly, we can estimate ($\left.\tilde{m}_{R}^{2}\right)_{12} / m_{\text {SUSY }}^{2}$ by using eq. (3.8) and results are the same.

We have studied soft scalar masses induced by F-terms. If we gauge $\mathrm{U}(1)_{F}$, another contribution to scalar masses would be induced through $\mathrm{U}(1)_{F}$ breaking, that is, contributions due to the D-term of the $\mathrm{U}(1)_{F}$ vector multiplet. Such D-term contributions m_{D}^{2} are proportional to $\mathrm{U}(1)_{F}$ charges Q of matter fields, ${ }^{5}$

$$
\begin{equation*}
m_{D}^{2}=Q\langle D\rangle \tag{3.10}
\end{equation*}
$$

[^4]In general, such D-term contributions may be dangerous from the viewpoint of FCNC. However, those D-term contributions in the A_{4} model do not violate the above form of soft scalar masses, (3.4), (3.7) and (3.8), because $\mathrm{U}(1)_{F}$ charges in table 1 are consistent with the A_{4} flavor symmetry, that is, $L_{I}(I=e, \mu, \tau)$ have the same $\mathrm{U}(1)_{F}$ charge, while three of $R_{I}(I=e, \mu, \tau)$ have different $\mathrm{U}(1)_{F}$ charges. Thus, the predictions on $\left(\tilde{m}_{L}^{2}\right)_{12} / m_{\text {SUSY }}^{2}$ and $\left(\tilde{m}_{R}^{2}\right)_{12} / m_{\text {SUSY }}^{2}$ do not change.

Here, we give a comment on radiative corrections. The slepton masses, which we have studied above, are induced at a high energy scale such as the Planck scale or the GUT scale. The slepton masses have radiative corrections between such a high energy scale and the weak scale, although those have been neglected in the above analyses. In those radiative corrections to slepton masses, the gaugino contributions are dominant. For example, slepton masses at the weak scale are related with ones at the GUT scale M_{X} as

$$
\begin{align*}
m_{L}^{2}\left(M_{Z}\right) & =m_{L}^{2}\left(M_{X}\right)+0.5 M_{\tilde{W}}^{2}+0.04 M_{\tilde{B}}^{2} \\
m_{R}^{2}\left(M_{Z}\right) & =m_{R}^{2}\left(M_{X}\right)+0.2 M_{\tilde{B}}^{2} \tag{3.11}
\end{align*}
$$

where $M_{\tilde{B}}$ and $M_{\tilde{W}}$ are bino and wino masses, respectively. These radiative corrections do not change drastically the above results when these gaugino masses are of $\mathcal{O}\left(m_{3 / 2}\right)$. On the other hand, FCNC constraints would be improved when these gaugino masses are much larger than initial values of slepton masses.

3.2 A-terms

Now, let us examine the mass matrix between the left-handed and the right-handed sleptons, which is generated by the so-called A-terms. The A-terms are trilinear couplings of two sleptons and one Higgs field, and are obtained as [23]

$$
\begin{equation*}
h_{I J} L_{J} R_{I} H_{d}=h_{I J}^{(Y)} L_{J} R_{I} H_{d}+h_{I J}^{(K)} L_{J} R_{I} H_{d}, \tag{3.12}
\end{equation*}
$$

where

$$
\begin{align*}
h_{I J}^{(Y)}= & F^{\Phi_{k}}\left\langle\partial_{\Phi_{k}} \tilde{y}_{I J}\right\rangle, \\
h_{I J}^{(K)} L_{J} R_{I} H_{d}= & -\left\langle\tilde{y}_{L J}\right\rangle L_{J} R_{I} H_{d} F^{\Phi_{k}} K^{L \bar{L}} \partial_{\Phi_{k}} K_{\bar{L} I} \tag{3.13}\\
& -\left\langle\tilde{y}_{I M}\right\rangle L_{J} R_{I} H_{d} F^{\Phi_{k}} K^{M \bar{M}} \partial_{\Phi_{k}} K_{\bar{M} J} \\
& -\left\langle\tilde{y}_{I J}\right\rangle L_{J} R_{I} H_{d} F^{\Phi_{k}} K^{H_{d}} \partial_{\Phi_{k}} K_{H_{d}},
\end{align*}
$$

