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Abstract: We consider the sum of planar diagrams for open strings propagating on N

D3-branes and show that it can be recast as the propagation of a closed string with a

Hamiltonian H = H0 − gsN P̂ where H0 is the free Hamiltonian and P̂ is the hole or loop

insertion operator. We compute explicitly P̂ and study its properties. When the distance y

to the D3-branes is much larger than the string length, y ≫
√

α′, small holes dominate and

H becomes a supersymmetric Hamiltonian describing the propagation of a closed string in

the full D3-brane supergravity background in a particular gauge that we call σ-gauge. At

strong coupling, gsN ≫ 1, there is a region 1 ≪ y ≪ (gsN)
1
4 where H is a supersymmetric

Hamiltonian describing the propagation of closed strings in AdS5 × S5. We emphasize

that both results follow from the open string planar diagrams without any reference to the

existence of a D3-brane supergravity background. A by-product of our analysis is a closed

form for the scattering of a generic closed string state from a D3-brane. Finally, we briefly

discuss how this method could be applied to a field theory and describe a way to rewrite

the planar Feynman diagrams as the propagation of a string with a non-local Hamiltonian

by identifying the shape of the string with the trajectory of the particle.
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1. Introduction

Some years ago, ’t Hooft proposed [1] the large-N limit as a promising approach to under-

standing the strong coupling regime of gauge theories. In particular, he argued that, when

considered in light cone frame, a gauge theory looks similar to a string theory and that, by

summing the planar diagrams, one could obtain the particular effective string theory that

describes the strong coupling limit of the gauge theory. The idea, although beautiful and

potentially very useful, was hampered by the fact that summing the planar diagrams ap-

pears a difficult task. The situation somewhat changed when Polchinski [2, 26] introduced

D-branes. In the low energy limit, open strings attached to a D-brane are described by a

gauge theory. In particular in the case of a D3-brane, the gauge theory is N = 4 SYM in

3+1 dimensions. The gauge group is SU(N) where N is the number of D-branes. In the

limit when N is large, the stack of N D-branes becomes very heavy deforming the space

around it. In this limit, the D-branes can be described by a supergravity solution where

closed strings propagate giving a novel and interesting interpretation to the large N limit.

This was understood by Maldacena who proposed the AdS/CFT correspondence [3], a pre-

cise relation between a large N gauge theory, namely N = 4 SYM, and a string theory, IIB

on AdS5 × S5, the near horizon limit of the D3-brane supergravity solution. This allows

to compute various field theory quantities in the strong coupling limit by using the string

description [4]. Thus, the idea of ’t Hooft is realized in the sense that the large-N limit

gives rise to a string theory. It further suggests that it might be possible to realize also

the other part, namely, that the planar diagrams can be summed up and the string theory

dual extracted from the result. In this paper we analyze this possibility elaborating on our

previous work [5].

In [5] which from now on we call (I), we considered the one loop amplitude describing

the interaction between a stack of N D-branes and a probe brane (see figure 1). When

computing the planar corrections in light cone gauge, we found that they were described

by the propagation of a closed string with a Hamiltonian equal to H = H0 − gsNP̂ where

P̂ is the operator that describes the insertion of a hole in the world-sheet (or of a loop from

a field theory perspective). The operator P̂ was explicitly computed in the bosonic sector

and described the scattering of an arbitrary closed string mode from a D-brane. In the

approximation that the holes are small the corrections describe the propagation of a closed

string in a modified supergravity background. Although one should expect this background

to be the D-brane supergravity solution, this was not the case, extra terms appeared in

the Hamiltonian. We attributed this to the fact that we only considered the bosonic sector

and expected those extra term to cancel in a full supersymmetric computation.

In the present paper we consider D3-branes and find precisely that. Namely, in the

limit of small holes the Hamiltonian H describes strings propagating in the full D3-brane

background.

Finally let us remark that the emphasis of this paper is in understanding the sum of

planar diagrams without any prejudice about the result. In particular we do not need that

the sum is given in terms of a string theory. The Hamiltonian we obtain in the closed string

side is non-local and therefore cannot be interpreted as a string Hamiltonian. This, however

– 2 –
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Figure 1: The interaction between a stack of N D-branes and a probe brane is given, at lowest

order, by a one-loop open string diagram, or equivalently by a single closed string interchange.

would not prevent us from studying planar diagrams since we can study the properties of

such Hamiltonian, e.g. spectrum, ground state etc. to derive properties of the open string

theory, or eventually field theory, whose planar diagrams we are summing.

The subject of gauge theories in light cone gauge is a well studied one. For example see

the review article [6]. More recent is the work in [7] where loop calculations are discussed

and [8] where the formulation of N = 4 in light cone gauge [9] is used to compute conformal

dimensions of various operators.

String theory in light cone gauge is also very well studied [10]. Earlier work on the

subject including the relation to the large-N limit can be found for example in [11, 12].

In the case of the superstring light cone gauge was an important method used to

construct the theory [13, 14]. For strings in AdS5 × S5 the light-cone gauge action was

described in [15]. In the pp-wave approximation, light-cone gauge also was used recently

to compare amplitudes with the field theory result [16].

The idea of defining a “hole” operator was also already considered for example in [17].

A related idea is also discussed in [18]. There, small holes are studied in the case of the

bosonic string. Presumably their conclusions would be different if the calculation is done

for a D3-brane hole on a type IIB world-sheet. In the case of the bosonic string, an operator

similar to the slit insertion operator we discuss here was already computed in [19] for the

case of all Dirichlet boundary conditions.

These previous works indeed suggest that combining the light-cone frame and the

introduction of a “hole” operator should be useful.

It should be noted that recently, other approaches to the problem were discussed.

In [20, 21] a world-sheet description of a gauge theory is derived. The first,1 finds a rep-

resentation in terms of a spin system which followed by a mean-field approach gives a

world-sheet action and in the second representing a free field theory in terms of strings is

discussed. In the context of the AdS/CFT correspondence a relation between the Schwinger

1I am grateful to C. Thorn for an explanation of the work in [20].
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parametrization of Feynman diagrams and particles propagating in AdS5 space was dis-

cussed in [22]. A more detailed analysis of this proposal including various checks can be

found in [23]. The idea of deriving the AdS/CFT duality using the NSR string (as opposed

to the GS we use here) is discussed in [24].

It is interesting to note that, in the context of topological strings, it was recently

observed [25] that the open string partition function follows from the closed string partition

function by shifting the closed string moduli by terms linear in the ’t Hooft coupling. The

Feynman diagram expansion for (topological) open string amplitudes follows in a similar

way. It would be interesting to understand further if this is related or not to the large-N

duality we propose here for ordinary superstrings. Namely, that the Feynman diagram

expansion of the open string follows from shifting the closed string Hamiltonian by an

operator linear in the ’t Hooft coupling.

This paper is organized as follows: in section 2 we review the main ideas of the previous

paper [5]. In section 3 we compute the slit insertion operator and study the divergencies

of different fields as they approach the insertion of a slit. These divergences are the usual

divergences that any field has in the presence of an operator insertion and which determine

the operator product expansion between operators. As a result, we find that P̂S is not

supersymmetric. Defining the correct operator implies multiplying P̂S by certain operator

insertions at the ends of the slit. In section 4 we compute those insertions and find the final

form of the hole insertion operator P̂ . This operator P̂ describes the scattering of closed

strings from a D3-brane. When reduced to the massless modes, it reproduces known results

providing a useful check as we show in section 5. In (I) it was observed that important

information on the background was contained in the limit of P̂ for small holes. We compute

this limit in section 6 and show that it reproduces the propagation of a closed string in

the full D3-brane supergravity background. In section 7 we briefly discuss ideas related to

the application of the present method to field theory planar diagrams. Finally we give our

conclusions in section 8. Some calculations and formulas are collected in the appendices.

In particular a simpler derivation of the Neumann coefficients is described.

2. Planar diagrams in light cone gauge

In this section we briefly review the results and ideas of paper (I), i.e. [5]. If we consider

the diagram in figure 1, its value can be computed as the regulated sum of the zero point

energy of all physical open string oscillators. If, for simplicity, we consider a bosonic string

and all branes to be p-dimensional, the diagram of figure 1 reduces to:

Z =

∫

dpk
∑

N i
n=0...∞

ωk, with ωk =
√

k2 + m2, m2 =
∑

n≥1,i

N i
n − a + L2 , (2.1)

where k represents the momenta parallel to the brane, N i
n are the occupation numbers of

the oscillators, L is the distance between the branes and a is the usual normal ordering

constant of the bosonic string (a = 1). The sum is divergent, to give it a meaning we start

– 4 –
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by doing the following formal manipulations:

Z =

∫

dpk

∞
∑

N i
n=0

ωk∼
∫

dpk

∞
∑

N i
n=0

∫ ∞

0

dℓ

ℓ
3
2

e−ℓ(k2+m2)∼
∫

dp−1k⊥

∞
∑

N i
n=0

∫ ∞

0
dp+e

− 1
p+ (k2

⊥+m2)
,

(2.2)

where in the last step we integrated out a spacial coordinate to write the result in a form

suggestive of light-cone gauge. In fact we can now re-write Z as:

Z =

∫ ∞

0
dp+Ẑ =

∫ ∞

0
dp+Tr e−βHl.c. , (2.3)

where β = 2πα′ is a constant and Ẑ = Tr e−βHl.c. with Hl.c. the light cone Hamiltonian:

Hl.c. =
1

4p+



p2
⊥ +

∑

n≥1,i

N i
nn − 1

α′ +
L2

4π2α′2



 . (2.4)

The trace in (2.3) is over all oscillator states and parallel momenta. In this form the diver-

gence is in the integral over p+ in the limit p+ → ∞ but now can be physically understood

as due to the closed string tachyon propagating along the closed string channel. For that

reason we concentrate on the partition function Ẑ which can be computed obtaining the

standard result. What we are more interested here is that we can rewrite Ẑ in a path

integral form:

Ẑ =

∫

DX⊥e−
R p+

0
dσ

R β

0
dτ [(∂τ X⊥)2+(∂σX⊥)2]. (2.5)

We can now interchange σ and τ since they enter equally in the calculation and rewrite

the path integral as a computation in the closed string channel:

Ẑ = 〈Bf |e−Hc.s.τ |Bi〉 , (2.6)

where the time of propagation is τ = 4α′p+, namely the length of the open string in the

previous calculation, and |Bi,f 〉 are the boundary states corresponding to the branes in the

diagram. These states are well known, a good review on how to construct them is [31].

Finally the closed string Hamiltonian is given by:

Hc.s. =
1√
α′





1

2
α′p2 +

∑

n≥1,i

n
(

N Ii
n + N IIi

n

)

− 2



 , (2.7)

where N Ii
n ,N IIi

n are the occupation numbers of the left and right moving oscillators. It is

also a well-known result that both calculations of Ẑ coincide [26].

The purpose of (I) was to sum the planar corrections that are obtained from diagrams

of the type shown in figure 2a while discarding those such as the one in figure 2b. From the

point of view of the closed string we are including all tree level corrections including those

of the massive modes. From the point of view of open strings, the interaction we should

take into account is the one that splits (or joins) strings as the one depicted in figure 3.

– 5 –
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Figure 2: Corrections to the diagram of figure 1. In (a) we depict typical planar corrections and

in (b) non-planar ones. In the limit N → ∞ the first ones dominate.

Figure 3: The interaction between open strings is given by a three vertex where two strings join

or one string splits in two [10]. The total length of the strings is proportional to p+ and therefore

conserved.

Notice that the total length of the string is conserved since it is given by p+. With such

vertex we can construct diagrams of the type depicted in figure 4a or those as in figure 4b.

In the planar approximation one can see that those in figure 4a dominate. Again, we

can now compute, instead, a path integral over such world-sheet with appropriate boundary

conditions on the slits. The total partition function is

Ẑ =
∞
∑

n=0

(gsN)n

n!

∫ n
∏

i=1

dσL
i dσR

i dτi

∫

DX⊥e−
R

dσdτ [Ẋ2
⊥+X′

⊥
2] , (2.8)

where the hat indicates that we still have to do the integral on p+. We also have to integrate

over all positions of the slits, three parameters per each. We divide by n! since the slits

are identical or, equivalently, we can integrate over the range 0 < τ1 < . . . < τn < τ .

Again, we can interchange σ and τ to write the diagram in terms of the propagation of a

closed string as shown in figure 5. It is obvious from the figure that, in this channel, we still

have only one closed string. In this channel it is convenient to define an operator P (σL
1 , σR

1 )

– 6 –
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Figure 4: Corrections to the diagram of figure 1 as seen in the open string channel. Again we have

planar (a) and non-planar (b) contributions.

that propagates the closed string from an instant before inserting a slit to an instant right

after, as depicted in figure 5. This operator depends on the positions σL and σR of the slit

but not on the time τ at which it acts. With this operator, we can rewrite Ẑ as:

Ẑ =

∞
∑

n=0

(gsN)n
∫

0<τ1<...<τn<τ

n
∏

i=1

dσL
i dσR

i dτi〈Bf |e−H0(τ−τn) . . .

×P (σL
2 , σR

2 )e−H0(τ2−τ1)P (σL
1 , σR

1 )e−H0τ1 |Bi〉

=

∞
∑

n=0

(gsN)n
∫

0<τ1<...<τn<τ

n
∏

i=1

dτi〈Bf |e−H0(τ−τn) . . . P̂ e−H0(τ2−τ1)P̂ e−H0τ1 |Bi〉 ,(2.9)

where we defined P̂ =
∫

dσLdσRP (σR, σL). If we further define

P̂ (τ) = eH0τ P̂ e−H0τ , (2.10)

we get

Ẑ =
∞
∑

n=0

(gsN)n
∫

0<τ1<...<τn<τ

n
∏

i=1

dτi〈Bf |P̂ (τn) . . . P̂ (τ1)|Bi〉 (2.11)

= I〈Bf |T̂ egsN
R τ

0 P̂ (τ)dτ |Bi〉I (2.12)

= 〈Bf |e−(H0−λP̂ )τ |Bi〉 , (2.13)

where λ = gsN , the subindex I indicates states in the interaction representation and T̂

indicates the time ordered product. The last equality is the standard Dyson representation

of time dependent perturbation theory if we want to expand the last line in powers of λ.

Thus, we obtain a closed string Hamiltonian H = H0 − λP̂ which, by definition, is such

that expanding the corresponding evolution operator U = e−Hτ in powers of λ recreates,

order by order, the perturbative expansion in the open string channel. It is clearly impor-

tant to study such operator and the rest of the paper is devoted to computing P̂ for the

superstring and analyzing the result.

One caveat is that, if part of the supersymmetry is preserved, the partition function is

zero. In the path integral method this follows form the fact that there is a fermionic zero

– 7 –
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Figure 5: In the closed string channel we compute the diagram by defining an operator P̂ that

propagates the string across the slit from τ = τ1 − ǫ to τ = τ1 + ǫ.

mode and that
∫

dθ 1 = 0. In the open string approach follows from the fact that there are

the same number of fermionic and bosonic states at each level and we compute

Z =

∫ ∞

0
dp+ Tr

(

(−)F e−βHl.c.

)

. (2.14)

We need (−)F where F is the fermionic number because the fermions contribute with a

minus sign to the zero point energy. From the closed string point of view we get a zero

because both boundary states, initial and final, satisfy the same condition for some given

fermionic zero mode. If we call the mode c then we should have c|Bi〉 = 0 and 〈Bf |c = 0

meaning that in |Bi〉 the mode is empty and in |Bf 〉 it is full. Therefore 〈Bf |Bi〉 = 0. For

that reason we should take an initial state that breaks supersymmetry. For example the

boundary state of a D3-brane moving at constant velocity along certain coordinate Y I . In

any case, at this stage we are not really concerned on the initial and final states since we

are interested in the Hamiltonian H that arises and not in actually evaluating the matrix

element 〈Bf |e−Hτ |Bi〉.

3. The slit operator P̂S

In this section we compute the slit operator P̂S and study its properties. At the end of the

section we find that, in the case of the superstring, the slit operator is not supersymmetric.

The correct operator P̂ is actually a slit with operator insertions near the ends of the

segment. In the next section we do such computation, which parallels the open string

calculations in [10].

3.1 Computation of P̂S

In fact, the slit operator for the superstring was computed in (I). It was written as a two

vertex state, namely as a state in the tensor product of the space of states of the initial and

final strings. Before stating the result let us introduce some notation. We consider type

– 8 –
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IIB superstrings in the U(1) × SU(4) formalism [10]. The spacial coordinates are divided

into parallel to the brane X±, Xa=1,2, and perpendicular Y I=1...6. The coordinates parallel

to the brane are divided into light-cone coordinates X± and transverse. For the transverse

ones we sometimes use the redefinition

XR =
1√
2

(

X1 + iX2
)

, XL =
1√
2

(

X1 − iX2
)

. (3.1)

The fermionic coordinates are divided into left movers θA, λA, and right movers θ̃A, λ̃A.

The upper index A transforms in the fundamental of SU(4) and the lower index A in the

antifundamental. At equal time, the anticommutation relations are

{θA(σ), λB(σ′)} = δA
Bδ(σ − σ′), {θ̃A(σ), λ̃B(σ′)} = δA

Bδ(σ − σ′), (3.2)

the coordinates are expanded in modes according to

Xi
r = xi

r +
∑

n 6=0

xi
neinσ = xi

r +
∑

n 6=0

i

|n|
(

airn − a†ir,−n

)

einσ, (3.3)

P i
r =

1

2π



pi
0r +

∑

n 6=0

pi
neinσ



 =
1

2π



a†ir0 +
1

2

∑

n 6=0

(

ainr + a†ir,−n

)

einσ



 , (3.4)

θA
r =

∞
∑

n=−∞
θA
rneinσ, θ̃A

r =

∞
∑

n=−∞
θ̃A
rneinσ (3.5)

λrA =
1

2π

∞
∑

n=−∞
λrnAeinσ, λ̃rA =

1

2π

∞
∑

n=−∞
λ̃rnAeinσ , (3.6)

where the index r = 1, 2 refers to the initial and final strings.2 By convention we defined

pr
0 = a†i0r. The commutation relations are:

[airn, a†jsm] = |n| δijδrs δmn, {θA
rn, λsBm} = δrsδ

A
Bδm+n {θ̃A

rn, λ̃sBm} = δrsδ
A
Bδm+n , (3.7)

and all others zero. The vacuum of the oscillators is defined such that, if n > 0, we have

airn|0〉 = 0, air,−n|0〉 = 0 (3.8)

θA
1n|0〉 = 0, θA

2,−n|0〉, θ̃A
1,−n|0〉 = 0, θ̃A

2n|0〉 = 0 (3.9)

λ1nA|0〉 = 0, λ2,−nA|0〉, λ̃1,−nA|0〉 = 0, λ̃2nA|0〉 = 0. (3.10)

The difference between r = 1, 2 for the fermions is due to the fact that we define the

states with time running in opposite direction for the initial and final strings but we keep

the convention that the tilded variables are left moving and the ones with no tilde, right

moving. We have a set of linearly realized supercharges:

Q+
A = λ0A, Q+A = θA

0 , Q̃+
A = λ̃0A, Q̃+A = θ̃A

0 , (3.11)

2To avoid confusion with the slit operator in later sections we sometimes use the symbol Πi = P i.
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and a set of non-linearly realized:

Q−A = 2
√

2

∫ π

−π
ρI

ABAIθB + 8π

∫ π

−π
ALλA (3.12)

Q̃−A = 2
√

2

∫ π

−π
ρI

ABÃI θ̃B + 8π

∫ π

−π
ÃLλ̃A (3.13)

QA
− = −4

√
2π

∫ π

−π
ρIABAIλB + 4

∫ π

−π
ARθA (3.14)

Q̃A
− = −4

√
2π

∫ π

−π
ρIABÃI λ̃B + 4

∫ π

−π
ÃRθ̃A, (3.15)

where

AI = P I − 1

4π
∂σY I , ÃI = P I +

1

4π
∂σY I , (3.16)

and the same for AR,L. They have the commutation relations

[

A(σ),A(σ′)
]

=− i

2π
∂σδ(σ−σ′),

[

Ã(σ), Ã(σ′)
]

=
i

2π
∂σδ(σ−σ′),

[

A(σ), Ã(σ′)
]

=0.

