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1. Introduction

With the imminent start-up of the Large Hadron Collider (LHC), and the hope that this

machine could produce the first man-made dark matter, the question of how to measure

the masses of heavy, invisible particles at hadron colliders has never held more importance.

Cho et al. [1] have recently made a remarkable claim regarding a method for measuring

invisible particle masses. They studied identical pairs of three-body superpartner decays

(g̃ → qq̄χ̃0
1), with one of the daughter particles being invisible, in the special case where the

sum of the transverse momenta of the parents vanishes. They identified “kinks” (see, for

example, figure 10) in the graphs of suitably defined transverse-mass variables, considered

as a function of the (a priori unknown) mass of the invisible daughter. The importance of

their claim is that it provides, in principle, a method to determine both of the unknown

masses in the problem — namely the mass, m0, of the decaying parent particle and the
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mass, m1, of the invisible daughter. These masses are given simply by the co-ordinates,

(m0,m1), of the kink.

In [2], one of us gave a proof that a similar kink occurs even in events of a much simpler

type, that is, in events in which a single parent with a non-zero transverse momentum

distribution undergoes a two-daughter decay. It was claimed in [2] that such kinks should

be a generic phenomenon.

We need hardly stress how useful an “transverse mass kink method” for determining

sparticle masses would be, if experimentally viable. In particular, if the invisible particle

were indeed the dark matter particle, then knowledge of its mass would be a boon for

the astrophysics and cosmology communities. What is more, knowledge of the spectrum

of, say, superpartner masses, would be of much help to those attempting to discover the

method by which supersymmetry breaking is mediated to the Standard Model.

When the results of [1] and [2] first became public, it was not yet clear that there was

a difference in the manner in which the kinks arise. At first sight, both papers reported

kinks in related transverse variables. But, as we go on to show in this paper, the sources

of the kinks in [1] and [2] are not the same. The results have no direct relevance to each

other, although each paper separately provided very important results.

One of the key purposes of this paper is to explain the connections between the results

of [1] and [2] and the relevance for the LHC. While Cho et al. dealt with the class of

events where the sum of the two parents’ transverse momenta is strictly vanishing, [2]

dealt with the class of events in which the transverse momenta could be arbitrarily large.

Neither of these situations is a particularly good approximation at a hadron collider, since a

realistic sample of events will be somewhere between the two – they will have a distribution

of possibly small, but certainly non-zero, transverse momenta. We address this more

physically relevant case and find that a reasonably sized sample of realistic events will still

produce a kink at (m0,m1), from which, in most cases, we can hope to extract the masses.

We discuss the implications these results have for experimental observability and ex-

plain how the events containing (pairs of) three-body decays considered by [1] were able

to generate kinks even without approaching the asymptotic extrema examined in [2]. We

comment on how the kinks seen in [1] would be modified by a (physically reasonable) ad-

mixture of events in which the parents have significant transverse recoil. We also point

out that if nature were to provide us with enough events far above threshold, then pairs

of two-daughter decays would generate a kink, even though the mechanism by which the

kink is generated is independent of the arguments in [1].

In doing so we extend the analyses of both [1] and [2]. We analyze the general case of

N+1-daughter decays, including cascade decays. We also examine cases with identical pairs

of such decays/cascades. We consider events both with and without recoil of the parent

particle(s) against a secondary system of significant transverse momentum (respectively

SPT and ZPT). We also perform Monte Carlo simulations of a variety of different examples.

Since the list of cases studied is not short, the reader may find it useful to refer to figure 1

and figure 2, which show and label various scenarios diagrammatically.

The layout of the paper is as follows. In section 2 we (re)introduce endpoint analyses

as methods of measuring masses. We discuss the extensions of the transverse mass variable,
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mT , to cases where parent particles are pair-produced, and where the mass of the invisible

daughters is unknown. In sections 3.1 and 3.2, we consider single parent decays (both SPT

and ZPT) and determine the complete set of extrema of an appropriately-defined mT . We

analyze the nature of the various extrema, identify the global maximum, and examine the

fraction of events which might be expected to lie near that maximum in each case. In

section 3.3, we consider events containing pairs of identical decays of the type discussed

in section 3.1. In section 4, we present the results of some Monte Carlo simulations which

illustrate these results. We conclude in section 5 with a summary of our findings, a comment

on the relevance of SPT versus ZPT for the LHC, and a discussion on the measurability of

such edges in LHC-like scenarios.

2. Endpoint techniques

The determination of mass in the complex environment of hadron collisions is not usually

easy. For example, backgrounds from known physics are rather large, misidentification of

particles and jets is a problem, and we have very little direct information concerning the

longitudinal velocity of the centre-of-mass frame of the two primary interacting partons.

These difficulties are compounded if the new particles are such that they decay with

significant branching fraction to particles that interact sufficiently weakly as to be invisible

as far as the detector is concerned. In any one event, these invisible particles carry off

kinematic information, namely their momenta, and also their energies, if their masses are

unknown.

The loss of these particles means that we cannot always measure particle masses on

an event-by-event basis. But since we are able, in principle, to observe multiple events,

the situation is not beyond hope. The historical example of the discovery, and subsequent

mass determination, of the W -boson, is rather instructive in this respect.

The W -boson was first discovered in the UA1 and UA2 experiments [3 – 5], through

its sizable leptonic decay to an electron and a neutrino. The latter is, of course, invisible

in the detector, and kinematic information thus is lost in each decay. Nevertheless, the

transverse mass, defined by

m2
T = m2

e + m2
ν + 2(eeeν − pe.pν), (2.1)

where ee =
√

m2
e + p2

e, is observable. The electron mass, me is known a priori, and the

neutrino mass, mν , is negligible. The transverse momentum of the electron, pe (and its

magnitude, pe), can be measured directly, and the transverse momentum of the neutrino,

pν , can be inferred from the missing transverse momentum in the event. Now, for a single

event, mT is not of great interest; its importance lies in the fact that, in the limit of a

narrow width for the W -boson, mT is bounded above by the mass of the W , mW , and is

equal to mW in events where the electron and the neutrino have the same rapidity. To see

this, note that the four-momenta, (E,p, q), obey the constraint

m2
W = m2

e + m2
ν + 2(EeEν − pe.pν − qeqν). (2.2)

– 3 –
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Now, the rapidity is given by

η =
1

2
log

E + q

E − q
, (2.3)

and the vanishing of the relative rapidity ηe − ην implies

Eeqν = Eνqe, (2.4)

whence

EeEν − qeqν = eeeν , (2.5)

and

mW = mT . (2.6)

Thus, by computing mT for many events, one can obtain a distribution of mT values whose

upper endpoint is close to the true value mW . Indeed, fitting the mT distribution using

data from CDF provides the most precise single direct measurement of the W mass [6].

Similar and more general endpoint techniques are expected to be useful at the LHC.

Extremal values of the kinematic observables typically contain information about the par-

ticle masses, as these are the parameters which determine shape of the boundary of multi-

particle phase space.

Although endpoint techniques suffer from the disadvantage that, ultimately, only a

subset of events (those that are near extremal) are used to generate the mass data, they

have a number of obvious advantages. To begin with, the procedure is straightforward in its

conception and implementation. Secondly, and perhaps most importantly, the procedure

has little or no model-dependence. Were it to be established that a relatively pure sample

of events from a particular decay channel could be isolated, then the subsequent analysis

is pure kinematics. No assumption about spins, couplings or matrix elements is required.

Finally, we remark that another supposed benefit of endpoint techniques is that they place

less stringent demands on the degree to which the detector acceptance and backgrounds

must be understood: the location of the step within a Heaviside-like function may be

determined even if the height of the step function has been modulated by a smoothly

varying unknown acceptance and added to a smoothly varying background of unknown

shape. In a typical experiment, provided one ends up with a reasonable number of events

that are extremal or nearly so, one should expect to be able to measure endpoints.

We note that this application of endpoint techniques to mass determination at the

LHC is not new. For example, the endpoint of the dilepton invariant mass distribution has

long been suggested as a good observable for constraining the mass-squared differences in

supersymmetric cascade decays [7]. Here, by contrast, we shall attempt to use the procedure

to provide a direct measurement of the absolute mass scale, rather than differences in masses

or differences in squared-masses. We do this by generalizing the method described above

for the W -boson.
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Figure 1: An illustration of the types of decay considered in this paper. We consider both single-

and pair-production of a parent particle which can decay into one invisible daughter of unknown

mass (represented by the lightly shaded arrows) and an arbitrary number of visible daughters. In

the analysis and conclusions, we will find it necessary to draw a distinction between (a,b) events

in which the parent(s) recoils against a system (large yellow arrow) with significant transverse

momentum (SPT), and (c,d) events in which the parent(s) recoils against nothing and has zero

transverse momentum (ZPT). The circular blobs serve to disguise the nature of the mechanism(s)

by which each decay takes place, as our analysis is general in this regard. See figure 2 for some

special cases that are examined in more detail in the text.

There are two obvious ways in which we would like to generalize the method used

to determine the W mass. Both are motivated, in part, by our theoretical prejudice as

to what we expect, or hope, to discover at the LHC, and both encounter an immediate

obstruction. The types of events we will be considering are summarized in figure 1.

Firstly, we should like to generalize to cases where the invisible daughter has unknown,

but non-negligible mass (figure 1(a,c)). One theoretical prejudice for this is that any viable

dark matter candidate ought to be electrically-neutral, colour-singlet and long-lived, hence

invisible in the detector. Decays to this particle would be exactly of the type discussed

above, except that the dark matter candidate, by definition, has non-negligible mass (per-

haps of the order of the Fermi scale or greater, if the dark matter is both thermal and

weakly-interacting). In such a case, even more kinematic information is lost, because both

the momentum and the mass (and, ergo, the energy) of the invisible particle are unknown.

