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Abstract: We study baryons of arbitrary isospin in a stringy holographic QCD model.

In this D4-D8 holographic setting, the flavor symmetry is promoted to a gauge symmetry

in the bulk, and produces, as KK modes of the gauge field, pions and spin one mesons of

low energy QCD. Baryons of arbitrary isospins are represented as instanton solitons with

isospin and spin quantum numbers locked, in a manner similar to the Skyrmion model.

The soliton picture leads to a natural effective field theory of arbitrary baryons interacting

with mesons. Couplings of baryons to axial mesons, including pions, are dominated in

the large Nc limit by a direct coupling to the flavor field strength in five dimensions. We

delineate the relevant couplings and determine their strengths. This work generalizes part

of refs. [8, 10] to all excited baryons. Due to technical difficulties in introducing relativistic

higher spin fields, we perform all computations in the nonrelativistic regime, which suffices

for the leading Nc predictions.
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1. A holographic QCD

The model starts with a stack of Nc D4 branes compactified on a thermal circle. Because

the fermions are given anti-periodic boundary condition, the massless part of the theory

is pure U(Nc) Yang-Mills theory. Scalars would be also massless classically but due to the

broken supersymmetry they would acquire mass perturbatively, whereas the gauge fields

remain massless, protected by the gauge symmetry.

Let us first introduce notations for various spacetime coordinates and indices. The

Minkowskii coordinates in which the QCD lives and in which the noncompact part of Nc

D4 branes lives, will be denoted as

xµ, µ = 0, 1, 2, 3 ,
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while the spatial coordinates will be labelled as

xi, i = 1, 2, 3 or xa, a = 1, 2, 3 .

We will be forced to mix a, b, c indices, usually reserved as SU(2) gauge indices, and the

spatial i, j, k due to the spin-isospin mixing of the baryon. The holographic direction pro-

vides another spatial direction, whose coordinate will be either U or w. w is the particular

choice, where the relevant five-dimensional geometry has a conformally flat coordinate

(xµ, w). Adding this fifth coordinate, we have

xM̂ , M̂ = 0, 1, 2, 3, 4 or xM , M = 0, 1, 2, 3, 4 ,

and

xm, m = 1, 2, 3, 4 ,

where x4 = w. The hatted indices, as in xM̂ , are raised and lowered using the proper

induced (conformally flat) metric on the D-brane, whereas unhatted indices are raised and

lowered using the flat metric. The rest of the stringy ten dimensions are spanned by S4

and one angle, τ , which is the thermal circle wrapped by the Nc D4 branes.

In the large Nc limit, the dynamics of these D4 is dual to a closed string theory in some

curved background with flux in accordance with the general AdS/CFT idea [1]. In the large

’t Hooft coupling limit, λ ≡ g2
YMNc ≫ 1, and neglecting the gravitational back-reaction

from the D8 branes, the metric is [2]

ds2 =

(
U

R

)3/2 (
ηµνdx

µdxν + f(U)dτ2
)

+

(
R

U

)3/2( dU2

f(U)
+ U2dΩ2

4

)
, (1.1)

with R3 = πgsNcl
3
s and f(U) = 1 − (UKK/U)3. The coordinate τ is compactified as

τ = τ + δτ with δτ = 4πR3/2/(3U
1/2
KK). The lowest energy sector of this dual geometry

encodes low energy theory of pure SU(Nc) Yang-Mills theory. Glueball spectrum from this

dual setup has been computed with some successful predictions against lattice results [3, 4].

To add mesons, we introduce the NF D8 branes sharing the coordinates x0, x1, x2, x3

with the D4 branes [5]. This allows massless quark degrees of freedom as open strings

attached to both the D4 and D8 branes. As the D4’s are replaced by the geometry, however,

the 4-8 open strings are paired into 8-8 open strings, which are naturally identified as bi-

quark mesons. From the viewpoint of D8 branes, these mesons arise out of a U(NF )

Yang-Mills theory with the extra Chern-Simons coupling,

µ8

∫ ∑
Cp+1 ∧ Tr e2πα′F , (1.2)

on the D8 branes. We defined µp = 2π/(2πls)
p+1, and l2s = α′. Cp+1’s are the antisymmet-

ric Ramond-Ramond fields.

The induced metric on the D8 brane is

g8+1 =

(
U

R

)3/2

(ηµνdx
µdxν) +

(
R

U

)3/2 ( dU2

f(U)
+ U2dΩ2

4

)
. (1.3)
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A useful choice of the coordinate is1

w =

∫ U

UKK

R3/2dU ′

√
U ′3 − U3

KK

. (1.5)

with which we have

g8+1 =
U3/2(w)

R3/2

(
dw2 + ηµνdx

µdxν
)

+
R3/2

U1/2(w)
dΩ2

4 . (1.6)

The noncompact part of the D8 brane worldvolume is conformally equivalent to an interval

[−wmax, wmax] times R3+1 with

wmax =

∫ ∞

0

R3/2dU√
U3 − U3

KK

=
1

MKK

3

2

∫ ∞

1

dŨ√
Ũ3 − 1

(1.7)

which makes the search for exact instanton solution rather problematic.

Let us list parameters of the background. We have

R3 =
g2
YMNcl

2
s

2MKK
, UKK =

2g2
YMNcMKK l

2
s

9
, (1.8)

so that MKK ≡ 3U
1/2
KK/2R

3/2 . Also the nominal Yang-Mills coupling g2
YM is related to the

other parameters as

g2
YM = 2πgsMKK ls . (1.9)

where gs is the string coupling, but is not a physical parameter on its own. The low energy

parameters of this holographic theory are MKK and λ, which together with Nc sets all the

physical scales such as the QCD scale and the pion decay constant. Another important

quantity to have in mind is

lwarped
s ≡ ls × (R/UKK)3/4 ≃ 2.6

MKK

√
λ
, (1.10)

which is basically the warped string length scale. This is the string length scale as measured

by xµ coordinates at U = UKK .

In the low energy limit, the worldvolume dynamics of the D8 brane is described in

terms of a derivative expansion of the full stringy effective action. The effective action is

−1

4

∫

4+1

√−g4+1
e−ΦVS4

2π(2πls)5
trFM̂N̂FM̂N̂ +

Nc

24π2

∫

4+1
ω5(A) , (1.11)

with dω5(A) = trF3. Here VS4 is the position-dependent volume of the compact part with

VS4 =
8π2

3
R3U , (1.12)

1Another choice of the radial coordinate z defined as

U3 = U3
KK + UKKz2 , (1.4)

was used by Sakai and Sugimoto [5]. Near origin w ≃ 0, we have MKKw ≃ z/UKK .
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while the dilaton is

e−Φ =
1

gs

(
R

U

)3/4

. (1.13)

The Chern-Simons coupling arises from the second set of terms because
∫
S4 dC3 ∼ Nc takes

a quantized value, and was worked out by Sakai and Sugimoto in some detail [5].

The massless sector upon dimensional reduction to four dimension produces the Chiral

lagrangian with a Skyrme term [6]. The pion field π is conveniently expressed in the

exponentiated forms

U(x) = e2iπ(x)/fπ , ξ(x) = eiπ(x)/fπ , (1.14)

which can be found in the five-dimensional gauge field in the following expansion, with the

gauge choice Aw = 0,

Aµ(x;w) = iαµ(x)ψ0(w) + iβµ(x) +
∑

n

a(n)
µ (x)ψ(n)(w) , (1.15)

where the SU(NF ) part of the lowest lying modes are directly connected to the pion field as

αµ(x)SU(NF ) ≡
{
ξ−1, ∂µξ

}
≃ 2i

fπ
∂µπ, βµ(x)SU(NF ) ≡ 1

2

[
ξ−1, ∂µξ

]
≃ 1

2f2
π

[π, ∂µπ] ,

(1.16)

where ψ0(w) = ψ0(w(z)) = 1
π arctan

(
z

UKK

)
. Truncating to pions only, this reproduces the

Skyrme Lagrangian [6]

Lpion =
f2

π

4
tr
(
U−1∂µU

)2
+

1

32e2Skyrme

tr
[
U−1∂µU,U

−1∂νU
]2
, (1.17)

with

f2
π =

1

54π4
(g2

YMNc)NcM
2
KK , e2Skyrme ≃

54π7

61

1

(g2
YMNc)Nc

. (1.18)

For the rest of KK tower, which are vector mesons and axial vector mesons, we have the

standard kinetic term

Lfree
vectors =

∑

n

{
1

4
F (n)

µν Fµν(n) +
1

2
m2

na
(n)
µ aµ(n)

}
, (1.19)

with F (n)
µν = ∂µa

(n)
ν − ∂νa

(n)
µ , plus various interactions between them as well as with pions.