(3.17)

It is useful to have a list of supersymmetry variations of the different fields:

[

Q−A,AI
]

=
i
√

2

π
ρI

AB∂σθB,
[

Q̃−A, ÃI
]

= − i
√

2

π
ρI

AB∂σ θ̃B,

[

Q−A,AR
]

= 4i∂σλA,
[

Q̃−A, ÃR
]

= −4i∂σλ̃A,

{

Q−A, θB
}

= 8πδB
AAL,

{

Q̃−A, θ̃B
}

= 8πδB
A ÃL,

{Q−A, λB} = 2
√

2ρI
ABAI ,

{

Q̃−A, λ̃B

}

= 2
√

2ρI
ABÃI ,

[

QA
−,AI

]

= −2i
√

2ρIAB∂σλB ,
[

Q̃A
−, ÃI

]

= 2i
√

2ρIAB∂σλ̃B ,

[

QA
−,AL

]

=
2i

π
∂σθA,

[

Q̃A
−, ÃL

]

= −2i

π
∂σ θ̃A, (3.18)

{

QA
−, θB

}

= −4
√

2πρIABAI ,
{

Q̃A
−, θ̃B

}

= −4
√

2πρIABÃI ,

{

QA
−, λB

}

= 4δA
BAR,

{

Q̃A
−, λB

}

= 4δA
BÃR,

{

QA
+, λB

}

=
1

2π
δA
B

{

Q̃A
+, λ̃B

}

=
1

2π
δA
B ,

{

Q+A, θB
}

= δB
A

{

Q̃+A, θ̃B
}

= δB
A ,

where the ones not listed vanish. Finally, we can define the Hamiltonian H0 and the

momentum Pσ through

H =

∫

dσ(Hr + Hl), (3.19)

Pσ =

∫

dσ(Hr − Hl), (3.20)

Hl = 2π

(

ALAR +
1

2
AIAI

)

+ i∂σλCθC , (3.21)

Hr = 2π

(

ÃLÃR +
1

2
ÃIÃI

)

− i∂σλ̃C θ̃C . (3.22)

– 10 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
5

A D3-bane boundary state |BD3〉 was found in (I) to be defined by:

(

AL,R + ÃL,R
)

|B〉 = 0, (3.23)
(

AI − ÃI
)

|B〉 = 0, (3.24)
(

θA − θ̃A
)

|B〉 = 0, (3.25)
(

λA + λ̃A

)

|B〉 = 0, (3.26)

which preserve

QA
+ = QA

+ − Q̃A
+, Q+A = Q+A + Q̃+A, Q−A = Q−A − Q̃−A, QA

− = QA
− + Q̃A

−. (3.27)

This is regarding a boundary state. In the case of the vertex |V 〉 we should impose these

conditions on the slit and continuity of the coordinates in the rest. For Dirichlet boundary

conditions this leads to

(

Y I
1 (σ) − Y I

2 (σ)
)

|V 〉 = 0, −π ≤ σ ≤ π, (3.28)
(

Y I
1 (σ) + Y I

2 (σ)
)

|V 〉 = 0, |σ| ≤ σ0, (3.29)
(

ΠI
1(σ) + ΠI

2(σ)
)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (3.30)

and for Neumann to:

(Πa
1(σ) + Πa

2(σ)) |V 〉 = 0, −π ≤ σ ≤ π, (3.31)

(Πa
1(σ) − Πa

2(σ)) |V 〉 = 0, |σ| ≤ σ0, (3.32)

(Xa
1 (σ) − Xa

2 (σ)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (3.33)

where we understand all operators are evaluated at τ = 0. These conditions are solved by

the vertex state:

|V 〉 = e
P

rs,imn Nrs
i,nma†

irna†
ism

∏

i/εi=+1

δ(pi
1 + pi

2)|0〉, (3.34)

where i runs over all eight bosonic coordinates and the Neumann coefficients Nrs
i,nm where

computed in (I). For the fermions the conditions are:

(

θA
1 − θA

2 − θ̃A
1 + θ̃A

2

)

|V 〉 = 0, −π ≤ σ ≤ π, (3.35)
(

λ1A + λ2A + λ̃1A + λ̃2A

)

|V 〉 = 0, −π ≤ σ ≤ π, (3.36)
(

θA
1 − θA

2 + θ̃A
1 − θ̃A

2

)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (3.37)
(

λ1A + λ2A − λ̃1A − λ̃2A

)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (3.38)
(

θA
1 + θA

2 − θ̃A
1 − θ̃A

2

)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0, (3.39)
(

λ1A − λ2A + λ̃1A − λ̃2A

)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0. (3.40)
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To construct the vertex state it is useful to define new fermionic variables:

ΞA =
1√
2

(

θA
1 + θ̃A

2

)

, Ξ̄A =
1√
2

(

λ1A + λ̃2A

)

,

χA =
1√
2

(

λ2A + λ̃1A

)

, χ̄A =
1√
2

(

θA
2 + θ̃A

1

)

,

cA =
1√
2

(

λ̃1A − λ2A

)

, c̄A =
1√
2

(

θ̃A
1 − θA

2

)

, (3.41)

dA =
1√
2

(

θA
1 − θ̃A

2

)

, d̄A =
1√
2

(

λ1A − λ̃2A

)

,

in terms of which the conditions are

(

χA + Ξ̄A

)

|V 〉 = 0, −π ≤ σ ≤ π,
(

ΞA − χ̄A
)

|V 〉 = 0, −π ≤ σ ≤ π,
(

c̄A + dA
)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (3.42)
(

d̄A − cA

)

|V 〉 = 0, σ0 ≤ |σ| ≤ π,
(

dA − c̄A
)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0,
(

d̄A + cA

)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0.

The first two conditions are solved by the state

e
P

m≥1(χmAΞA
−m+Ξ̄A,−mχ̄A

m)
∏

B

(χ0B + Ξ̄0B)|0〉. (3.43)

The other four conditions can be solved by introducing yet another set of fermionic modes

a†nA = cnA , if (n > 0) bA†
n = c̄A

n , if (n > 0),

bA†
n = dA

n , if (n < 0) a†nA = d̄nA , if (n < 0),

aA
n = c̄A

n , if (n < 0) bnA = cnA , if (n < 0), (3.44)

bnA = d̄nA , if (n > 0) aA
n = dA

n , if (n > 0),

and defining the state

|V 〉 = e
P

m,n6=0 Vnm|m|bA†
n a†

mA
+

P

m6=0(b̄A
0 αm+āA

0 βm)a†
mA |0〉, (3.45)

where

Vnm = −2
(

N11
nm(εi = −1) + N12

nm(εi = −1)
)

, (3.46)

αm = −|m|
(

N11
0m(εi = −1) + N12

0m(εi = −1)
)

, (3.47)

βm = −m
(

N12
m0(εi = 1) − N11

m0(εi = 1)
)

. (3.48)

The zero modes were defined as

a0A = d̄0A − c0A =
1√
2

(

λ1A0 − λ̃2A0 − λ̃1A0 + λ2A0

)

,

āA
0 = dA

0 − c̄A
0 =

1√
2

(

θA
10 − θ̃A

20 − θ̃A
10 + θA

20

)

, (3.49)
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b0A = c0A + d̄0A =
1√
2

(

λ̃1A0 − λ2A0 + λ1A0 − λ̃2A0

)

,

b̄A
0 = c̄A

0 + dA
0 =

1√
2

(

θ̃A
10 − θA

20 + θA
10 − θ̃A

20

)

,

and obey

{a0A, āB
0 } = 2δB

A , {b0A, b̄B
0 } = 2δB

A . (3.50)

The vacuum obeys

a0A|0〉 = 0, b0A|0〉 = 0. (3.51)

The meaning of the representation in terms of a vertex state is better understood by writing

the vertex state corresponding to the identity operator which is3

|I〉 = 4b̄4
0

∫

d6q

(2π)6
eiqI (yI

1+yI
2)e∆0

∏

i/εi=+1

δ(pi
1 + pi

2)|0〉, (3.52)

∆0 = −
∑

i,m6=0

1

|m|a
†
i1ma†i2,−m +

∑

n>0

(

λ2nAθA
1,−n + λ̃1nAθ̃A

2,−n + λ1,−nAθA
2n + λ̃2,−nAθ̃A

1n

)

= −
∑

i,m6=0

1

|m|a
†
i1ma†i2,−m +

∑

m≥1

(

χmAΞA
−m + Ξ̄A

mχ̄A
m

)

+
∑

n 6=0

b†An a†A,−n. (3.53)

Acting on this state we can replace:

a†i2m → −ai1,−m, θA
2n → θA

1n, θ̃A
2n → θ̃A

1n, λ2nA → −λ1nA, λ̃2nA → −λ̃1nA. (3.54)

If we have an operator which is a function of only creation operators, after doing the

replacement we get an operator acting only on string 1 and in normal ordered form. This

shows that the vertex state is a way to write the operator normally ordered. In particular

we can rewrite the operator P̂S as an operator rather than vertex state as:

P̂S = :e∆
(D)
B

+∆
(N)
B

+∆F :, (3.55)

∆
(D)
B = −

∑

m,n 6=0

|mn|N11D
mn yI

myI
n + 2iqI

∑

n 6=0

N11D
0n |n|yI

n + q2N11D
00 , (3.56)

∆
(N)
B = 4

∑

m,n 6=0

|mn|N11N
mn pa

mpa
n + 4pa

0

∑

n 6=0

1

n
βnpa

n + 4k2 ln cos
σ0

2
, (3.57)

∆F = 4
∑

m,n 6=0

|m|sg(n)N11D
mn ΘnΛ̄m + 2Θ0

∑

m6=0

βmΛ̄m + b̄A
0

∑

m6=0

αmΛ̄m , (3.58)

where the colons indicate normal ordering and the upper index D in N11D
mn means that we

evaluate the Neumann coefficient for Dirichlet boundary conditions (i.e. ε = −1), and in

the case of N11N
mn for ε = +1. We also introduced the notation

b̄4
0 =

1

24
ǫABCD b̄A

0 b̄B
0 b̄C

0 b̄D
0 , (3.59)

3See the discussion in appendix C.
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and defined the fields:

ΘA =
1√
2

(

θA − θ̃A
)

, ΛA =
1√
2

(

λA − λ̃A

)

, (3.60)

Θ̄A =
1√
2

(

θA + θ̃A
)

, Λ̄A =
1√
2

(

λA + λ̃A

)

, (3.61)

whose mode expansions we used in writing P̂S . In the form (3.58) the oscillator part is

written as an operator but not the zero modes. We get the final expression by doing a

Fourier transform:

P̂S =

∫

1

4
d4b̄0

∫

d6q

(2π)6
e−bA

0 Λ̄0A−iqIyI

P̂S , (3.62)

where we use the same symbol P̂S to denote different representations of the same operator.

The factor 1
4 is from the fact that b̄4

0 → 1
4I as discussed in appendix C.

To do the q integral we have to note that N11
00 = ln sin σ0

2 < 0. The result is:

P̂S =
1

28π6

1
∣

∣N11D
00

∣

∣

3

∫

d4b̄0:e
∆̄

(D)
B

+∆
(N)
B

+∆̄F :, (3.63)

∆̄
(D)
B = −

∑

m,n 6=0

|mn|N̄11D
mn yI

−myI
−n +

yI

N11D
00

∑

n 6=0

N11D
0n |n|yI

−n +
y2

4N11D
00

, (3.64)

∆
(N)
B = 4

∑

m,n 6=0

|mn|N11N
mn pa

mpa
n + 4pa

0

∑

n 6=0

1

n
βnpa

n + 4k2 ln cos
σ0

2
,

∆̄F = 4
∑

m,n 6=0

|m|sg(n)N11D
mn ΘA

n Λ̄mA + 2ΘA
0

∑

m6=0

βmΛ̄mA + b̄A
0



−Λ̄0A +
∑

m6=0

αmΛ̄mA



 ,

where we defined

N̄11D
mn = N11D

mn − N11D
m0 N11D

n0

N11D
00

. (3.65)

From the properties of the Neumann coefficients we can derive:

∑

n 6=0

N̄11D
nm einσ =

1

2|m|e
−imσ, if |σ| < σ0, (3.66)

∑

n 6=0

|n|N̄11D
nm einσ =

1

2

N11D
m0

N11D
00

, if |σ| > σ0. (3.67)

Using this together with the properties of the Neumann coefficients listed in (I), we readily

find that P̂S as defined in eq. (3.63) satisfies:

[Y I(σ), P̂S ] = 0, for − π < σ < π, (3.68)

[ΠI(σ), P̂S ] = 0, for σ0 < |σ| < π, (3.69)

Y I(σ)P̂S = 0, for |σ| < σ0, (3.70)

[Πa(σ), P̂S ] = 0, for − π < σ < π, (3.71)

[Xa(σ), P̂S ] = 0, for σ0 < |σ| < π, (3.72)
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Πa(σ)P̂S = 0, for |σ| < σ0, (3.73)

[Θ(σ), P̂S ] = 0, for − π < σ < π, (3.74)

[Λ̄(σ), P̂S ] = 0, for − π < σ < π, (3.75)

[Θ̄(σ), P̂S ] = 0, for σ0 < |σ|, (3.76)

[Λ(σ), P̂S ] = 0, for σ0 < |σ|, (3.77)

Θ(σ)P̂S = 0, for |σ| < σ0, (3.78)

Λ̄(σ)P̂S = 0, for |σ| < σ0, (3.79)

which imply that indeed P̂S projects over the right boundary conditions on the region

|σ| < σ0 and does nothing for σ0 < |σ|. In doing these calculations it is useful to note that

[O, :e∆:] = :[O,∆]e∆:, (3.80)

whenever O is an operator linear in oscillators and ∆ is quadratic in oscillators.

Having found different useful representations of the operator P̂S we proceed to study

its properties.

3.2 Divergences of operators near P̂S

Whenever one inserts an operator in the world-sheet, other field becomes singular near the

insertion. For example if one inserts the operator Xa(z0) then the (world-sheet) energy

momentum tensor has a pole at z = z0 whose residue is ∂zX
a(z0). This simply means

that the energy momentum tensor generates translations on the world-sheet. If we insert

a slit the situation is no different. For example the energy momentum tensor should also

have a singularity representing a translation of the slit. Of particular importance for us

are translations in σ. It is clear that the slit is “almost” invariant under such translations.

Indeed under an infinitesimal translation in σ the only variation occurs at the ends of the

slit, in the region |σ| < σ0 no change is observed. Therefore we expect the translation

operator to have pole singularities localized at the ends of the segment.

With this in mind we proceed now to study different fields and see what singularities

they have at the end points of the slit. The analysis is the same as the one in [10]. Consider

the field Ai whose mode expansion is:

Ai
r(σ) =

1

2π
a†ir0 +

1

2π

∑

n>0

(

ainre
inσ + a†irne−inσ

)

. (3.81)

Now we compute

Ai
r(σ)e

P

rsimn N
rs(i)
nm a†

irn
a†

ism |0〉 = (3.82)

= e
P

rsimn N
rs(i)
nm a†

irn
a†

ism

[

1

2π
a†ir0 +

1

2π

∑

n>0

(

2
∑

sm

|n|N rs(i)
nm a†ismeinσ + a†irne−inσ

)]

|0〉.

There is a singularity coming from the double sum which we express as

Ai
r(σ) ∼ 1

π

∑

n>0,sm

|n|N rs(i)
nm a†ismeinσ. (3.83)
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The behavior of the Neumann coefficients for large value of the arguments was derived in

(I). This allows us to obtain, for example,

∑

n>0

einσN1s(i)
nm |n| ≃ − 1√

2π sin σ0

∑

n>0

Im

(

ei π
4
−inσ0

√
n

f s(i)
m

)

einσ (3.84)

≃ − 1

2
√

2 sin σ0

(

f
s(i)
m√

σ − σ0
+

f̄
s(i)
m√−σ − σ0

)

, (3.85)

where the approximation refers to the leading behavior near σ = ±σ0. In this way we can do

a lengthy but straight-forward study of all the fields and obtain the leading singularities as:

Ai
1 ∼ εiÃi

1 ∼ −Ã2
i ∼ −εiAi

2 ∼ Zi

√
σ − σ0

+
Z̄i

√−σ − σ0
,

1√
2

dA ∼ − 1√
2

c̄A ∼ θA
1 ∼ −θ̃A

1 ∼ Y A

√
σ − σ0

+
Ȳ A

√−σ − σ0
, (3.86)

1√
2

∂σcA ∼ 1√
2

∂σd̄A ∼ ∂σλ1A ∼ ∂σλ̃1A ∼ i

(

VA√
σ − σ0

+
V̄A√−σ − σ0

)

,

where we defined the operators:

Zi = −
√

2

4π
√

sinσ0

∑

sm

f s(i)
m a†ism, (3.87)

Z̄i = −
√

2

4π
√

sinσ0

∑

sm

f̄ s(i)
m a†ism, (3.88)

Y A =
1√

sin σ0







1

2
āA

0 sin
σ0

2
+

i

2
b̄A
0 cos

σ0

2
+
∑

n 6=0

f̄1(D)
n b†An







, (3.89)

Ȳ A =
1√

sin σ0







1

2
āA

0 sin
σ0

2
− i

2
b̄A
0 cos

σ0

2
+
∑

n 6=0

f1(D)
n b†An







, (3.90)

V A = − 1

2π
√

sinσ0

∑

m

|m|f̄1(D)
m a†mA, (3.91)

V̄ A = − 1

2π
√

sinσ0

∑

m

|m|f̄1(D)
m a†mA. (3.92)

A very useful check is to use the singularities of the translation operator (3.20) to compute

the commutator:

[Pσ , P̂S ] = −i∂σP̂S , (3.93)

which we expect to give the sigma derivative of the operator we commute it with. To verify

that, we use, as shown in figure 6 that the commutator is

[Pσ, P̂S ] =

∮

(Hr − Hl)P̂S , (3.94)

where the integral is over the contour in the figure. It is equal to the commutator because

it precisely represents the difference between applying first P̂S and then Pσ and doing the
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Figure 6: To compute the commutator between the slit and the integral over sigma of an operator

we apply them in different order and subtract. The result is a closed contour integral around the

slit.

same in opposite order. The first observation is that the integral outside the slit cancel

each other. On the slit, both sides are independent but the boundary conditions imply

Hr − Hl = 0 so the integral vanishes there.

