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Abstract: Kubo’s formula relates bulk viscosity to the retarded Green’s function of the

trace of the energy-momentum tensor. Using low energy theorems of QCD for the latter

we derive the formula which relates the bulk viscosity to the energy density and pressure of

hot matter. We then employ the available lattice QCD data to extract the bulk viscosity

as a function of temperature. We find that close to the deconfinement temperature bulk

viscosity becomes large, with viscosity-to-entropy ratio ζ/s ∼ 1.
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One of the most striking results coming from RHIC heavy ion program is the obser-

vation that hot QCD matter created in Au − Au collisions behaves like an almost ideal

liquid rather than a gas of quarks and gluons [1 – 5]. Indeed, hydrodynamical simulations

of nuclear collisions at RHIC (see e.g. [6, 7]) indicate that the shear viscosity of QCD

plasma is very low even though a quantitative determination is significantly affected by

the initial conditions [8]. This observation does not yet have any theoretical explanation

due to an enormous complexity of QCD in the regime of strong coupling. This is why the

information inferred from the studies of gauge theories treatable at strong coupling such as

N = 4 SUSY Yang-Mills theory is both timely and valuable. The study of shear viscosity

in this theory using the holographic AdS/CFT correspondence has indicated that the shear

viscosity η at strong coupling is small, with the viscosity-to-entropy ratio not far from the

conjectured bound of η/s = 1/4π [9, 10] .

However N = 4 SUSY Yang-Mills theory is quite different from QCD; in particu-

lar it possesses exact conformal invariance whereas the breaking of conformal invariance

in QCD is responsible for the salient features of hadronic world including the asymp-

totic freedom [11], confinement, and deconfinement phase transition at high temperature.1

Mathematically, conformal invariance implies the conservation of dilatational current sµ:

∂µsµ = 0. Since the divergence of dilatational current in field theory is equal to the trace of

the energy-momentum tensor ∂µsµ = θµ
µ, in conformally invariant theories θµ

µ = 0. In QCD,

in the chiral limit of massless quarks the trace of the energy-momentum tensor is also equal

to zero at the classical level. However quantum effects break conformal invariance [13, 14]:

∂µsµ = θµ
µ =

∑

q

mq q̄q +
β(g)

2g
Tr GµνGµν , (1)

where β(g) is the QCD β-function, which governs the behavior of the running coupling:

µ
dg(µ)

dµ
= β(g); (2)

note that we have included the coupling g in the definition of the gluon fields and have not

written down explicitly the anomalous dimension correction to the quark mass term.

How would this breaking of conformal invariance manifest itself in the transport prop-

erties of QCD plasma? How big are the effects arising from it? The transport coefficient

of the plasma which is directly related to its conformal properties is the bulk viscosity;

indeed, it is related by Kubo’s formula to the correlation function of the trace of the

energy-momentum tensor:

ζ =
1

9
lim
ω→0

1

ω

∫ ∞

0

dt

∫

d3r eiωt 〈[θµ
µ(x), θµ

µ(0)]〉 . (3)

It is clear from (3) that for any conformally invariant theory with θµ
µ ≡ θ = 0 the bulk

viscosity should vanish.

1The effects of conformal symmetry breaking on bulk viscosity of SUSY Yang-Mills theory have been

studied in the framework of the AdS/CFT correspondence in ref [12].
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The perturbative evaluation of the bulk viscosity ζ of QCD plasma has been performed

recently [15], and yielded a very small value, with ζ/s ∼ 10−3 at αs = 0.3. The parametric

smallness of bulk viscosity can be easily understood from eqs (3) and (1) which show that

ζ ∼ α2
s, in accord with the result of ref. [15]. This would seem to suggest that bulk viscosity

effects in the quark-gluon plasma are unimportant. However, perturbative expansions at

temperatures close to the critical one are not applicable, so at moderate temperatures

one has to rely on lattice QCD calculations. Lattice calculations of the equation of state

become increasingly precise; however, the direct calculations of transport coefficients have

been notoriously difficult. Two calculations have been reported for shear viscosity [16, 17],

including a recent high statistics study [17]. Both indicate that η/s is not much higher

than the conjectured bound of 1/4π. Fortunately, the correlation function of the trace of

the energy-momentum tensor in QCD is constrained by the low-energy theorems, which

do not rely on perturbation theory. They can thus be used to express the bulk viscosity

in terms of the “interaction measure” 〈θ〉 = E − 3P where E is the energy density and P

is the pressure, which are measured on the lattice with high precision. Such a study is the

subject of this Letter.