Hence, mT is no longer an observable.

Secondly, we should like to generalize to cases where the parent particles are pair-

produced (figure 1(b,d)). This is the expectation in, for example, supersymmetric theories

with conserved R-parity, or in little Higgs models with T -parity. In such cases, each of the
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pair-produced parents of mass m0 can produce an invisible daughter of unknown mass m1

among its decay products. Should this happen, the transverse momenta of the invisible

particles can no longer be individually inferred from the missing transverse momentum;

only the sum of the transverse momenta is now constrained. It is, consequently, not possible

to observe the transverse mass of either pair-produced particle.

The generalization of mT to events with pair-production was first made in [8, 9], where

an algorithm was given for constructing an observable, called mT2(χ), which is a function

of the transverse momenta of the observed particles and the missing transverse momentum,

and whose definition is based upon the individual (and unobservable) transverse masses.

(An entirely different way of considering events of the same type was suggested in [10].)

Note that, in the construction of the mT2(χ) variable, it was necessary to introduce a

parameter χ which represents a hypothesis for the true mass m1 of the invisible particles

generated in the decay of each primary parton. In that sense, mT2(χ) should strictly not

be called an event variable, but rather an “event function”. A given event generates not

just one value of mT2. Instead it generates a distribution of mT2 values, one for each

value χ taken as a hypothesis for the mass of the invisible final-state particles. When

the hypothesis χ is chosen to be equal to the true mass m1 of the invisible particles, the

observable mT2(χ | χ = m1) shares two properties enjoyed by mT , namely (1) that it is

bounded above by the mass m0 of the decaying particle, and (2) that this bound may be

reached in events in which certain constraints are met, such as the rapidity of each invisible

particle matching the rapidity of the sum of its sister decay products. The upper endpoint

over events (indicated by a circumflex) of mT2, m̂T2(χ | χ = m1), may thus be used as an

estimator for m0.

However, without knowledge of m1, what may be said about the dependence of mT2(χ)

on the mass hypothesis χ? Without knowledge of m1, is one forced to treat m̂T2(χ) as

providing a one-dimensional constraint in the (m0,m1)-plane parameterized by χ. Is it

the case that the m̂T2 variable constrains not m0 and m1 but only a relationship between

them?

Cho et al. [1] considered “CASE 6v ZPT” and “CASE 6s ZPT”, as defined in figure 2.

Their claim, based on simulations and examples, but made without proof, is that the

m̂T2(χ) observable, considered as a function of the hypothetical mass of the invisible parti-

cle χ, has a kink (that is, is continuous, but not differentiable) precisely at the point where

the hypothetical mass equals the true mass. In [2], one of us examined “CASE 2 SPT”

analytically and proved the existence of a kink at χ = m1. In section 3, we analyze all the

cases of figure 1 and figure 2, including, but not restricted to, those of [1] and [2]. We go

on to produce example Monte Carlo distributions in section 4, including examples of CASE

6v ZPT and CASE 6s ZPT (figure 10, 12) and CASE 2 SPT (figure 6b) which illustrate the

sorts of kinks found in [1] and [2] respectively.

3. Analysis

Our notation for a single particle decay is as shown in figure 2. The decaying parent is par-

ticle 0, the invisible daughter is particle 1, and the system of visible daughters is labelled N .
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Figure 2: This figure shows six particular forms of event which are used to illustrate points made

throughout the analysis and in the conclusions. They are all special cases of the generic event-

types shown in figure 1. Each case will come in both SPT and ZPT forms (i.e. with and without

net transverse momentum as defined in figure 1) although for clarity we omit the recoiling system

from the diagram above. This figure also defines the numbering system used to denote particles in

these special cases. The invisible final state particles are represented by a lighter colour, and are

numbered either 1 or 6.

We denote the energy of particle i by Ei, its transverse momentum by pi, the magnitude

of its transverse momentum by pi, its longitudinal momentum by qi, and its transverse

energy by ei. The mass of particle i is mi and the transverse energy is defined in terms

of the transverse momentum by ei =
√

p2
i + m2

i . For the case of the invisible particle 1,

we will sometimes need to use the hypothesized mass χ and the corresponding transverse

energy, ẽ1 =
√

p2
1 + χ2. The antisymmetrized product is denoted by E[1q2] ≡ E1q2 −E2q1.

Finally, we put a circumflex over a function which is evaluated at an extremum.

3.1 Single particle production (CASE 2, CASE 3v, CASE 3s, etc.)

Consider the decay of particle, 0, to an invisible particle, 1, and an N -particle system

of visible particles, i with individual mass mi and invariant mass mN . The number of

transverse dimensions is arbitrary. We first assert that mN ∈ [m<,m>], where, for a true

(N + 1)-daughter point decay,

m< = Σimi, (3.1)

m> = m0 − m1. (3.2)

For decays of cascade type, which proceed through intermediate on-shell states, m< and

m> will be larger and smaller, respectively. For a two-daughter decay, m< = m> = m2,

whereas for a three-body cascade decay to massless visible daughters, occurring via an

– 7 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
4

on-shell state of mass M ,

m< = 0, (3.3)

m> =

√

(m2
0 − M2)(M2 − m2

1)

M2
. (3.4)

For further details, see e.g. [7, 11].

The problem is to extremize the function

f(χ2) = χ2 + m2
N + 2(ẽ1eN − p1 · pN ), (3.5)

which is the square of the transverse mass one would calculate when assuming a hypotheti-

cal mass, χ, for the invisible particle.1 The extremization is subject to various constraints,

namely conservation of energy-momentum, and the mass-shell conditions. We consider

two distinct situations. In the former, the decaying particle can have arbitrary transverse

momentum with respect to the laboratory frame (SPT). In the latter, the decaying particle

has zero transverse momentum in the lab frame (ZPT).

3.1.1 Single-particle SPT production (CASE 2 SPT, CASE 3v SPT, CASE 3s SPT,

etc.)

In the SPT case, a minimal set of constraints can be written as

m2
0 = m2

1 + m2
N + 2(E1EN − p1 · pN − q1qN ), (3.6)

m2
1 = E2

1 − p2
1 − q2

1, (3.7)

m2
N = E2

N − p2
N − q2

N . (3.8)

We introduce Lagrange multipliers λ0,1,N and vary with respect to E1,N ,p1,N , q1,N and mN

to obtain the extremization equations

0 = λ0EN − λ1E1,

0 = λ0E1 − λNEN ,

0 = λ0qN − λ1q1,

0 = λ0q1 − λNqN ,

0 = −pN (1 + λ0) +

(

λ1 +
eN

ẽ1

)

p1,

0 = p1(1 + λ0) +

(

λN +
ẽ1

eN

)

pN ,

0 = mN

(

1 + λ0 + λN +
ẽ1

eN

)

. (3.9)

1We could also choose to extremize the same function, but with the invariant mass mN replaced by

the transverse invariant mass of the visible system. But the transverse invariant mass is also valued in

[m<, m>], and the extremal values of f defined in this way are the same. Moreover, there are two obvious

disadvantages in using the transverse invariant mass. The first is that it only attains its boundary values,

m≶ , when the relative rapidities of visible particles vanish. There are thus fewer events near the extrema

for a given sample size. The second is that it does not use available information, namely the longitudinal

momenta of the visible particles.
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Note that we assume that none of ẽ1, e1,N vanish so that we can freely multiply or divide

by any energy or transverse energy. Now, the first four of these equations together imply

that

λ2
0 = λ1λN , (3.10)

and that either

0 = λ0 = λ1 = λN , (3.11)

or that

0 = E[1qN ], (3.12)

which, just as in (2.4), implies that the relative rapidity of the visible system and the

invisible particle should vanish. In the former case, equations (3.9) imply

0 = ẽ1pN − eNp1, (3.13)

or equivalently that

mNp1 = χpN . (3.14)

But using (3.13) in (3.5) then yields

f = (χ + mN )2. (3.15)

In this case also, the last of equations (3.9) has no solution for mN ∈ [m<,m>], which

implies that there is no stationary point in mN . Thus, the extrema of f must arise at the

boundary values of mN . The extremal values are

f̂I = (χ + m<)2,

f̂II = (χ + m>)2. (3.16)

For a true (N+1)-daughter point decay,

√

f̂I = χ + Σimi,
√

f̂II = χ − m1 + m0. (3.17)

It is straightforward to check that all of equations (3.9), bar the last one, have been satisfied.

One should also check that the constraints, (3.6), can be satisfied. They can, for some given

value of p1. In the case m> = m0 − m1, for example, one finds that

p2
1 =

χ2m2
1

(χ − m1)2
. (3.18)

The singular behaviour at χ = m1 arises, because there are extrema for all values of p1 at

this point.
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The second possibility (3.12) is that 0 = E[1qN ], in which case the first constraint

in (3.6) simplifies to

m2
0 = m2

1 + m2
N + 2(e1eN − p1 · pN ). (3.19)

Now the penultimate two equations of (3.9), together with (3.10), imply that

0 = (ẽ1pN − eNp1)(eNλ0 − ẽ1λ1). (3.20)

One of these two factors must therefore vanish; if it is the first, then we are led back

to (3.13) and the extremum (3.15). If it is the second, we find, from the first equation

of (3.9),2 that

E1eN = EN ẽ1. (3.21)

Now since 0 = E[1qN ] in this case, we can square and add (E1qN )2 to the left-hand side

and (ENq1)
2 to the right-hand side to obtain

e1 = ẽ1, (3.22)

or rather

χ = m1, (3.23)

for which f = m2
0. So this possibility generates the well-known maxima of f at χ = m1,

with 0 = E[1qN ].