The only contribution comes from the singularities at the end points of the string.

Deforming the contour we get two integrals along circles centered at ρ = ±σ0. If we write

the two circles as ρ = σ0 + ǫ, ρ = −σ0 + ǫ we obtain

[Pσ , P̂S ] =

∮

(Hr − Hl) =

(∮

dǭ

ǭ
−
∮

dǫ

ǫ

)

[

2πZLZR + πZIZI − VAY A
]

(3.95)

−
(
∮

dǭ

ǭ
−
∮

dǫ

ǫ

)

[

2πZ̄LZ̄R + πZ̄IZ̄I − V̄AȲ A
]

,

where the minus sign comes from the fact that e.g. Ai ∼ Zi/
√

ǫ near σ0 but Ai ∼ Z̄i/
√−ǫ

near −σ0. Remembering that the contours are oriented counterclockwise we get

[Pσ, P̂S ] = −i

[

4π2Z̄I Z̄I + 8π2Z̄LZ̄R + 4πȲ AV̄A (3.96)

− 4π2ZIZI − 8π2ZLZR − 4πY AVA

]

. (3.97)

At the same time a straightforward computation using the properties of the Neumann

coefficients gives:

∂σ(∆B + ∆F ) = 4π2Z̄I Z̄I + 8π2Z̄LZ̄R + 4πȲ AV̄A (3.98)

−4π2ZIZI − 8π2ZLZR − 4πY AVA, (3.99)

which proves the identity (3.93). To perform the sigma derivative we introduced the σ

dependence in P̂S through (e.g. in the vertex representation):

|P̂S〉 = e∆B+∆F

∏

i/εi=+1

δ(pi
1 + pi

2)
∏

B

(χ0B + Ξ̄0B)|0〉, (3.100)

∆B =
∑

rs,imn

Nrs
i,nme−i(n+m)σa†irna†ism, (3.101)
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∆F =
∑

m,n 6=0

Vnm|m|ei(n+m)σbA†
n a†mA +

∑

m6=0

(b̄A
0 αm + āA

0 βm)eimσa†mA (3.102)

+
∑

m≥1

(

χmAΞA
−m + Ξ̄A,−mχ̄A

m

)

. (3.103)

It is instructive also to use the divergencies and write:

[Pσ , P̂S ] = ǫP(σ0) + ǫP(−σ0) with (3.104)

P(σ) = 8π2ΠLΠR +
1

4
∂σY I∂σY I + 2πi∂σΛ̄Θ, (3.105)

which has the following meaning: ǫP(σ0) means to evaluate ǫP(σ0 + ǫ) in the limit where

ǫ → 0,i.e. keeping the divergent piece of P(σ0). The same for ǫP(σ0) = limǫ→0 P(−σ0 + ǫ).

Notice that the minus sign we discussed before reappears and we get the same operator

evaluated at the two points.

Recall now that the operator P̂S is a function of σL and σR, the positions of the two

extreme points. Since in our variables we have σL = σ − σ0 and σR = σ + σ0 we get

∂σP̂S = ∂σL
P̂S + ∂σR

P̂S . (3.106)

If we change σL the only variation in P̂S occurs precisely at that end-point, the rest of the

slit is unmodified. The same if we change σR. Thus we conclude that:

∂σL
P̂S = ǫP(−σ0), (3.107)

∂σR
P̂S = ǫP(σ0), (3.108)

that we are going to find useful later on. Without this trick we should have evaluated

explicitly ∂σ0 P̂S which seems a very difficult task.

3.3 Supersymmetric transformation of P̂S

The conserved supersymmetric charges commute according to

{QA
+, QB

−} = −2
√

2P IρIBA, (3.109)

{Q+A, Q−B} = 2
√

2P IρI
BA, (3.110)

{Q−A, QB
−} = 2(Hl − Hr)δ

B
A = −16PσδB

A . (3.111)

One is used to the fact that the supercharges commute to the Hamiltonian but, after

interchanging σ ↔ τ they commute to translations in σ. This is rather interesting since

the Hamiltonian has a correction of order λ but Pσ does not. If the supercharges had

anti-commuted to H then they should have had terms of order λ but, since they not, there

is no reason for them to be corrected. In fact as we see below they are not. On the other

hand, we can use the Jacobi identity and obtain

[{Q−
A, Q−B}, P̂S ] + {[P̂S , Q−

A], Q−B} + {[Q−B, P̂S ], Q−
A} = 0 ⇒ (3.112)

− 16δB
A [Pσ, P̂S ] + {[P̂S , Q−

A], Q−B} + {[Q−B, P̂S ], Q−
A} = 0. (3.113)
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Since P̂S is not invariant under translations it cannot be invariant under supersymmetry,

i.e. we cannot have [P̂S , Q−
A] = 0 and [Q−B, P̂S ] = 0 since [Pσ , P̂S ] 6= 0. In fact using the

same ideas as the previous subsection it is very simple to find out that

[Q−A, P̂S ] =
{

2i ρI
ABǫ∂σY IΘB

∣

∣

σ=σ0
+ 2i ρI

ABǫ∂σY IΘB
∣

∣

σ=−σ0

}

P̂S , (3.114)

and

[QA
−, P̂S ] =

{

− 8πi
√

2ǫΠRΘA
∣

∣

∣

σ=σ0

− 8πi
√

2ǫΠRΘA
∣

∣

∣

σ=−σ0

}

P̂S . (3.115)

Since P̂S does not commute with the supersymmetries that are preserved by the D3-brane

it cannot be the Hamiltonian. In fact, as is well-known [10], one has to insert operators

at the end of the slit such that the supersymmetric current has new singularities canceling

the ones coming from the slit. We discuss this in the next section.

3.4 U(1) rotational symmetry

In light cone-gauge, there is a manifest SO(2) = U(1) symmetry that rotates the coordinates

parallel to the brane but transverse to the light-cone, namely Xa=1,2. The fields transform

according to:

XR → eiφ XR, ΠR → eiφ ΠR, XL → e−iφ XL, ΠL → e−iφ ΠL

Θ → e−
i
2
φ Θ, Λ → e

i
2
φ Λ, Θ̄ → e−

i
2
φ Θ̄ Λ̄ → e

i
2
φ Λ̄. (3.116)

It is clear that, in (3.63), ∆̄
(D)
B and ∆̄

(N)
B are invariant under the U(1). However, ∆̄F has

a term proportional to b̄A
0 which is not invariant unless we rotate b̄A

0 → e−
i
2
φb̄A

0 . If we do

that, the integral
∫

db̄A
0 rotates as (recall this is a fermionic integral):

∫

db̄A
0 → e2iφ

∫

db̄A
0 . (3.117)

Therefore the slit operator transforms as

P̂S → e2iφP̂S , (3.118)

under rotations. One way to confirm this is to compute, from eq. (3.63) the limit of P̂S as

σ0 → 0 which results in

P̂S ≃σ0→0
1

∣

∣N11D
00

∣

∣

3 Λ̄4
0, (3.119)

where we used the properties of the Neumann coefficients derived in (I) and Λ̄0A is the

zero mode of Λ̄A. Now, it is obvious that for small σ0, P̂S has charge +2 which, since it is

an integer, should be independent of σ0. This is another reason why we cannot think of P̂S

as a Hamiltonian which should preserve the U(1) rotational symmetry. Again, the same

insertions that make P̂ supersymmetric make it invariant under the U(1). Note that for

σ0 → 0, the operator P̂S actually vanishes since
∣

∣N11D
00

∣

∣ =
∣

∣ln sin σ0
2

∣

∣ → ∞. In eq. (3.119)

we kept the leading contribution.
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3.5 Algebra of the P̂S

In this subsection we make some comments about the operator P̂s for the case of the bosonic

strings. They are outside the main line of development of the paper and we include them

for future reference. The point we want to make is that, since the operator P̂S imposes the

boundary state boundary conditions on the slit they should obey the relations:

[P̂S(σL, σR), P̂S(σ′
L, σ′

R)] = 0, ∀ σL,R, σ′
L,R, (3.120)

P̂S(σL, σR)P̂S(σ′
L, σ′

R) = P̂S(σL, σ′
R) ∀ σL < σ′

L < σR < σ′
R, (3.121)

P̂S(σL, σR)P̂S(σ′
L, σ′

R) = P̂S(σL, σR) ∀ σL < σ′
L < σ′

R < σR, (3.122)

P̂S(σL, σR)|B〉 = |B〉 ∀ σL, σR, (3.123)

where |B〉 is the boundary state. These relations establish the idea that P̂S is a projector.

For the superstring we expect similar relations but we have not investigated the issue.

4. Operator insertions: computation of P̂

We have to insert operators at the end of the slit in such a way that the resulting operator

commutes with the supercharges and is invariant under the transverse U(1). We propose

the ansatz

P̂ = α3

∫ π

−π
dσ

∫ π

0
dσ0H1(σL)H1(σR)P̂S(σL, σR). (4.1)

where the slit extends from σl to σR with σR,Lσ ± σ0, σ being the position of the center

of the slit and σ0 its half-width. The constant α3 is inserted to provide an overall nor-

malization and is going to be determine later by comparison with previously know results

from scattering of closed strings from D-branes. In the open string channel it is known

which operators to insert [10] and we expect them to be essentially the same here since we

are only doing a σ ↔ τ interchange. Nevertheless let us reason what we can have. As we

discuss later it is convenient to have operators that commute with P̂S . As we saw in the

previous section, ΠL,R, Y I and ΘA, Λ̄A commute with P̂S independently of the position

in which they are inserted. We also have to add up operators with the same charge under

the U(1) that rotates the transverse Neumann coordinates (transverse to the light-cone

directions, not the D3-brane). This leads to a solution analogous to the one in [10]:

H1 =
√

ǫ

{

ΠL − i

8π
√

2
ǫ ∂σY IρI

CDΘCΘD − ǫ2ΠRΘ4

}

. (4.2)

Of course the precise coefficients follow from the calculation but we anticipated the result.

We would like to compute the commutator of the supercharges with H1. To do that it is bet-

ter to rewrite (3.18) in terms of the fields and supercharges we are using now. The result is

[

Q−A,XL
]

= 0,
[

Q−A,XR
]

= −8i
√

2ΛA,
[

Q−A,ΠL
]

= 0,
[

Q−A,ΠR
]

= 2
√

2i∂σΛ̄A,

[

Q−A, Y I
]

= −4iρI
ABΘB ,

[

Q−A, P I
]

=
i

π
ρI

AB∂σΘ̄B,
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{

Q−A, Λ̄B

}

= − 1

π
ρI

AB∂σY I , {Q−A,ΛB} = 4ρI
ABP I ,

{

Q−A,ΘB
}

= 8π
√

2δB
AΠL,

{

Q−A, Θ̄B
}

= −2
√

2δB
A∂σXL,

[

QA
−, ∂σXL

]

= −4i
√

2∂σΘ̄A,
[

QA
−, ∂σXR

]

= 0, (4.3)

[

QA
−,ΠL

]

= i

√
2

π
∂σΘA,

[

QA
−,ΠR

]

= 0,
[

QA
−, ∂σY I

]

= 8πiρIAB∂σΛ̄B,
[

QA
−, P I

]

= −2iρIAB∂σΛB ,

{

QA
−, Λ̄B

}

= 4
√

2δA
BΠR,

{

QA
−,ΛB

}

= −
√

2

π
δA
B∂σXR,

{

QA
−,ΘB

}

= 2ρIAB∂σY I ,
{

QA
−, Θ̄B

}

= −8πρIABP I .

With this table it is a simple task to compute:

[Q−A,H1] = −2iǫ
3
2 ρI

AB∂σY IΠLθB +
ǫ

3
2

3π
√

2
∂σ

(

ǫABCDΘBΘCΘD
)

(4.4)

+
ǫ

3
2

3π
√

2

{

−8π2ǫΠLΠR − 2πi∂σΛ̄F ΘF
}

ǫABCDΘBΘCΘD, (4.5)

which implies

H1[Q−A, P̂S ] + [Q,H1]P̂S =
ǫ

3
2

3π
√

2
∂σR

(

ǫABCDΘBΘCΘDP̂S

)

, (4.6)

where H1 is evaluated at σR and we used eq. (3.108). The same is valid at σL. If we define

the operator:

Q̂−A =
ǫ

3
2

3π
√

2
ǫABCDΘBΘCΘD, (4.7)

we can write:

[Q−A,

∫

dσLdσRH1(σL)H1(σR)P̂S(σL, σR)] = (4.8)

=

∫

dσLdσRH1(σR)∂σL

(

Q̂−A(σL)P̂S

)

+

∫

dσLdσRH1(σL)∂σR

(

Q̂−A(σR)P̂S

)

= −
∫

dσLdσRQ̂−A(σL)∂σR

(

H1(σR)P̂S

)

+

∫

dσLdσRH1(σL)∂σR

(

Q̂−A(σR)P̂S

)

,

where we replaced ∂σL
= ∂σ − ∂σR

and integrated by parts in σ. Also, all the operators

are made out of the same commuting fields so the order is not important. Finally we can

integrate in σR to get:
∫ σL+2π

σL

dσR∂σR

(

H1(σR)P̂S

)

= H1(σL)
(

P̂2π − P̂0

)

, (4.9)

where P̂0 is the operator corresponding to a slit of zero size and P̂2π the operator corre-

sponding to a slit of size 2π. Doing the same with the other integral we get

[Q−A, P̂ ] = [Q−A,

∫

dσLdσRH1(σL)H1(σR)P̂S ] = (4.10)

= −
∫

dσLQ̂−A(σL)H1(σL)
(

P̂2π − P̂0

)

+

∫

dσLQ̂−A(σL)H1(σL)
(

P̂2π−P̂0

)

=0.
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We conclude that P̂ defined in (4.1) is supersymmetric under this charge. The other charge

QA
− works the same with

Q̂A
− =

i
√

2ǫ

π
ΘA. (4.11)

It is worth mentioning that, in a later section, we compute P̂ in the limit of small holes

obtaining a local operator invariant under supersymmetry, providing an independent check

of supersymmetry. Therefore the operator P̂ is the correct operator to represent a hole

or loop insertion in the superstring. It is useful to write it in normal ordered form. That

amounts essentially to replacing every field by its divergent part. However, an important

point is that there is an extra contribution from the contraction between P a’s and also

between ∂σY I ’s coming from H1(σL) and H1(σR). If we think of them as vertex insertions

this is the propagator in the presence of the slit which has singularities. In the two vertex

state formalism what we want to compute is for example

Ai
sAi

re
∆B |0〉. (4.12)

We can commute the annihilation operators in the A’s through e∆B which is, in fact, the

calculation we did to obtain the divergencies. However when we apply the second A, there

are creation operators acting on |0〉 coming from applying the first A. The result is that

the divergence is in fact:

Ai
1Ai

1 ∼ 1√
σ − σ0

1√−σ − σ0

{

ZI Z̄I − 1

32π2

1

sinσ0

}

. (4.13)

Except for this subtlety, the rest amounts simply to replacing the operators by their diver-

gencies to obtain:

P̂ = :ĤP̂S :, (4.14)

with

Ĥ =

(

ZL +
i√
2
ρI

ABZIY AY B − 4ZRY 4

)(

Z̄L − i√
2
ρJ

ABZ̄I Ȳ AȲ B − 4Z̄RȲ 4

)

+
1

8π2

1

sin σ0

(

Y 4 + Ȳ 4 +
1

4
ǫABCDY AY BȲ C Ȳ D

)

, (4.15)

which is a very useful form of P̂ . We remind the reader of the notation

Y 4 = 1
24ǫABCDY AY BY CY D.

As a final point, for later use, we emphasize that all the ideas described in this section

fix P̂ up to an overall constant that we are not able to compute.

5. Scattering of massless strings from D-branes, a check of P̂

The operator P̂S has the physical interpretation of describing the scattering of a closed

string in an arbitrary state from a D3-brane. This is a by product of our computation,

namely a closed form for the scattering of a generic closed string state from a D3-brane.

Usually, one is interested only in the scattering of massless modes which has been computed
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in [27, 28].4 The relation between P̂ and scattering off D-branes follows from the diagram

in figure 7. It describes the free propagation of a closed string from τ = −∞ to τ = 0

at which time, the operator P̂ is applied. After that, the closed string propagates freely

again. Therefore, if the initial and final states are eigenstates of the Hamiltonian, the

diagram is proportional to the matrix element of P̂ between those two states. On the other

hand, the diagram can be conformally mapped to an annulus with two closed string vertex

insertions which is the more standard way of computing scattering from D-branes. Since the

scattering of massless states is known, it is useful to recompute it with the operator P̂ , as a

check. In the vertex representation, we should sandwich the vertex state with the vacuum

of the oscillators. If we do that all terms containing creation operator cancel. In particular,

in the exponent only the bosonic part gives a contribution which reduces to (see also (I)):

∆B =
∑

rs,imn

N rs
i,00a

†
ir0a

†
is0 = q2 ln sin

σ0

2
+ 4k2 ln cos

σ0

2
. (5.1)

The operator insertions also reduce to their zero modes namely:

ZI → ZI
0 =

i
√

2

4π

cos σ0
2√

sin σ0
qI , (5.2)

ZL,R → ZL,R
0 =

2
√

2

4π

sin σ0
2√

sin σ0
kL,R, (5.3)

Y A → Y A
0 =

1

2
√

sin σ0
yA, with yA = āA

0 sin
σ0

2
+ ib̄A

0 cos
σ0

2
. (5.4)

With that, the operator insertion (4.15) reduces to:

Ĥzero modes =
1

sin σ0

(

1

π
√

2
sin

σ0

2
kL − 1

16π

cos σ0
2

sin σ0
qIρI

AByAyB − 1

4π
√

2

sin σ0
2

sin2 σ0
kRy4

)

×
(

1

π
√

2
sin

σ0

2
kL − 1

16π

cos σ0
2

sinσ0
qIρI

AB ȳAȳB − 1

4π
√

2

sin σ0
2

sin2 σ0
kRȳ4

)

+
1

27π2 sin3 σ0

(

y4 + ȳ4 +
1

4
ǫABCDyAyB ȳC ȳD

)

. (5.5)

Now we should expand in terms of āA
0 , b̄A

0 and do the integrals over σ0. This is a lengthy

calculation that uses the identities listed in the appendix for the ρI
AB matrices. The result

is better written classified by the number of fermionic operators contained:

H
(0)
[0] = − 1

8π2
s kLkL A(s, t), (5.6)

H
(0)
[2]

= − 1

26π2
√

2
kLqIρI

AB

(

t b̄A
0 b̄B

0 − s āA
0 āB

0

)

A(s, t), (5.7)

H
(0)
[4] = − 1

28π2

{

ā4
0s

2 + b̄4
0t

2 − t

4
qIρI

AB āA
0 āB

0 qJρI
CD b̄C

0 b̄D
0

}

A(s, t), (5.8)

H
(0)
[6] = − 1

28π2
√

2
kRqIρI

AB

(

t āA
0 āB

0 b̄4
0 − s b̄A

0 b̄B
0 ā4

0

)

A(s, t), (5.9)

H
(0)
[8] = − 1

27π2
s kRkR ā4

0 b̄4
0 A(s, t), (5.10)

4See also [29] for some recent work on the subject.
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which summarizes the scattering of massless modes from the D3-brane. Let us however ex-

plain the notation: qI = q1 + q2 is the total momentum transfer to the D3-brane, k1 = −k2

is the conserved parallel momentum. We defined s = −q2 and t = −4k2 = −8kLkR and

also introduced the function

A(s, t) = A(q2, k2) =
Γ
(

2k2
)

Γ
(

q2

2

)

Γ
(

2k2 + q2

2 + 1
) , (5.11)

which comes from the integral in σ0. The result, particularly for H
(0)
[4] was simplified using

identities between Euler’s Γ functions. To compare with other calculations we should

insert polarizations states. For example for transverse polarizations we should compute:

ε
(1)
IJ ε

(2)
KL 〈0|ρIAB ρJCDλ1A0λ1B0λ̃1C0λ̃1D0 ρIEFρJGHλ2E0λ2F0λ̃2G0λ̃2H0 H

(0)
[4] β4 |0〉, (5.12)

remembering that āA
0 = 1√

2

(

θA
10 − θ̃A

20 − θ̃A
10 + θ20

)

and b̄A
0 = 1√

2

(

θA
10 − θ̃A

20 + θ̃A
10 − θ20

)

.