where $K_{H_{d}}$ denotes the Kähler metric of H_{d}, and $\tilde{y}_{I J}$ denotes the effective Yukawa couplings given as

$$
\tilde{y}_{I J}=\frac{1}{\Lambda}\left(\begin{array}{lll}
y_{e} \chi_{1} & y_{e} \chi_{3} & y_{e} \chi_{2} \tag{3.14}\\
y_{\mu} \chi_{2} & y_{\mu} \chi_{1} & y_{\mu} \chi_{3} \\
y_{\tau} \chi_{3} & y_{\tau} \chi_{2} & y_{\tau} \chi_{1}
\end{array}\right) .
$$

Furthermore, when we use the $\mathrm{U}(1)_{F}$ Froggatt-Nielsen mechanism in order to obtain the lepton mass hierarchy, the couplings, y_{e}, y_{μ} and y_{τ}, are expressed as

$$
\begin{equation*}
y_{I}=c_{I}\left(\frac{\Phi}{\Lambda}\right)^{Q_{I}} \quad(I=e, \mu, \tau) \tag{3.15}
\end{equation*}
$$

where Q_{I} is $\mathrm{U}(1)_{F}$ charges. Here we assume that couplings, c_{e}, c_{μ} and c_{τ}, do not include the moduli Z, i.e. $\partial_{Z} c_{I}=0$ for $I=e, \mu, \tau$. After the electroweak symmetry breaking, these A terms provide us with the left-right mixing mass squared $\left(m_{L R}^{2}\right)_{I J}=h_{I J} v_{d}$. Furthermore, we use the basis $\left(\tilde{m}_{L R}^{2}\right)_{I J}=\left(V_{R} m_{L R}^{2} V_{L}^{T}\right)_{I J}$. The third term in the right hand side of eq. (3.14) is diagonalized in this basis. Thus, we do not take the third term into account in the following discussion.

When we consider the leading order of Kähler potential $K_{\text {matter }}^{(0)}$, the second terms in the right hand side of eq. (3.14), $h_{I J}^{(K)}$, is written by 25]

$$
\begin{equation*}
h_{I J}^{(K)}=\left\langle\tilde{y}_{I J}\right\rangle\left(A_{I}^{R}+A_{J}^{L}\right), \tag{3.16}
\end{equation*}
$$

where $A_{I}^{R}=-F^{Z} \partial_{Z} \ln b_{I}\left(Z, Z^{\dagger}\right)$ and $A_{J}^{L}=-F^{Z} \partial_{Z} \ln a\left(Z, Z^{\dagger}\right)$, that is, A_{I}^{L} are degenerate up to $\mathcal{O}(\tilde{\alpha})$. Thus, the $(2,1)$ entry of $\left(\tilde{m}_{L R}^{2}\right)_{I J}$ vanishes at the leading order. However, such a behavior is violated at the next order, that is, $A_{1}^{L}-A_{2}^{L}=\mathcal{O}\left(\tilde{\alpha} m_{3 / 2}\right)$, because the diagonal $(1,1)$ and $(2,2)$ entries of Kähler metric $\Delta K_{\text {matter }}$ for the left-handed lepton multiplets (3.5) have non-degenerate corrections of $\mathcal{O}(\tilde{\alpha})$. Then, the $h_{I J}^{(K)}$ contribution to the $(2,1)$ entry of $\left(\tilde{m}_{L R}^{2}\right)_{I J}$ is estimated as

$$
\begin{equation*}
\left(\tilde{m}_{L R}^{2}\right)_{21} \sim\left\langle\tilde{y}_{\mu}\right\rangle v^{d}\left(A_{1}^{L}-A_{2}^{L}\right) \theta_{L 12}=\mathcal{O}\left(\tilde{\alpha}^{2} m_{\mu} m_{3 / 2}\right) . \tag{3.17}
\end{equation*}
$$