We should also consider whether f takes extremal values elsewhere on the boundary.

Indeed, we already saw in (3.16) the extrema occurring at the boundary values of the in-

variant mass mN . There are two other boundaries that are consistent with the constraints,

namely the boundary at large q1,N and the boundary at large p1,N (both of which imply

large E1,N via the constraints). It is easy to see that the boundary at large q1,N does not

give rise to new extrema for f , since f has no explicit dependence on q1,N . Let us look

instead at large values of the transverse momenta p1 and pN . We should still satisfy the

extremization equations obtained by variation with respect to E1,N and q1,N , and so we

still find that either the Lagrange multipliers or the relative rapidity should vanish. In

the former case, we reproduce the extremum (3.16). In the latter case, the first constraint

in (3.6) becomes

m2
0 = m2

1 + m2
N + 2(e1eN − p1 · pN ). (3.24)

and f can be written as

f(χ2) = m2
0 + χ2 − m2

1 + 2eN (ẽ1 − e1). (3.25)

2We assume all Lagrange multipliers non-vanishing, otherwise we end up with the extremum obtained

previously.
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At large p1 and pN , equation (3.24) becomes, at leading order,

0 = p1pN − p1 · pN , (3.26)

which is solved by choosing p1 and pN to be parallel. At next-to-leading order, (3.24)

becomes

m2
1

pN

p1
+ m2

N

p1

pN

= m2
0 − m2

1 − m2
N , (3.27)

whence

pN

p1
=

m2
0 − m2

1 − m2
N ±

√

(m2
0 − m2

1 − m2
N )2 − 4m2

1m
2
N

2m2
1

. (3.28)

To understand how the two values arise, note that in the rest frame of particle 0, the

magnitudes of the momenta, p1,N , are completely fixed (for a given value of the invariant

mass mN ). The two values above are obtained by performing an infinite boost either

parallel or anti-parallel to p1 (in the rest frame of 0).

Now let us expand f in (3.25) to next-to-leading order. We find

f = m2
0 + (χ2 − m2

1)
(

1 +
pN

p1

)

, (3.29)

= m2
0 + (χ2 − m2

1)
(

1 +
m2

0 − m2
1 − m2

N ±
√

(m2
0 − m2

1 − m2
N )2 − 4m2

1m
2
N

2m2
1

)

. (3.30)

Again, the extrema with respect to mN are obtained at the boundary, such that the extrema

are

f̂III = m2
0 + (χ2 − m2

1)
(

1 +
m2

0 − m2
1 − m2

< +
√

(m2
0 − m2

1 − m2
<)2 − 4m2

1m
2
<

2m2
1

)

,

f̂IV = m2
0 + (χ2 − m2

1)
(

1 +
m2

0 − m2
1 − m2

> +
√

(m2
0 − m2

1 − m2
>)2 − 4m2

1m
2
>

2m2
1

)

,

f̂V = m2
0 + (χ2 − m2

1)
(

1 +
m2

0 − m2
1 − m2

> −
√

(m2
0 − m2

1 − m2
>)2 − 4m2

1m
2
>

2m2
1

)

,

f̂V I = m2
0 + (χ2 − m2

1)
(

1 +
m2

0 − m2
1 − m2

< −
√

(m2
0 − m2

1 − m2
<)2 − 4m2

1m
2
<

2m2
1

)

. (3.31)

There are thus four possible extremal values for f̂ which occur at asymptotically large

momenta.3 They obey the following order relations above the kink (the order relations are

simply reversed below the kink)

f̂III ≥ f̂IV ≥ f̂V ≥ f̂V I . (3.32)

The central relation is trivial; we prove the other two by establishing that

m2
0 − m2

1 − m2
N ±

√

(m2
0 − m2

1 − m2
N )2 − 4m2

1m
2
N (3.33)

3Two in the case of a two-daughter decay with m< = m>.
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is monotonically decreasing on mN ∈ [0,∞] for the + branch, and monotonically increasing

for the − branch. Indeed, differentiating with respect to m2
N yields

−1 ∓ m2
0 + m2

1 − m2
N

√

(m2
0 − m2

1 − m2
N )2 − 4m2

1m
2
N

. (3.34)

Furthermore, the magnitude of the fraction is greater than one for all values of m2
N .

Hence (3.33), has the claimed monotonicity properties, and the order relations in (3.32)

follow.

For a true point decay with massless visible daughters, the gradients are given by 1,

m0/m1, m0/m1 and (m0/m1)
2.

In summary, the possible extrema for f are given by f̂I−V I in equations (3.16) and (3.31).

Up until now, we have said nothing about the nature of the extrema of f , that is

whether they correspond to maxima, minima, or saddle points. Now, it is clear from (3.5)

that the extrema of the type

f̂I,II = (χ + m≶)2 (3.35)

correspond to minima in phase space. That is, if we shift the momenta slightly, subject to

the constraints, then f will increase. Moreover, if we increase mN from m<, then f will

also increase. Thus

f̂I = (χ + m<)2 (3.36)

is a minimum. On the other hand, if we decrease mN from m>, then f will decrease,

implying that

f̂II = (χ + m>)2 (3.37)

is a saddle point. What about the asymptotic extrema? Well, we know that the − branch

in (3.29) corresponds to a minimum value for the coefficient of (χ2 − m2
1), with respect to

variations in the momenta, whereas the + branch corresponds to a maximum. But we also

know that the coefficient is monotonically decreasing as a function of mN on the + branch

and monotonically increasing on the − branch. Putting this together, we see that, above

the kink, f̂III is a maximum, f̂V I is a minimum, and f̂IV and f̂V are saddle points. In

contrast, below the kink, f̂V I is the maximum and f̂III a minimum.

Since there is only ever a single maximum, for any value of χ, it must be the global

maximum. Since there are always two minima, it is not immediately clear which is the

global minimum. In the case of a point decay to massless visible particles, it is easy to

show that f̂I is always the global one.

In summary, the global maximum for χ < m1 is given by

f̂(χ|χ < m1) = m2
0 + (χ2 − m2

1)

(

1 +
m2

0 − m2
1 − m2

< −
√

(m2
0 − m2

1 − m2
<)2 − 4m2

1m
2
<

2m2
1

)

,

(3.38)
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whereas for χ > m1, it is given by

f̂(χ|χ > m1) = m2
0 + (χ2 − m2

1)

(

1 +
m2

0 − m2
1 − m2

< +
√

(m2
0 − m2

1 − m2
<)2 − 4m2

1m
2
<

2m2
1

)

.

(3.39)

These functions coincide at χ = m1, but have different gradients there, giving rise to a

kink.

3.1.2 Single-particle ZPT production (CASE 2 ZPT, CASE 3v ZPT, CASE 3s ZPT,

etc.)

To study decays in which the decaying particle has zero transverse momentum, we simply

append the constraint

0 = p1 + pN , (3.40)

to the set (3.6). As before we find that either all Lagrange multipliers vanish or the relative

rapidity vanishes. Then, we find from (3.6) and (3.40) that

p2
1 =

(m2
0 − m2

1 − m2
N )2 − 4m2

1m
2
N

4m2
0

, (3.41)

whence

e1 =
m2

0 + m2
1 − m2

N

2m0
(3.42)

and

eN =
m2

0 − m2
1 + m2

N

2m0
. (3.43)

Thus,

f = m2
0 + (χ2 − m2

1) +
m2

0 − m2
1 + m2

N

2m0

(

√

(χ2 − m2
1) +

(

m2
0 + m2

1 − m2
N

2m0

)2

−m2
0 + m2

1 − m2
N

2m0

)

. (3.44)

Note that the radicand is always positive-definite for χ > 0, and 0 < mN < m0 − m1 (the

largest possible endpoints for mN ), such that f is real.

We have not yet considered the behaviour of f as we vary mN . Let us now prove that

f is a monotonically increasing function of mN for χ > m1, and a monotonically decreasing

function for χ < m1, such that the global maximum is obtained at the upper endpoint of

mN for χ > m1 and at the lower endpoint for χ < m1. To do so, it is convenient to define

the quantities

A = m2
0,

B = 4m2
0(χ

2 − m2
1),

C = m2
1 − m2

N ,

D = m2
0 + (χ2 − m2

1), (3.45)
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which are all positive semi-definite apart from B > −4m2
0m

2
1. In terms of these quantities,

f may be written as

f = D +
A − C

4A

(

√

B + (A + C)2 − (A + C)
)

, (3.46)

such that

∂f

∂m2
N

=
1

4A
√

B + (A + C)2

(

B + 2C(A + C) − 2C
√

B + (A + C)2
)

. (3.47)

To exhibit the claimed monotonicity properties of f , we wish to show that, for B ≶ 0,
(

B + 2C(A + C) − 2C
√

B + (A + C)2
)

≶ 0.