We also defined the vacuum of the zero modes as:

λrA0|0〉 = 0, λ̃rA0|0〉 = 0, (5.13)

so that massless polarization states are created from the vacuum by the λ’s. This is not

the same zero mode state that enters in the definition of P̂ . The only difference is that the

latter is annihilated by β = χ̄0 −Ξ0 whereas the vacuum of the λ’s is not. For that reason,

the factor β4 appears mapping one vacuum to the other. For the calculation we should use

β =
1

2

(

−θA
10 − θ̃A

20 + θ̃A
10 + θ20

)

, (5.14)

and expand everything in powers of the θ’s. Contracting each term with the corresponding

λ’s we obtain a result that agrees perfectly with [27, 28]. In fact, it is a very useful check

since it depends on many details of the previous calculations. The full calculation for the

scattering of NSNS massless modes is done in appendix C.

6. The limit of small holes

When the holes become small they can be replaced by an insertion of a local operator that

we compute here. In order to do so, we use the properties of the Neumann coefficients to

obtain the small σ0 expansions of the operators:

ZI =
i
√

2

4π
√

sinσ0

{

qI +
iσ0

2
∂σY I − σ2

0

8
qI +

iσ2
0

4
∂2

σY I +
iσ3

0

8
∂3

σY I − iσ3
0

48
∂σY I . . .

}

,

ZL,R =
σ0√

2 sin σ0

{

ΠL,R +
σ0

2
∂σΠL,R +

σ2
0

4
∂2

σΠL,R − σ2
0

24
ΠL,R + · · ·

}

, (6.1)

Y A =
1√

sin σ0

{

i

2
b̄A
0 +

σ0

2
ΘA − i

16
σ2

0 b̄
A
0 +

σ2
0

4
∂σΘA − σ3

0

48
ΘA +

σ3
0

8
∂2

σΘA + · · ·
}

.
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Figure 7: The slit insertion operator can be used to compute scattering of closed strings from

D-branes in the Green-Schwarz formalism.

Replacing in Ĥ and keeping the most singular terms as σ0 → 0, we get:

Ĥ ≃σ0→0 − 1

32π2

1

σ3
0

(q2 − 2)b̄4
0 −

1

8σ0
ΠaΠab̄4

0 −
i

26π2σ0
b̄4
0q

I∂2
σY I − 1

27π2σ0
b̄4
0∂σY I∂σY I

+
1

327π2σ0
ρIFAρJ

ABǫPQRF b̄P
0 b̄Q

0 b̄R
0 ΘB

(

∂σY IqJ − ∂σY JqI
)

− 1

26π2σ0
qIqJρI

ABρJ
CD b̄A

0 b̄B
0 ΘCΘD − i

3 27π2σ0
qIqJρIAF ρJ

ABǫPQRF b̄P
0 b̄Q

0 b̄R
0 ∂σΘB

− i

3 26π2σ0
ǫABCD b̄A

0 b̄B
0 b̄C

0 ∂σΘD +
1

σ0

√
2

16π

[

ΠLqIρI
AB b̄A

0 b̄B
0 + ΠRqIρI

ABΘAΘB b̄4
0

]

.

(6.2)

Note that the first term has a cubic divergence 1
σ3
0

typical of the tachyon since it gives rise

to a pole at q2 = 2. However here it is precisely multiplied by (q2 − 2) so the residue of the

pole is zero and the tachyon poles cancels. Note however that near q2 = 0, the term 1
σ3
0

combines with order σ2
0 terms coming from the exponent to give a 1

σ0
pole. Some of these

terms are precisely the spurious terms that were present in the bosonic calculation of (I)

and that, as we will see cancel against contributions from the insertions. To check that,

we need to expand the exponent to order σ2
0 . The result is

∆B + ∆F ≃σ0→0 q2 lnσ0 + iqIY I
NZ − σ2

0

8
∂σY I∂σY I +

iσ2
0

4
qI∂2

σY I

−2π2σ2
0Π

aΠa + 2π

(

iσ2
0

2
Θ∂σΛ̄ − b̄4

0Λ̄NZ − σ2
0

4
b̄A
0 ∂2

σΛ̄A

)

. (6.3)

where the subindex NZ in Y I
NZ and Λ̄NZ indicates the oscillator part of the corresponding

operator, i.e. without the zero mode. Expanding the exponential and combining with the

expansion of Ĥ we get a pole 1
σ0

in sigma. The integral of which is

∫ ǫ

0
σq2−1

0 =
ǫq2

q2
∼ 1

q2
, (q2 → 0). (6.4)

– 25 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
5

For this reason, small holes dominate as q2 → 0, namely q2 ≪ 1 in string units. As

discussed before we still have to do the Fourier integrals:

∫

d6q

(2π)6
eiqIyI

∫

1

4
d4b̄0e

−b̄A
0 Λ̄A0 × F (qJ , b̄A

0 ), (6.5)

where F represents the result of the calculation we just did and the factors 1
4 and 1

(2π)6
are

the same we already discussed (see appendix C). The integrals in q are straight-forward:

∫

d6q

(2π)6
1

q2
eiqy =

1

4π3

1

y4
,

∫

d6q

(2π)6
qJ

q2
eiqy =

1

π3

iyJ

y6
, (6.6)

The integral in b̄A
0 is done according to the formulas:

∫

d4b̄0 eb̄A
0 ξA = ξ4, (6.7)

∫

d4b̄0 eb̄A
0 ξA b̄A

0 = −1

6
ǫABCDξBξCξD, (6.8)

∫

d4b̄0 eb̄A
0 ξA b̄A

0 b̄B
0 = −1

2
ǫABCDξCξD, (6.9)

∫

d4b̄0 eb̄A
0 ξA b̄A

0 b̄B
0 b̄C

0 = ǫABCDξD, (6.10)
∫

d4b̄0 eb̄A
0 ξA b̄A

0 b̄B
0 b̄C

0 b̄D
0 = ǫABCD. (6.11)

In particular
∫

d4b̄0 b̄4
0 = 1. After a straight-forward and not so lengthy calculation we

obtain for P̂ in the limit σ0 → 0:

16π3

α3
P̂ ≃ H = −1

4

1

Y 4
ΠaΠa − 1

26π2

1

Y 4
∂σY I∂σY I +

i

16πY 4

(

ΘA∂σΛ̄A + Λ̄A∂σΘA
)

−i
√

2π
Y I

Y 6
ΠLρICDΛ̄CΛ̄D +

i
√

2

4π

Y I

Y 6
ΠRρI

ABΘAΘB

− i

8π
ρIACρJ

CBΛ̄AΘB 1

Y 6

(

∂σY IY J − ∂σY JY I
)

+
1

4Y 6

(

δIJ − 6
Y IY J

Y 2

)

ρIABρJ
CDΛ̄AΛ̄BΘCΘD. (6.12)

As a check of the calculation we can compute for example [Q−A, H] = 0. It is also useful

to check that H is hermitian. We define the following hermiticity relations:

(

ΠL
)†

= ΠR,
(

Λ̄D

)†
=

1

2π
ΘD, (6.13)

in a basis where the matrices ρI
AB are unitary, i.e.

(

ρIAB
)∗

= ρI
BA (which means that

the corresponding Dirac matrices are hermitian). If we write now the full Hamiltonian

describing the propagation of the closed string in the σ ↔ τ channel we have:

H[D3 bkg.] = H0 − λ
α3

16π3
H = H0 − 27π2λH, (6.14)
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where we used that α3 = 211π5 as determined in appendix C, eq. (C.60). The value of H0

was given in eq. (3.22) but it is convenient to rewrite it in terms of the variables we are

using now:

H0 = 2π

∫

dσ

(

Π2
X + Π2

Y +
1

16π2
(∂σX)2 +

1

16π2
(∂σY )2

)

+i

∫

dσ
(

∂σΛΘ̄ + ∂σΛ̄Θ
)

, (6.15)

where we use the definitions (3.61). The bosonic part of H, including the first two terms

of H, is the the Hamiltonian describing the propagation of a closed string in the full

D3-brane background in σ-gauge as computed in (I). We propose that the full H is the

Hamiltonian for closed strings in the D3-background in this particular gauge. To our

knowledge, the fermionic part was not known. It might seem strange that H is linear in

λ but that is a feature of the σ gauge as explained in (I).

Thus, we see that the full supergravity background has emerged from the open string

calculation. We also emphasize that the operator H we found is a full quantum operators

which should be understood in normal ordered form.

It is interesting now to take the near horizon limit. Formally we rescale:

Xa → 1

ξ
Xa, Πa

X → ξ Πa
X , Y I → ξ Y I , ΠI → 1

ξ
ΠI

Θ → ξ Θ, Λ → 1

ξ
Λ, Θ̄ → 1

ξ
Θ̄ Λ̄ → ξ Λ̄, (6.16)

preserving the canonical commutation relations. Quite interestingly, under this rescaling,

all the terms in H scale as 1
ξ2 . However for H0 we get:

H0 → 2π

∫

dσ

(

ξ2Π2
X +

1

ξ2
Π2

Y +
1

16π2

1

ξ2
(∂σX)2 +

ξ2

16π2
(∂σY )2

)

+i

∫

dσ

(

1

ξ2
∂σΛΘ̄ + ξ2∂σΛ̄Θ

)

. (6.17)

Now we take the limit ξ → 0. Naively, in this limit we would drop terms such as ξ2

16π2 (∂σY )2

but in fact the derivative can be as large as we want so that would not be correct. If we

look more carefully, however, there is also a term (∂σY )2 in H that goes as 1
ξ2 . Therefore

in the limit we keep the term in H and discard the one in H0. The result is that in the

near horizon limit the Hamiltonian reduces to:

H[AdS5×S5] = 2π

∫

dσ

(

Π2
Y +

1

16π2
(∂σX)2

)

+ i

∫

dσ ∂σΛΘ̄

+32π2λ

∫

dσ

{

1

Y 4
ΠaΠa+

1

16π2

1

Y 4
∂σY I∂σY I− i

4πY 4

(

ΘA∂σΛ̄A+Λ̄A∂σΘA
)

+i4
√

2π
Y I

Y 6
ΠLρICDΛ̄CΛ̄D − i

√
2

π

Y I

Y 6
ΠRρI

ABΘAΘB

+
i

2π
ρIACρJ

CBΛ̄AΘB 1

Y 6

(

∂σY IY J − ∂σY JY I
)

− 1

Y 6

(

δIJ − 6
Y IY J

Y 2

)

ρIABρJ
CDΛ̄AΛ̄BΘCΘD

}

. (6.18)
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The bosonic part of this Hamiltonian, including the overall normalization,5 exactly agrees

with the Hamiltonian of closed strings in AdS5 × S5. Again we propose that the complete

H describes strings in AdS5 × S5. Although we have not checked it, we expect the result

to agree with the Hamiltonian derived from the Metsaev-Tseytlin action [30] after some

appropriate κ-symmetry fixing and after taking σ-gauge. Note however that here we derived

the result by analyzing planar diagrams in the open string theory without any reference to

AdS5 × S5 or any supergravity background for that matter.

Note also that when taking the limit ξ → 0 the final Hamiltonian scaled as ξ−2. This

is fine because, in the evolution operator U = e−Hτ , τ scales as ξ2 and therefore U is

invariant. To see that, recall that τ ∼ p+ in the closed string channel and we should

rescale p+ → ξp+ since p+ is a momentum parallel to the brane. On top of that we have

that, in σ-gauge, X+ = σ so we should rescale σ → 1
ξ σ. Since we want σ to run from 0

to 2π we do a conformal transformation (σ, τ) → (ξσ, ξτ) so that σ remains invariant and

τ → ξ2τ as mentioned before.

We can also be more precise in the region of validity of our result. When deriving the

Hamiltonian we consider small holes which dominate in the limit q2 → 0. More precisely,

we require q2 ≪ 1 in string units which is equivalent to Y 2 ≫ 1. After that we want some

of the terms in H to dominate those in H0. This happens if Y 2 ≪
√

λ, therefore we need

1 ≪ Y 2 ≪
√

λ, (6.19)

to recover strings in AdS5 × S5. This implies λ ≫ 1, namely a strong coupling limit. This,

however, is not the decoupling limit of Maldacena which is taken at Y 2 ≪ 1. In fact the

throat region is the relevant region for the double scaling limit proposed by I. Klebanov

and further studied in [32]. The work presented here might help to illuminate that. On the

other hand, if one tries to derive the AdS/CFT correspondence with this approach, further

work would be needed to understand the region Y 2 ≪ 1. In that region, both, small and

large holes appear to be important. From our perspective, the AdS/CFT correspondence

indicates that this should not be true, namely the fact that we have the same AdS5 × S5

background in the region Y 2 ≪ 1 suggest that even there, all the contribution comes from

small holes.

7. Comments on applications to field theory

We have discussed how to sum planar diagrams for open superstrings. It would be inter-

esting to apply the same ideas to sum the planar diagrams of a field theory with fields

in the adjoint. We gave some ideas to that respect in paper (I) and here we continue to

study such matter. However this section is mainly speculative and outside the main line

of development of the paper.

Consider we want to compute a Feynman diagram such as the one in figure 8 which

is in the usual coordinate representation, not in light-cone frame. We argue that it can be

5As we recall, the normalization was determined by comparing with the supergravity background so it

is a consistency check rather than a prediction from the open string side.

– 28 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
5

Figure 8: Two loop planar Feynman diagram in coordinate representation and double line notation.

The dashed line indicates a string whose shape is the same as the trajectory of the particle. The

state of the string changes suddenly every time we cross a loop. The change is equivalent to applying

the loop insertion operator P̂ to the string state.

computed by considering a string whose shape is the trajectory of the particle and which

evolves in discreet steps across the diagram. The evolution acts whenever the string crosses

a loop as is indicated in the figure. Note that such description is only possible if the diagram

is planar, otherwise we cannot get unique intermediate states for the shape of the string.

To be more specific, let us look at the simpler case of figure 9. That diagram is given by

A =

∫

ddx2d
dx3

1

|x1 − x2|d−2

1

|x2 − x3|d−2

1

|x2 − x3|d−2

1

|x3 − x4|d−2
. (7.1)

An alternative expression for the propagators is obtained through

∫ ∞

0
dσ̄

1

σ̄
d
2

e−
1
2

(x1−x2)2

σ̄ =
2

d
2
−1 Γ

(

d
2 − 1

)

|x1 − x2|d−2
. (7.2)

The integrand can be written as a path integral using

∫

X(0)=x1

X(σ̄)=x2

DX(σ) e−
1
2

R σ̄

0 (∂σX)2dσ =
1

σ̄
d
2

e−
(x1−x2)2

2σ̄ . (7.3)

– 29 –



J
H
E
P
1
0
(
2
0
0
8
)
0
7
5

Suppose we now consider an open string whose states are given by its shape in a given

parameterization: |X(σ), σ̄〉, namely the shape is characterized by a function X(σ) with

0 ≤ σ ≤ σ̄. The states are orthogonal, namely

〈X1(σ), σ̄1|X2(σ), σ̄2〉 = δ(σ̄1 − σ̄2)
∏

0<σ<σ̄1

δ (X1(σ) − X2(σ)) . (7.4)

Define now the “boundary” state:

|x1, x2, σ̄〉 =

∫

X(0)=x1

X(σ̄)=x2

DX(σ)e−
1
4

R σ̄

0 (∂σX)2dσ|X(σ), σ̄〉, (7.5)

which is not normalized, in fact its norm is

〈x1, x2, σ̄|x1, x2, σ̄〉 =

∫

X(0)=x1

X(σ̄)=x2

DX(σ) e−
1
2

R σ̄

0 (∂σX)2dσ =
1

σ̄
d
2

e−
(x1−x2)2

2σ̄ , (7.6)

in such a way that

∫ ∞

0
dσ̄〈x1, x2, σ̄|x1, x2, σ̄〉 =

2
d
2
−1 Γ

(

d
2 − 1

)

|x1 − x2|d−2
. (7.7)

Let us further define a tensor product between the states of the string such that

∫

ddx|x1, x, σ1〉 ⊗ |x, x2, σ̄ − σ1〉 = |x1, x2, σ̄〉, (7.8)

that is, we glue the two paths, using that the actions add up. We can now write the

diagram as

A = λ2

∫

ddx2d
dx3

∫

dσ̄1dσ̄2dσ̄3dσ̄4〈x1, x2, σ̄1|x1, x2, σ̄1〉〈x2, x3, σ̄2|x2, x3, σ̄2〉

× 〈x2, x3, σ̄|x2, x3, σ̄3〉〈x3, x4, σ̄4|x1, x2, σ̄〉 (7.9)

= λ2

∫

ddx2d
dx3

∫

dσ̄1dσ̄2dσ̄3dσ̄4

(

〈x1, x2, σ̄1| ⊗ 〈x2, x3, σ̄3| ⊗ 〈x3, x4, σ̄4|
)

(

I ⊗ |x2, x3, σ̄3〉〈x2, x3, σ̄2| ⊗ I

)(

|x1, x2, σ̄1〉 ⊗ |x2, x3, σ̄2〉 ⊗ |x3, x4, σ̄4〉
)

,

where we considered the initial and final strings divided in three pieces of which we should

glue the pieces at both ends as indicated by the identities in the intermediate operator

and, for the middle piece, we should project both sides over the boundary state as also

indicated. Note that the pieces in the middle can have different lengths in σ.