Furthermore, the off-diagonal elements of Kähler metric have $\mathcal{O}\left(\tilde{\alpha}^{2}\right)$ of corrections (3.6), and these corrections also induce the same order of $\left(\tilde{m}_{L R}^{2}\right)_{21}$, i.e. $\left(\tilde{m}_{L R}^{2}\right)_{21}=\mathcal{O}\left(\tilde{\alpha}^{2} m_{\mu} m_{3 / 2}\right)$. Similarly, we can estimate the $(1,2)$ entry and obtain the same result, i.e., $\left(\tilde{m}_{L R}^{2}\right)_{12}=$ $\mathcal{O}\left(\tilde{\alpha}^{2} m_{\mu} m_{3 / 2}\right)$ when $\tilde{\alpha}>m_{e} / m_{\mu}$. These entries have the strong constraint from FCNC experiments as $\left(\tilde{m}_{L R}^{2}\right)_{12} / m_{\text {SUSY }}^{2} \leq \mathcal{O}\left(10^{-6}\right)$ and the same for the $(2,1)$ entry for $m_{\text {SUSY }}=$ 100 GeV . However, the above prediction of the A_{4} model leads to $\left(\tilde{m}_{L R}^{2}\right)_{12} / m_{\text {SUSY }}^{2}=$ $\mathcal{O}\left(10^{-7}\right)$ for $m_{\text {SUSY }}=100 \mathrm{GeV}$ and $\alpha \sim 0.03$ and that is consistent with the experimental bound.

Now, let us estimate the first term in the right hand side of (3.12), $h_{I J}^{(Y)}$, which can be written by,

$$
\begin{align*}
& \left(h_{I J}^{(Y)}\right)=\left(\frac{1}{\Lambda}\right)\left(\begin{array}{lll}
y_{e}\left\langle\chi_{1}\right\rangle A_{1} & y_{e}\left\langle\chi_{3}\right\rangle A_{3} & y_{e}\left\langle\chi_{2}\right\rangle A_{2} \\
y_{\mu}\left\langle\chi_{2}\right\rangle A_{2} & y_{\mu}\left\langle\chi_{1}\right\rangle A_{1} & y_{\mu}\left\langle\chi_{3}\right\rangle A_{3} \\
y_{\tau}\left\langle\chi_{3}\right\rangle A_{3} & y_{\tau}\left\langle\chi_{2}\right\rangle A_{2} & y_{\tau}\left\langle\chi_{1}\right\rangle A_{1}
\end{array}\right) \tag{3.18}\\
& +\left(\frac{A_{0}}{\Lambda}\right)\left(\begin{array}{ccc}
Q_{e} & 0 & 0 \\
0 & Q_{\mu} & 0 \\
0 & 0 & Q_{\tau}
\end{array}\right)\left(\begin{array}{l}
y_{e}\left\langle\chi_{1}\right\rangle \\
y_{e}\left\langle\chi_{3}\right\rangle \\
y_{\mu}\left\langle\chi_{e}\left\langle\chi_{2}\right\rangle\right. \\
y_{\tau}\left\langle\chi_{3}\right\rangle \\
y_{\mu}\left\langle\chi_{\tau}\left\langle\chi_{1}\right\rangle\right. \\
\left.y_{2}\right\rangle \\
y_{\mu}\left\langle\chi_{3}\right\rangle \\
y_{\tau}\left\langle\chi_{1}\right\rangle
\end{array}\right),
\end{align*}
$$

where

$$
\begin{equation*}
A_{0} \equiv \frac{F_{\Phi}}{\Phi}, \quad A_{i} \equiv \frac{F_{\chi_{i}}}{\chi_{i}}, \quad(i=1,2,3) . \tag{3.19}
\end{equation*}
$$

These would be of $\mathcal{O}\left(m_{3 / 2}\right)$. Since the second term of (3.18) is exactly the form of eq. (3.16) with the degenerate A_{I}^{L}, the second term does not change the above estimation of $\left(\tilde{m}_{L R}^{2}\right)_{12}$ and $\left(\tilde{m}_{L R}^{2}\right)_{21}{ }^{6}$