Now, since AC and (A + C)2 are both greater than 4m2
0m

2
1, we have that B + 4AC > 0

and that B + (A + C)2 > 0. From the first of these, B ≶ 0 implies

B(B + 4AC) > 0, (3.48)

which itself implies, after adding an identical term to both sides, that

(B + 2C(A + C))2 ≶ 4C2(B + (A + C)2). (3.49)

Since C > 0 and B + (A + C)2 > 0, we can safely take the square root on the right-hand

side to obtain

|B + 2C(A + C)| ≶ 2C
√

B + (A + C)2. (3.50)

Now B + 2C(A + C) can be either positive or negative. If the latter, then B is necessarily

negative, and, moreover, B + 2C(A + C)− 2C
√

B + (A + C)2 is the sum of two negative-

definite terms and is negative. If the former, then (3.50) becomes

B + 2C(A + C) − 2C
√

B + (A + C)2 ≶ 0. (3.51)

In either case, we have the result claimed, namely that B ≶ 0 implies
(

B + 2C(A + C) −

2C
√

B + (A + C)2
)

≶ 0, which in turn implies that f is monotonic, either increasing or

decreasing as specified above. Thus, the global maximum of f for χ < m1 is given by

f̂(χ|χ < m1) = m2
0 + (χ2 − m2

1) (3.52)

+
m2

0 − m2
1 + m2

<

2m0

(

√

(χ2 − m2
1) +

(m2
0 + m2

1 − m2
<

2m0

)2
− m2

0 + m2
1 − m2

<

2m0

)

,

whereas for χ > m1, the global maximum is given by

f̂(χ|χ > m1) = m2
0 + (χ2 − m2

1) (3.53)

+
m2

0 − m2
1 + m2

>

2m0

(

√

(χ2 − m2
1) +

(m2
0 + m2

1 − m2
>)

2m0

)2
− m2

0 + m2
1 − m2

>

2m0

)

.
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These two values coincide at χ = m1 but have different gradients there, iff. m> 6= m<.

This condition is trivially broken in the case of decay to a single visible daughter, in which

case m> = m< = m2. In all other cases, we will get a kink.

It is worth observing that the maxima of the ZPT case never coincide with maxima of

the SPT case, not even as local (rather than global) maxima. Indeed, the only maximum

of the ZPT case which coincides with an extremum of the SPT case occurs for a true point

decay, for which mN = m0 − m1 and p1 = 0. But, as we pointed out in the previous

subsubsection (3.1.1), this extremum is a saddle point in the SPT case.

3.2 Further analysis of single particle decays (CASE 2, CASE 3v, CASE 3s, etc.)

Section 3.1 provides a comprehensive description of the extremal values of f for single

particle decays, but is not terribly intuitive.

In order to gain some intuition as to the physical origin of the kinks and extrema,

in this subsection we investigate the dynamics by first looking at the decay kinematics in

the rest frame of the parent particle, applying the physical constraints there, and then

boosting the system of daughters to the lab frame. As before, the parent particle, ‘0’,

decays to an invisible particle, ‘1’, and a system of visible particles, ‘N ’. (EN ,pN , qN ) can

be either the four-momentum of a single particle in the two-daughter decay case, or the

sum of four-momenta of all the visible daughters in the N+1-daughter decay case, with

N + 1 > 2.

We have shown already that maxima of f occur when the visible and invisible systems

are produced with vanishing relative rapidity (3.12). Since it is the maxima that we are

interested in, for the rest of this section we restrict ourselves to vanishing relative rapidity,

in which case the transverse mass-squared is given by

f = m2
0 + (χ2 − m2

1) + 2eN (ẽ1 − e1). (3.54)

Moreover, since we are interested in the existence of kinks near χ = m1, we simplify

subsequent expressions by expanding f as a Taylor series in χ2, about χ2 = m2
1. Thus

f = m2
0 + (χ2 − m2

1)

(

1 +
eN

e1

)

+ . . . (3.55)

We remind ourselves that since we are interested in the maximal value of f , for values

of χ greater than m1, we must take the maximal value of

α ≡ 1 +
eN

e1
, (3.56)

whereas for χ less than m1, we must take the minimal value of α. There will be a kink in

f̂ if the maximal and minimal values of α are different.

We first consider the decay in the rest frame of the parent. In that frame (denoted

by primed quantities), for fixed values of m0,m1 and mN , the momenta and transverse

energies of the daughters are fixed:

(p′)2 ≡ |p′

1,2|2 =
(m2

0 − (m1 + mN )2)(m2
0 − (m1 − mN )2)

4m2
0

, (3.57)

(e′i)
2 = (p′)2 + m2

i . (3.58)
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We now boost back to the lab frame. We define β = |p0/e0| to be the transverse

velocity of the parent particle in the lab frame. We define θ to be the angle, as measured in

the rest frame of the parent, between the velocity vector of the lab frame and the transverse

momentum vector of the visible particle system, pN . This means that, to an observer in the

lab frame, the condition θ = 0 corresponds to the invisible particle being thrown forwards

in the decay, i. e. in the same direction as the parent’s velocity, while θ = π corresponds

to the invisible particle being thrown backwards, i. e. against the parent’s velocity.

A simple Lorentz transformation gives the lab-frame transverse energies and momenta

of the daughters,

eN = γ(e′N − p′β cos θ), (3.59)

e1 = γ(e′1 + p′β cos θ), (3.60)

where γ ≡ (1 − β2)−
1

2 is the Lorentz factor associated with the velocity β. This means

that α is given by

α = 1 +
e′N − p′β cos θ

e′1 + p′β cos θ
,

=
2m2

0

m2
0 + m2

1 − m2
N + 2m0p′β cos θ

,

=
2m2

0

m2
0 + m2

1 − m2
N + β cos θ

√

(

m2
0 − (m1 − mN )2

) (

m2
0 − (m1 + mN )2

)

. (3.61)

Equation 3.61 tells us everything about the gradient around χ2 = m2
1 for any two-

daughter, three-daughter, or indeed N+1-daughter decay. We recall that N represents

the system of visible daughters and has a mass equal to the invariant mass of the visible

daughters. For the N+1-daughter decay, with N + 1 > 2, the visible-daughter invariant

mass, mN , can take any value within the range mN ∈ [m<,m>]. We recall that, for a true

point decay, m< is equal to the sum of the masses of the visible daughters produced in the

decay, and m> is m0 − m1.

We can see that, if some finite experimental sample contains events in which either

the parent is highly boosted, such that β cos θ has values significantly different from zero,

or mN spans some reasonable range, then the maximal and minimal values of the gradient

obtained from the sample will be significantly different, and an observable kink in f̂ can be

expected at χ = m1. Indeed, in principle, we need just two events with vanishing relative

rapidity to generate a kink at χ = m1.

Thus, the presence or absence of the kink at (m0,m1) is not, in fact, contingent upon

whether our experimental sample contains events that correspond to the global maxima,

whether SPT or ZPT. Rather, we simply need a reasonable number of events with vanishing

(or near-vanishing) relative rapidity and significantly differing values of either mN or β cos θ.

Either of these will suffice to generate a kink, and indeed our later simulations will illustrate

this rather well.

That said, it is important to remark that, if our sample does not contain events at or

close to the global maximum, then it is possible that further kinks will arise at χ 6= m1.
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The reasoning for this is as follows. Suppose our sample contains events with vanishing

relative rapidity, giving rise to a kink at χ = m1. If an event corresponding to the global

maximum is not contained in the sample, then it is possible that other events in the sample,

with non-vanishing relative rapidity, can exceed the maximum value of f generated by the

events with vanishing relative rapidity. Now, this cannot occur at χ = m1, because we have

saturated the global maximum at this point. So, the kink at (m0,m1) cannot be erased in

this way. But the events with non-vanishing rapidity can exceed the maximum value of f

generated by the events with vanishing relative rapidity at values of χ 6= m1. If this does

indeed occur, then a second kink will be generated at the value of χ 6= m1 where the values

of f coming from the two different types of event coincide.

So it is possible, albeit unlikely, that a finite experimental sample of events will give rise

to spurious kinks, leading to a discrete ambiguity in the extracted values of the masses m0

and m1. We note, however, that this phenomenon is not observed in any of our simulations.

Let us put this issue to one side, and return to our discussion of the kink at (m0,m1).

In the case where the range of values of mN is small — and in particular CASE 2 where mN

is single-valued — we must rely on different values of β cos θ to produce a kink. The global-

maximum gradient on either side of the kink is obtained asymptotically as the transverse

momenta become both large in magnitude and collinear.

Some other important properties of the extremal gradients are as follows.

• The maximum and minimum gradients will occur when β cos θ → ∓1. The values of

these extremal gradients are (cf. eqs. 3.38 and 3.39)

αmax
min = 1 +

m2
0 − m2

1 − m2
< ±

√

(m2
0 − m2

1 − m2
<)2 − 4m2

1m
2
<

2m2
1

. (3.62)

In the limit where all the visible particles are massless, m< = 0, these become:

αmax =

(

m0

m1

)2

, (3.63)

αmin = 1. (3.64)

• When m> = m0 − m1, then p′ = 0, and the invisible daughter is at rest in the

parent’s rest frame. The gradient is then independent of the motion of the parent

(parameterized by β and θ) and takes value m0/m1. In CASE 2 this configuration is

only obtained if masses are precisely at the threshold. In the N + 1-daughter point-

decay case with N ≥ 2 (e.g. CASE 3v), it represents the kinematic configuration

in which the visible daughters have their maximum possible invariant mass. This

configuration cannot be realised in cascade decays, such as CASE 3s.

In figure 3, we show the gradient as a function of β cos θ and mN , for the particular values

of m0 = 500 and m1 = 100. As expected, the maximal value of the gradient occurs at

β cos θ → −1, mN = 0, and is m2
0/m

2
1 = 25. The minimal value occurs at β cos θ → +1,

mN = 0, and is 1. When mN = m0 − m1 = 400 we obtain gradient m0/m1 = 5 for any

value of β cos θ.
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Figure 3: The surface shows the gradient, α = df

dχ2 , near χ2 = m2
1 as a function of β cos θ, and

of mN , the invariant mass of the visible particles produced in the decay. The values of the other

masses are m0 = 500 and m1 = 100.

Note that in a real collider experiment there will usually be very few events near

β cos θ = ±1 since these events require β → 1 and hence asymptotically high energy.