As a last step, using the tensor product (7.8) we can write A as:

A=λ2

∫

dσ̄1dσ̄2dσ̄3dσ̄4〈x1, x4, σ̄f = σ̄1+σ̄3+σ̄4|P̂ (σ̄1, σ̄2, σ̄3)|x1, x4, σ̄i = σ̄4+σ̄1+σ̄2〉, (7.10)
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Figure 9: One loop planar Feynman diagram in coordinate representation and double line notation.

The dashed line indicates the string as in figure 8. On the right we draw the diagram as the

propagation of a string with a discreet step given by P̂ . The left and right pieces of the string are

identified and the middle one is projected over the boundary state. The result is the same as the

diagram on the left.

with

P̂ (σ̄1, σ̄2, σ̄3) = I ⊗ |X(σ̄1),X(σ̄2), σ̄3〉〈X(σ̄1),X(σ̄2), σ̄2| ⊗ I. (7.11)

Perhaps the notation is not very precise but the meaning is: we cut the string at the points

σ = σ̄1 and σ = σ̄2. We get three pieces. We leave the left and right pieces as they are but

to the middle one we apply the operator |X(σ̄1),X(σ̄2), σ̄3〉〈X(σ̄1),X(σ̄2), σ̄2|. It is clear

that the result is the Feynman diagram that we want. If we define the operator

P̂ =

∫

dσ̄1dσ̄2dσ̄3P̂ (σ̄1, σ̄2, σ̄3), (7.12)

then we have

A = λ2

∫

dσ̄1dσ̄2dσ̄3dσ̄4〈x1, x4, σ̄f = σ̄1+σ̄3+σ̄4|P̂ (σ̄1, σ̄2, σ̄3)|x1, x4, σ̄i = σ̄4+σ̄1+σ̄2〉

= λ2

∫

dσ̄1dσ̄2dσ̄3dσ̄i〈x1, x4, σ̄f = σ̄i + σ̄3 − σ̄2|P̂ (σ̄1, σ̄2, σ̄3)|x1, x4, σ̄i〉 (7.13)

= λ2

∫

dσ̄fdσ̄i〈x1, x4, σ̄f |P̂ |x1, x4, σ̄i〉.

In this way we can write any planar Feynman diagram for the cubic theory in terms of

multiple P̂ insertions. We hope this representation is useful and can be used to sum the

planar diagrams of the theory but we leave the issue for future investigation. Here we just

want to emphasize that similar methods as the ones employed for open strings can also be

discussed within a field theory. As mentioned before, they use in an essential way that the

diagrams are planar so they capture an important property that they have, namely, that

one can think of them as a string going across the diagram always in a well defined state.

8. Conclusions

In this paper we apply the method described in (I) (i.e. [5]) to the planar diagrams of

open superstrings propagating on a stack of N D3-branes. We find that the sum of planar

diagrams is described by the propagation of a closed string with a non-local Hamiltonian H

which includes a hole insertion operator P̂ that can be explicitly computed. The result is
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given in eqs. (4.1) and (4.2), or equivalently, eqs. (4.14) and (4.15). At distances from the

D3-brane larger than a string length, H reduces to the propagation of strings in the full D3-

brane supergravity background in a particular gauge that we call σ-gauge and which was

defined in (I). To our knowledge, this Hamiltonian, which is shown in eqs. (6.14), (6.15)

and (6.12), is new since only the bosonic part was known before. In the near-horizon

limit it reduces to the propagation of a closed string in AdS5 × S5 as shown in eq. (6.18).

This last Hamiltonian has a novel form although it should be equivalently derived from

the Metsaev-Tseytlin action [30]. We emphasize however that in both cases the important

point is that we derived these Hamiltonians from the analysis of the open string planar

diagrams without any reference whatsoever to the existence of the D3-brane supergravity

background. We also stress the fact that we can study the full non-local operator H

even when it does not have the nice interpretation of a string in an external background.

Properties of the planar diagrams are contained in properties of H such as the spectrum,

ground state existence of gap etc. Presumably a non-local H is the general situation even

for a field theory. In the previous paper (I) some doubts were raised regarding possible

higher order corrections in λ to P̂ . In the supersymmetric case we saw no indication of such

corrections. Divergences due to the tachyon are absent in the superstring. Furthermore,

at low energy the theory reduces to N = 4 SYM which is finite in light-cone gauge [9].

Also, the supersymmetry algebra is such that no first order corrections in λ are required for

the conserved supercharges suggesting that no higher order corrections are needed for the

Hamiltonian. The usual reasoning is that, since the supercharges anticommute to H and H

has a term of order λ, then the supercharges also should have terms of order λ which, when

anticommuted, will contribute to H at order λ2. In our case, the supercharges anticommute

to a translation in the world-sheet spacial direction and not to H. Therefore this reasoning

does not apply. To complement these ideas one should compute explicitly, for example,

two loop diagrams and check that divergences are indeed absent. This is outside the scope

of the present paper but seems a feasible calculation.

One other thing we should emphasize is that scattering amplitudes can also be com-

puted as discussed in (I). In that case we have an infinitely long open string that prop-

agates. The hole insertion operator should work similarly. In particular for small holes

there should be no difference.

It should be interesting to understand the small holes in conformal gauge which might

give a simpler way to compute P̂ . In that gauge, however, we do not know how to argue

that the sum of planar diagrams exponentiate as it does in light-cone gauge.

Note also that we map the open and closed string in a very precise way such that

any calculation done with planar light-cone diagrams in the open string theory can be

equivalently understood as a closed string calculation which obviously gives the same result.

The sum of planar diagrams for the open string includes the sum of planar diagrams

for N = 4. In this paper we do not study how to extract such sum from the open strings

although it can be argued that, after deriving the supergravity background, one can use the

same reasoning as Maldacena to take the decoupling limit. The improvement being that we

do not assume the existence of a supergravity description and consider the sum of planar

diagrams instead. In any case a more direct approach to the field theory should be desirable.
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A. Useful formulas

A.1 Formulas involving the matrices ρI
AB

The matrices ρI
AB and their inverses ρI AB are defined in [10]. Some useful properties are:

ρI
ABρJ BC + ρJ

ABρI BC = 2δIJδC
A ,

ρI
ABρI

CD = −2ǫABCD,

ρI
ABρJ

CDǫABCD = −8δIJ , (A.1)

ρI
ABρI CD = −2

(

δC
AδD

B − δC
BδD

A

)

,

ρI
AB =

1

2
ǫABCDρI CD,

Tr
(

ρKρMρLρN
)

= 4
(

δKMδLN − δKLδMN + δKNδML
)

,

and the Fierz identity:

qIqJρI
ABρJ

CD aAbBaCbD = −1

2
qIqJρI

ABρJ
CD aAaBbCbD − 1

2
q2ǫABCD aAaBbCbD, (A.2)

where aA, bA are anticommuting variables and qI is a six vector. In fact, many other

properties can be easily found by noting that

γI =

(

0 ρI AB

ρI
AB 0

)

, (A.3)

are SO(6) Dirac gamma matrices. Note that in a basis where the γI are hermitian (
(

γI
)†

=

γI), we have that the ρ’s are unitary:
(

ρI
)†

=
(

ρI
)−1

.

B. Simplifying the Neumann coefficients

The Neumann coefficients N rs
mn appearing in the expression (3.34) for the vertex state

defining P̂S were computed in (I). In this appendix we revisit such computation and show

that, actually, equivalent but much simpler expressions can be found for them. We also

compare the results with previous computations in (I) and [19].

The idea of the computation can be found in [10] (see also (I)). The main steps are,

briefly, as follows. First we consider, as in figure 7, the cylinder with a slit and parameterize

it with two real coordinates −∞ < τ < ∞ and −π < σ < π. The slit is parallel to the σ

axis, sits at τ = 0 and extends from −σ0 < σ < σ0. It is convenient to introduce a complex

coordinate ρ = τ + iσ and also u = eρ = eτ+iσ. Then, we find a conformal transformation

z(u) to the upper half-plane parameterized by z, Imz > 0. Such transformation is unique
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up to a choice of two points z1 = z(u = 0) and z2 = z(u = ∞) corresponding to where

the end points of the cylinder map to. Using the SL(2, R) invariance of the half-plane we

can fix three parameters and then only one parameter or moduli remains. This remaining

parameter is the width of the slit, namely 2σ0. The Green function on the upper half-plane

G(z, z′) is given by

G(z, z′) = ln |z − z′| + εi ln |z − z̄′| (B.1)

where εi = −1 or εi = +1 according if we want G(z, z′) to satisfy Dirichlet or Neumann

boundary conditions on the real axis. Using the conformal transformation we just described

we can map it back to the Green function G(u, u′) on the cylinder. To proceed we need to

consider four different cases according if u and u′ are in the initial τ → −∞ or final string

τ → ∞. In each case we expand G(u, u′) appropriately in a series expansion in u = eτ+iσ

and u′ = eτ ′+iσ′
(or equivalently Fourier expansion in σ, σ′). The coefficients are precisely

N rs
mn where the index r, s = 1, 2 indicate the initial and final strings. The logarithmic

singularities when the two points coincide (which can only happen if they are on the same

(initial or final) string) should be subtracted. More concretely, we write

G(u, u′) = ln |u−u′|+
∞
∑

n=−∞

∞
∑

m=−∞
N11

mne|m|τ+|n|τ ′

eimσ+inσ′

, τ, τ ′ → −∞ (B.2)

G(u, u′) =

∞
∑

n=−∞

∞
∑

m=−∞
N12

mne|m|τ−|n|τ ′

eimσ+inσ′

, τ → −∞, τ ′ → +∞

(B.3)

G(u, u′) =

∞
∑

n=−∞

∞
∑

m=−∞
N21

mne−|m|τ+|n|τ ′

eimσ+inσ′

, τ → +∞, τ ′ → −∞

(B.4)

G(u, u′) = ln

∣

∣

∣

∣

1

u
− 1

u′

∣

∣

∣

∣

+
∞
∑

n=−∞

∞
∑

m=−∞
N22

mne−|m|τ−|n|τ ′

eimσ+inσ′

, τ, τ ′ → +∞ (B.5)

In this way, N11
mn for m,n > 0 is determined by the terms depending on u, u′ whereas

N11
m,−n for m,n > 0 is determined by those depending on u, ū′ and so on. Although what

we describe has the character of a recipe, it can be verified, a posteriori, that the coefficients

so computed obey all the properties necessary for the vertex state to satisfy the appropriate

conditions explained in section 3. In the rest of the appendix we show how to find explicit

expressions for N rs
mn by computing G(u, u′) and then doing the power series expansion. This

seems straight-forward and indeed it is. However different (but equivalent) expressions can

be found according on how we choose to do the Taylor expansion of G(u, u′) and also

on how we choose the points z1,2. In (I) we chose z1 = i, z2 = iy, 0 < y < 1 where

y =
1−sin

σ0
2

1+sin
σ0
2

. In a similar computation, Green and Wai [19] chose z1 = i, z2 = i − a with

0 < a < ∞ and related to σ0 by a = 2 tan σ0
2 . Here we show that choosing z1,2 = ie±i

σ0
2

leads to much simpler expressions.

We start by proving that an SL(2, R) transformation leaves the Neumann coefficient

appearing in the operator P̂ invariant. Then we show how to find new, simpler expressions

for N rs
nm and finally we compare the results with (I) and [19].
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B.1 SL(2, R) invariance of the Neumann coefficients

Suppose that we define a new complex variable w spanning the upper half plane and

related to z by

z =
aw + b

cw + d
(B.6)

where a,b,c,d are real numbers and ad − bc = 1. The Green function in the upper half

plane is taken to be

G(z, z′) = ln |z − z′| + εi ln |z − z̄′| (B.7)

where εi = −1 for Dirichlet and εi = +1 for Neumann boundary conditions. Under the

SL(2, R) transformation it maps to

G(w,w′) = ln |w − w′| + εi ln |w − w̄′| − (1 + εi) ln |cw + d| − (1 + εi) ln |cw′ − d| (B.8)

whereas, having we used w directly, we would have taken just the first two terms. The

difference vanishes for Dirichlet boundary conditions, namely εi = −1 and there is nothing

to prove. In the case of Neumann boundary conditions we observe that each extra terms

depends on w or w′ but not on both. After mapping back, each term will be power

expanded in u or u′ but not both so it will modify only Neumann coefficients with at least

one zero subindex:

N rs
m0 → N rs

m0 + Cr
m (B.9)

Moreover, if the coefficient depends on u, it will not matter if we expand for u′ → 0 or

u′ → ∞ so the contribution Cr
m is independent of s as indicated. The bosonic part of the

vertex state in eq. (3.34) will be modified as
∑

rs,imn

N rs
mna†irma†isn→

∑

rs,imn

N rs
mna†irma†isn+

∑

r,m,i/εi=+1

Cr
ma†irm(a†i,s=1,n=0+a†i,s=2,n=0) (B.10)

However, by definition a†s=1,n=0 = p1 and a†s=2,n=0 = p2 are the momentum of the initial

and final strings. Since we are considering a Neumann direction, momentum conservation

implies p1 + p2 = 0 and therefore |V 〉 is not modified. Perhaps, more easily, when writing

the operator P̂S as in eqs. (3.55)–(3.58), the Neumann coefficients with subindex zero do

not appear unless they correspond to Dirichlet boundary conditions.

In the fermionic part, the coefficient N rs
m0(εi = +1) only enters in the definition of

βm in eq. (3.48) and in such a form that is not affected by the shift (B.9). The insertion

operators that also appear in P̂ do not depend on the Neumann coefficients and therefore

are not affected. We have then proved that the operator P̂ is invariant under the SL(2, R)

transformation, as it should. We are therefore free to choose, up to one moduli, the points

z1,2 at our convenience.

B.2 Simplified expressions for N rs
mn

Now we choose z1,2 = ie±i
σ0
2 which defines the conformal transformation

z = ie−i
σ0
2

√

u − eiσ0

u − e−iσ0
, u = e−iσ0

z2 + eiσ0

z2 + e−iσ0
(B.11)
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The Green function

G(z, z′) = ln |z − z′| + εi ln |z − z̄′| (B.12)

maps to

G(u, u′) = ln
∣

∣

∣

√

(u − µ)(µu′ − 1) −
√

(u′ − µ)(µu − 1)
∣

∣

∣
(B.13)

+εi ln
∣

∣

∣

√

(µu − 1)(µū′ − 1) +
√

(u − µ)(ū′ − µ)
∣

∣

∣
(B.14)

−1

2
(1 + εi) ln

∣

∣u − µ−1
∣

∣− 1

2
(1 + εi) ln

∣

∣u′ − µ−1
∣

∣ (B.15)

where we defined µ = eiσ0 . The terms in the last line are of the same type as we proved, in

the previous subsection, to be irrelevant in the computation of P̂ . Namely, they obviously

go away for εi = −1 and, as they only depend on one or the other variable, when εi = +1

they also go away in P̂ because of momentum conservation. For that reason we can define

a new equivalent Green function

G̃(u, u′) = ln
∣

∣

∣

√

(u − µ)(µu′ − 1) −
√

(u′ − µ)(µu − 1)
∣

∣

∣
(B.16)

+εi ln
∣

∣

∣

√

(µu − 1)(µū′ − 1) +
√

(u − µ)(ū′ − µ)
∣

∣

∣
(B.17)

Expanding in powers of u, u′ for small u, u′ we get

G̃(u, u′) ≃ ln |u′ − u| + ln

∣

∣

∣

∣

µ

2
− 2

µ

∣

∣

∣

∣

+ εi ln |1 + µ| +
∑

nm

′
N11

nmunu′m (B.18)

≃ ln |u′ − u| + ln sin σ0 + εi ln
[

2 cos
σ0

2

]

+
∑

nm

′
N11

nmunu′m (B.19)

where we used µ = eiσ0 . From here we find (see below however) N11
00 = ln sin σ0 +

εi ln
[

2 cos σ0
2

]

and the rest of the coefficients are obtained by continuing the expansion.

To compute them explicitly we consider the term in G̃ that depends only on u, u′ (and not

their conjugates) and observe that, by a straight-forward calculation, we get:

[

u∂u + u′∂u′

] 1

2
ln

[

√

(u − µ)(µu′ − 1) −
√

(u′ − µ)(µu − 1)

u′ − u

]

= (B.20)

=
µ

4

1 − uu′
√

(u − µ)(u′ − µ)(µu − 1)(µu′ − 1)
− 1

4
(B.21)

=
1

4

∞
∑

m,n=0

′
(PnPm − Pn−1Pm−1)unu′m (B.22)

where the prime in the summation sign indicates that we omit the term with m = n = 0.

The functions Pn = Pn(cos σ0) are the usual Legendre polynomials and we defined by con-

venience P−1(cos σ0) = 0. The Legendre Polynomials appear in virtue of the identity [33]

1
√

(u − µ)(µu − 1)
=

1√
µ

1√
u2 − 2u cos σ0 + 1

=
1√
µ

∞
∑

n=0

Pn(cos σ0)u
n (B.23)
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We then identify

N11
nm =

1

4

PnPm − Pn−1Pm−1

n + m
, n,m > 0, n + m 6= 0 (B.24)

To get the coefficients N11
n,−m , (n,m > 0) we need to consider the term depending on u

and ū′ for which we have

[

u∂u − ū′∂ū′

] εi

2
ln
[

√

(µu − 1)(µū′ − 1) +
√

(u − µ)(ū′ − µ)
]

= (B.25)

= −µεi

4

u − ū′
√

(u − µ)(u′ − µ)(µu − 1)(µu′ − 1)
(B.26)

=
εi

4

∞
∑

m,n=0

(PnPm−1 − Pn−1Pm)unu′m (B.27)

where again, the Legendre polynomials are evaluated at cosσ0 and we use the convention

P−1(cos σ0) = 0. Thus,

N11
n,−m =

εi

4

PnPm−1 − Pn−1Pm

n − m
, n,m > 0, n − m 6= 0 (B.28)

The case N11
n,−n has to be considered separately. In this case we can take just the derivative

with respect to u for example and, after a tedious but simple calculation, we obtain

N11
n,−n = − εi

2n







n−1
∑

q=1

PqPq−1 +
1

2
PnPn−1 − cos σ0

n−1
∑

q=0

P 2
q +

1

2







, n 6= 0 (B.29)

From the fact that the Green function, and the Neumann coefficients, are real we obtain

N11
−n,−m = N11

nm (B.30)

which allows us to compute the other components.