Finally there is the WZW term LWZW also, arising from the Chern-Simons term, details

of which can be found in [5].

One should in principle include other hadrons of QCD to this picture to have a complete

QCD-like theory. Glueballs are already present in the setup as the gravity part of the

holographic theory but a systematic study of glueball/meson interaction is not available

beyond the initial but interesting study in ref. [7]. On the other hand, experimentally,

proper identification of glueballs is not available so comparison with data is not easy. The

other, obvious, set of hadrons are baryons whose properties have been explored recently [8 –

10]. In this work, we wish to generalize and expand these recent studies to baryons of

arbitrary isospins.2

2Another interesting direction of study involving holographic baryon in Sakai-Sugimoto model is to

consider physics in the background of a baryon density. See for example recent works in ref. [11 – 13].
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2. A note on the effective field theory approach

We reviewed above how the low energy effective theory of mesons emerges from this holo-

graphic setup. Before we go into the discussion of baryons, it is worthwhile to clarify how

we are meant to use the effective action thus derived. The AdS/CFT correspondence in

general is meant to be a conjectured duality between an open string theory and a closed

string theory. As such, we anticipate such a correspondence at full quantum level on both

sides. In practice, however, we often must resort to large Nc and large ’t Hooft coupling

limit where we at least can compute quantities on the closed string side. This usual limit

allows us to treat the closed string side as a classical theory of gravity and its multiplets [1].

Approaches to holographic QCD so far have not escaped this limitation. As a result,

when we consider the same large Nc and large λ limit, the so-called ”bulk side” is meant to

be used classically. The effective field theory such as above is derived strictly in this spirit,

and is meant to be used classically. In other words, we should not try to renormalize it

further by computing loop diagrams. We are only allowed to compute tree-level amplitudes

using such the vertices present in the effective action. In this sense, the effective action here

is an one-particle irreducible action (1PI) with all physical excitations already incorporated,

rather than a Wilsonian effective action with a cut-off scale.

This statement has a caveat in the case of Sakai-Sugimoto type models where the

mesons are introduced as degrees of freedom on a probe brane. What the latter means is

that the loop effects of the quark-like particle are not taken into account by this holographic

prescription. In other words, such a holographic model will at best match with quenched

version of QCD. This is to be expected when Nc is large and NF is finite, since the fermion

loops would be suppressed by NF /Nc. It is only when one tries to extrapolate to the real

QCD regime of Nc = 3 that we must worry about how quenching of the fermion should be

counteracted. However, in this paper, we will work within the spirit of large Nc QCD, and

ignore this issue.

As was studied in depth recently [8, 9], the baryon appears in an entirely differ-

ent manner. One may recall that, in the conventional Chiral lagrangian approach, the

baryon appears as a nonperturbative soliton called Skyrmion. In this holographic and

five-dimensional setup, Skyrmion is replaced by another type of soliton which carries unit

Pontryagin number in the bulk. We will call it an instanton soliton. Furthermore, the

instanton soliton has been shown to shrink to a size ∼ 1/(MKK

√
λ) and be localized at the

center of the fifth direction. An important advantage in the small soliton size is that one

naturally can resort to an effective field theory language in the precisely the same sense as

the above effective action of mesons.

For large solitons, which are semi-classical objects, introduction of an effective field

could be a tricky business since we would be trying to represent a large fluffy objects in

terms of point-like quanta of an effective field. On the other hand, we know from study of

dualities that sometimes one can formulate a theory with soliton in terms of a new field

whose elementary excitation is identified with the soliton. When would it be justified? It is

justified precisely when the parameters of the original theory approaches a strong coupling

regime so that the size of the soliton becomes smaller that the typical length scales of the

– 5 –
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theory.

In this example, we have a soliton whose Compton size scales as 1/(λNcMKK) and

whose soliton size scales as 1/(
√
λMKK). In contrast, the mass scales of the mesons are

fixed at MKK . Thus, both the Compton size and the soliton size of the baryon is much

smaller than any of the meson scale. This tells us is that it is perfectly sensible to introduce

an effective field in place of the soliton for the purpose of studying interactions with the

meson sector. On another side of the matter, the classical soliton picture remains robust

since its Compton size is smaller than the soliton size, which allows us to exploit properties

of the classical soliton solution (whose classical field is made out of mesons) in reading out

interactions of the mesons with the soliton.

In refs. [8, 10, 14], this program was carried out for the lowest lying excitation of the

soliton, to be identified with the nucleons with are of isospin 1/2. However, there is really

no reason to truncate to nucleons since the next excitation, say isospin 3/2 ∆ particles,

are not too heavy compared to the nucleons. The purpose of this note is to extend this

program and read out baryons of arbitrary isospin and their interactions with mesons and

other baryons.

3. Baryons as 5D solitons

A wrapped D4 brane along the compact S4 corresponds to a baryon vertex on the five-

dimensional spacetime [5], which follows from an argument originally given by Witten [15].

To distinguish such D4 from QCD D4’s, let us call them D4’. On their worldvolume brane

we have a Chern-Simons coupling of the form,

µ4

∫
C3 ∧ 2πα′dÃ = 2πα′µ4

∫
dC3 ∧ Ã (3.1)

with D4’ gauge field Ã. Since D4’ wraps the S4 which has a quantized Nc flux of dC3, one

finds that this term induces Nc unit of electric charge on the wrapped D4’. The Gauss

constraint for Ã demands that the net charge should be zero, however, and the D4’ can

exist only if Nc fundamental strings end on it. In turn, the other end of fundamental strings

must go somewhere, and the only place it can go is D8 branes. Thus a D4’ wrapping S4

looks like an object with electric charge with respect to the gauge field on D8. With respect

to the overall U(1) of the latter, which counts the baryon number, the charge is Nc. Thus,

we may identify the baryon as wrapped D4’ with Nc fundamental strings sticking onto it.

3.1 Baryons as “small” instantons with Coulombic hair

This wrapped D4’ dissolves into D8 branes and become an instanton soliton on the latter.3

3Usual low energy QCD picture of baryons as the Skyrmion is directly related to this instanton picture.

As was pointed out by Atiyah and Manton [16], an open Wilson line in the presence of an instanton carries

the Skyrmion winding number. Here, the Wilson line along the holographic direction is nothing but the

pion field U , completing this correspondence between the instanton picture and the Skyrmion picture. From

this viewpoint, the instanton soliton can be thought of as the Skyrmion which is corrected by the infinite

tower of vector and axial vector mesons. Corrections after including the lightest vector meson only has

been previously considered in ref. [17, 18]. However, the full holographic picture seems to change the large

Nc nature soliton more profoundly.

– 6 –
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The reason for why D4’ cannot dissociate away from D8 is obvious. The D4’ has Nc

fundamental strings attached, whose other ends are tied to D8. Moving away from D8 by

distance L means acquiring extra mass of order NcL/l
2
s due to the increased length of the

strings, so the D4’ would have to stay on top of D8 for a simple energetics reason [8, 9].

Once on top of D8’s, the D4’ is replaced by an instanton configuration with

1

8π2

∫

R3×I
trF ∧ F = 1 , (3.2)

where F is the SU(NF ) part of the D8 gauge field strength F . This is a well-known

consequence of the Chern-Simons term on D8,

µ8

∫

R3+1×I×S4

C5 ∧ 2π2(α′)2trF ∧ F = µ4

∫

R0+1×S4

C5 ∧
1

8π2

∫

R3×I
trF ∧ F , (3.3)

which shows that a unit instanton couples to C5 minimally, and carries exactly one unit of

D4’ charge.

How about the size of the instanton soliton? Consider the kinetic part of D8 brane

action, compactified on S4, in the Yang-Mills approximation,

−1

4

∫ √−g4+1
e−ΦVS4

2π(2πls)5
trFM̂N̂FM̂N̂ = −

∫
dx4dw

1

4e2(w)
trFMNFMN , (3.4)

where the unhatted indices are those associated with the flat metric dxµdx
µ + dw2, and

the electric coupling is w-dependent,

1

e2(w)
≡ 8π2R3 U(w)

3(2πls)5(2πgs)
=

(g2
YMNc)Nc

108π3
MKK

U(w)

UKK
. (3.5)

Suppose that we have a point-like instanton localized at w = 0. Its energy from the

Yang-Mills kinetic term would be the standard instanton action,

m
(0)
B ≡ 4π2

e2(0)
=

(g2
YMNc)Nc

27π
MKK . (3.6)

For a slightly larger instanton, on the other hand, w-dependence of e(w)2 will induce more

energy since the kinetic term is proportional to 1/e(w)2. For small size parameter ρ such

that ρMKK ≪ 1, this extra energy is4

δmPontryagin
B ≃ 1

6
m

(0)
B M2

KKρ
2 , (3.7)

Thus, in the absence of any other effect, the instanton would shrink to ρ = 0.