[^5]The first term of (3.18) contributes to $\left(\tilde{m}_{L R}^{2}\right)_{21}$ as

$$
\begin{equation*}
\left(\tilde{m}_{L R}^{2}\right)_{21}=y_{\mu} v_{d} \chi_{2}\left(A_{2}-A_{1}\right) / \Lambda \sim m_{\mu} \tilde{\alpha}\left(A_{2}-A_{1}\right) . \tag{3.20}
\end{equation*}
$$

That is, we estimate $\left(\tilde{m}_{L R}^{2}\right)_{21} / m_{\text {SUSY }}^{2} \sim 10^{-5} \times\left(A_{2}-A_{1}\right) / m_{3 / 2}$ for $\tilde{\alpha} \sim 0.03$. Thus, if $A_{2} \neq A_{1}$ and $A_{i}=\mathcal{O}\left(m_{3 / 2}\right)$, this value of $\left(\tilde{m}_{L R}^{2}\right)_{21} / m_{\text {SUSY }}^{2}$ would not be consistent with the experimental bound for $m_{\text {SUSY }}=100 \mathrm{GeV}$. Hence, a smaller value of $\tilde{\alpha}$ like $\tilde{\alpha}=\mathcal{O}(0.001)$ would be favorable to be consistent with the experimental bound and that implies $y_{\tau} \sim 4 \pi$. Alternatively, for $\tilde{\alpha} \sim 0.03$ it is required that $A_{1}=A_{2}$ up to $\mathcal{O}(0.1)$. If the non-trivial superpotential leading to SUSY breaking does not include χ_{i}, i.e. $\left\langle\partial_{\chi_{i}} W\right\rangle=0$, we can realize

$$
\begin{equation*}
A_{i}=-\left(K_{i \bar{i}}^{(\chi)}\right)^{-1} m_{3 / 2}, \tag{3.21}
\end{equation*}
$$

where $K_{i \bar{i}}^{(\chi)}$ is the Kähler metric of the fields χ_{i}. Note that the Kähler metric for χ_{i} are degenerate at the leading order, because χ_{i} are the A_{4} triplet. Hence, we obtain the degeneracy between A_{i}, i.e., $A_{1}=A_{2}=A_{3}$ up to $\mathcal{O}\left(\tilde{\alpha} m_{3 / 2}\right)$. In this case, $\left(\tilde{m}_{L R}^{2}\right)_{21}$ is suppressed and we can estimate $\left(\tilde{m}_{L R}^{2}\right)_{21} / m_{\text {SUSY }}^{2} \sim \tilde{\alpha}^{2} m_{\mu} / m_{3 / 2}=\mathcal{O}\left(10^{-6}\right)$ for $\tilde{\alpha} \sim 0.03$. This value is consistent with the experimental bound. However, the parameter region with larger α like $\tilde{\alpha}=\mathcal{O}(0.1)$ is still ruled out. Obviously, the value of $\left(\tilde{m}_{L R}^{2}\right)_{21}$ depends on the difference between A_{1} and A_{2}. If the difference $A_{1}-A_{2}$ is smaller than $\mathcal{O}\left(\tilde{\alpha} m_{3 / 2}\right),\left(\tilde{m}_{L R}^{2}\right)_{21}$ would be suppressed more.

Here we give a comment on radiative corrections. Similarly to slepton masses, radiative corrections to A-terms do not change drastically the above results. Note that Yukawa couplings are small, in particular the first and second families.

3.3 Comparison with other models

Here we give briefly comments comparing the A_{4} model and other models. First, let us compare with the D_{4} models [9, 12, 13], which also lead to the tri-bimaximal mixing for the lepton sector by choosing proper values of parameters. In both of the A_{4} model and the D_{4} models, the charged lepton mass matrices, M_{l}, are diagonal at the leading order, but there are small corrections at the next order. That is, in the A_{4} model, the (1,2) entries, $\theta_{L 12}$ and $\theta_{R 12}$, of diagonalizing matrices of M_{l} are estimated as $\theta_{L 12}=\mathcal{O}(\tilde{\alpha})$ and $\theta_{R 12}=\mathcal{O}\left(\tilde{\alpha} m_{e} / m_{\mu}\right)$ with $\tilde{\alpha} \sim 0.03$ for the typical values, while in the D_{4} models, both of those entries are estimated as $\theta_{L 12}=\theta_{R 12}=\mathcal{O}\left(10^{-2}\right)-\mathcal{O}\left(10^{-3}\right)$. Thus, these angles would be smaller in the D_{4} models.