Now we should compute N21
nm. In order to do that we should expand G̃(u, u′) for

u → ∞ and u′ → 0. It can be easily done if one notices that

G̃(u, u′)=
1+εi

2
ln |u|+(1+εi) ln(2 sin σ0)+ln

∣

∣

∣

∣

1−u′

u

∣

∣

∣

∣

−εi

(

G̃

(

1

u
, ū′
)

−ln

∣

∣

∣

∣

1

u
−ū′

∣

∣

∣

∣

)

(B.31)

When expanding the last term we get the coefficients N11
nm that we already computed.

Including the contribution from expanding ln
∣

∣

∣
1 − u′

u

∣

∣

∣
we obtain

N21
nm = −εiN

11
nm +

1

2
δn+m, except n = m = 0 (B.32)

N21
00 = (1 + εi) ln(2 sin σ0) − εiN

11
00 = ln

(

2 sin
σ0

2

)

+ εi ln 2 (B.33)

Finally it is easy to see that

N22
mn = N11

nm (B.34)

N12
mn = N21

nm (B.35)
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for all n, m. Notice also that we can write

N rs
00 =

1 − εi

2
ln sin

σ0

2
+ δrs(1 + εi) ln cos

σ0

2
+

1 + εi

2
ln
(

4 sin
σ0

2

)

(B.36)

The last term can be dropped by the reason we already discussed. Namely it goes away

for εi = −1 and for Neumann boundary conditions, i.e. εi = +1 it goes away in P̂ by

momentum conservation. So we prefer to write

N rs
00 =

1 − εi

2
ln sin

σ0

2
+ δrs(1 + εi) ln cos

σ0

2
(B.37)

as we had found in (I). To complete the calculation, we still need to compute N11
m0. The

result is actually contained in the expansions we performed, the only point is that, for

n = 0, the terms depending on u, u′ and u, ū′ both contribute. Using the results we have

(and remembering we defined P−1(cos σ0) = 0) we easily obtain

N11
m0 =

1

4m
(Pm(cos σ0) − εiPm−1(cos σ0)) , m > 0 (B.38)

We also have N11
m0 = N11

−m,0.

To summarize we obtained the expressions:

N rs
00 =

1 − εi

2
ln sin

σ0

2
+ δrs(1 + εi) ln cos

σ0

2
(B.39)

N11
m0 = N11

−m,0 =
1

4m
(Pm(cos σ0) − εiPm−1(cos σ0)) , m > 0 (B.40)

N11
nm = N11

−n,−m =
1

4

PnPm − Pn−1Pm−1

n + m
, n,m > 0, n + m 6= 0 (B.41)

N11
n,−m = N11

−n,m =
εi

4

PnPm−1 − Pn−1Pm

n − m
, n,m > 0, n − m 6= 0 (B.42)

N11
n,−n = N11

−n,n =− εi

2n







n−1
∑

q=1

PqPq−1+
1

2
PnPn−1−cos σ0

n−1
∑

q=0

P 2
q +

1

2







, n 6= 0

N21
nm = −εiN

11
nm +

1

2
δn+m, except n = m = 0 (B.43)

N22
mn = N11

nm (B.44)

N12
mn = N21

nm (B.45)

which determine all Neumann coefficients. As we show below following (I), the case

n + m 6= 0 can also be summarized as

N rs
mn =

1

(m + n) sin σ0
Im (f r

mf s
n) (B.46)

where f1
m>0 = −f̄m, f1

m<0 = −εif−m, f2
m6=0 = −εif

1
m with

fm>0 = − i

2

[

ei
σ0
2 Pm(cos σ0) − e−i

σ0
2 Pm−1(cos σ0)

]

(B.47)
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and

f1
0 =

1 + εi

2

(

1 − sin
σ0

2

)

− i
1 − εi

2
cos

σ0

2
(B.48)

f2
0 =

1 + εi

2

(

1 + sin
σ0

2

)

− i
1 − εi

2
cos

σ0

2
(B.49)

In the following we compare these results to our previous calculations in (I) and also to

the expressions in [19]. Here let us just note that what we just found are much simpler

expressions than those we knew from before.

B.3 Comparison with previous results

In (I) we have already computed the Neumann coefficients in terms of finite sums of as-

sociated Legendre polynomials. In [19] Green and Wai had previously discussed a similar

calculation for the bosonic string for the case of Dirichlet boundary conditions in all direc-

tions (including X±). They found the Neumann coefficients in terms of (sometimes infinite)

double sums. Here we show briefly that the results have to agree since they come from ex-

panding in series the same Green function. We also make explicit the different expressions

for the coefficients so one can compute them for particular values of the subindices and see

that they indeed agree.

In (I) we expanded the Green function

G(I)(u, u′) = ln |w(u) − w(u′)| + εi ln |w(u) − w(u′)| (B.50)

with

w(u) = − i

u − 1

1

1 + sin σ0
2

{

(1 + u) sin
σ0

2
+
√

(u − eiσ0)(u − e−iσ0)

}

(B.51)

where the square root has a cut on the slit. Replacing in eq. (B.50) and after some algebra

we find

G(I)(u, u′) = G̃(u, u′) + (1 + εi) ln
8 cos σ0

2

1 + sin σ0
2

(B.52)

−(1 + εi) ln |√u − µ + i
√

µu − 1| − (1 + εi) ln |
√

u′ − µ + i
√

µu′ − 1|

with µ = eiσ0 as before. The first term, G̃(u, u′) is the same one as in eq. (B.17) and the

others are irrelevant for the same reason we already explained (Namely they do not appear

in P̂ ). Therefore the Neumann coefficients are proved to be the same since they are the

coefficients of the series expansion of the same function. In (I)we wrote the result as

N rs
mn = − i

8

(1 + εi)

m + n
(ar

mδn0 + as
nδm0) +

1

(m + n) sin σ0
Im (f r

mf s
n) (B.53)

where f1
m>0 = −f̄m, f1

m<0 = −εif−m, f2
m6=0 = −εif

1
m with

fm>0 = − i

m
ei

σ0
2

m
∑

l=1

(−i)lm!

(m + l)!
lP l

m(cos σ0) (B.54)
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where P l
m are associated Legendre polynomials defined, in terms of regular Legendre

polynomials Pm as6

P l
m(x) = (−1)l(1 − x2)

l
2

dl

dxl
Pm(x) (B.55)

Comparing with the result we obtained in the previous subsection one finds that,

agreement of the Neumann coefficients implies the following interesting identity between

Legendre polynomials

fm>0 = − i

m
ei

σ0
2

m
∑

l=1

(−i)lm!

(m + l)!
lP l

m(cos σ0) (B.56)

= − i

2

[

ei
σ0
2 Pm(cos σ0) − e−i

σ0
2 Pm−1(cos σ0)

]

(B.57)

Although this is proven because it equates the coefficients of the series expansion of the

same function, it is reassuring to compute the functions fm(σ0) for several explicit values

of m and see that they indeed agree.

We can also compare explicitly with the results of Green and Wai. Before doing that,

however, let us dwell a little into the relation between that calculation and the one presented

in (I)and here. In modern language, Green and Wai look at a D-instanton (although it

is in Minkowski space making the interpretation less clear). In any case the coefficients

they find should agree with ours for εi = −1 giving us an extra check of the calculations.

It should be noted that, in our case, we have Neumann boundary conditions in X± which

corresponds to the usual D-brane interpretation (where the D-brane extends in the time

direction). To see how this comes about we write one of the conformal constraints as

∂τX
+∂σX− + ∂τX−∂σX+ = −∂τX

⊥∂σX⊥ (B.58)

Since the slit is parallel to the σ axis, Neumann boundary conditions are given by ∂τX = 0

and Dirichlet by ∂σX = 0. On the slit, each of the directions X⊥ perpendicular to the

light-cone satisfies either Dirichlet or Neumann boundary conditions and therefore the right

hand side of the equation vanishes implying

∂τX
+∂σX− + ∂τX

−∂σX+
∣

∣

bdy. = 0 (B.59)

We use a gauge X+ = σ which we call σ-gauge. It obviously means that ∂τX+ = 0, namely

X+ satisfies Neumann boundary conditions. Moreover, replacing X+ = σ in eq. (B.59)

we obtain ∂τX
− = 0, so both X± are Neumann. In [19] the authors considered a gauge

X+ = τ implying X± are Dirichlet.

Having said this, let us consider the Green function appearing in eq. (5.7) of [19]:

ĜD(u, u′) = ln

∣

∣

∣

∣

∣

i

√

a2

4
− 1 − ia

u + 1

u − 1
− i

√

a2

4
− 1 − ia

u′ + 1

u′ − 1

∣

∣

∣

∣

∣

(B.60)

− ln

∣

∣

∣

∣

∣

i

√

a2

4
− 1 − ia

u + 1

u − 1
+ i

√

a2

4
− 1 + ia

ū′ + 1

ū′ − 1

∣

∣

∣

∣

∣

(B.61)

6Care should be taken when checking these formulas with computer algebra programs since definitions

of P l
m can differ between them.
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where a = 2 tan L
2 with L = σ0. Again simple algebra reveals that

ĜD(u, u′) = G̃(eiσ0u, eiσ0u′) (B.62)

where the extra phase factors appear because Green and Wai have the slit between 0 ≤
σ ≤ 2σ0, namely shifted by σ0. This is of course irrelevant for us since we integrate over

the position of the slit when defining P̂ . In doing the comparison we should also rescale

σ by two since in [19], 0 < σ < π, instead of −π < σ < π. Again, this implies equality of

the Neumann coefficients up to a phase factor. The Neumann coefficients in [19] can be

extracted from eq. (5.9) in that paper resulting in

Ñ11
pq =

∞
∑

n,m=1

umun

n + m

(

m + p − 1

p

)(

n + q − 1

q

)

(

1 − e2iσ0
)m+n

(B.63)

=

p
∑

m=1

q
∑

n=1

umun

n + m

(

p − 1

p − m

)(

q − 1

q − n

)

(

e−2iσ0 − 1
)m+n

(B.64)

Ñ11
p,−q =

1

4

∞
∑

m=1

q
∑

n=1

umun

n + m
(−1)n

(

m + p − 1

p

)(

q − 1

q − n

)

(

1 − e−2iσ0
)m+n

(B.65)

for p, q > 0. Notice that in [19] two different but equivalent expressions are given for N11
pq ,

p, q > 0. As we already said, it follows from eq. (B.62) that

N11
mn = eiσ0(m+n)Ñ11

mn (B.66)

It is reassuring to compute several of the coefficients, as functions of σ0, and check that

this relation is correct. Namely, check the agreement (up to the phase factor in eq. (B.66))

between eqs. (B.63), (B.64) and (B.41) and also (B.65) and (B.42).

C. Massless string scattering from D-branes

As explained in section 5 the operator P̂S summarizes the scattering amplitudes for closed

string states from a D3-brane. This includes massive and massless states. Since scattering

amplitudes for massless states are known [27, 28] their explicit computation provides a

check for the calculation. This was already explained in section 5 were we sketched the

main steps of the calculation. Since the results depends on several details, it is a very

useful check and deserves to be spelled out in more detail which we do in this appendix.

First we explain the derivation of eqs. (5.6)–(5.10) which are the zero mode part of P̂S . It

is the only relevant part since massless states, in the Green-Schwarz formalism are given

by the different vacua, namely they contain no oscillator excitations. After that we use the

result to compute the scattering amplitudes concentrating on bosonic states. Finally we

compare with known results. The comparison fixes the overall normalization of the hole

insertion operator, namely the constant α3 in eq. (4.1).
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C.1 Zero modes Hamiltonian

The zero mode part of the operator P̂S , namely the part that contains no oscillators is

given by

P̂S

∣

∣

∣

zero modes
=

∫ π

0
dσ0

(

sin
σ0

2

)q2 (

cos
σ0

2

)4k2

Ĥzero modes (C.1)

where Ĥzero modes is the zero mode part of the insertions computed in (5.5) and the other

factors come from the exponential

e
P

rs,imn Nrs
i,00a†

ir0a†
is0 = eq2 ln sin

σ0
2

+4k2 ln cos
σ0
2 =

(

sin
σ0

2

)q2 (

cos
σ0

2

)4k2

(C.2)

From eq. (5.5) we can write Ĥzero modes separating the terms with different number of

fermions:

Ĥz.m. =
1

2π2

sin2 σ0
2

sinσ0
kLkL

− 1

16π2
√

2

sin σ0
2 cos σ0

2

sin2 σ0
kL (yq/y + ȳq/ȳ) − 1

8π2

sin2 σ0
2

sin2 σ0
kLkR(y4 + ȳ4)

+
1

28π2

cos2 σ0
2

sin3 σ0
yq/y ȳq/ȳ +

1

27π2 sin3 σ0

(

y4 + ȳ4 1

4
εABCDyAyB ȳC ȳD

)

+
1

26π2
√

2

sin σ0
2 cos σ0

2

sin4 σ0
kR
(

ȳ4yq/y + y4ȳq/ȳ
)

+
1

25π2

sin2 σ0
2

sin5 σ0
kRkRy4ȳ4 (C.3)

where we use the notation

y4 =
1

24
εABCDyAyByCyD, yq/y = qIρI

AByAyB (C.4)

and the same for ȳ. The next step is to replace, from eq. (5.4),

yA = āA
0 sin

σ0

2
+ ib̄A

0 cos
σ0

2
, ȳA = āA

0 sin
σ0

2
− ib̄A

0 cos
σ0

2
, (C.5)

in the previous equation. By expanding the corresponding terms and taking into account

that

āA
0 āB

0 āC
0 āD

0 = εABCDā4
0, b̄A

0 b̄B
0 b̄C

0 b̄D
0 = εABCD b̄4

0 (C.6)

which result in formulas such as

y4 + ȳ4 +
1

4
ǫABCDyAyB ȳC ȳD = 8 sin4 σ0

2
ā4

0 + 8cos4 σ0

2
b̄4
0 (C.7)

ǫABCD b̄A
0 āB

0 āC
0 āD

0 ā0q/b̄0 = −6ā4
0 b̄0q/b̄0 (C.8)

ǫABCDāA
0 āB

0 b̄C
0 b̄D

0 ā0q/ā0 = 4ā4
0 b̄0q/b̄0 (C.9)

we can easily find that Ĥz.m. reduces to

Ĥz.m. =
1

4π2
kLkL sin σ0

2

cos σ0
2

− kL

25π2
√

2

(

ā0q/ā0 tan
σ0

2
− b̄0q/b̄0cotan

σ0

2

)
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− 1

28π2

(

sin σ0
2

cos3 σ0
2

ā4
0 +

cos σ0
2

sin3 σ0
2

b̄4
0

)

(

4k2 sin2 σ0

2
+ q2 cos2

σ0

2
− 2
)

− 1

29π2
cotan

σ0

2
(ā0q/ā0)(b̄0q/b̄0)+

1

210π2
ǫABCDāA

0 āB
0 b̄C

0 b̄D
0

(

4k2 tan
σ0

2
−q2cotan

σ0

2

)

− kR

27π2
√

2

(

tan
σ0

2
ā4

0 b̄0q/b̄0 − cotan
σ0

2
b̄4
0 ā0q/ā0

)

1

26π2
tan

σ0

2
kRkRā4

0 b̄4
0 (C.10)

Now we proceed to replace in eq. (C.3) and perform the σ0 integration using that
∫ π

0

(

sin
σ0

2

)α (

cos
σ0

2

)β
dσ0 = B

(

α + 1

2
,
β + 1

2

)

(C.11)

where B(a, b) = Γ(a)Γ(b)
Γ(a+b) is Euler’s Beta function. There is an important point that we

should mention here which is that the integral in σ0 can be divergent. We define it by

analytic continuation to be equal to the Beta function. This is the usual procedure when

computing scattering amplitudes in string theory. Namely to assume we do the calculation

in a region of momenta where all integrals are convergent and continue to other regions

assuming analyticity of the scattering amplitudes in the external momenta (q2, k2). To

write the final expression we find convenient to define s = −q2, t = −4k2 and a function

A(s, t) =
Γ
(

− s
2

)

Γ
(

− t
2

)

Γ
(

1 − s
2 − t

2

) =
Γ
(

2k2
)

Γ
(

q2

2

)

Γ
(

2k2 + q2

2 + 1
) (C.12)

to which all Beta functions that appear can be reduced to using the properties of the

Gamma functions. The result of the σ0 integration is a Hamiltonian to which P̂S reduces

after eliminating all oscillators. It can better be written split into terms of different

number of fermions as was presented in eqs. (5.6)–(5.10).

H
(0)
[0] = − 1

8π2
s kLkL A(s, t), (C.13)

H
(0)
[2] = − 1

26π2
√

2
kL
(

t b̄0q/b̄0 − s ā0q/ā0

)

A(s, t), (C.14)

H
(0)
[4] = − 1

28π2

{

ā4
0s

2 + b̄4
0t

2 − t

4
ā0q/ā0b̄0q/b̄0

}

A(s, t), (C.15)

H
(0)
[6] = − 1

28π2
√

2
kR
(

t ā0q/ā0 b̄4
0 − s b̄0q/b̄0 ā4

0

)

A(s, t), (C.16)

H
(0)
[8] = − 1

27π2
s kRkR ā4

0 b̄4
0 A(s, t), (C.17)

C.2 External states

Since we are going to consider only massless scattering the only states we need to consider

for the Green-Schwarz closed IIB string are the vacuum states. One simple way to describe

them is to define a state

|0〉λ, such that λ0A|0〉λ = 0, λ̃0A|0〉λ = 0 (C.18)
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and act on it with the θA
0 , θ̃A

0 . Since there are four θA
0 and four θ̃A

0 we have 28 states. From

the 28 vacua, for simplicity, we will only consider the 26 = 64 NS-NS states obtained by

acting an even number of times with the θA
0 and an even number of times with the θ̃A

0 . It

is therefore convenient to define the following normalized states

|R〉 = |0〉λ, |I〉 =
1

2
√

2
ρI

ABθAθB|0〉λ, |L〉 = θ4|0〉λ (C.19)

Also, from now on, we do not put the subindex 0 since in this section all fields are reduced

to their zero modes. We are going to define a polarization state as

|ξ〉 = ξL|L〉 + ξI |I〉 + ξR|R〉 (C.20)

with ξR = ξ∗L. The corresponding bra we define as

〈ξ| = 〈L|ξL + 〈I|ξI + 〈R|ξR (C.21)

which implies we use the notation (|L〉)† = 〈R| and (|R〉)† = 〈L| and therefore the identity

is written as

I = |R〉〈L| + |L〉〈R| + |I〉〈I| (C.22)

The state of a closed string is determined by the product of two polarization states, one

for the left and one for the right movers. Both should be transverse to the momentum p

of the particle, i.e. (pξ) = 0. For convenience we define

θ3 = θ̃1, θ4 = θ̃2 (C.23)

so that the polarizations are ǫ(1) = ξ1 ⊗ ξ4, ǫ(2) = ξ2 ⊗ ξ3. While a general polarization

tensor cannot be always factorized in that way, it certainly can be written as a linear

combination of such factorized terms. The hole insertion operator is written, in section 4

in a vertex state representation. This means that it is written as a state in the product

space of the Hilbert spaces of the initial and final strings. Formally, if we label the basis

with an index ν, we get

|P 〉 =
∑

ν1ν2

〈ν1|P |ν1〉|ν1〉 ⊗ |ν2〉 (C.24)

If we want to apply the operator to the state |ν1〉 we do

〈ν1|P 〉 =
∑

ν2

|ν2〉〈ν2|P |ν1〉 = P |ν1〉 (C.25)

One further point we need to make is that the vacuum we used in defining the hole insertion

operator satisfies, according to eqs. (3.42), (3.51),

aA|0〉 = 0, bA|0〉 = 0, (χA − Ξ̄A)|0〉 = 0, (ΞA − χ̄A)|0〉 = 0 (C.26)

These are linear combinations of the λ’s except the last one. This means that the state

|0〉 6= |0〉λ. In fact, the state |0〉λ satisfies the same properties (C.26), except that the last

one is replaced by (χA + Ξ̄A)|0〉 = 0. This means that, if we define

β =
1√
2
(ΞA − χ̄A) =

1

2

(

θA
1 + θ̃A

2 − θA
2 − θ̃A

1

)

(C.27)
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we obtain

|0〉 = β4|0〉λ (C.28)

which is a useful relation to write the zero mode hole insertion operator as linear combi-

nation of the states (C.20).