On the other hand, the instanton soliton is really a representation of a wrapped D4’

with Nc fundamental strings attached. The effect of these fundamental strings are encoded

in the world-volume gauge theory as a Chern-Simons term,

Nc

24π2

∫
ω5(A) , (3.8)

4The estimate of energy here takes into account the spread of the instanton density D(xi, w) ∼ ρ4/(r2 +

w2 + ρ2)4, but ignores the deviation from the flat geometry along the four spatial directions.
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which implies that, for NF = 2, the U(1) part of A will see a charge density proportional

to the Pontryagin density of the instanton. Since the Coulomb repulsion favors less and

less dense charge distribution, this effect goes to expand the instanton size. More precisely,

the five dimensional Coulomb energy goes as

δmCoulomb
B ≃ 1

2
× e(0)2N2

c

10π2ρ2
, (3.9)

again provided that ρMKK ≪ 1.

The competition of the two effects sets the size to minimize δmCoulomb
B + δmPontryagin

B ,

which is achieved at [8, 9]

ρbaryon ≃ (2 · 37 · π2/5)1/4

MKK

√
λ

, (3.10)

with the classical mass

mclassical
B = m

(0)
B ×

(
1 +

√
2 · 35 · π2/5

λ
+ · · ·

)
. (3.11)

For an arbitrarily large ’t Hooft coupling limit, the size ρbaryon is significantly smaller than

the Compton sizes of the mesons ∼ 1/MKK but much larger than its own Compton size

1/mclassical
B ≃ 27π/(MKKλNc) .

Before proceeding further, we should point out that the size of the soliton scales the

same way as lwarped
s . This tells us that the Yang-Mills Chern-Simons action we used so

far may not be completely reliable. Plugging in the numbers, we see that the size of the

soliton is about four times larger than lwarped
s , making it not too small but not large enough

to avoid stringy corrections either. Consideration of higher order stringy effects will likely

shift the size estimate we have here, making a quantitative correction. Whether or not we

should include these corrections depends on what we wish to do. It is true that the stringy

theory model at hand clearly demands any such corrections be included. On the other

hand, the stringy holographic QCD model should be reliably dual to ordinary QCD only in

the energy scale far below MKK anyway, yet have successfully reproduced certain behaviors

of QCD around MKK as well. How and why of this are hardly clear for this model, nor is

it clear for any other holographic QCD. In this sense, the guiding principle is lost once we

begin to consider any massive objects, as far as we are interested in emulating real QCD.

With this uncertainty in mind, we will try to proceed without worrying about such

stringy corrections. A good news is, though, that, in what follows from here, where we

effectively consider soft scattering processes involving meson, this problems is much less

acute. Even though the mass scale and the length scale of the hadrons are dangerously high

and small, actual physical process to be considered are such that the momentum transfer

is typically no larger than MKK and more like fπ. When we compute corrections to ρbaryon

by whatever higher order effect, all we have to do is to replace our size parameter by the

corrected one in what follows, and the rest is intact.

3.2 Quantization

If the soliton size is small, physics near a soliton located at w = 0 retains the approximate

symmetry of R4+1. The deviation from this symmetry is an important ingredient that

– 8 –
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enters the size estimate of the soliton and also must be considered carefully for reading

out interactions between baryons and mesons. However, we will temporarily ignore this

deviation since here we concentrate on the counting of the quantum states, for which the

approximate R4+1 Minkowskian invariance can be very useful, and the result robust under

the deviations. Matching of quantized soliton with the baryon is easiest when the number

of flavor is two. From this point on, we specialize to the case of NF = 2.

In order to set up an effective action of baryons, it is important to understand what

kind of quantum states emerges from quantizing these solitons. Usual SU(2) instanton

in flat R4 carries eight collective coordinates, four translational ones, three global SU(2)

rotations, and one overall size. Of these, the last is not a moduli direction for our instanton,

but the other seven are all from broken symmetry and thus remain flat. To elevate the

instanton soliton to a point-like object, i.e. a quantum of an effective field, we must quantize

some of these collective coordinates and produces representations under the symmetry of

the moduli space.

The approximate Lorentz group at hand is SO(4, 1), to be broken to SO(3, 1) by

the curvature effect etc. The approximate little group for massive particle is SO(4)R4 =

SU(2)+ × SU(2)−. Classical self-dual instanton rotates nontrivially under one of the two

factors, say SU(2)+, while classical anti-instanton rotates under SU(2)−. Instantons also

gets rotated by the global gauge rotation SU(NF = 2),

F → S†FS , (3.12)

with special unitary matrices S. The collection of S spans the SU(2) manifold, or equiva-

lently S3, but since S and −S rotates the solution the same way the moduli space is naively

S3/Z2. However at quantum level, we must consider states odd under this Z2 as well, so

the moduli space is S3. Then, its quantization is a matter of finding eigenstates of free and

nonrelativistic nonlinear sigma-model onto S3 [20 – 22].

S itself admits SO(4) symmetry action of its own, which can be written as

S → USV † . (3.13)

Because of the way the spatial indices are locked with the gauge indices, these two rotations

are each identified as the gauge rotation, SU(2)I , and half of spatial rotation, SU(2)+. For

each factor, we have a triplet of symmetry operators, I1,2,3 and J
(+)
1,2,3, respectively.

Eigenstates on S3 are nothing but the angular momentum eigenstates under I’s and

J (+)’s, conventionally denoted as

|s : p, q〉 , (3.14)

with the eigenvalues I2 = s(s + 1) = (J (+))2, I3 = p, and J
(+)
3 = q. As is well-known, I2

and J2 eigenvalues are always equal on S3, so that spin s baryons are always in isospin s

representation as well. For even s, D(s)’s are even under the Z2, and for odd s, D(s)’s are

odd under Z2.

The simplest way to represent these eigenstates as wavefunctions on S3 are to use the

Cartesian representation of the Euler angles as

S = S(ξ) = ξ4 + iξaτa , ξ2 = 1 , (3.15)
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for the 2 × 2 Pauli matrices τi’s. The eigenstates have a well-known representation in the

coordinate basis as functions on S3,

D(s)
pq (ξ) = 〈ξ|s : p, q〉 , (3.16)

and we can further choose the basis for ξ’s such that

D(s)
ss (ξ) =

√
2s + 1

2

1

π
(ξ1 + iξ2)

2s . (3.17)

The spin and isospin operators are realized as differential operators

Ia → Ia ≡ − i

2
(ǫabcξb∂c − ξ4∂a + ξa∂4) ,

J (+)
a → J (+)

a ≡ − i

2
(ǫabcξb∂c + ξ4∂a − ξa∂4) . (3.18)

It is easy to show that I2 = (J (+))2 holds as the consistency would require.

One can proceed exactly the same manner for anti-instantons, where SU(2)+ is replaced

by SU(2)−. Therefore, under SU(2)I × SO(4)R4 = SU(2)I × SU(2)+ × SU(2)−, quantized

instantons are in

(2s + 1; 2s + 1; 1) (3.19)

while quantized anti-instantons are in

(2s+ 1; 1; 2s + 1). (3.20)

Theoretically possible values for s are integers or half-integers. However, we are mainly

interested in fermionic baryons, and will subsequently consider the case of half-integral s’s.5

Before closing, let us note that the instanton and anti-instanton can be naturally

thought of as particle/anti-particle pairs. The representation under the little group reflects

this as well. Later, we will introduce an effective field whose elementary quanta are these

particles and anti-particles. Due to CPT, the particle and the anti-particle always come

together, and we expect to find an effective field that produce excitations that belong to

(2s+ 1)SU(2)I
⊗ ((2s + 1; 1) ⊕ (1; 2s + 1))SO(4)

R4
(3.21)

on-shell. This sets the table for extracting quantum baryons out of the classical instanton

soliton.

4. Effective field theory of the instanton soliton

In this section, we wish to introduce an effective field whose elementary quanta are the

quantized baryons of the previous section. We introduce the field content for any given

isospin and propose an effective action of such baryon fields interacting with the gauge field,

a.k.a., mesons. In next section, we will derive the proposed effective action by generalizing a

method originally due to Adkins, Nappi, and Witten [20] and also adapted for holographic

Nucleons in refs. [8, 10].