In the D_{4} models, the second and third families of left-handed and right-handed charged leptons correspond to D_{4} doublets and the first families correspond to D_{4} singlets. Then, the second and third families of left-handed and right-handed slepton masses are degenerate at the leading order, while the first families of sleptons masses are, in general, independent of the others. On the other hand, in the A_{4} model, all the three families of left-handed slepton masses are degenerate at the leading order, while the three families of right-handed slepton masses are, in general, different from each other. That is, we have different predictions in slepton mass spectra between the A_{4} model and the D_{4} models.

In the A_{4} model, a large value of the entry $\theta_{L 12}=\mathcal{O}(\tilde{\alpha})$ like $\theta_{L 12} \sim \tilde{\alpha} \sim 0.03$ would not be favorable from the viewpoint of FCNC experimental bounds. However, the triplet structure of left-handed leptons is helpful to suppress $\left(\tilde{m}_{L L}^{2}\right)_{12}$ and $\left(\tilde{m}_{L R}^{2}\right)_{12}$ and the predicted values in a wide parameter space become consistent with the FCNC experimental bounds.

On the other hand, in the D_{4} models, small values of mixing angles $\theta_{L 12}=\theta_{R 12}=$ $\mathcal{O}\left(10^{-3}\right)$ are helpful to suppress $\left(\tilde{m}_{L L}^{2}\right)_{12},\left(\tilde{m}_{R R}^{2}\right)_{12}$ and $\left(\tilde{m}_{L R}^{2}\right)_{12}$, although the first and second families of slepton masses are not degenerate. This situation is the same as one for the right-handed sleptons in the A_{4} model. Then, both models are consistent with the current FCNC experimental bounds.

Next, we give a comment on other A_{4} models. Indeed, several A_{4} models have been proposed. For those SUSY A_{4} models, we can evaluate soft SUSY breaking terms in a way similar to section 3.1 and 3.2 . We would obtain similar results in the models that lefthanded and right-handed leptons are assigned to a triplet and singlets, respectively, and the angles, $\theta_{L 12}$ and $\theta_{R 12}$, are similar to the above values. Alternatively, we could construct the supersymmetric model, where three families of right-handed leptons are assigned with an A_{4} triplet, while three families of left-handed leptons are assigned with three singlets, $\mathbf{1}$, $\mathbf{1}^{\prime}$ and $\mathbf{1}^{\prime \prime}$, that is the opposite assignment of the A_{4} model of $\left.[6]\right]^{7}$ In such a model, three families of right-handed slepton masses would be degenerate at the leading order, since the right-handed leptons are a triplet. On the other hand, three families of left-handed slepton masses would be different from each other. Thus, the prediction on soft SUSY breaking terms depend on flavor symmetries and assignments of matter fields.

4. Conclusion

We have studied soft SUSY breaking terms, which are derived from the A_{4} model. Three families of left-handed slepton masses are degenerate, while three families of right-handed slepton masses are, in general, different from each other. That is the pattern different from slepton masses in the D_{4} model, where only the second and third families of both left-handed and right-handed slepton masses are degenerate 13].

In the wide parameter region, the FCNCs predicted in the SUSY A_{4} model are consistent with the current experimental bounds. Thus, the non-Abelain flavor symmetry in the A_{4} model is useful not only to derive realistic lepton mass matrices, but also to suppress FCNC processes. If the bound of $B R(\mu \rightarrow e \gamma)$ is improved in future, e.g. by the MEG experiment [26], the allowed parameter space would be reduced, that is, a smaller value of $\tilde{\alpha}$, i.e. a larger value of y_{τ} like $y_{\tau} \sim 4 \pi$, would become favorable.