A final point has to do with the way in which we define the identity operator as a

vertex state in the subspace of zero modes. It should impose the conditions:

(θ1 − θ2)|I〉 = 0, (C.29)

(θ̃1 − θ̃2)|I〉 = 0, (C.30)

(λ1 + λ2)|I〉 = 0, (C.31)

(λ̃1 + λ̃2)|I〉 = 0, (C.32)

(C.33)

which identifies both strings. This conditions are solved by

|I〉 = (θ1 − θ2)
4(θ̃1 − θ̃2)

4|0〉λ (C.34)

To understand what it does we can consider a single fermion θ and states |0〉 and |1〉 = θ|0〉.
The condition

(θ1 − θ2)|I〉 = 0, (C.35)

imposes

|I〉 = |0〉 ⊗ |1〉 + |1〉 ⊗ |0〉 (C.36)

whereas the identity operator is

I = |0〉〈0| + |1〉〈1| (C.37)

So, in converting a vertex representation as in (C.36) into and operator representa-

tion (C.37) we should flip |0〉 → 〈1| and |1〉 → 〈0|. In our case, for the left moving fermions

we have

(θ1−θ2)
4|0〉λ → (θ4

1+
1

4
ǫABCDθA

1 θB
1 θC

2 θD
2 +θ4

2)|0〉λ = |L〉⊗|R〉−|I〉⊗|I〉+|R〉⊗|L〉 (C.38)

Where the arrow indicates that we keep only the NS states, even in all fermion variables.

We also made use of the formula

ǫABCDθA
1 θB

1 θC
2 θD

2 |0〉λ = −4ρI
ABρI

CDθA
1 θB

1 θC
2 θD

2 |0〉λ = −4|I〉 ⊗ |I〉 (C.39)

Comparing with (C.22) implies that we should flip |R〉 → 〈R|, |L〉 → 〈L|, |I〉 → −〈I|. The

final upshot is that we should simply interpret the states as polarizations but flip the sign

for each perpendicular polarization in the initial state. Finally notice that we can use β

from eq. (C.27) and b̄0 from eq. (3.49) to write

b̄4
0β

4|0〉λ =
1

4
|I〉 (C.40)

meaning that we should understand b̄4
0 in the vertex representation of the Hamiltonian H

as 1
4 times the identity. It can be seen that this matters only for the overall normalization

and does no affect the relative coefficients of the terms in H.
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C.3 Massless scattering

We need to expand the zero mode Hamiltonian in powers of θA
r=1···4. As mentioned in the

previous subsection, for convenience we define

θ3 = θ̃1, θ4 = θ̃2 (C.41)

which then gives

β =
1

2
(−θ1 − θ3 + θ4 + θ2) , ā0 =

1√
2

(θ1 + θ2 − θ4 − θ3) , b̄0 =
1√
2

(θ1 + θ4 − θ2 − θ3)

(C.42)

We should replace in the Hamiltonian and expand in powers of the θr. Since we are

interested in the scattering of NS-NS states, only terms which contain an even number of

each θr are kept. It is not difficult to obtain that

β4 =
1

24
(−θ1 − θ3 + θ4 + θ2)

4

→ 1

24

[

θ4
1+θ4

2+θ4
4+θ4

3

]

+
1

26

[

εθ2
1θ

2
2+εθ2

1θ
2
4+εθ2

1θ
2
3+εθ2

2θ
2
4+εθ2

2θ
2
3+εθ2

4θ
2
3

]

ā0q/ā0 β4 → 1

24

[

θ4
1 θ2q/θ2 + θ4

1 θ3q/θ3 + θ4
2 θ1q/θ1 + θ4

2 θ4q/θ4

+θ4
4 θ2q/θ2 + θ4

4 θ3q/θ3 + θ4
3 θ1q/θ1 + θ4

3 θ4q/θ4

]

+
1

26

[

θ2q/θ2 ǫθ2
1θ

2
4 + θ1q/θ1 ǫθ2

2θ
2
3 + θ3q/θ3 ǫθ2

1θ
2
4 + θ4q/θ4 ǫθ2

2θ
2
3

]

b̄0q/b̄0 β4 → 1

24

[

θ4
1 θ4q/θ4 + θ4

1 θ3q/θ3 + θ4
4 θ1q/θ1 + θ4

4 θ2q/θ2

+θ4
2 θ4q/θ4 + θ4

2 θ3q/θ3 + θ4
3 θ1q/θ1 + θ4

3 θ2q/θ2

]

+
1

26

[

θ4q/θ4 ǫθ2
1θ

2
2 + θ1q/θ1 ǫθ2

4θ
2
3 + θ3q/θ3 ǫθ2

1θ
2
2 + θ2q/θ2 ǫθ2

4θ
2
3

]

ā4
0β

4 =
1

16
(θ2 − θ3)

4(θ1 − θ4)
4

→ 1

24

[

θ4
1θ

4
2 + θ4

1θ
4
3 + θ4

2θ
4
4 + θ4

4θ
4
3

]

+
1

28
ǫθ2

1θ
2
4 ǫθ2

2θ
4
3

+
1

26

[

θ4
1 ǫθ2

2θ
2
3 + θ4

2 ǫθ2
1θ

2
4 + θ4

4 ǫθ2
2θ

2
3 + θ4

3 ǫθ2
1θ

2
4

]

b̄4
0β

4 =
1

24
(θ1 − θ2)

4(θ4 − θ3)
4

→ 1

24

[

θ4
1θ

4
4 + θ4

1θ
4
3 + θ4

2θ
4
4 + θ4

2θ
4
3

]

+
1

28
ǫθ2

1θ
2
2 ǫθ2

4θ
4
3

+
1

26

[

θ4
1 ǫθ2

4θ
2
3 + θ4

4 ǫθ2
1θ

2
2 + θ4

2 ǫθ2
4θ

2
3 + θ4

3 ǫθ2
1θ

2
2

]

ā0q/ā0 b̄0q/b̄0 β4 → −1

2
q2
[

θ4
1θ

4
3 + θ4

2θ
4
4

]

+
1

24

[

θ4
1 (θ2q/θ2 θ4q/θ4 + θ4q/θ4 θ3q/θ3 + θ2q/θ2 θ3q/θ3)

+θ4
2 (θ1q/θ1 θ3q/θ3 + θ4q/θ4 θ3q/θ3 + θ1q/θ1 θ4q/θ4)

+θ4
4 (θ2q/θ2 θ3q/θ3 + θ1q/θ1 θ2q/θ2 + θ1q/θ1 θ3q/θ3)

+θ4
3 (θ1q/θ1 θ4q/θ4 + θ1q/θ1 θ2q/θ2 + θ2q/θ2 θ4q/θ4)

]
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+
1

26

[

q2ǫθ2
1θ

2
2 ǫθ2

4θ
2
3 + q2ǫθ2

1θ
2
4 ǫθ2

2θ
2
3 − q2ǫθ2

1θ
2
3 ǫθ2

2θ
2
4

+θ1q/θ1 θ2q/θ2 ǫθ2
4θ

2
3 + θ1q/θ1 θ4q/θ4 ǫθ2

2θ
2
3 + θ4q/θ4 θ3q/θ3 ǫθ2

1θ
2
2

+ θ2q/θ2 θ3q/θ3 ǫθ2
1θ

2
4 − θ2q/θ2 θ4q/θ4 ǫθ2

1θ
2
3 − θ1q/θ1 θ3q/θ3 ǫθ2

2θ
2
4

]

ā0q/ā0b̄
4
0β

4 → 1

24

[

θ4
1θ

4
4 (θ2q/θ2 + θ3q/θ3) + θ4

2θ
4
3 (θ1q/θ1 + θ4q/θ4)

+θ4
1θ

4
3 (θ2q/θ2 + θ4q/θ4) + θ4

2θ
4
4 (θ1q/θ1 + θ3q/θ3)

]

+
1

26

[

θ4
1 θ2q/θ2 ǫθ2

4θ
2
3 + θ4

2 θ1q/θ1 ǫθ2
4θ

2
3 + θ4

4 θ3q/θ3 ǫθ2
1θ

2
2 + θ4

3 θ4q/θ4 ǫθ2
1θ

2
2

]

b̄0q/b̄0ā
4
0β

4 → 1

24

[

θ4
1θ

4
2 (θ4q/θ4 + θ3q/θ3) + θ4

4θ
4
3 (θ1q/θ1 + θ2q/θ2)

+θ4
1θ

4
3 (θ4q/θ4 + θ2q/θ2) + θ4

4θ
4
2 (θ1q/θ1 + θ3q/θ3)

]

+
1

26

[

θ4
1 θ4q/θ4 ǫθ2

2θ
2
3 + θ4

4 θ1q/θ1 ǫθ2
2θ

2
3 + θ4

2 θ3q/θ3 ǫθ2
1θ

2
4 + θ4

3 θ2q/θ2 ǫθ2
1θ

2
4

]

ā4
0b̄

4
0β

4 → 1

24

[

θ4
1θ

4
2θ

4
4 + θ4

1θ
4
2θ

4
3 + θ4

1θ
4
4θ

4
3 + θ4

2θ
4
4θ

4
3

]

+
1

26

[

θ4
1θ

4
2 ǫθ2

4θ
2
3 + θ4

1θ
4
4 ǫθ2

2θ
2
3 + θ4

2θ
4
3 ǫθ2

1θ
2
4

+θ4
4θ

4
3 ǫθ2

1θ
2
2 + θ4

1θ
4
3 ǫθ2

2θ
2
4 + θ4

2θ
4
4 ǫθ2

1θ
2
3

]

(C.43)

where the arrow indicates that we only keep terms even in all fermionic variables θr=1...4.

We also used the following notation

θ4
r =

1

24
εABCDθA

r θB
r θC

r θD
r , εθ2

rθ
2
s = εABCDθA

r θA
r θC

s θD
s , θrq/θr = qIρI

ABθA
r θB

r (C.44)

Having expanded in the zero modes, we can proceed to apply the operators to the vacuum

state. Using the formulas in eqs. (C.19) and (C.39) it easily follows that

β4|0〉λ → 1

24
(|LRRR〉+ |RLRR〉+ |RRLR〉 + |RRRL〉)

− 1

24
(|KKRR〉+|KRKR〉+|KRRK〉+|RKKR〉+|RKRK〉+|RRKK〉)

ā0q/ā0β
4|0〉λ →

√
2

22
(|LqRR〉 + |LRRq〉 + |qLRR〉 + |RLqR〉
+ |RqLR〉 + |RRLq〉 + |qRRL〉 + |RRqL〉)

−
√

2

22
(|KqKR〉+ |qKRK〉+ |KRKq〉 + |RKqK〉)

b̄0q/b̄0β
4|0〉λ →

√
2

22
(|LRqR〉 + |LRRq〉 + |qRLR〉 + |RqLR〉
+ |RLqR〉 + |RLRq〉 + |qRRL〉 + |RqRL〉)

−
√

2

22
(|KKqR〉+ |qRKK〉+ |KKRq〉 + |RqKK〉)

ā4
0β

4|0〉λ → 1

22
(|LLRR〉 + |LRRL〉+ |RLLR〉+ |RRLL〉)

− 1

22
(|LKRK〉+ |KLKR〉 + |RKLK〉 + |KRKL〉) +

1

22
|KIKI〉

b̄4
0β

4|0〉λ → 1

22
(|LRLR〉 + |LRRL〉+ |RLLR〉+ |RLRL〉)
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− 1

22
(|LRKK〉+ |KKLR〉 + |RLKK〉 + |KKRL〉) +

1

22
|KKII〉

ā0q/ā0 b̄0q/b̄0 β4 → −2q2 (|LRRL〉 + |RLLR〉) + q2 (|IIKK〉 + |IKIK〉 − |IKKI〉)
+2 (|LqqR〉 + |LqRq〉 + |LRqq〉 + |qLqR〉 + |qLRq〉 + |RLqq〉

+ |qqLR〉 + |qRLq〉 + |RqLq〉 + |qqRL〉 + |qRqL〉 + |RqqL〉)
−2 (|qqKK〉 + |qKqK〉 + |KKqq〉+ |KqKq〉 − |KqqK〉 − |qKKq〉)

b̄0q/b̄0 ā4
0β

4|0〉λ →
√

2 (|LLRq〉 + |LLqR〉 + |qRLL〉 + |RqLL〉
+ |LqRL〉 + |LRqL〉 + |qLLR〉 + |RLLq〉)

−
√

2 (|LKqK〉 + |qKLK〉+ |KLKq〉+ |KqKL〉)
ā0q/ā0 b̄4

0β
4|0〉λ →

√
2 (|LRLq〉 + |LqLR〉 + |qLRL〉 + |RLqL〉

+ |LRqL〉 + |LqRL〉 + |qLLR〉 + |RLLq〉)
−
√

2 (|LqKK〉 + |qLKK〉+ |KKLq〉+ |KKqL〉)
ā4

0b̄
4
0β

4|0〉λ → (|LLLR〉 + |LLRL〉 + |LRLL〉 + |RLLL〉)
−(|LLKK〉+|LKLK〉+|KLKL〉+|KKLL〉+|LKKL〉+|KLLK〉) (C.45)

Now we can write the same information in terms of polarizations using that ǫ(1) = ξ1 ⊗ ξ4

and ǫ(2) = ξ2 ⊗ ξ3 and what we found before, for each perpendicular polarization in the

initial state we should flip the sign:

|abcd〉 → (−)na+ndǫ
(1)
ad ǫ

(2)
bc (C.46)

where nL = nR = 0 and nI = 1. We obtain the contribution of each term in the Hamilto-

nian to the polarization part of the NSNS scattering amplitude:

H|0〉 = − 1

28π2
A(s, t)K, K = K[0] + K[2] + K[4] + K[6] + K[8] (C.47)

where, for convenience, we extracted a common factor, lumping all the polarization depen-

dence in K which has the following contributions from each term in the Hamiltonian:

K[0] = 2skLkL
[(

ǫ
(1)
LRǫ

(2)
RR + ǫ

(1)
RRǫ

(2)
LR + ǫ

(1)
RLǫ

(2)
RR + ǫ

(1)
RRǫ

(2)
RL

)

+
(

ǫ
(1)
KRǫ

(2)
KR − ǫ

(1)
KKǫ

(2)
RR + ǫ

(1)
KRǫ

(2)
RK + ǫ

(1)
RKǫ

(2)
KR − ǫ

(1)
RRǫ

(2)
KK + ǫ

(1)
RKǫ

(2)
RK

)]

K[2] = kL
{

t
[(

−ǫ
(1)
Lq ǫ

(2)
RR+ǫ

(1)
LRǫ

(2)
Rq−ǫ

(1)
qL ǫ

(2)
RR+ǫ

(1)
RLǫ

(2)
qR−ǫ

(1)
Rqǫ

(2)
LR+ǫ

(1)
RRǫ

(2)
Lq −ǫ

(1)
qRǫ

(2)
RL+ǫ

(1)
RRǫ

(2)
qL

)

+
(

−ǫ
(1)
Kqǫ

(2)
KR − ǫ

(1)
qKǫ

(2)
RK + ǫ

(1)
KRǫ

(2)
Kq + ǫ

(1)
RKǫ

(2)
qK

)]

−s
[(

ǫ
(1)
LRǫ

(2)
qR+ǫ

(1)
LRǫ

(2)
Rq−ǫ

(1)
qRǫ

(2)
LR−ǫ

(1)
Rqǫ

(2)
LR+ǫ

(1)
RLǫ

(2)
qR+ǫ

(1)
RLǫ

(2)
Rq−ǫ

(1)
qRǫ

(2)
RL−ǫ

(1)
Rqǫ

(2)
RL

)

+
(

−ǫ
(1)
KKǫ

(2)
qR + ǫ

(1)
qRǫ

(2)
KK − ǫ

(1)
KKǫ

(2)
Rq + ǫ

(1)
Rqǫ

(2)
KK

)]}

K[4] =

{

s2

4

[(

ǫ
(1)
LRǫ

(2)
LR + ǫ

(1)
LRǫ

(2)
RL + ǫ

(1)
RLǫ

(2)
LR + ǫ

(1)
RLǫ

(2)
RL

)

−
(

ǫ
(1)
LRǫ

(2)
KK + ǫ

(1)
KKǫ

(2)
LR + ǫ

(1)
RLǫ

(2)
KK + ǫ

(1)
KKǫ

(2)
RL

)

+ ǫ
(1)
KKǫ

(2)
II

]

+
t2

4

[(

ǫ
(1)
LLǫ

(2)
RR + ǫ

(1)
LRǫ

(2)
RL + ǫ

(1)
RLǫ

(2)
LR + ǫ

(1)
RRǫ

(2)
LL

)
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+
(

ǫ
(1)
LKǫ

(2)
RK + ǫ

(1)
KLǫ

(2)
KR + ǫ

(1)
RKǫ

(2)
LK + ǫ

(1)
KRǫ

(2)
KL

)

+ ǫ
(1)
KIǫ

(2)
KI

]

+
st

4

[

−2
(

ǫ
(1)
LRǫ

(2)
RL + ǫ

(1)
RLǫ

(2)
LR

)

+
(

ǫ
(1)
IKǫ

(2)
IK + ǫ

(1)
II ǫ

(2)
KK − ǫ

(1)
IKǫ

(2)
KI

)]