5For NF larger than two, the half-integral spin of the baryons should follows immediately whenever Nc

is odd, in a manner similar to the Skyrmion case [21].
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4.1 Higher spin fields in five dimensions

We learned that quantization of instanton soliton leads to quantum states with isospin and

spin related. For isospin s, the quantized instantons are in (2s + 1, 1) and the quantized

anti-instantons are in (1, 2s + 1) under the little group SO(4) = SU(2)+ × SU(2)−. For

s = 1/2, they combine into a Dirac field with a single spinor index, so one might think that,

for s = 3/2, the relevant field is the Rarita-Schwinger field. However, this would be true

only if we are working in four dimensions. The Rarita-Schwinger field in five dimensions

produces six particle and six anti-particle degrees of freedom. More precisely they are in

the representations (3, 2) + (2, 3) under the little group.

The right choice is the higher spin field with multiple spin indices, completely sym-

metrized,

ΨA1A2···A2s
= Ψ(A1A2···A2s) , (4.1)

where the spin index A runs from 1 to 4. We consider half-integral s, since real QCD

admits only those. Consider a free equation of motion

γM
A1B∂MΨBA2···A2s

= mΨA1A2···A2s
, (4.2)

where the Dirac matrices act on the first spin index only. The Dirac operator squares to

∇2, so we find the equation of motion implies the usual on-shell condition p2 + m2 = 0,

which of course gives E2 = m2 in the rest frame. This further imposes the condition on

the plane-wave spinors in the rest frame as

∓iγ0Ψ = Ψ (4.3)

so that particles and anti-particles correspond to −iγ0 eigenstates with eigenvalues ±1.

Due to the symmetrized spin indices, this implies that a −iγ0 eigenstate must have the

same “chirality” for all 2s indices.

On the other hand, Γ ≡ γ1γ2γ3γ4 = −iγ0, so particles and anti-particles are, respec-

tively, chiral and anti-chiral under the little group SO(4)R4 = SU(2)+ × SU(2)−. With the

following choice for Dirac matrices for m,n = 0, 1, 2, 3, 4,

γ0 =

(
i 0

0 −i

)
, γi =

(
0 σi

σi 0

)
, γ4 =

(
0 i

−i 0

)
, (4.4)

particles are encoded in

Ψ(A1A2···A2s) , Ai = 1, 2 , (4.5)

whose individual spinor indices Ai = 1, 2 belong to doublets under SU(2)+. These particles

are clearly in the spin s representation of SU(2)+. Likewise, anti-particles

Ψ(A1A2···A2s) , Ai = 3, 4 , (4.6)

are in the spin s representation under SU(2)−.

The upshot is that the propagating degrees of freedom form

((2s+ 1, 1) ⊕ (1, 2s + 1)) , (4.7)
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under the little group SO(4)R4 . After elevated to the isospin s under SU(2)I , this spinor

fields is then capable of reproducing particle contents of quantized instantons and anti-

instantons. Since the spin and the isospin are locked, the field representing the quantized

instanton and anti-instanton also carry the flavor SU(2) indices

Ψǫ1···ǫ2s , ǫi = 1, 2 . (4.8)

For the case of s = 1/2, the authors of [8, 10] wrote down a relativistic field theory involving

the nucleons and the gauge field.

For s ≥ 3/2, however, this is easier said than done. For four dimensions, Rarita-

Schwinger field does the trick for s = 3/2 but we cannot use this in five dimensions due

to a different spin content. The only sensible way out, at least until we know better, is to

employ the nonrelativistic approximation. This is well justified in the large λNc limit, since

the mass of the instanton scales as λN . Thus, instead of working with fully relativistic

four-component spinor notations, we will split it to particle and anti-particles as

−iγ0Ψǫ1···ǫ2s = Ψǫ1···ǫ2s → U ǫ1···ǫ2s

α1···α2s
, αi = 1, 2 ,

iγ0Ψǫ1···ǫ2s = Ψǫ1···ǫ2s → V ǫ1···ǫ2s

β̇1···β̇2s

, β̇i = 1, 2 . (4.9)

4.2 Nonrelativistic Lagrangian

In order to see the interaction terms giving rise to instanton tails it is sufficient to look for

the nonrelativistic limit of higher spin theories. We just have to look for the interactions

of the particle rather than antiparticle. As above, we denote

U ǫ1···ǫ2s

α1···α2s
(4.10)

be the positive energy components or particle components where ai’s, αi’s take values of

1,2. Indices ai’s, αi’s are all symmetrized. The minimal Lagrangian of the nonrelativistic

limit of the particle of spin s is given by the usual Schrodinger type

S0 =

∫
dtd4x

[∑

s

(
iU†

s

∂

∂t
Us +

4∑

m=1

1

2m(s)
U†

s (∂m − iAm)2Us

)]
, (4.11)

where Us denotes a field with spin s. Mass of the isospin s baryon is denoted as m(s).

Please see Hata et.al. [9] for an explicit formula of excited baryon mass. In the kinetic

term, the U(2) gauge field enters in the following combination

Am = NcAU(1) +A(s) , (4.12)

where A(s) is the isospin s representation of the non-Abelian SU(2) part of the gauge field.

On the other hand, we anticipate additional couplings to the SU(2) field strength in

much the same way for s = 1/2. The logic goes as follows. The above minimal interaction

tells the gauge field to generate long-range Coulomb field in response to the electric charges

on the soliton. However, the instanton and anti-instanton are characterized by the self-dual

and anti-self-dual magnetic fields whose power-like tail is determined by ρ2
baryon. Note that
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this magnetic field goes as of 1/r4, one more power of 1/r than the Coulomb field. When

we replace the quantized instanton by a field, we must somehow incorporate this aspect of

the soliton to re-emerge from the equation of motion, just as the Coulomb field emerges

naturally from the minimal coupling. For the case of s = 1/2, it was shown in [8, 10] that

a direct coupling to the field strength F = dA + iA2 to a bilinear of the spinor emulates

this long range behavior of the quantized soliton. We wish to generalize this to arbitrary s.

The proposal for these additional interaction terms are roughly

(U ǫ′ǫ2···ǫ2s

βα2···α2s
)∗(γ0γKN)ββ′

F ǫ′ǫ
KN U ǫǫ2···ǫ2s

β′α2···α2s
, (4.13)

between baryons of the same isospin, and

(U ǫ1ǫ2···ǫ2s

α1α2···α2s
)∗(γ0CγKN)ββ′

(τ2FKN )ǫǫ
′ U ǫǫ′ǫ1···ǫ2s

ββ′α1···α2s
, (4.14)

between baryons of different isospins. Here, the spinor indices runs over 1, 2 only (since the

nonrelativistic spinors are of two-components), even though we kept the notation of 5-d

gamma matrices on purpose to indicate possible relativistic origins of such interactions.

The charge conjugation matrix C satisfies

(γMN )T = −CγMNC−1 , (4.15)

and is in our convention

C =

(
σ2 0

0 −σ2

)
. (4.16)

Finally, the electromagnetic field F ǫǫ′

kn is

F ǫǫ′

KN ≡ Σ3
a=1F

a
KN

τ ǫǫ′
a

2
, (4.17)

and, for these SU(NF = 2) gauge indices, τ2 plays the same role as C does for the spinor

indices.

Even though we are writing down a nonrelativistic action, it is important to keep

in mind that there should be a fully Lorentz invariant dynamics. Once we show that

the particle interaction gives rise to instanton configurations, the antiparticle interaction

should follow automatically. With this in mind, let us write these terms in the honest two-

component notations appropriate for the nonrelativistic spinors. With the convention of the

gamma matrices (4.4), the interaction terms involving the magnetic fields, Fij and F4i, are

Smagnetic
I = −

∑

s

1

2
hsF

a
ijǫijk

(
U ǫ′ǫ2···ǫ2s

β′α2···α2s

)∗
σβ′β

k τ ǫ′ǫ
a U ǫǫ2···ǫ2s

βα2···α2s

−
∑

s

hsF
a
4i

(
U ǫ′ǫ2···ǫ2s

β′α2···α2s

)∗
σβ′β

i τ ǫ′ǫ
a U ǫǫ2···ǫ2s

βα2···α2s

−
∑

s

1

2
ksF

a
ijǫijk

(
U ǫ1ǫ2···ǫ2s

α1α2···α2s

)∗
(σ2σk)

ββ′

(τ2τa)
ǫǫ′U ǫǫ′ǫ1···ǫ2s

ββ′α1···α2s

−
∑

s

ksF
a
4i

(
U ǫ1ǫ2···ǫ2s

α1α2···α2s

)∗
(σ2σi)

ββ′

(τ2τa)
ǫǫ′U ǫǫ′ǫ1···ǫ2s

ββ′α1···α2s
, (4.18)
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where i, j, k = 1 · · · 3. With the usual t’Hooft symbol, this can be written as

Smagnetic
I = −1

2

∑

s

hsF
a
mnη̄

b
mn

(
U ǫ′ǫ2···ǫ2s

β′α2···α2s

)∗
σβ′β

b τ ǫ′ǫ
a U ǫǫ2···ǫ2s

βα2···α2s

−1

2

∑

s

ksF
a
mnη̄

b
mn

(
U ǫ1ǫ2···ǫ2s

α1α2···α2s

)∗
(σ2σb)

ββ′

(τ2τa)
ǫǫ′U ǫǫ′ǫ1···ǫ2s

ββ′α1···α2s
. (4.19)

The presence of the anti-self-dual ’t Hooft symbol η̄a
mn indicates that above interaction

terms will source the smeared-out instanton field.