Indeed, for the common case of heavy particles being produced near threshold, most events

will have β ≈ 0. These threshold-production (ZPT) events have gradients

αβ=0 = 1 +
e′N
e′1

, (3.65)

=
2m2

0

m2
0 + m2

1 − m2
N

. (3.66)

For the N+1-daughter point decay with m< = Σimi and m> = m0−m1, the ZPT extremal

gradients are

αmax
β=0 =

m0

m1
, (3.67)

αmin
β=0 =

2m2
0

m2
0 + m2

1 − m2
<

. (3.68)

Returning to the SPT case (in which the global maximum is obtained at asymptotically

large momenta) we should like to understand how close to the global maximum we can get in

events with large, but finite, momenta, such as we might hope to achieve in an experiment.

To this end, let us ask what the relative decrease is in the gradient of f that results from

a small shift in β cos θ away from the maximal values of ±1. For β cos θ = 1 − δ+, we find

that the relative change in the gradient is given by

p′δ+

e′1 + p′
, (3.69)

whereas for β cos θ = −1 + δ−, the relative change in the gradient is given by

p′δ−
e′1 − p′

. (3.70)

– 18 –



J
H
E
P
0
2
(
2
0
0
8
)
0
1
4

0
0.2

0.4

0.6

0.8Β

-1

-0.5

0

0.5

1
cos Θ

300

400

0
0.2

0.4

0.6

0.8Β

-1

-0.5

0

0.5cos Θ

(a)

0.2
0.4

0.6

0.8Β

-1

-0.5

0

0.5

1
cos Θ

550
600

650

700

750

0.2
0.4

0.6

0.8Β

-1

-0.5

0

0.5cos Θ

(b)

Figure 4: The surface shows the maximum transverse mass that would be found for a two-daughter

decay when the hypothesized mass, χ, of the invisible particle is (a) less than and (b) greater than

its true mass. The invariant mass is plotted as a function of the transverse velocity, β = p0/e0,

of the parent particle in the lab frame, and of the cosine of the angle, θ, as described in the text.

Decays in which the visible and invisible daughters are produced with vanishing relative rapidity

will lie on the surface, while all other events will lie below it. In both cases the masses are: parent

m0 = 500; visible daughter m2 = 0; invisible daughter m1 = 100. The hypothesized mass of the

invisible daughter (χ) is 50 in (a) and 150 in (b).

Thus, the relative change for a given shift in the δs is always greater above the kink than

it is below, irrespective of the mass values. So in a finite sample of events, in which the

distribution of cos θ is roughly uniform, we always expect to get closer to the maximum

below the kink than we do above it.

A graphical representation of this result for particular mass values can be seen in

figure 4, where mT =
√

f is plotted as a function of cos θ and β for two particular values of

χ. Firstly, we see that the maxima are obtained at the expected values of θ and β. We also

see that, for angles close to the respective maxima, the fall-off is much greater above the

kink (χ > m1, figure 4b) than it is below (χ < m1, figure 4a). Indeed, a large fraction of

the surface lies near the upper limit for χ < m1, while only a very small fraction of events,

with β cos θ ≈ −1, lie near the maximum value for χ > m1.

We might therefore expect that in a finite sample of events, we are likely measure

a maximal gradient close to the predicted one when χ < m1. However we are likely to

underestimate the maximum gradient when χ > m1 because of the scarcity of events in

this kinematic region. Our Monte Carlo simulations (described in section 4) confirm these

expectations.

3.3 Pair production at SPT and ZPT (CASE 4, CASE 6v, CASE 6s, etc.)

Now let us consider the case, relevant to supersymmetric theories with conserved R-parity,

in which parent particles are pair-produced, and each parent decays into an invisible daugh-

ter particle and one or more visible daughter particles. This case is complicated by the fact

that there are now two invisible particles, and thus two transverse momenta go unmeasured.

Only their sum can be inferred from measurement of the total missing transverse momen-
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tum. Thus, the individual transverse masses for each decay are no longer observables, and

we need to construct a new observable.

A suitable observable was put forward in [8, 9], and is defined as follows. We label the

pair of parent particles as 0 and 5 and their respective invisible daughters by 1 and 6 (see

figure 2). There are N and M visible daughters, respectively, with invariant masses mN

and mM . For simplicity, we assume that the produced pair of particles have identical mass

m0, that the invisible particles have identical mass m1.
4

Following [8, 9], we construct two transverse mass functions, namely

f = χ2 + m2
N + 2(ẽ1eN − p1 · pN ), (3.71)

g = χ2 + m2
M + 2(ẽ6eM − p6 · pM ). (3.72)

Even if the mass χ were known, these would not be observables, since one cannot sepa-

rately determine the transverse momenta p1 and p6 of the invisible particles in a collider

experiment. One can only determine their sum, which equals the total missing transverse

momentum, p, say. An observable can then be constructed as follows. Consider all possible

partitions of the measured missing transverse momentum p into the unmeasured invisible

transverse momenta. Only one of these partitions will, of course, be the correct one. For

each partition, select the largest value of f and g, max(f, g). Finally, minimize max(f, g)

over all possible partitions.

In this way, one obtains an observable function of the hypothesized invisible mass

χ. This observable, called m2
T2(χ) has the same property as the usual transverse mass

observable: at χ = m1, it is bounded above by m2
0 [8, 9].

To study m2
T2 away from the point χ = m1, let us define the hypothesized invisible

momenta of particles 1 and 6 in the trial partition to be p⋆
1 and p⋆

6. Since p⋆
1 + p⋆

6 = p we

can write

f = χ2 + m2
N + 2

√

(p⋆
1)

2 + χ2
√

p2
N + m2

N − 2p⋆
1 · pN , (3.73)

g = χ2 + m2
M + 2

√

(p− p⋆
1)

2 + χ2

√

p2
M + m2

M − 2(p − p⋆
1) · pM . (3.74)

The prescription for constructing m2
T2 given above instructs us to find the minimum with

respect to variations of p⋆
1, of the maximum of f, g. There are three ways in which this

minimum can arise (see figure 5) . Either (a) it is a minimum of one of the f, g that

lies above the other one of g, f , or (b) it is a point at which f = g, or (c) it occurs

at a boundary. In the case at hand, it is not difficult to show that f, g, considered as

functions of p⋆
1, are unbounded above as p⋆

1 → ±∞ and each has a unique minimum with

f, g = (χ + mN,M )2. For f , this minimum occurs at χpN = mNp⋆
1, and for g, it occurs

at χpM = mM (p − p⋆
1). For minima of type (a) the value of mT2 that results is given

by χ + mN,M , and thus the largest value of mT2 that can arise is given by the largest

upper endpoint of the two mN,M intervals. Such extrema always lie below m0 at χ = m1

(except in the special case of a point decay, in which the upper endpoint, m0 − m1, gives

4This is, for example, the case for supersymmetric decays to the lightest stable superpartner.
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Figure 5: A diagram demonstrating that the minimisation over some parameter of the maximum

of two differentiable functions may occur either at (a) a minimum value of one of them, or (b)

when they are equal, or (c) at the boundary of the domain.

mT2 = m0). Thus, they do not, in general affect the behaviour at (m0,m1) in which we

are principally interested.

We are thus left to consider minima of the type (b), for which f = g. Now, to find

the partition of p that minimizes f = g for a given event requires us to solve f = g, which

is a quartic equation in one of the assigned invisible momenta. Rather than do this, we

note that the entire procedure of computing mT2 by minimizing over partitions and then

maximizing mT2 over all events, can be phrased as a single extremization problem. Indeed,

we wish to find the extremum which is a minimum of f (or g, it does not matter which)

with respect to variations of the hypothesized transverse momenta and a maximum with

respect to the true event variables, subject to the usual energy-momentum constraints,

supplemented with the constraint f = g.

Explicitly, we wish to extremize

f = m2
N + χ2 + 2(ẽ⋆

1eN − p⋆
1 · pN ), (3.75)

where ẽ⋆
1 =

√

p⋆2
1 + χ2, subject to

0 = m2
N + χ2 + 2(ẽ⋆

1eN − p⋆
1 · pN ) − m2

M + χ2 + 2(ẽ⋆
6eM − p⋆

6 · pM ),

0 = −m2
0 + m2

1 + m2
N + 2(E1EN − p1 · pN − q1qN),

0 = −m2
0 + m2

1 + m2
M + 2(E6EM − p6 · pM − q6qM),

0 = −p + p1 + p6,

0 = −p + p⋆
1 + p⋆

6. (3.76)

In the case of ZPT decays, we must further supplement these with the constraint

0 = p + pN + pM . (3.77)

As always, variation with respect to E and q will force either the relevant Lagrange mul-

tipliers to vanish, or the relative rapidities to vanish. That is

0 = E[1qN ],

0 = E[6qM ]. (3.78)
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We are interested in the latter case, since this will give rise to values of mT2(χ) which go

through the point (m0,m1). In this case, the two energy-momentum constraints simplify to

0 = −m2
0 + m2

1 + m2
N + 2(e1eN − p1 · pN ),

0 = −m2
0 + m2

1 + m2
M + 2(e6eM − p6 · pM ). (3.79)

Let us now explicitly introduce Lagrange multipliers µ1,2,3 for the first three constraints

in (3.76). The final two constraints we use to eliminate p6 and p⋆
6. We also add a vector

Lagrange multiplier µ4 for constraint equation (3.77) in the case of ZPT. The extremization

equations, obtained by varying with respect to p⋆
1,p1,pN ,pM ,p,mN and mM are

0 = (1 + µ1)
(p⋆

1

ẽ⋆
1

eN − pN

)

− µ1

(p⋆
1 − p

ẽ⋆
6

eM + pM

)

,

0 = µ2

(p1

e1
eN − pN

)

+ µ3

(p1 − p

e6
eM + pM

)

,

0 = (1 + µ1)
(pN

eN

ẽ⋆
1 − p⋆

1

)

+ µ2

(pN

eN

e1 − p1

)

+ µ4,

0 = −µ1

(pM

eM

ẽ⋆
6 − (p− p⋆

1)
)

+ µ3

(pM

eM

e6 − (p − p1)
)

+ µ4,

0 = −µ1

(p− p⋆
1

ẽ⋆
6

eM − pM

)

+ µ3

(p− p1

e6
eM − pM

)

+ µ4,

0 = (1 + µ1)
(

ẽ⋆
1 + eN

)

+ µ2

(

e1 + eN

)

,

0 = −µ1

(

ẽ⋆
6 + eM

)

+ µ3

(

e6 + eM

)

, (3.80)

where it is to be understood that e6 and e⋆
6 depend implicitly upon p1, p⋆

1 and p.