The calculation of the bulk viscosity starts with the Kubo’s formula (3) (we follow

the definitions and notations of [18]). Introducing the retarded Green’s function we can

re-write (3) as

ζ =
1

9
lim
ω→0

1

ω

∫ ∞

0

dt

∫

d3r eiωt iGR(x) =
1

9
lim
ω→0

1

ω
iGR(ω,~0) = −

1

9
lim
ω→0

1

ω
ImGR(ω,~0) .

(4)

The last equation follows from the fact that due to P-invariance, function ImGR(ω,~0) is

odd in ω while Re GR(ω,~0) is even in ω. Let us define the spectral density

ρ(ω, ~p) = −
1

π
ImGR(ω, ~p) . (5)

Using the Kramers-Kronig relation the retarded Green’s function can be represented as

GR(ω, ~p) =
1

π

∫ ∞

−∞

ImGR(u, ~p)

u − ω − iε
du =

∫ ∞

−∞

ρ(u, ~p)

ω − u + iε
du (6)

The retarded Green’s function GR(ω, ~p) of a bosonic excitation is related to the Eu-

clidean Green’s function GE(ω, ~p) by analytic continuation

GE(ω, ~p) = −GR(iω, ~p) , ω > 0 . (7)

Using (6) and the fact that ρ(ω, ~p) = −ρ(−ω, ~p) we recover

GE(0,~0) = 2

∫ ∞

0

ρ(u,~0)

u
du . (8)

As we discussed above, the scale symmetry of QCD lagrangian is broken by quantum

vacuum fluctuations. As a result the trace of the energy momentum tensor θ acquires a

non-zero vacuum expectation value. The correlation functions constructed out of operators
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θ(x) satisfy a chain of low energy theorems (LET) which are a consequence of the renormal-

ization group invariance of observable quantities [19]. These low-energy theorems entirely

determine the dynamics of the effective low-energy theory. This effective theory has an

elegant geometrical interpretation [20]; in particular, gluodynamics can be represented as

a classical theory formulated on a curved (conformally flat) space-time background [21].

At finite temperature, the breaking of scale invariance by quantum fluctuations results in

θ = E −3P 6= 0 clearly observed on the lattice for SU(3) gluodynamics [22]; the presence of

quarks [23] including the physical case of two light and a strange quark [24], or considering

large Nc [25] does not change this conclusion.

The LET of ref. [19, 20] were generalized to the case of finite temperature in [26, 27].

The lowest in the chain of relations reads (at zero baryon chemical potential):

GE(0,~0) =

∫

d4x 〈Tθ(x), θ(0)〉f =

(

T
∂

∂T
− 4

)

〈θ〉fT ; (9)

the superscript “f ” stands for the finite part, as we shall now explain. The derivation

of these low-energy theorems is based upon the renormalization group invariance of the

physical expectation value of θ which implies that the r.h.s. of (9) must not depend on the

renormalization scale M0. This means that the renormalization scale M0 can only enter

in the RG-invariant combination; at one-loop level, this is [M0 exp(−8π2/bg2
0
)]d, where b is

the coefficient of the beta-function, g0 is the bare coupling constant and d is the dimension

of space-time (canonical dimension of θ). Perturbation theory at T = 0 on the other hand

would not obey this requirement; it gives the divergent contribution ∼ Λ4
UV

, where ΛUV is

the ultra-violet cutoff. Therefore, the finite expectation value of 〈θ〉fT must be defined as

the difference between the (infinite) expectation value of 〈θ〉T and the (infinite) expectation

value of 〈θ〉p.t.
T=0

computed at T = 0 in perturbation theory [19, 26, 27]:

〈θ〉fT = 〈θ〉T − 〈θ〉p.t.
T=0

. (10)

To relate the thermal expectation value of 〈θ〉T to the quantity (E −3P )LAT computed

on the lattice, we should also keep in mind that

(E − 3P )LAT = 〈θ〉T − 〈θ〉0, (11)

i.e. the zero-temperature expectation value of the trace of the energy-momentum tensor

〈θ〉0 = −4|ǫv | (12)

has to be subtracted; it is related to the vacuum energy density ǫv < 0. Now, using (8),

(9) and (11) we can write down the following spectral representation:

2

∫ ∞

0

ρf (ω,~0)

ω
dω = −

(

4 − T
∂

∂T

)

〈θ〉fT , (13)

where the spectral density ρf (ω,~0) is the difference between the physical, finite tempera-

ture, and perturbative, zero temperature, spectral densities of the correlation function of

θ:

ρf (ω,~0) = ρ(ω,~0) − ρp.t.
T=0

(ω,~0). (14)
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Figure 1: The ratio of bulk viscosity to the entropy density for SU(3) gluodynamics. We have

used |ǫv| = 0.62 T 4

c and Tc = 0.28GeV [22].

At leading order, the perturbative spectral density behaves2 as ρp.t.
T=0

(ω,~0) ∼ α2
s ω4. At high

frequencies ω ≫ T the physical spectral density should be the same as at zero tempera-

ture, and in an asymptotically free theory will become perturbative, so that the difference

ρf (ω,~0) will vanish.

Since the thermal expectation value 〈θ〉T is related to the ”interaction measure”

(E − 3P )LAT computed on the lattice, we can derive the following sum rule

2

∫ ∞

0

ρf (ω,~0)

ω
du = −

(

4 − T
∂

∂T

)

〈θ〉fT = T 5 ∂

∂T

(E − 3P )LAT

T 4
+ 16|ǫv | , (15)

This exact relation is the main result of our paper.

We would like to emphasize again that the integral over the frequency on the l.h.s. of

(13) is convergent. This follows from a general theorem of finite-temperature field theory

(see e.g. [29], section 3.5) stating that the renormalization at zero temperature suffices to

make the theory finite at finite temperatures. Therefore it is sufficient to regularize the

correlation function of θ at T = 0. Indeed, the finite-temperature part of the correlation

function falls off as exp(−ω/T ) at large ω ≫ T [29], so no temperature-dependent term

in the spectral density can survive at large frequencies ω. Since the UV divergent part

of the T = 0 correlation function at large frequencies is given by perturbation theory, the

subtraction of ρp.t.
T=0

(ω,~0) must make the integral in (15) convergent.

In order to extract the bulk viscosity ζ from (15) we need to make an ansatz for the

spectral density ρf . In the small frequency region, we will assume the following ansatz

ρf (ω,~0)

ω
=

9 ζ

π

ω2
0

ω2
0

+ ω2
, (16)

2For an explicit perturbative expression and a discussion of the properties of ρ(ω,~0) at small frequencies

see e.g. [28].

– 4 –



J
H
E
P
0
9
(
2
0
0
8
)
0
9
3

which satisfies (4) and (5). Substituting (16) in (13) we arrive at

ζ =
1

9ω0

{

T 5 ∂

∂T

(E − 3P )LAT

T 4
+ 16|ǫv |

}

. (17)

A peculiar feature of this result is that the bulk viscosity is linear in the difference E − 3P ,

rather than quadratic as naively implied by the Kubo’s formula. This is similar to the

strong coupling result obtained for the non-conformal supersymmetric Yang-Mills gauge

plasma [12].