There will be an electric analog of these terms, Selectric
I , involving the electric field

strengths F0m instead of the magnetic field strength Fmn. These electric couplings cannot

be derived from the soliton structure, but must be rather inferred via Lorentz invariance

from the magnetic ones. Here, we chose not to display them explicitly.

4.3 Relativistic origins

As an aside, let us note that, as far as the interaction terms go, we have an obvious

relativistic completion. When we proposed the nonrelativistic effective lagrangian, we

implicitly assumed this underlying relativistic structure. In particular, CPT invariance

is enforced. Even though the baryons are extremely heavy in the large λNc limit, their

dynamics must respect the Lorentz invariance. The difficulty involved in formulating a fully

relativistic action is with the kinetic terms and constraints, rather than with interactions.

In this spirit, we note that term in Smagnetic
I and Selectric

I would follow from the following

structures,

h′sΨ̄
(s)
(
FΨ(s)

)
+ fsΨ̄

(s)
(
F · Ψ(s+1)

)
, (4.20)

in terms of the relativistic spinor Ψ’s. The contraction in the second terms is defined as

(F · Ψ(s+1))ǫ1···ǫ2s

A1A2···A2s
≡ (τ2FMN )ǫǫ

′

(CγMN )BB′Ψǫǫ′ǫ1···ǫ2s

BB′A1A2···A2s
, (4.21)

which lowers the isospin and the spin representations. It is not difficult to convince oneself

that these two are the only possible fermion bilinears with direct couplings to the field

strength. The resulting Lorentz-covariant form of the Yang-Mills equations is

DMF ǫǫ′
MN = · · · +

∑

s

h′sD
K
(
γBB′

KN Ψ̄ǫ′ǫ2···ǫ2s

BA2···A2s
Ψǫǫ2···ǫ2s

B′A2···A2s

)

+
∑

s

ksD
K
(
(CγKN )BB′

τνǫ
2 Ψ̄ǫ1···ǫ2s

A1···A2s
Ψνǫ′ǫ1···ǫ2s

BB′A1···A2s

)
, (4.22)

where the ellipsis denote the baryon current that account for the Nc charge of the baryon.

There are two notable differences between the relativistic and the nonrelativistic ex-

pressions. First is that we displayed in eq. (4.19) only the couplings to the magnetic field,

whereas the relativistic form includes the same type of couplings to the electric field. As

far as the derivation of the coupling goes, only the magnetic one can be derived since it

comes from the self-dual magnetic field strength of the instanton. The electric one has to

be there simply because Lorentz symmetry relates the two.
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Secondly, we have h′s in place of hs because there is another relativistic source of the

same magnetic terms. These magnetic terms are five-dimensional analog of non-anomalous

magnetic moment term of four-dimensional Dirac field, and arise when we expand the

minimal coupling terms in terms of nonrelativistic spinors. In [8, 10], this correction was

ignored since in the large Nc limit, it represents a second order correction of order ∼ 1/mB .

However, in the extrapolation to finite Nc, this correction, if kept, could be comparable

or even larger than the leading term. This makes the extrapolation procedure somewhat

ambiguous. In this note, we will stick to large Nc limit, and ignore this problem.

5. Derivation of the interaction terms

In the previous section, we speculated on possible interactions between baryons and mesons.

While we discussed direct couplings to the field strengths in five dimensions, we are yet to

show that the structure we gave is indeed the right one. In this section, we will generalized

the work in [8, 10], and show that these couplings are inevitable consequences of the

instanton origin of the baryon. As a by-product, we also compute the strength of the

couplings at origin, w = 0.

The strategy for this goes as follows. When the instanton is quantized, its classical

gauge field configuration is replaced by its expectation values as

F → 〈〈S†FS〉〉 , (5.1)

where 〈〈· · · 〉〉 means taking expectation value on the collective coordinate wavefunctions.

Componentwise, with the explicit SU(2) generators τa/2, we have

F a →
〈〈

tr
[
τaS

† τb
2
S
]〉〉

F b , (5.2)

so that the quantum smearing out of the instanton gauge field is determined entirely by

the expectation value of the quantities,

Σab ≡ tr
[
τaS

† τb
2
S
]
. (5.3)

If and only if any unit quanta of the baryon field can emulate such a smeared-out long

range field, the effective baryon field theory would make sense.

Fortunately, the spin-isospin-locked nature of the instanton wavefunction allows us to

translate this expectation value in terms of bilinears of the baryon field. The simplest of

such relation was found by Adkins-Nappi-Witten for isospin 1/2 case in the context of

quantized Skyrmions [20], which is

〈〈1/2 : p′, q′| tr
[
τaS

† τb
2
S
]
|1/2 : p, q〉〉 = −4

3
〈1/2 : p′, q′|J (±)

a Ib|1/2 : p, q〉 . (5.4)

On the left hand side, we have overlap integrals of functions on S3,

〈〈s : p′, q′| tr
[
τaS

† τb
2
S
]
|s : p, q〉〉 ≡

∫

S3

(
D

(s)
p′q′(ξ)

)∗
D(s)

pq (ξ) Σab(ξ) , (5.5)
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whereas the quantity on the right hand side is the usual matrix elements of angular mo-

mentum operators. We can conveniently represent the right hand side as

4 〈1/2 : p′, q′|J (±)
a Ib|1/2 : p, q〉 ≡ (U(1/2 : p′, q′)ǫ

′

β′)∗σβ′β
a τ ǫ′ǫ

b U(1/2 : p, q)ǫβ , (5.6)

in terms of a two-component spinor field U in the isospin 1/2 representation.

Note that the effective action of U in eq. (4.19) we proposed is such that U bilinear

sources the five-dimensional gauge field as

(∇ · F )am ∼ ∇n

(
η̄b

nmU†(σbτ
a)U
)

+ · · · . (5.7)

Thanks to the above identity (5.4), this Yang-Mills field equation implies that a U particle

state will have a long range tail of gauge field that looks exactly like a smeared out instanton

of eq. (5.2), as long as we match the precise mapping between the spinor states and the

quantized instanton wavefunctions. This proves that the couplings in the previous section is

indeed exactly the right ones for the spinor U to be interpreted as the baryon effective field

for s = 1. In the remainder of this section, we will show how this generalizes to all isospins.

Note that together with the obligatory minimal coupling, this fixes the effective in-

teraction of the baryon with the meson sector uniquely up to dimension six operators in

five dimensions. The coupling strength is then determined by making sure the Yang-Mills

solution to this equation has exactly the same size as the smeared out instanton. The sub-

sequent reduction to four dimensions generates an infinite number of coupling constants

between mesons and baryon current, as we will see shortly.

5.1 Identities for isospin-preserving processes

For s > 1/2, the identity (5.4) can be generalized to general integer s, as

〈〈s : p′, q′|Σab|s : p, q〉〉 = −C0(s)〈s : p′, q′|JaIb|s : p, q〉 , (5.8)

for arbitrary s and −s ≤ p, q, p′, q′ ≤ s with

C0(s) =
1

s(s+ 1)
. (5.9)

To show this, let us start with the simplest case of p = q = p′ = q′ = s. For this, it is

relatively easy to show that

∫

S3

|D(s)
ss |2 Σab = −C0(s)〈s : s, s|J (±)

a Ib|s : s, s〉 , (5.10)

holds for all 3×3 choices of (k,m) and for arbitrary integer s. The right hand side is obvious:

all cases except k = m = 3 vanish, and for k = m = 3 we find −s2/s(s+ 1) = −s/(s+ 1).