We have not attempted to find the general set of solutions to (3.80) and (3.76). How-

ever, it is possible to show that, in the ZPT case, a solution of (3.76), (3.77), and all but

the last two equations of (3.80) is given by

p⋆
1 = p1,

p⋆
6 = p1,

p6 = p1,

pN = −p1,

pM = −p1,

µ1 = −1

2
,

µ2 = µ3 =
e1

ẽ1

e2
N − ẽ2

1

2(eN + e1)2
,

µ4 = p1
(ẽ1 + eN )(ẽ1 + e1)

2ẽ1(e1 + eN )
,

mN = mM . (3.81)

In the above, p1 is then fixed by the second of equations (3.80). Now, these values do

not represent a stationary point of mT2, because they do not solve the last two equations
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of (3.80). If however, the two decay channels are identical, such that the endpoints of

the mN,M intervals coincide, then we see that we obtain extrema at the upper and lower

endpoints of the common invariant mass interval [m<,m>]. These extrema correspond to

events in which both of the decaying parents are at rest in the lab frame, and in which

each of the visible daughter systems obtains either its maximum or its minimum value.

They are, thus, simply pairwise copies of the extrema we found for the single particle ZPT

decays in subsubsection 3.1.2. They are, moreover, the extrema exhibited by Cho et al.

in [1]. Since they are just pairwise copies of the extrema we found in subsubsection 3.1.2,

it is trivial to see that the resulting values of mT2 generate a kink at (m0,m1) with m2
T2

given by

m̂2
T2(χ < m1) = m2

0 + (χ2 − m2
1) (3.82)

+
m2

0−m2
1+m2

<

2m0

(

√

(χ2−m2
1)+

(

m2
0+m2

1−m2
<

2m0

)2

−m2
0+m2

1−m2
<

2m0

)

,

and

m̂2
T2(χ > m1) = m2

0 + (χ2 − m2
1) (3.83)

+
m2

0−m2
1+m2

>

2m0

(

√

(χ2−m2
1)+

(

m2
0+m2

1−m2
>)

2m0

)2

−m2
0+m2

1−m2
>

2m0

)

.

Note that we have not shown that the extrema that we found correspond to the global

maximum. To do so would require a complete solution of equations (3.80) and (3.76). But

we can show that a kink is necessarily present nevertheless. Indeed, suppose there exists a

maximum whose value of mT2 is greater or equal to the values found above for some values

of χ. At χ = m1, the mT2 value of such a new maximum is necessarily m0, since we know

that mT2(χ = m1) is bounded above by m0. Now, considering values of χ in the vicinity

of χ = m1, we see that any new maximum can only accentuate the kink at (m0,m1). This

proves that mT2 has a kink at (m0,m1) in the ZPT case, and indeed in any class of events

that includes the ZPT such as a subset. Since the SPT case is such a class, we have also

proven, as a corollary, that there is necessarily a kink in the SPT case as well.

Note that the sole exception to this result is CASE 4, for either ZPT or SPT. In this case

m< = m> = m2 and the events described above do not generate a kink. This is just as was

the case for the single particle ZPT case, CASE 2. Of course, this does not prove that there

is no kink in this case, since we have not excluded the possibility of a higher maximum.

Nevertheless, our later simulations will suggest that there is no kink in the ZPT case.

Another immediate result that follows is that, just as for single parent decays, the

extrema of the ZPT case we have identified are not extrema of the SPT case. Indeed,

in the SPT case, we should solve equations (3.80) and (3.76), but without (3.77) and

with µ4 = 0. But µ4 = 0 is not consistent with the solution we found in (3.81). Thus,

configurations of this type are not extrema of the SPT case.

What then, is the maximum of mT2 in the SPT case? To answer this, it is first useful

to observe that the value of m2
T2 measured in an event cannot exceed the maximum of the
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individual transverse masses squared f, g that would be measured in the same event, if the

invisible momenta could be determined. This follows from the definition of mT2: the value

of m2
T2 that one computes for a given event, viz. the minimum with respect to partitions

of the invisible momenta of max(f, g), cannot exceed the value of max(f, g) that would be

obtained with the true values of the invisible momenta, because one of the partitions must

correspond to the true values of the invisible momenta. So m2
T2 cannot exceed max(f, g)

in a given event. This, of course, was the original motivation for the definition of mT2 at

χ = m1, but it is true for all values of χ.

It follows that the maximal value of m2
T2, obtained by considering some set of events,

is bounded above by the maximal value of max(f, g) for the same set of events. If, further-

more, we can show that the bound is saturated, then we can infer the maximal value of m2
T2

for the set of events from the maximal values of f or g determined in the previous section.

This argument allows us to determine the maximal value of mT2 in the SPT case, where

the initial transverse momentum of the pair is allowed to be arbitrary. Indeed, consider

the event configuration in which each of the two decays in the pair corresponds to the

global maximum of the single particle SPT decay found in section 3.1.1, with arbitrarily

large transverse momentum. Thus, the pair of decaying particles have equal and arbitrarily

large transverse momentum, as measured in the lab frame. Furthermore, they both decay

in the same way in their rest frames: for χ < m1 the invisible daughters are emitted in the

forwards direction, and the visible daughter systems of invariant mass mN = mM = m<

are emitted in the backwards direction. For χ > m1, the invisible particles are emitted in

the backwards direction in the rest frame.

It is straightforward to show that the process of minimizing over the partitions of the

invisible momenta in this configuration singles out the partition with the true values for

the invisible momenta. This shows that this configuration saturates the bound on mT2.

In summary then, we have shown that in the case of identical pair decays, either SPT

or ZPT, there is always a kink, except perhaps in CASE 4 ZPT. In the case of SPT, the

extrema correspond to pairwise copies of the global maxima in the single-decay cases, and

are the global maximum. In the case of ZPT, the extrema correspond to pairwise copies

of the global maxima in the single-decay cases, but it is not clear whether or not they are

the global maximum.5

4. Monte Carlo simulations

As a concrete illustration of this method, we perform simulations of events for particu-

lar scenarios, analysing both single-parent cases, and also examples of pair-production of

parent particles, as shown in figure 2.

We generate Monte Carlo events by two different methods:

• Firstly, we use the HERWIG[12 – 14] Monte Carlo generator, with LHC beam condi-

tions, to produce unweighted supersymmetric particle pair-production events. These

5It is worth remarking that the ZPT configuration in which the parents have arbitrarily large momenta,

but are produced back-to-back, does not give a higher maximum. Indeed, the minimization over partitions

in this case picks out mT2 =
√

f = χ + m≶ .
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events have the advantage that the transverse boost of the particles should bear some

resemblance to that expected for real events, and so we use this generator when in-

vestigating SPT events with a “physically reasonable” pT distribution.6 We always

generate the SUSY particles in pairs, but when we are considering the kinematics

of single particle decays, we treat each decay independently, ignoring any missing

transverse momentum with its origin in the other ‘side’ of the event.

• Secondly, to investigate the behaviour of the transverse kinematic endpoints under

some unphysical but nevertheless highly instructive limiting cases, we use a home-

grown toy Monte Carlo (MC) event generator. This toy MC allows us to either (a)

generate events with the primary particle(s) having exactly zero net transverse mo-

mentum, thereby allowing us to examine the ZPT limiting case, or (b) generate events

where the transverse momenta are non-zero (SPT) and entirely under our control. In

the latter case, except where stated otherwise, we choose the pT distribution to have

an extremely long unphysical tail (denoted “SPT large pt” in figures) in order to

highlight the effects of large transverse momenta on the kinematic endpoint distribu-

tions. The toy MC generates all decays according to phase space alone, implements

no showering and keeps all particles on mass shell. It defines an arbitrary mass scale

mS = m0 + m1 in terms of which its generation scheme is fixed as follows. In the

single-particle production cases with ZPT, the parent particle 0 starts its life at rest

in the lab frame. In the ZPT pair-production cases, particles 0 and 5 are generated

back to back from the isotropic decay of an initial state at rest in the laboratory

frame with centre-of-mass energy m0 + m5 + T , where the kinetic energy T differs

from event-to-event, being an exponentially distributed random variable with mean

mS. In the single-particle production cases with SPT, the parent particle and an

associated state with mass mISR, against which it recoils, are produced back-to-back

from an initial state at rest in the lab-frame which has energy m0 + T . Both mISR

and the kinetic energy T differ from event to event, being random variables: mISR is

distributed exponentially with mean mS, while the kinetic energy T is distributed as

the absolute value of a Cauchy-distributed7 random variable with mean 0 and scale

mS. For pair-production with SPT, the two parent particles and an associated state

with mass mISR against which both jointly recoil, are produced in the isotropic three-

body decay of an initial state at rest in the lab frame which has energy m0 +m5 +T ,

where mISR and T have the same distributions as they had for single-particle SPT

production.