+
t

2

[(

ǫ
(1)
Lq ǫ

(2)
qR − ǫ

(1)
LRǫ(2)

qq + ǫ
(1)
Lq ǫ

(2)
Rq − ǫ(1)

qq ǫ
(2)
LR + ǫ

(1)
qRǫ

(2)
Lq + ǫ

(1)
Rqǫ

(2)
Lq

+ǫ
(1)
qL ǫ

(2)
qR + ǫ

(1)
qL ǫ

(2)
Rq − ǫ

(1)
RLǫ(2)

qq + ǫ
(1)
qRǫ

(2)
qL − ǫ(1)

qq ǫ
(2)
RL + ǫ

(1)
Rqǫ

(2)
qL

)

+
(

ǫ
(1)
qKǫ

(2)
qK + ǫ(1)

qq ǫ
(2)
KK + ǫ

(1)
Kqǫ

(2)
Kq + ǫ

(1)
KKǫ(2)

qq − ǫ
(1)
Kqǫ

(2)
qK − ǫ

(1)
qKǫ

(2)
Kq

)]}

K[6] = kR
{

t
[(

ǫ
(1)
LLǫ

(2)
Rq +ǫ

(1)
LLǫ

(2)
qR−ǫ

(1)
qRǫ

(2)
LL−ǫ

(1)
Rqǫ

(2)
LL−ǫ

(1)
Lq ǫ

(2)
RL+ǫ

(1)
LRǫ

(2)
qL −ǫ

(1)
qL ǫ

(2)
LR+ǫ

(1)
RLǫ

(2)
Lq

)

+
(

ǫ
(1)
LKǫ

(2)
qK − ǫ

(1)
qKǫ

(2)
LK + ǫ

(1)
KLǫ

(2)
Kq − ǫ

(1)
Kqǫ

(2)
KL

)]

−s
[(

ǫ
(1)
LRǫ

(2)
Lq −ǫ

(1)
Lq ǫ

(2)
LR−ǫ

(1)
qL ǫ

(2)
RL+ǫ

(1)
RLǫ

(2)
qL +ǫ

(1)
LRǫ

(2)
qL −ǫ

(1)
Lq ǫ

(2)
RL−ǫ

(1)
qL ǫ

(2)
LR+ǫ

(1)
RLǫ

(2)
Lq

)

+
(

ǫ
(1)
Lq ǫ

(2)
KK + ǫ

(1)
qL ǫ

(2)
KK − ǫ

(1)
KKǫ

(2)
Lq − ǫ

(1)
KKǫ

(2)
qL

)]}

K[8] = 2skRkR
[(

ǫ
(1)
LLǫ

(2)
LR + ǫ

(1)
LRǫ

(2)
LL + ǫ

(1)
LLǫ

(2)
RL + ǫ

(1)
RLǫ

(2)
LL

)

+
(

ǫ
(1)
LKǫ

(2)
LK−ǫ

(1)
LLǫ

(2)
KK−ǫ

(1)
KKǫ

(2)
LL+ǫ

(1)
KLǫ

(2)
KL+ǫ

(1)
LKǫ

(2)
KL+ǫ

(1)
KLǫ

(2)
LK

)]

(C.48)

where K[r] is the polarization factor corresponding to H[r] (r = 0, 2, 4, 6, 8). The scattering

amplitude is then simply

A = −2πα3

28π2
A(s, t)K = − α3

27π
A(s, t)K, (C.49)

where the 2π comes from the σ integral in eq. (4.1) (since the zero modes do not depend

on σ) and α3 is the overall constant introduced in the same equation (and which we are

going to determine later in the appendix).

C.4 Comparison with known results

The scattering of massless strings from D-branes has been studied in detail [27, 28]. Here

we follow the work of Myers and Garousi who give, for NS-NS states scattering from a

p-brane the amplitude

A = −i
κTp

2
A(s, t)K (C.50)

where A(s, t) is the same function defined in eq. (C.12), κ the closed string coupling constant

and Tp is the D-brane tension. The kinematic factor K is given by

K =
t2

4
Tr (ǫT

1 ǫ2)+
s2

4
Tr (ǫ1D)Tr (ǫ2D)+

st

4

[

Tr (ǫT
1 ǫ2)+Tr (ǫ1D)Tr (ǫ2D)−Tr (Dǫ1Dǫ2)

]

+
s

2

[

Tr (ǫ1D) (p1ǫ2Dp2 + p2Dǫ2p1 + p2Dǫ2Dp2) + p1Dǫ1Dǫ2Dp2 − p2Dǫ2ǫ
T
1 Dp1

+ Tr (ǫ2D) (p1Dǫ1p2 + p2ǫ1Dp1 + p1Dǫ1Dp1) + p2Dǫ2Dǫ1Dp1 − p1DǫT
1 ǫ2Dp2

]

− t

2

[

Tr (ǫ1D)p1ǫ2p1 − p1ǫ2Dǫ1p2 − p1ǫ2ǫ
T
1 Dp1 − p1ǫ

T
2 ǫ1Dp1 − p1ǫ2ǫ

T
1 p2

+ Tr (ǫ2D)p2ǫ1p2 − p2ǫ1Dǫ2p1 − p2ǫ1ǫ
T
2 Dp2 − p2ǫ

T
1 ǫ2Dp2 − p2ǫ

T
1 ǫ2p1

]

(C.51)
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where p1,2 are the momenta of the initial and final particles, Dµν is a diagonal matrix with

diagonal element equal to 1 or −1 according if µ is parallel or perpendicular to the D-brane.

Finally (ǫ1)µν , (ǫ2)µν are the polarizations of the initial and final particles. The result (C.51)

can be obtained7 from equations (11), (12) and (13) of [28] after replacing, according to

our conventions q2 → − t
4 and t → s. Another, alternative way to compute the kinematic

factor K is, as also shown in [28], to start from the four open string kinematic factor [10]

K =−(p2p3)(p2p4)(ζ1ζ2)(ζ3ζ4)−(p2p3)(p3p4)(ζ1ζ3)(ζ2ζ4)−(p3p4)(p2p4)(ζ1ζ4)(ζ2ζ3) (C.52)

−(p1p2)[(p4ζ1)(p2ζ3)(ζ2ζ4)+(p3ζ2)(p1ζ4)(ζ1ζ3)+(p3ζ1)(p2ζ4)(ζ2ζ3)+(p4ζ2)(p1ζ3)(ζ1ζ4)]

−(p1p3)[(p4ζ1)(p3ζ2)(ζ3ζ4)+(p2ζ3)(p1ζ4)(ζ1ζ2)+(p2ζ1)(p3ζ4)(ζ2ζ3)+(p4ζ3)(p1ζ2)(ζ1ζ4)]

−(p1p4)[(p2ζ1)(p4ζ3)(ζ2ζ4)+(p3ζ4)(p1ζ2)(ζ1ζ3)+(p3ζ1)(p4ζ2)(ζ3ζ4)+(p2ζ4)(p1ζ3)(ζ1ζ2)]

and replace8 p4 → Dp1, p3 → Dp2, ζ1 ⊗ ζ4 → ǫ1D and ζ2 ⊗ ζ3 → ǫ2D. To convert to the

SU(4) × U(1) notation we should now replace in (C.51) or alternatively (C.52)

p1 = (k, q1), p2 = (−k, q2), p3 = (−k,−q2), p4 = (k,−q1) (C.53)

and the scalar products

(q1ζ1) = −(kζ1), (q1ζ4) = (kζ4), (q2ζ2) = (kζ2), (q2ζ3) = −(kζ3) (C.54)

which follows from (piζi) = 0, p2
i = 0 and q = q1 + q2 = p1 + p2. The result is then

expanded using that

(vw) = vRwL + vLwR + vIwI (C.55)

which gives

K=
t2

4

[

ǫ
(1)
IKǫ

(2)
IK + ǫ

(1)
LKǫ

(2)
RK + ǫ

(1)
RKǫ

(2)
LK + ǫ

(1)
KRǫ

(2)
KL + ǫ

(1)
KLǫ

(2)
KR

+ǫ
(1)
LRǫ

(2)
RL + ǫ

(1)
LLǫ

(2)
RR + ǫ

(1)
RRǫ

(2)
LL + ǫ

(1)
RLǫ

(2)
LR

]

+
s2

4

[

ǫ
(1)
II ǫ

(2)
KK − ǫ

(1)
LRǫ

(2)
KK − ǫ

(1)
RLǫ

(2)
KK − ǫ

(1)
KKǫ

(2)
RL − ǫ

(1)
KKǫ

(2)
LR + ǫ

(1)
LRǫ

(2)
RL

+ǫ
(1)
LRǫ

(2)
LR + ǫ

(1)
RLǫ

(2)
RL + ǫ

(1)
RLǫ

(2)
LR

]

+
st

4

[

ǫ
(1)
IKǫ

(2)
IK + ǫ

(1)
II ǫ

(2)
KK − ǫ

(1)
IKǫ

(2)
KI − 2ǫ

(1)
RLǫ

(2)
LR − 2ǫ

(1)
LRǫ

(2)
RL

]

+
t

2

[

ǫ
(1)
qKǫ

(2)
qK−ǫ

(1)
qKǫ

(2)
Kq−ǫ

(1)
Kqǫ

(2)
qK+ǫ(1)

qq ǫ
(2)
KK+ǫ

(1)
KKǫ(2)

qq +ǫ
(1)
Kqǫ

(2)
Kq+ǫ

(1)
qL ǫ

(2)
qR+ǫ

(1)
qL ǫ

(2)
Rq +ǫ

(1)
Rqǫ

(2)
qL

−ǫ(1)
qq ǫ

(2)
RL−ǫ

(1)
RLǫ(2)

qq +ǫ
(1)
Rqǫ

(2)
Lq +ǫ

(1)
qRǫ

(2)
qL +ǫ

(1)
qRǫ

(2)
Lq +ǫ

(1)
Lq ǫ

(2)
qR−ǫ(1)

qq ǫ
(2)
LR−ǫ

(1)
LRǫ(2)

qq +ǫ
(1)
Lq ǫ

(2)
Rq

]

+2skLkL

[

ǫ
(1)
RKǫ

(2)
RK + ǫ

(1)
RKǫ

(2)
KR + ǫ

(1)
KRǫ

(2)
RK − ǫ

(1)
RRǫ

(2)
KK − ǫ

(1)
KKǫ

(2)
RR + ǫ

(1)
KRǫ

(2)
KR

+ǫ
(1)
LRǫ

(2)
RR + ǫ

(1)
RRǫ

(2)
LR + ǫ

(1)
RRǫ

(2)
RL + ǫ

(1)
RLǫ

(2)
RR

]

(C.56)

7This is not completely true. We replaced two terms p1ǫ2ǫ
T
1 p2 → p2ǫ

T
1 ǫ2p1 and p2Dǫ2ǫ

T
1 Dp→p1DǫT

1 ǫ2Dp2

since [28] seems to contain a typo.
8Here we have some factors of two discrepancies with [28] which we attribute to some typos in [28].
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+2skRkR

[

ǫ
(1)
LKǫ

(2)
LK + ǫ

(1)
LKǫ

(2)
KL + ǫ

(1)
KLǫ

(2)
LK − ǫ

(1)
LLǫ

(2)
KK − ǫ

(1)
KKǫ

(2)
LL + ǫ

(1)
KLǫ

(2)
KL

+ǫ
(1)
RLǫ

(2)
LL + ǫ

(1)
LLǫ

(2)
RL + ǫ

(1)
LLǫ

(2)
LR + ǫ

(1)
LRǫ

(2)
LL

]

+skL

[

−ǫ
(1)
qRǫ

(2)
KK − ǫ

(1)
Rqǫ

(2)
KK + ǫ

(1)
KKǫ

(2)
qR + ǫ

(1)
KKǫ

(2)
Rq

+ǫ
(1)
qRǫ

(2)
RL + ǫ

(1)
qRǫ

(2)
LR + ǫ

(1)
Rqǫ

(2)
RL + ǫ

(1)
Rqǫ

(2)
LR − ǫ

(1)
RLǫ

(2)
qR − ǫ

(1)
LRǫ

(2)
qR − ǫ

(1)
LRǫ

(2)
Rq − ǫ

(1)
RLǫ

(2)
Rq

]

+skR

[

−ǫ
(1)
qL ǫ

(2)
KK − ǫ

(1)
Lq ǫ

(2)
KK + ǫ

(1)
KKǫ

(2)
qL + ǫ

(1)
KKǫ

(2)
Lq

+ǫ
(1)
qL ǫ

(2)
LR + ǫ

(1)
qL ǫ

(2)
RL + ǫ

(1)
Lq ǫ

(2)
LR + ǫ

(1)
Lq ǫ

(2)
RL − ǫ

(1)
LRǫ

(2)
qL − ǫ

(1)
RLǫ

(2)
qL − ǫ

(1)
RLǫ

(2)
Lq − ǫ

(1)
LRǫ

(2)
Lq

]

−tkL

[

ǫ
(1)
qKǫ

(2)
RK − ǫ

(1)
RKǫ

(2)
qK + ǫ

(1)
Kqǫ

(2)
KR − ǫ

(1)
KRǫ

(2)
Kq

+ǫ
(1)
qRǫ

(2)
RL + ǫ

(1)
qL ǫ

(2)
RR − ǫ

(1)
LRǫ

(2)
Rq − ǫ

(1)
RRǫ

(2)
Lq − ǫ

(1)
RRǫ

(2)
qL − ǫ

(1)
RLǫ

(2)
qR + ǫ

(1)
Rqǫ

(2)
LR + ǫ

(1)
Lq ǫ

(2)
RR

]

−tkR

[

ǫ
(1)
qKǫ

(2)
LK − ǫ

(1)
LKǫ

(2)
qK + ǫ

(1)
Kqǫ

(2)
KL − ǫ

(1)
KLǫ

(2)
Kq

+ǫ
(1)
qL ǫ

(2)
LR + ǫ

(1)
qRǫ

(2)
LL − ǫ

(1)
RLǫ

(2)
Lq − ǫ

(1)
LLǫ

(2)
Rq − ǫ

(1)
LLǫ

(2)
qR − ǫ

(1)
LRǫ

(2)
qL + ǫ

(1)
Lq ǫ

(2)
RL + ǫ

(1)
Rqǫ

(2)
LL

]

where, by a slight abuse of notation, we used the subindex q to denote contraction with

qI , for example, ǫ
(1)
qR = qIǫ

(1)
IR, etc. Comparison with eq. (C.48) shows a perfect agreement

of the polarization factor K. The overall coefficient would agree if we choose

α3

27π
=

1

2
κT3 (C.57)

If we use from [28] and [26] that

T3 =
√

π, κ2 =
1

2
(2π)7g2α′4 (C.58)

we get

κT3 = 25π4gs (C.59)

where we set α′ = 2 as used here and in [28]. This fixes the normalization coefficient

α3 = 211π5 (C.60)

which is the correct value for α3 as we will discuss in more detail in the next subsection.

Notice also that, in our case, the string coupling constant gs appears in λ = gsN which

multiplies P .

C.5 Overall normalization

The overall normalization of the amplitude determines the coefficient α3 in eq. (4.1). The

calculation is tantamount to determine the tension of the D-brane and requires some extra

material to which we devote this subsection. The final result is that α3 = 211π5 in units

where α′ = 2. This is the same as we obtained in the previous section using the results of [28]

and [26]. Here we summarize how it is obtained, namely by normalizing the amplitude to

agree, at large distances, with the classical scattering from the corresponding D3-brane

supergravity background. Notice that this is the only point where we make any reference
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to the existence of such background. All the rest we derived from summing the planar

diagrams of the open string theory. In principle it should be possible to determine the

correct normalization, namely the tension of the D-brane, from an open string argument

alone. It appears a difficult task however and we do not attempt to do so here.

The supergravity solution we use in paper (I)for the D3-brane has a metric

ds2 =
1√
f

(

dX+dX− + dX2
)

+
√

fdY 2, f = 1 + 4πα′2 gsN

Y 4
(C.61)

Far from the D-brane, the metric is

gµν = ηµν − 2πα′2 gsN

Y 4
Dµν (C.62)

where Dµν is a diagonal matrix with diagonal elements equal to one for directions parallel

to the brane and minus one for directions perpendicular. Consider now the action of a

B-field in this background:9

S = −3

2

∫

d10x
√−gH2e−

√
2κφ (C.63)

where

Hµνρ =
1

3
(∂µBνρ + ∂ρBµν + ∂νBρµ) (C.64)

Expanding for small hµν and setting the dilaton φ to zero we get for the term linear in hµν

S = −3

2

∫

d10x

[

1

2
ηµνhµνH2 − 3hµνHµαβH αβ

ν

]

(C.65)

Now we are going to consider, for simplicity, only transverse B-fields and also, since we are

interested in the D-brane, assume that hµν = h(y2)Dµν . We obtain

S = −3

∫

d10xh(y2)HIJKHIJK (C.66)

where I, J,K = 1 . . . 6 denote transverse indices. This vertex corrects the propagator of

the B-field by an amount

A⊥
BB = 6h̃(q)H̃IJKH̃IJK (C.67)

where there is a factor of two from the two different ways to contract the fields to the

external states and we have introduced the Fourier transforms

h̃(q) =

∫

d6yh(y)eiqy, H̃IJK =
i

3
(pIBJK + pKBIJ + pJBKI) (C.68)

with BIJ the B-field in momentum representation. The matrix element of the perturbation

A⊥
BB determines the scattering amplitude of transverse B-fields by the D-brane. Using,

from eq. (C.62), that h(y) = −2πα′2 gsN
Y 4 we get

A⊥
BB = −6gsN

8π4α′2

s
H̃IJKH̃IJK, s = −q2 (C.69)

9As in [28] we consider a B-field for simplicity.
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as the supergravity result. In our previous calculation, the kinematic factor K, for this

situation reduces to

K = t

[(

s

2
+

t

4

)

ǫ
(1)
IKǫ

(2)
IK + 2ǫ

(1)
qKǫ

(2)
qK

]

(C.70)

Using that HIJK = i
3 (pIǫJK + pKǫIJ + pJǫKI) we can write

K = 3tHIJKHIJK (C.71)

Far from the brane, in momentum space, means that the momentum transfer q2 = −s is

small. In that limit we have

A(s, t) =
Γ
(

− s
2

)

Γ
(

− t
2

)

Γ
(

1 − s
2 − t

2

) ≃s→0
4

st
(C.72)

which gives, from Garousi and Myers paper

A⊥
BB ≃ −6i

s
κT3HIJKHIJK (C.73)

and from our calculation

A⊥
BB ≃ −6i

s

α3

26π
HIJKHIJK (C.74)

Therefore, matching all the results, including the supergravity one requires that we set

κT3 = gsN
α3

26π
= 8π4α′2gsN (C.75)

which, with α′ = 2, fixes α3 = 211π5 and κT3 = 25π4gsN . This verifies the result (C.60).

Finally note that inverting eq. (C.68) gives

h(y) =

∫

d6q

(2π)6
e−iqyh̃(q) (C.76)

which shows that, in these conventions, the integration measure for q contains (2π)−6
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