An explicit computation of the integral on the left hand side is also straightforward and

produces the same result.
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Further generalization follows from the fact that the operators on the two sides trans-

form the same way under SU(2)I × SU(2)±. Recalling how S transforms, we see that

Σkm → Σ′
ab = tr

[
τa

(
V S†U †

) τb
2

(
USV †

)]

= tr
[
(V †τaV ) S†

(
U † τb

2
U
)
S
]

= V̂ c
a Û d

b Σcd , (5.11)

where V̂ and Û are the 3 × 3 matrix representation of V and U . Thus, Σkm transform

under the I’s and J ’s exactly as the operators J
(±)
k Im would transform under I’s and

J (±)’s. Next, consider

〈〈s : s, s|Σab|s : p, q〉〉 = −C0(s)〈s : s, s|JaIb|s : p, q〉 , (5.12)

for all −s ≤ p, q ≤ s. It is easy to show that, of these, the only nonvanishing expressions

are those with p, q ≥ s− 1. Taking p = s, q = s− 1, for instance, we see that the left hand

side reduces

〈〈s : s, s|Σ3+|s : s, s− 1〉〉 =
1√
2s

〈〈s : s, s|Σ3+I−|s : s, s〉〉

=
1√
2s

〈〈s : s, s|2Σ33|s : s, s〉〉 , (5.13)

which is exactly mirrored by the left hand side because [I+, I−] = 2I3 and 〈s : s, s|I− = 0.

So, the first identity in (5.12) follows from (5.10). The remaining two can be shown likewise.

Continuing in this fashion, the rest of the identity in eq. (5.8) follows automatically.

The right hand side is more conveniently represented in terms of the nonrelativistic

spinor of the previous section as

〈〈s : p′, q′|Σab|s : p, q〉〉 = −C0(s)U(s : p′, q′)†(Ja ⊗ IbU(s : p, q))

= −C0(s) × s2 × (U(s : p′, q′)ǫ
′ǫ2···ǫ2s

β′α2···α2s
)∗σβ′β

a τ ǫ′ǫ
b U(s : p, q)ǫǫ2···ǫ2s

βα2···α2s

= − s

s+1
×(U(s : p′, q′)ǫ

′ǫ2···ǫ2s

β′α2···α2s
)∗σβ′β

a τ ǫ′ǫ
b U(s : p, q)ǫǫ2···ǫ2s

βα2···α2s
, (5.14)

where the operators J and I acting on U are of understood to be in the spin (isospin) s

representation. Note that the last expression, up to an overall numerical factor, is precisely

the first of the two fermion bilinears that appeared in eq. (4.19)

5.2 Generalizing to isospin-changing processes

Note that Σkm are themselves spin one wavefunctions on S3. With the non-Hermitian

choice of basis τ± = (τ1 ± iτ2)/
√

2, we find

Σ++(ξ) =
√

2π2/3 D
(1)
11 (ξ) = (ξ1 + iξ2)

2 ,

Σ3+(ξ) =
√

2π2/3 D
(1)
01 (ξ) ,

Σ+3(ξ) =
√

2π2/3 D
(1)
10 (ξ) ,

...

Σ−−(ξ) =
√

2π2/3 D
(1)
−1−1(ξ) = (ξ1 − iξ2)

2 . (5.15)
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This means there are another set of expectation values

〈〈s : p′, q′|Σab|s+ 1 : p, q〉〉 , (5.16)

and their complex conjugates.

For this new class, the analog of Adkins-Nappi-Witten identity are

〈〈s : p′, q′|Σab|s+ 1 : p, q〉〉 = −C1(s)
[
U(s : p′, q′)†U(s+ 1 : p, q)ab

]
, (5.17)

with

U(s+ 1 : p, q)ab ≡ (σ̂2σa)(τ̂2τb)U(s + 1 : p, q) , (5.18)
(
(σ̂2σa)(τ̂2τb)U(s + 1 : p, q)

)ǫ1···ǫ2s

α1···α2s

≡ (σ2σa)
ββ′

(τ2τb)ǫǫ′U(s+ 1 : p, q)ǫǫ
′ǫ1···ǫ2s

ββ′α1···α2s
,

defining the contracting action that reduces the spin (isospin) by one.

To show this identity and determine C1(s), it again suffices to compute the case of

p = q = s+ 1. Under this restriction, the angular momentum summation rules tell us that

the one and only non-vanishing matrix element on the left hand side is

〈〈s : p′ = s, q′ = s|Σ−−|s+ 1 : s+ 1, s + 1〉〉 =

∫

S3

(ξ1 − iξ2)
2(D(s)

ss )∗D
(s+1)
s+1,s+1 , (5.19)

while p′, q′ < s producing null results. Likewise, the right hand side also vanishes except for

−C1(s)
[
U(s : s, s)†

(
(σ̂2σ−)(τ̂2τ−)U(s+ 1 : s+ 1, s + 1)

)]
= 2 × C1(s) , (5.20)

since, for any s, the only nonvanishing component of U(s : s, s) is

U(s : s, s)11···111···1 = 1 . (5.21)

Therefore, the identity in eq. (5.17) holds for p = q = s+ 1 with

C1(s) =
1

2

∫

S3

(x1 − ix2)
2
(
D(s)

ss

)∗
D

(s+1)
s+1,s+1 =

1

2

√
2s+ 1

2s+ 3
. (5.22)

Similarly with the case of the same spins, the rest of the identity would follow immediately

if the contracting actions by τ2τm and σ2σk on U , denoted above as σ̂2σl, τ̂2τl, themselves

obeys

[Ja, σ̂2σb] = iǫabcσ̂2σc , (5.23)

[Ia, τ̂2τb] = iǫabcτ̂2τc , (5.24)

when acting in the space of all possible U ’s.
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5.3 Strength of the magnetic couplings at origin

These generalized identities show that the couplings suggested in the previous section are

indeed exactly the right ones demanded by the instanton origin of the baryons. They also

fix the coefficient functions hs’s and ks’s at origin w = 0 unambiguously. This was done

for the case of h1/2 in [10], where it was found to be6

h1/2(w = 0) =
2π2

3

ρ2

e2(0)
. (5.25)

If we were considering the instanton soliton in R4, this coupling would be a constant.

This is straightforwardly generalized to other hs and ks as follows,

hs(0) = 2π2 s

s+ 1

ρ2

e2(0)
, ks(0) = π2

√
2s+ 1

2s+ 3

ρ2

e2(0)
, (5.26)

where the factor 1/3 in h1/2 is replaced by s2C0(s) and by C1(s), respectively.

The ratio k1/2(0)/h1/2(0) was implicit in Adkins-Nappi-Witten’s consideration of two

amplitudes, πN∆ and πN N . The ratio of the two amplitudes is directly related to the

above ratio, up to normalization issues in terms of defining the amplitudes. We took care

to verify that the two ratios give the same physics, which provides an independent check

of our computation of the couplings.

However, the actual geometry is R3×I up to a nontrivial conformal factor as a function

of w and this would in general imply that hs and ks are functions of w. Due to the fact that

a stationary solution is possible only when the soliton is located at w = 0, we can determine

these coefficient functions at w = 0 at best. In next section, we will finally come to the

four-dimensional physics, and see how these couplings generate cubic and quartic couplings

between baryons and meson in four dimensions. The fact that these coefficient functions

are not well-determined away from the origin, in general, poses a systematic difficulty in

predicting couplings to excited mesons beyond those associated with large Nc and large λ

nature of this model. For low lying mesons, however, errors due to this are relatively well

controlled.

6. Baryons interacting with mesons

So far we considered an effective field theory for the instanton soliton of a fixed size on

R4+1, using the approximate SO(4, 1) symmetry. This effective field theory is not yet that

of the four dimensional baryons in two aspects. First, even though the soliton at origin

(w = 0) sees the approximate SO(4, 1) Lorentz symmetry, a quantum of the spinor fields

will see strong breaking of this away from w = 0. Second, we must reduce the effective field

theory to four dimensions in order to identify the spinor fields with baryons of QCD. In

this section, we will incorporate these two issues and produce a bona fide effective action

for QCD baryons.

6For the proper normalization of the spinors and the coupling, it is important to recall that the convention

for two-component spinors in this paper is different from that of [10] where the four-component spinor was

written in terms of two related γ5 eigenspinors. Here we are using two-component spinors which are γ0

eigenspinors in the rest frame.

– 19 –



J
H
E
P
0
6
(
2
0
0
8
)
0
1
1

6.1 Broken SO(4, 1) symmetry and a classical potential for 5D theory

The leading effect of having a nontrivial background geometry (conformally R3+1 × I) is

that the instanton soliton’s mass varies with the position along the holographic direction.

The leading mass comes from
∫

R3×I

1

8π2e(w)2
trF ∧ F , (6.1)

and, due to the position-dependence of 1/e(w)2, the soliton prefers to sit near w = 0.