6We recognise that it will somewhat underestimate the high-pT tail, as extra radiation ought to have

matrix element corrections which will not be well modelled by HERWIG’s parton shower.
7There are two isolated cases in the paper where we replace this Cauchy distribution with an Exponential

distribution with mean mS, thus significantly reducing the high pT tail to a more physically reasonable

size. We do this on the two occasions in the paper in which we wish to use the toy MC to produce a less

extreme and more physically relevant SPT distribution which is intermediate between its usual ZPT and

usual SPT output. These two isolated cases are labelled “SPT (medium pT)” where they occur.
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Figure 6: (CASE 2) (a) Example distributions of the transverse mass, mT (χ) =
√

f(χ), for the

two-daughter decay with m0 = 300, m1 = 100, and m2 = 0 (HERWIG). The different histograms

represent the same events but have different values of χ. The thick solid line is for χ = m1, while

the thinner broken lines are for other values of χ uniformly spanning the range 0 < χ < 200. (b-d)

The plots show the distribution of the number of events (colour scale) which produce particular

values of mT (χ) =
√

f(χ) (y-axis) for different values of χ (x-axis). (b) HERWIG events. The upper

limit, mmax

T (χ) is indicated as a dashed line. The short solid lines are fits to mmax

T (χ) above and

below χ = m1. (c) For the phase space Monte Carlo in which the mother has been constrained to

be at rest in the lab frame (ZPT). (d) For the phase space Monte Carlo in which the mother can

have large transverse momentum (SPT) in the lab frame.

4.1 Single production with two-daughter decay (CASE 2)

The predicted gradients at the kink are given for two-daughter decays as a function of

the kinematic variables of the decay in (3.62). We recall that we expect qualitatively

different behaviour around χ = m1 depending on whether or not the parent has transverse

momentum in the lab frame. To be concrete: we expect to see a kink in the mmax
T (χ) curve

when the parents can have transverse momentum but do not expect to see a kink when

parents are only produced at rest.
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We generated HERWIG events with slepton (ℓ̃) pair production, followed by the decay

ℓ̃ → ℓχ̃0
1. The slepton mass was 300 GeV, and the χ̃0

1 mass was 100 GeV. The slepton

width was set to be much less than 1 GeV. The visible lepton is sufficiently light that it

can be assumed massless in this context. We show in figure 6a several distributions of

mT (χ) =
√

f(χ) for different values of χ. We note that the upper kinematic limit is well

saturated, making an experimental determination of the endpoint a reasonable expectation

for this case.

In figure 6b we show the same information in a different format, now plotting the

number of events (colour scale) with particular values of mT (χ) (y-axis) as a function of χ

(x-axis). Using these distributions, we estimate the value of the maximum value,
√

f̂(χ)

from the mid-point of the uppermost non-zero bin, which we denote mmax
T (χ). A graph of

mmax
T (χ) as a function of χ shows clearly the kink at at (χ = m1, mT = m0); this is shown

as a dashed line superimposed on figure 6b. The gradients
dmmax

T

dχ

∣

∣

∣

χ=m1±ε
were estimated

from short line fits to that graph below and above the kink, and yielded gradients of 0.325

below and 2.56 above the kink. The predicted extremal values calculated for the example

masses, using (3.62) and converted to

d
√

f̂

dχ

∣

∣

∣

∣

∣

χ=m0±ε

=
χ

m0

df̂

dχ2

∣

∣

∣

∣

∣

χ=m0±ε

, (4.1)

are 1
3 for χ < m1 and 3 for χ > m1. As discussed in section 3.2, we expect the measured

value to be closer to the predicted one below the kink as compared to above it, since the

high energies required mean that a much smaller proportion of events lie near the global

maximum above the kink, as compared to below it.

Note that the value of mmax
T we have used for the gradient determination is generated

from the single maximal event at each value of χ. In an experiment which observes signif-

icantly fewer similarly-distributed events than we have generated (104 in figure 6a-b), one

would be unlikely to find an event at this limit. A typical experimenter observing, say, a

factor of ten fewer events without background (or for whom e.g. ten events are required

to get a statistically significant determination of the position of the end-point due to the

presence of backgrounds) might expect to observe a maximum a little below our dotted

within the neighbouring cyan regions of the plot.

If we restrict the parent to have no transverse momentum in the lab frame (figure 6c,

ZPT) we find that the kink disappears. In its place we see a smooth curve passing through

the point where the kink used to be, with the gradient at that point measured to be

∼ 0.60. A plot where the parent’s transverse momentum, pT , can take very large values

(figure 6d, SPT) shows a slightly more prominent kink than the HERWIG plot. As we

increase the parent’s pT (ZPT→HERWIG→SPT) the fraction of events contributing to the

kink in a significant way increases. Both the absence of the kink for CASE 2 at ZPT and

the increasing number of events found near the kinematic limit (
√

f̂) as pT (and hence

β) increases confirm the predictions of (3.61). The gradients measured on either side

of the kink in figure 6d are found to be 0.335 and 2.99. These gradients are closer to the
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Figure 7: (CASE 3v) As for figure 6 but for the three-daughter decay, and with m0 = 500, m1 =

100, and m2,3 = 0.

asymptotically achievable values of 1/3 and 3 than the gradients seen in the HERWIG events,

in line with expectation.

4.2 Single production with point-like three-daughter decay (CASE 3v)

For the three-daughter decay, the range of allowed values of mN means that we expect

to see a kink regardless of whether the parent has any transverse momentum in the lab

frame (3.61).

As for section 4.1, we generate events with HERWIG, but this time for the initial process

of gluino pair production. The gluinos then decay according to g̃ → qq̄χ̃0
1. The mass of

the gluino was 500 GeV, and that of the χ̃0
1, 100 GeV. Again, the quarks can be considered

massless for our purposes, since for simplicity we only allow decays to light quarks.

In figure 7a we plot distributions of mT =
√

f for this three-daughter decay for different

values of χ. The upper limit is well saturated, and the edge of this distribution, mmax
T (χ)

also shows clearly the kink at (χ = m1, mT = m0) (figure 7b). The fitted gradients
dmmax

T

dχ

are 0.223 below and 2.1 above the kink. The predicted gradients are 1/5 below the kink and
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Figure 8: (CASE 3s) These figure show the mT (χ) distributions obtained from phase-space Monte-

Carlo-generated events containing a single parent (m0 = 500) undergoing a sequence of two-body

decays via an on-shell intermediate particle (m4 = 300) resulting in a final-state containing two

massless visible daughters (m2 = m3 = 0) and an invisible massive daughter (m1 = 100). (a) ZPT

(zero pt), (b) SPT (medium pt), (c) SPT (large pt),

5 above the kink for SPT events, and 5/13 ≃ 0.3846 and 1, respectively, for ZPT events.

The observed gradient on either side of the kink lies between the SPT global maximum

and the ZPT maximum. This reflects the fact that the gluino has finite, but non-zero, pT

in the lab frame. As expected, we get closer to the SPT maximum below the kink than we

do above it.

As predicted by the analysis, for the three-daughter case, the kink is retained in ZPT

events where the parent is constrained to have no transverse momentum in the lab frame

(figure 7c). The gradients
dmmax

T

dχ
measured either side of the kink in figure 7c are 0.385 and

0.998 which are both very close to their predicted values.

Also, as expected, if the parent can have very large transverse momentum (SPT), the

kink is even more pronounced (figure 7d). In this case the measured gradients below and

above the kink are found to be respectively 0.214 and 4.878. Both gradients have changed

from the values measured in the HERWIG events, coming to within about 5% of the limiting

values (attainable only with infinite momenta) predicted earlier.

4.3 Single production with three-daughter cascade decay (CASE 3s)

The gradients on either side of χ = m1 for three-daughter cascade decays (CASE 3s) are

similar to CASE 3v (direct decays), except that the mass-shell requirement of the inter-

mediate particle places an extra constraint, narrowing the range of allowed values of mN .

Provided that none of the decays are near-threshold, the range of values of mN will be

significant, and we therefore expect to see kinks in CASE 3s for both SPT and ZPT. We

show the ZPT, SPT (medium pt) and SPT (large pt) cases in figure 8, for the particular

values of m0 = 500,m1 = 100,m2 = m3 = 0,m4 = 300. Neither of the decays is near

threshold and so, as expected, the kink is visible even at ZPT.
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Figure 9: (CASE 4) As for figure 6 but for pair decays, and so plotting the variable mT2(χ).

m0,5 = 300, m1,6 = 100, m2,7 = 0. The outlying points in parts (c) and (d) originate from

occasional failed numerical minimisations when calculating mT2 and have no physical significance.

4.4 Pair production with two-daughter decays (CASE 4)

We conjectured before that the only possible source for a kink in pairs of two-daughter

decays (CASE 4) is from large boosts of the sleptons resulting in significant differences in

β cos θ. In figure 9b, we find that any kink in mmax
T2 is hardly discernible in pair-decays of

sleptons in our HERWIG events. This is to be expected, since to get events close to the SPT

maximum for pair decays, we need both parents to be produced with large energy, and this

is unlikely to occur at the LHC.