Note to be added. While this paper was being completed, ref. 27] appeared, where a similar issue was studied.

Acknowledgments

T. K. and Y. O. are supported in part by the Grant-in-Aid for Scientific Research, No. 20540266 and No. $20 \cdot 324$, and the Grant-in-Aid for the Global COE Program "The

[^6]Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science and Technology of Japan. The work of M.T. has been supported by the Grant-in-Aid for Science Research of the Ministry of Education, Science, and Culture of Japan No. 17540243.

A. A_{4} group

The group A_{4} has two generators S and T, which satisfies $S^{2}=(S T)^{3}=T^{3}=1$. In the representation, where T is taken to be diagonal, the elements S and T are expressed as

$$
S=\left(\begin{array}{ccc}
-1 & 2 & 2 \tag{A.1}\\
2 & -1 & 2 \\
2 & 2 & -1
\end{array}\right), \quad T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right)
$$

Then, twelve elements of the A_{4} group are given by

$$
\begin{array}{llllll}
1, & S, & T, & S T, & T S, & T^{2} \\
S T^{2}, & S T S, & T S T, & T^{2} S, & T S T^{2}, & T^{2} S T \tag{A.2}
\end{array}
$$

The product of two triplets $\mathbf{3} \times \mathbf{3}$, where

$$
\begin{equation*}
a=\left(a_{1}, a_{2}, a_{3}\right), \quad b=\left(b_{1}, b_{2}, b_{3}\right) \tag{A.3}
\end{equation*}
$$

is decomposed as

$$
\begin{equation*}
3 \times 3=1+1^{\prime}+1^{\prime \prime}+3+3^{\prime} \tag{A.4}
\end{equation*}
$$

where

$$
\begin{align*}
\mathbf{1} & :\left(a_{1} b_{1}+a_{2} b_{3}+a_{3} b_{2}\right), \quad \mathbf{1}^{\prime}:\left(a_{3} b_{3}+a_{1} b_{2}+a_{2} b_{1}\right), \quad \mathbf{1}^{\prime \prime}:\left(a_{2} b_{2}+a_{1} b_{3}+a_{3} b_{1}\right), \\
\mathbf{3} & :\left(2 a_{1} b_{1}-a_{2} b_{3}-a_{3} b_{2}, 2 a_{3} b_{3}-a_{1} b_{2}-a_{2} b_{1}, 2 a_{2} b_{2}-a_{1} b_{3}-a_{3} b_{1}\right), \tag{A.5}\\
\mathbf{3}^{\prime} & :\left(a_{2} b_{3}-a_{3} b_{2}, a_{1} b_{2}-a_{2} b_{1}, a_{1} b_{3}-a_{3} b_{1}\right)
\end{align*}
$$