If we have a relativistic formulation, this could be naturally incorporated into a position

dependent mass term. For nonrelativistic formulation, the mass shows up as denominator

of the quadratic spatial gradient term. Making this parameter position dependent does

not seem to yield the right energetics.

As a toy model consider a spin 1/2 Dirac field with a position dependent mass

−iΨ̄∂Mγ
MΨ + im(x)Ψ̄Ψ , (6.2)

with

m(x) = m(s) + V (x), m(s) > 0 and V (x) ≥ 0 . (6.3)

If we are interested in low momentum and low energy behavior of this field, we may as well

treat V as a perturbation. The on-shell condition is then,
(

E iσmpm

iσ̄mpm −E

)
Ψ = m(s)Ψ , (6.4)

with σi = σ̄i are the usual Pauli matrices, and σ4 = i = −σ̄4. Using the particle state, for

which E ≃ m(s) +O(p2), and defining the two-component nonrelativistic spinors as

Ψ = e−im(s)t

(
U
V

)
, (6.5)

the above relativistic action reduces to a non-relativistic one as

iU†∂0U +
1

2m(s)
U†∂m∂

mU − V (x)U†U . (6.6)

This case of spin 1/2 instructs us, then, to incorporate the effect of position-dependence of

1/e(w)2 as a bilinear of U with the coefficient function,

V (x) = V (w) =

(
4π2

e(w)2
− 4π2

e(0)2

)
(6.7)

in addition to the standard kinetic terms we have. For the baryons, this acts as a potential

in the resulting Schroedinger equation for U , which pulls the particles toward the origin

w = 0.

The right thing to do for baryons of any isospin, therefore, is to add such a potential

term to the action, so that the total action is

S5D = S′
0 + Smagnetic

I + Selectric
I , (6.8)
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with

S′
0 =

∫
dtd4x

[∑

s

(
iU†

s

∂

∂t
Us +

4∑

m=1

1

2m(s)
U†

s (∂m − iAm)2Us − V (w)U†
sUs

)]
, (6.9)

whereas Smagnetic
I is the same interaction piece as in eq. (4.19) and Selectric

I its electric

counterpart. For most applications below, we won’t need explicit form of Selectric
I since its

form and size will be related to Smagnetic
I via Lorentz invariance.

6.2 Baryon-meson couplings from the dimensional reduction

Let’s first consider the interactions between mesons and spin 1/2 baryons, namely nucleons.

In ref. [10] the dimensional reduction was done for the relativistic theory. Here, we carry

out the dimensional reduction of non-relativistic theory in 5-dimensions, and we will briefly

compare the two approaches before proceeding to the higher spin cases. For spin half case,

the baryonic wave functions are written as two component spinors satisfying Schrodinger

equation. Specifically it satisfies

i
∂

∂t
U1/2 = − 1

2m(s)

(
∂i∂i +

(
∂

∂w

)2
)
U1/2 + V (w)U1/2 . (6.10)

If we write it as a product of four-dimensional wave function and the one dimensional wave

function

U1/2 = B(t, xi)1/2f(w)e−iEnt , (6.11)

where f(w) satisfies the one-dimensional potential problem with energy eigenvalues En

− 1

2m(1/2)

(
d

dw

)2

f(w) + V (w)f(w) = Enf(w) , (6.12)

then B1/2 satisfies the free Schrodinger equation

i
∂

∂t
B1/2 = − 1

2m(1/2)
∂i∂iB1/2 , (6.13)

where i = 1 · · · 3. We are interested in the lowest lying baryon for each isospin sector, so we

will take the smallest eigenvalue E0 and its associated ground state wavefunction f0(w).

Let us carry out the dimensional reduction of the following action describing the in-

teractions between the spin 1
2 baryons and mesons

S5D =

∫
dtd3xdwiU†

1/2

(
∂

∂t
−iA0

)
U1/2+

4∑

m=1

1

2m(1/2)
U†

1/2(∂m−iAm)2U1/2−V (w)U†

1/2U1/2

−h1/2(w)
(
U†

1/2ǫijkσkFijU1/2 + 2U†

1/2iσiF4iU1/2

)

− 1

4e2(w)
trFmnFmn , (6.14)
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with Fij =
∑3

a=1
1
2F

a
ijτ

a. Note that the minimal couplings have U(2) gauge fields while

the magnetic couplings of eq. (6.14) have SU(2) gauge fields, which source SU(2) instanton

fields. Recall that Aµ(x,w) is expanded in terms of mesons as [5]

Aµ(x,w) = iαµ(x)ψ0(w) + iβµ(x) + Σn≥1a
(n)
µ (x)ψ(n)(w) , (6.15)

with the gauge choice Aw = 0. For the SU(2) part, Aµ, the first two terms may be expanded

in terms of the pion and spin 1 mesons as

Aµ = − 2

fπ
∂µπψ0(w) +

i

2f2
π

[π, ∂µπ] + · · · , (6.16)

where f2
π = (g2

YMNc)NcM
2
KK/54π

4 is the pion decay constant. We also need to separate

U(1) part of the vector/axial-vector mesons as well. Regardless of parity, let us write

a(n)
µ =

(
Nc/2 0

0 Nc/2

)
ω(n)

µ + v(n)
µ , (6.17)

so the w’s are the isosinglets and v’s isotriplets.

In the large λNc limit, the baryon wave function is sharply peaked around w = 0.

When we integrate over w-direction, |f0(w)|2 may be approximated as a delta function, e.g.,∫
dw|f0(w)|2ψ(n)(w) = ψ(n)(0). One of the consequence is that the dimensional reduction

of A2
i can be written as the product of that of Ai, i.e.,

∫
dt d3x dw

3∑

i=1

U†

1/2(Ai)
2U1/2

=

∫
dt d3xB†

1/2

(
αi(t, x)ψ0(0) + βi(t, x) − iΣn≥1a

(n)
i (t, x)ψ(n)(0)

)2
B1/2

=

∫
dt d3xB†

1/2

(
βi(t, x) − iΣn≥0a

(2n+1)
i (t, x)ψ(2n+1)(0)

)2
B1/2 , (6.18)

where we use that ψ(2n)(w), ψ(2n+1)(w) are an odd and even function of w respectively.

The dimensional reduction of the minimal coupling produce vector-like couplings as

those of Vµ

Sminimal =

∫
dt d3x

(
iB†

1/2(
∂

∂t
− iV0)B1/2 +

3∑

i=1

1

2m(1/2)
B†

1/2(∂i − iVi)
2B1/2

)
., (6.19)

where Vµ collects all the vector mesons (as opposed to axial vector mesons) in their hidden

local gauge symmetry [19, 5] form

Vµ ≡ iβµ(t, x) + Σn≥0a
(2n+1)
µ (t, x)ψ(2n+1)(0), µ = 0 · · · 3 . (6.20)

The coupling constants for couplings to βµ, ω
(2n+1)
µ , v

(2n+1)
µ are 1, Ncψ(2n+1)(0), ψ(2n+1)(0)

respectively . Similarly one can derive the interaction terms coming from five-dimensional
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magnetic couplings, which generates the leading couplings to isotriplet axial vector mesons,

v(2n), as well as derivative couplings to isotriplet vector mesons, v(2n+1),

Saxial = −
∫
dt d3xh1/2(0)2B

†

1/2σi


4i

π
αi +

∑

n≥1

v
(2n)
i ψ′

(2n)(0)


B1/2 (6.21)

+h1/2(0)B
†

1/2ǫijkσk

∑

n≥0

(
∂iv

(2n+1)
j − ∂jv

(2n+1)
i

)
B1/2 ,

where ψ′ = dψ/dw with ψ′
0(0) = 4/π. The axial coupling strength is

h1/2(0) =
2π2

3

ρ2

e2(0)
=

√
1

30

Nc

MKK
. (6.22)

One can see that the interaction terms for αµ, v
(2n)
µ arise only from the 5-dimensional

magnetic couplings, which is observed in relativistic case in the large Nc limit.