When the system of the pair of decaying particles is produced at rest in the transverse

plane (ZPT), there is no visible kink whatsoever (figure 9c). If finally we construct an

unphysically large pT distribution for the parents, we confirm that a kink could “techni-

cally” become visible (figure 9d). However, we note that even here the kink is not visible

at the yellow-green boundary, and only becomes discernable at the green-cyan boundary,

indicating that the size of the tail in the mT2 distribution which generates the kink is very
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Figure 10: (CASE 6v) As for figure 7 but plotting the variable mT2 for a pair of three-daughter

decays. m0,5 = 500, m1,6 = 100, and m2,3,7,8 = 0.

small - about 1% of the height of the rest of the distribution. It seem highly unlikely,

therefore, that a kink would ever be seen in CASE 4 in presence of any background, not

even if the signal cross section was truly gigantic, for detector resolution would almost

almost certainly smear away the details of this tiny tail.

4.5 Pair production with point-like three-daughter decays (CASE 6v)

It was in a pair of three-daughter decays that the presence of a kink was first noticed [1].

For our simulations of this case we use the same events as in section 4.2 but now we

treat the pair of decays together, recognising that if the parents are pair-produced, then

the transverse momenta of the invisible daughters are not individually known. For the

(HERWIG) SPT case, the mT2 distribution (figure 10a) shows a large number of events near

the upper edge. The kink at χ = m1 is clear (figure 10b) and the gradients below and

above the edge are found to be 0.38 and 1.00, respectively, to be compared to the SPT

global maxima of 0.2 and 5, respectively, and to the ZPT maxima of 5/13 ∼ 0.38 and 1,

respectively. Note that, despite the presence of non-zero pT , we find that the observed
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Figure 11: (CASE 6v MTGen) As for figure 10, but for the kinematic variable MTGen, rather than

mT2. m0,5 = 500, m1,6 = 100 and m2,3,7,8 = 0.

values correspond very closely to the ZPT maxima, suggesting that the relevant events are

very close to threshold.

For the ZPT case we also generate events each containing a pair of virtual three-body

decays, but this time we use the toy Monte Carlo to impose the requirement that the sum

of the parent particles has zero transverse momentum figure 10c. Again we see a kink.

Notice that the CASE 6v results contrast with those from CASE 4. In CASE 4 a kink was

only seen in SPT, whereas in CASE 6v kinks are seen in both SPT and ZPT. This means

that events containing pairs of three-body decays stand a better chance of generating

observable kinks at the LHC than do events containing pairs of two-body decays, for the

former can generate kinks without needing to gain large transverse boosts from ISR, while

the latter need these boosts.

Note that the generation of figure 10 (and figure 12) required the Monte Carlo truth

record to be inspected in order that the quarks could be combined together only in the

correct pairings. In reality, the pedigree of each jet will be a mystery, and so it is reasonable
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Figure 12: (CASE 6s) As for figure 8 but plotting mT2 for pairs of decays. m0,5 = 500, m1,6 =

100, m2,3,7,8 = 0, m4,9 = 300.

to wonder whether the kink structure of figure 10 will remain in a plot where we are blinded

with respect to the “truth”. In [1] it was claimed that in at least two examples a kink

was seen survive the imposition of a set of cuts designed to place jets heuristically into

the appropriate pairings. Here, however, we note an alternative approach which may be

followed. Rather than attempt to assign quarks to the appropriate parings, one can instead

use the MTGen variable [15] in place of mT2. The MTGen variable does not need to be told

which momenta come from which side of the event — it treats all visible momenta on an

equal footing. Internally, MTGen performs a minimisation over a (possibly large) number

of mT2 evaluations, with an evaluation for each distinct partition of the visible particles

into two sets (one for each parent). It was shown in [15] that the endpoint of MTGen shares

the same properties as the endpoint of mT2 at χ = m1. In figure 11 therefore, we look for

a kink in the maximal values of MTGen as a function of χ, and indeed the kink is found to

be present at both ZPT and SPT. Moreover, it is interesting to note that variation with χ

of the MTGen maximum seen in figure 11 is surprisingly similar to the variation with χ of

the mT2 maximum seen in figure 10. This is remarkable as it suggests that the endpoint

of the MTGen variable appears to be able to capture almost the same information as the

endpoint of the mT2 variable, even though the former is always blind to the correct quark

assignments, and the latter expects to be given them. Further study is needed to determine

which of these two variables is the better to pursue.

4.6 Pair production with three-daughter cascade decays (CASE 6s)

One may conduct the same distributions as in section 4.5 but for pairs of cascade decays

into three particles (CASE 6s) rather than for pairs of point-like three-body decays. The

results for CASE 6s (figure 12) are qualitatively the same as those for CASE 6v: a kink is

seen in each of the SPT and the ZPT distributions. As before, the kink becomes more

pronounced as the amount of pT increases: ZPT → SPT (medium pt) → SPT (large pt).
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5. Conclusions

We have examined a wide range of cases in which heavy particles are produced singly

or in pairs at hadron colliders and decay to heavy invisible daughters (as exemplified by

the diagrams in figure 1 and figure 2). We have examined how the endpoints of suitable

kinematic variables depend on the a priori unknown mass of the invisible daughter, paying

particular attention to the behaviour around its true mass.

We found that, unless the mass of the invisible particle is known exactly, the global

maxima (i.e the true endpoints) for the general case (SPT) always correspond to events

in which the transverse momenta of the particles are asymptotically-large compared to

their masses. For χ < m1, the global maximum occurs when the invisible daughters are

emitted in the same direction as the velocity vectors of their parents in the lab frame. For

χ > m1, the global maximum occurs when the invisible daughters are emitted backwards

relative to their parents’ lab velocities. We have shown that, because asymptotically large

energies are required, it is rather unlikely that significant numbers of maximal (or rather,

near-maximal) events will be obtained in experiments at energy scales not far above the

masses of the particles involved. But we have also demonstrated that non-maximal events

still generate a kink.

We found that the maximum is different if the extra ZPT condition is applied. The

ZPT global maximum for χ > m1 occurs in events in which the invariant mass, mN , of

the visible N -daughter system takes its maximum value. The global maximum for χ < m1

occurs when mN takes its minimum value. For CASE 2 , the invariant mass is fixed, and so

in the absence of ISR (i.e. in the ZPT case), this is the one case in which the kink does not

appear even in principle. In all other single-parent decays, the global maxima generate a

kink both at SPT and ZPT.

We note that the ZPT kink has a different origin to the SPT kink. The former is

related to a degree of freedom possessed by the invariant mass(es) of the set(s) of visible

daughters of each decaying particle. The latter is an artifact caused by invariant masses

being evaluated in a frame which is not the parent’s rest frame when the invisible particle’s

mass is hypothesized at incorrect values. This second effect is only significant when the

parent’s velocity is comparable to the speed of light. Now, it seems likely that the ISR

in events of this type at the LHC is likely to be small, but non-vanishing [16]. But since

the maxima obtained with vanishing ISR are not maxima (not even local maxima) with

non-vanishing ISR, it is clear that the behaviour with small, but non-vanishing ISR is

important.

To assess the implications of this, we considered the values of mT that result from a

finite distribution of events in β and cos θ, as defined in section 3.2. In this formalism, ZPT

events have β = 0. As well as reproducing our previous results, and showing that the global

maximum of the SPT case is unlikely to be reached, we showed that a kink still arises at

(m0,m1), even if we do not reach the global maximum. In order to generate a kink, one

simply needs events that have small relative rapidity, and are kinematically distinct either

in their values of mN , or in the values of β cos θ. So a kink will always be generated in

a single-parent decay, unless all events have the same value of the invariant mass and the
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Case Some PT (SPT) Zero PT (ZPT) Figures

2 Kinky Smooth 6

3v Kinky Kinky 7

3s Kinky Kinky 8

4 Kinky Smooth 9

6v Kinky Kinky 10, 11

6s Kinky Kinky 12

Table 1: Summary of whether or not we expect (and observe) kinks in the different cases, (as

shown in figure 1 and figure 2). “Kinky” indicates cases in which we observe a discontinuity in the

gradient of the maximum value of an appropriate kinematic transverse mass variable at χ = m1,

whereas “Smooth” indicates the lack of such a discontinuity.

same value of β cos θ. Similar conclusions are reached in the case of identical pair decays.

A full analysis of pair decays, including non-identical decays, remains to be done.

If the bulk of events are SPT (are produced with enough transverse recoil), then kinks

are ubiquitous, occurring in every case shown in figure 2, and in any topology that can

be represented as figure 1(a) or figure 1(b). By contrast, if the bulk of events are ZPT

(produced with little or no transverse momentum), we found that for CASE 2 and CASE 4,

where the invariant mass is fixed, the maximal and minimal gradients are the same, and

no kink is found. These results are summarized for our exemplar cases in table 1.

We conclude by making some remarks about the experimental viability of the method.

Firstly we recognise that backgrounds, both from Standard Model and competing new-

physics processes will need to be considered. Secondly we point out that, in real physics

events, the finite widths of the unstable particles will have the effect of smearing the end-

points.

When backgrounds, detector smearing and finite width effects are included, it will

clearly become impossible to determine the position of the endpoint from individual maxi-

mal events. Unless the shape of the distribution near the endpoint is known then one must

try to infer its position by looking for a region of rapidly decreasing numbers of events.

The presence of a significant fraction of events near the kinematic limit therefore becomes

much more important when such effects are considered. Since we expect that cases in

which kinks only exist only at SPT (i.e. CASE 2 and CASE 4) will have a small fraction of

events potentially contributing to the kink, we have less confidence in these cases being

experimentally accessible with this method compared to cases which also have kinks at

ZPT (i.e. all the other cases).

One might have reasonable confidence that, even after the inclusion of backgrounds,

measurement imprecision, and finite widths, the method presented would still be very

useful. After all, as remarked in section 2, the Tevatron W -mass measurements demonstrate

that, with adequate Monte Carlo modelling of these complicating physical effects, endpoint

techniques can be extremely useful at extracting mass information.
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