References

[1] M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 hep-ph/0405172.
[2] G.L. Fogli, E. Lisi, A. Marrone and A. Palazzo, Global analysis of three-flavor neutrino masses and mixings, Prog. Part. Nucl. Phys. 57 (2006) 742 hep-ph/0506083.
[3] P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 hep-ph/0202074;
P.F. Harrison and W.G. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 hep-ph/0203209.
[4] E. Ma and G. Rajasekaran, Softly broken A_{4} symmetry for nearly degenerate neutrino masses, Phys. Rev. D 64 (2001) 113012 hep-ph/0106291;
E. Ma, Plato's fire and the neutrino mass matrix, Mod. Phys. Lett. A 17 (2002) 2361 hep-ph/0211393;
K.S. Babu, E. Ma and J.W.F. Valle, Underlying A_{4} symmetry for the neutrino mass matrix and the quark mixing matrix, Phys. Lett. B 552 (2003) 207 hep-ph/0206292.
[5] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 hep-ph/0504165.
[6] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing, A_{4} and the modular symmetry, Nucl. Phys. B 741 (2006) 215 hep-ph/0512103.
[7] M. Hirsch, J.C. Romao, S. Skadhauge, J.W.F. Valle and A. Villanova del Moral, Phenomenological tests of supersymmetric A_{4} family symmetry model of neutrino mass, Phys. Rev. D 69 (2004) 093006 hep-ph/0312265;
A. Zee, Obtaining the neutrino mixing matrix with the tetrahedral group, Phys. Lett. B 630 (2005) 58 hep-ph/0508278;
E. Ma, Aspects of the tetrahedral neutrino mass matrix, Phys. Rev. D 72 (2005) 037301 hep-ph/0505209; A_{4} symmetry and neutrinos with very different masses., Phys. Rev. D 70 (2004) 031901 hep-ph/0404199;
X.-G. He, Y.-Y. Keum and R.R. Volkas, A_{4} flavour symmetry breaking scheme for
understanding quark and neutrino mixing angles, JHEP 04 (2006) 039 hep-ph/0601001;
E. Ma, H. Sawanaka and M. Tanimoto, Quark masses and mixing with A_{4} family symmetry, Phys. Lett. B 641 (2006) 301 hep-ph/0606103;
S.F. King and M. Malinský, A 4 family symmetry and quark-lepton unification, Phys. Lett. B 645 (2007) 351 hep-ph/0610250;
G. Altarelli, F. Feruglio and Y. Lin, Tri-bimaximal neutrino mixing from orbifolding, Nucl. Phys. B 775 (2007) 31 hep-ph/0610165;
F. Bazzocchi, S. Kaneko and S. Morisi, A SUSY A_{4} model for fermion masses and mixings, JHEP 03 (2008) 063 arXiv:0707.3032;
L. Lavoura and H. Kühböck, A_{4} model for the quark mass matrices, Eur. Phys. J. C 55 (2008) 303 arXiv:0711.067d;
B. Adhikary, B. Brahmachari, A. Ghosal, E. Ma and M.K. Parida, A_{4} symmetry and
prediction of $U(e 3)$ in a modified Altarelli-Feruglio model, Phys. Lett. B 638 (2006) 345 hep-ph/0603059;
B. Adhikary and A. Ghosal, Constraining CP violation in a softly broken A_{4} symmetric Model, Phys. Rev. D 75 (2007) 073020 hep-ph/0609193].
[8] M. Hirsch, A.S. Joshipura, S. Kaneko and J.W.F. Valle, Predictive flavour symmetries of the neutrino mass matrix, Phys. Rev. Lett. 99 (2007) 151802 hep-ph/0703046.
[9] W. Grimus and L. Lavoura, A discrete symmetry group for maximal atmospheric neutrino mixing, Phys. Lett. B 572 (2003) 189 hep-ph/0305046.
[10] W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura and M. Tanimoto, Lepton mixing angle $\theta(13)=0$ with a horizontal symmetry $D(4), J H E P 07$ (2004) 078 hep-ph/0407112);
A. Blum, R.N. Mohapatra and W. Rodejohann, Inverted mass hierarchy from scaling in the neutrino mass matrix: low and high energy phenomenology, Phys. Rev. D 76 (2007) 053003 arXiv:0706.3801;
A. Blum, C. Hagedorn and M. Lindner, Fermion masses and mixings from dihedral flavor symmetries with preserved subgroups, Phys. Rev. D 77 (2008) 076004 arXiv:0709.3450.
[11] W. Grimus et al., Non-vanishing $U(e 3)$ and $\cos (2 \theta(23))$ from a broken $Z(2)$ symmetry, Nucl. Phys. B 713 (2005) 151 hep-ph/0408123.
[12] H. Ishimori et al., D4 flavor symmetry for neutrino masses and mixing, Phys. Lett. B 662 (2008) 178 arXiv:0802.2310.
[13] H. Ishimori et al., Soft supersymmetry breaking terms from $D 4 \times Z 2$ lepton flavor symmetry, Phys. Rev. D 77 (2008) 115005 arXiv:0803.0796.
[14] T. Kobayashi, S. Raby and R.-J. Zhang, Searching for realistic $4 D$ string models with a Pati-Salam symmetry: orbifold grand unified theories from heterotic string compactification on a $Z(6)$ orbifold, Nucl. Phys. B 704 (2005) 3 hep-ph/0409098.
[15] T. Kobayashi, H.P. Nilles, F. Ploger, S. Raby and M. Ratz, Stringy origin of non-Abelian discrete flavor symmetries, Nucl. Phys. B 768 (2007) 135 hep-ph/0611020.
[16] F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 hep-ph/9604387.
[17] P.H. Chankowski, O. Lebedev and S. Pokorski, Flavour violation in general supergravity, Nucl. Phys. B 717 (2005) 190 hep-ph/0502076.
[18] T. Kobayashi, J. Kubo and H. Terao, Exact S^{3} symmetry solving the supersymmetric flavor problem, Phys. Lett. B 568 (2003) 83 hep-ph/0303084.
[19] P. Ko, T. Kobayashi, J.-h. Park and S. Raby, String-derived D4 flavor symmetry and phenomenological implications, Phys. Rev. D 76 (2007) 035005 [Erratum ibid. 76 (2007) 059901 arXiv:0704.2807.
[20] C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277.
[21] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870.
[22] M. Honda and M. Tanimoto, Deviation from tri-bimaximal neutrino mixing in A4 flavor symmetry, Prog. Theor. Phys. 119 (2008) 583 arXiv:0801.0181.
[23] V.S. Kaplunovsky and J. Louis, Model independent analysis of soft terms in effective supergravity and in string theory, Phys. Lett. B 306 (1993) 269 hep-th/9303040.
[24] Y. Kawamura and T. Kobayashi, Soft scalar masses in string models with anomalous U(1) symmetry, Phys. Lett. B 375 (1996) 141 [Erratum ibid. 388 (1996) 867] hep-ph/9601365; Generic formula of soft scalar masses in string models, Phys. Rev. D 56 (1997) 3844 hep-ph/9608233;
K. Choi and K.S. Jeong, Supersymmetry breaking and moduli stabilization with anomalous $\mathrm{U}(1)$ gauge symmetry, JHEP 08 (2006) 007 hep-th/0605108;
C.A. Scrucca, Soft masses in superstring models with anomalous $\mathrm{U}(1)$ symmetries, JHEP 12 (2007) 092 arXiv:0710.5105.
[25] T. Kobayashi and O. Vives, Restricted flavor structure of soft SUSY breaking trilinear couplings, Phys. Lett. B 506 (2001) 323 hep-ph/0011200.
[26] T. Mori, MEG: the experiment to search for $\mu \rightarrow e \gamma$, Nucl. Phys. 169 (Proc. Suppl.) (2007) 166.
[27] F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton flavour violation in models with A4 flavour symmetry, Nucl. Phys. B 809 (2009) 218 arXiv:0807.3160.