It is straightforward to generalize to baryons with general spins. All of the wavefunc-

tions are sharply peaked around w and the overlap integrals in w direction act as delta

function, which is true for the overlap integral for wavefunctions of different spins. The

minimal terms are given by

Sminimal =

∫
dt d3x

∑

s

(
iB†

s(
∂

∂t
− iV0)Bs +

3∑

i=1

1

2ms
B†

s(∂i − iVi)
2Bs

)
, (6.23)

where Us = Us(t, x) denotes the four-dimensional wave function of the baryon with spin s

from now on. With v
(n)
µ ≡ ∑3

a=1 v
(n) a
µ τa/2, the contribution from magnetic terms (4.18)

are given by

Saxial =

∫
dtd3x−

∑

s

1

2
hs(0)

∑

n≥0

(
∂iv

(2n+1)
j −∂jv

(2n+1)
i

)a
ǫijk

(
Bǫ′ǫ2···ǫ2s

s; β′α2···α2s

)∗
σβ′β

k τ ǫ′ǫ
a Bǫǫ2···ǫ2s

s; βα2···α2s

−
∑

s

hs(0)


4i

π
αa

i +
∑

n≥1

v
(2n) a
i ψ′

(2n)(0)



(
Bǫ′ǫ2···ǫ2s

s; β′α2···α2s

)∗
σβ′β

i τ ǫ′ǫ
a Bǫǫ2···ǫ2s

s; βα2···α2s

−
∑

s

1

2
ks(0)

∑

n≥0

(
∂iv

(2n+1)
j −∂jv

(2n+1)
i

)a
ǫijk
(
Bǫ1ǫ2···ǫ2s

s; α1α2···α2s

)∗
(σ2σk)

ββ′

(τ2τa)
ǫǫ′Bǫǫ′ǫ1···ǫ2s

s+1; ββ′α1···α2s

−
∑

s

ks(0)


4i

π
αa

i +
∑

n≥1

v
(2n) a
i ψ′

(2n)(0)


(Bǫ1ǫ2···ǫ2s

s; α1α2···α2s

)∗
(σ2σi)

ββ′

(τ2τa)
ǫǫ′Bǫǫ′ǫ1···ǫ2s

s+1; ββ′α1···α2s
(6.24)

where

hs(0) = 2π2 s

s+ 1

ρ2

e2(0)
=

√
6

2
√

5

s

s+ 1

Nc

MKK
,

ks(0) = π2

√
2s+ 1

2s+ 3

ρ2

e2(0)
=

√
6

4
√

5

√
2s+ 1

2s+ 3

Nc

MKK
. (6.25)
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6.3 Baryon-pion interactions

These two sets of interaction terms contain couplings to the pion field π(x) from

Aa
µ = − 2

fπ
∂µπ

aψ0(0) −
1

2f2
π

εabcπb∂µπ
c + · · · . (6.26)

From Sminimal, we find

∑

s

B†
s

(
− 1

2f2
π

εabcπb∂0π
c τ

a

2

)
Bs

+
1

2m(s)

3∑

i=1

B†
s

(
i

f2
π

εabcπb∂iπ
c∂i +

i

2f2
π

εabcπb∂i∂iπ
c

)
τa

2
Bs

− 1

4f4
π

B†
s

(
ǫabcπ

b∂iπ
c τ

a

2
ǫdefπ

e∂iπ
f τ

d

2

)
Bs + · · · , (6.27)

up to terms higher order in 1/fπ, where the gauge generators τa’s act only on the first

gauge doublet index of Bs’s, and, from Saxial

∑

s

hs(0)
8

πfπ
∂iπ

a
(
Bǫ′ǫ2···ǫ2s

s; β′α2···α2s

)∗
σβ′β

i τ ǫ′ǫ
a Bǫǫ2···ǫ2s

s; βα2···α2s

+
∑

s

hs(0)
1

2f2
π

εabc∂iπ
b∂jπ

cǫijk

(
Bǫ′ǫ2···ǫ2s

s; β′α2···α2s

)∗
σβ′β

k τ ǫ′ǫ
a Bǫǫ2···ǫ2s

s; βα2···α2s

+
∑

s

ks(0)
8

πfπ
∂iπ

a
(
Bǫ1ǫ2···ǫ2s

s; α1α2···α2s

)∗
(σ2σi)

ββ′

(τ2τa)
ǫǫ′Bǫǫ′ǫ1···ǫ2s

s+1; ββ′α1···α2s

+
∑

s

ks(0)
1

2f2
π

εabc∂iπ
b∂jπ

cǫijk
(
Bǫ1ǫ2···ǫ2s

s; α1α2···α2s

)∗
(σ2σk)

ββ′

(τ2τa)
ǫǫ′Bǫǫ′ǫ1···ǫ2s

s+1; ββ′α1···α2s

+ · · · , (6.28)

again up to terms higher order in 1/fπ. These are generalization of pion-nucleon couplings,

which altogether may be written compactly as

h1/2(0)
16

πfπ
B†

1/2
σi∂iπB1/2 − h1/2(0)B

†

1/2
ǫijkσk

i

2f2
π

[∂iπ, ∂jπ]B1/2

+
i

2f2
π

B†

1/2[π, ∂0π]B1/2 +
1

2m(1/2)

1

2f2
π

B†

1/2([π, ∂i∂iπ] + 2[π, ∂iπ]∂i)B1/2

+
1

2m0
B†

1/2

(
1

4f4
π

[π, ∂iπ][π, ∂iπ]

)
B1/2 + · · · , (6.29)

similarly in the 1/fπ expansion.

6.4 A comment on subleading corrections and relativistic formulation

One major difference between the relativistic and the nonrelativistic approaches is a loss,

or ambiguity, of subleading terms. A good illustration of this is the leading axial coupling

to the pion. In the large Nc limit, the magnetic coupling gives the dominant contribution

scaling linearly with Nc. The relativistic kinetic term, however, also contribute O(1) term
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inversely proportional to the mass of the baryon. The mechanism behind the latter is

precisely the same as how one obtains g = 2 nonanomalous gyromagnetic ratio from the

minimal coupling of a Dirac fermion to electromagnetic gauge field.

Once we abandon the relativistic formulation, therefore, such terms can only be in-

cluded in the interaction terms somewhat arbitrarily. Just as one cannot predict g = 2 from

Schroedinger equation, we cannot compute the subleading term to pion-baryon coupling

due to the minimal coupling. This problem is not confined to the pion coupling and is

applicable to all terms we are considering. Obviously this does not affect our leading con-

tributions, but it also tells us that finding a fully relativistic form is essential for improving

the present result to next order. We should note that this sort of problem also manifest

itself in computation of four-dimensional mass of the baryons.

7. Summary

In this paper, we generalize the derivation of the interactions between mesons and nucleons

carried out in ref. [8, 10] to the interactions between mesons and baryons of arbitrary half-

integer spins for the two-flavor case (NF = 2). Following the approach given in ref. [8],

we resort to the instantonic origin of the baryon fields, and produced general prescriptions

and formulae that determine the strength of each interaction term in the large Nc and

large λ limit. For the nucleon case (isospin 1/2), this program has produced a relativistic

action and a rich phenomenology [8, 10, 14], improving the Skyrme model computations

by Adkins, Nappi and Witten [20] substantially.

Baryons are realized holographically as small instanton solitons in five dimensions with

a Coulombic hair, whose quantization gives rise to baryons of (half-)integer spins. The

corresponding on-shell field content may be realized as fermionic fields with symmetric

spinor indices under the little group as well as the same number of symmetric isospin

indices under the flavor group. However it’s not clear how to write down the relativistic

action since the relativistic version of such multi-spinor fermion is not known. The main

difficulty is in finding a relativistic formulation where the appropriate constraints may be

built in at the level of action. Due to this technical difficulty, we chose to consider the

non-relativistic limit for the baryons instead. This limit is sufficient, as it turned out, if we

look only for the leading large Nc results.

Since the spin fields arise from the quantization of the instanton, the interaction terms

between the holographic baryons and the five-dimensional flavor gauge fields should be

compatible with the semiclassical instantonic configuration. Out of this consideration, a

single term, called the magnetic term, together with the usual minimal coupling essentially

determines all the interactions between the mesons and baryons upon the dimensional

reduction of the five dimensional nonrelativistic actions down to four dimensions because

the dimensional reduction of U(2) gauge field give rise to towers of mesons including pion

fields. In particular, when restricted to the sector of nucleons, the nonrelativistic approach

adopted here reproduces the same results as in ref. [10] derived from the relativistic case

in the large Nc limit .
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For subleading corrections in 1/Nc, which would be relevant for Nc = 3 case as appro-

priate for real QCD, some ambiguities remain in part because we had to use nonrelativistic

formulation and also in part because of other more fundamental reasons. These include

other 1/Nc corrections (notably the one due to quenching and also due to the inherent

limitations present in any AdS/QCD models) which are not well understood either.

We hope that this work will provide the starting point for comparing with the exper-

imental data or other field theoretical computations on the interactions between mesons

and baryons. Finally all of the baryons we consider have just SU(2) isospin symmetry. It

would be interesting to extend the current work to SU(3) case, which would include strange

baryons.
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