As we already discussed, at some frequency ω ≫ T the spectral density ρ(ω,~0) should

approach the spectral density at zero temperature [29], and in an asymptotically free

theory will thus be given by the zero-temperature perturbation theory. Because of this the

integral over the difference given by (14) will always converge. Let us define the parameter

ω0 = ω0(T ) as a scale above which the contribution of the difference given by (14) to the

sum rule becomes negligible. On dimensional grounds, we expect it to be proportional to

the temperature, ω0 ∼ T .

In our calculation, we estimate it as the scale at which the lattice calculations of the

running coupling [30] coincide with the perturbative expression. In the region 1 < T/Tc < 3

we find ω ≈ (T/Tc) 1.4 GeV. Now we are ready to use (17) to extract the bulk viscosity

from the lattice data.

The results of the numerical calculation using as an input the high precision lattice

data [22] are displayed in figure 1. One can see that away from Tc the bulk viscosity is small,

in accord with the expectations based on the perturbative results [15]. However, close to

Tc the rapid growth of E − 3P causes a dramatic increase of bulk viscosity. Basing on the

lattice results [16, 17] which indicate that the shear viscosity remains small close to Tc,

we expect that bulk viscosity will be the dominant correction to the ideal hydrodynamical

behavior in the vicinity of the deconfinement phase transition.

Let us now discuss the uncertainties associated with our method. Since the basic

relation (13) is exact, all of the uncertainties are associated with the ansatz (16) for the

spectral density. Admittedly, we do not have a good theoretical control over the form of

the spectral density, and this results in some numerical uncertainty in the value of the

extracted bulk viscosity. Nevertheless, the rapid increase of ζ/s close to Tc is a reflection of

the sharp growth of (E − 3P )LAT/T 4 present in the lattice data and is a general feature of

our result. Moreover, lattice studies of the spectral densities in the vector channel indicate

that the ansatz (16) is a reasonable description of the low-frequency behavior [31].

Since bulk viscosity describes the response of a system to expansion, its rapid increase

near the QCD phase transition would slow down the expansion of hot matter produced

in heavy ion collisions and terminate the ”perfect liquid” hydrodynamical behavior of the

plasma at the hadronization point, producing extra entropy. Likewise, the Early Universe

would perhaps slow down its expansion and produce additional entropy at the QCD phase

transition due to the presence of large bulk viscosity. A rapid increase in the correlation

function of the trace of the energy-momentum tensor most likely indicates the presence of a

light scalar color-singlet gluonic excitation in QCD matter close to the phase transition. We

– 5 –
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leave a detailed study of the dynamics of this mode and its phenomenological implications

for the future.

We thank F. Karsch for providing us with the numerical lattice data and helpful discus-

sions. We acknowledge useful conversations with A. Buchel, J. Ellis, J. Kapusta, R. Lacey,

G. Moore, P. Petreczky, A. Starinets, D. Teaney, A. Vainshtein and H. Warringa. The

work of D.K. was supported by the U.S. Department of Energy under Contract No. DE-

AC02-98CH10886. K.T. is grateful to RIKEN, BNL, and the U.S. Department of Energy

(Contract No. DE-AC02-98CH10886) for providing facilities essential for the completion

of this work.

Note added: after the submission of our manuscript to the preprint database, a number

of important developments have taken place, and we would like to briefly review them.

The lattice study of bulk viscosity has been performed by Meyer [32], indicating that

the bulk viscosity of quark-gluon plasma indeed rapidly increases near the deconfinement

temperature. The sum rule analysis presented here has been extended to QCD with almost

physical quark masses [36], using the recent lattice results on the equation of state [37].

Bulk viscosity has also excited considerable attention in the context of gauge theory-gravity

duality; a computation of bulk viscosity requires a deformation of the conformal metric of

AdS5 space, and has been performed by Gubser et al [33, 34]. The authors also observe an

increase of bulk viscosity near the deconfinement temperature [33, 34], with the numerical

values somewhat smaller than reported in this paper. Buchel [35] has proposed a lower

bound on bulk viscosity in the context of a holographic approach.
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