[^0]: ${ }^{1}$ The D_{4} flavor symmetry can be realized in superstring models 14, 15. From this viewpoint, the D_{4} flavor symmetry as well as certain flavor symmetries are interesting, too.

[^1]: ${ }^{2}$ See also e.g ref. 177 and references therein.

[^2]: ${ }^{3}$ Numerical analyses of the deviation from the tri-bimaximal mixing were presented in ref. 22

[^3]: ${ }^{4}$ SUSY breaking might be mediated through the gauge mediation and anomaly mediation. They are flavor-blind. Only if the gravity mediation has a sizable contribution with and without other SUSY breaking mediations, we would have a prediction of sfermion spectra from each flavor mechanism.

[^4]: ${ }^{5}$ See e.g. (24).

[^5]: ${ }^{6}$ Indeed, the Kähler metric $b_{I}\left(Z, Z^{\dagger}\right)$ and couplings $y_{I}=c_{I}(\Phi / \Lambda)^{Q_{I}}$ lead to the same A-terms as the Kähler metric $b_{I}\left(Z, Z^{\dagger}\right)(\Phi / \Lambda)^{-Q_{I}}$ and couplings $y_{I}=c_{I}$.

[^6]: ${ }^{7}$ Indeed, such non-SUSY model has been studied in 8.

