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Abstract: We elaborate on the fact that quarkonium in hot QCD should not be thought

of as a stationary bound state in a temperature-dependent real potential, but as a short-

lived transient, with an exponentially decaying wave function. The reason is the existence

of an imaginary part in the pertinent static potential, signalling the “disappearance”, due

to inelastic scatterings with hard particles in the plasma, of the off-shell gluons that bind

the quarks together. By solving the corresponding Schrödinger equation, we estimate nu-

merically the near-threshold spectral functions in scalar, pseudoscalar, vector and axial

vector channels, as a function of the temperature and of the heavy quark mass. In partic-

ular, we point out a subtlety in the determination of the scalar channel spectral function

and, resolving it to the best of our understanding, suggest that at least in the bottomo-

nium case, a resonance peak can be observed also in the scalar channel, even though it is

strongly suppressed with respect to the peak in the vector channel. Finally, we plot the

physical dilepton production rate, stressing that despite the eventual disappearance of the

resonance peak from the corresponding spectral function, the quarkonium contribution to

the dilepton rate becomes more pronounced with increasing temperature, because of the

yield from free heavy quarks.
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1. Introduction

Assuming the existence of a thermalized medium, with a temperature T , and of heavy

quarks, with a mass M ≫ T , there is a finite probability, given by the Boltzmann factor

exp(−2M/T ), that an on-shell quark and antiquark are generated through thermal fluctua-

tions. They could then annihilate, creating an off-shell photon, which may escape from the

thermal system, and subsequently decay into a dilepton pair (for instance, e−e+ or µ−µ+).

The characteristics of the energy distribution of these pairs offer an indirect probe on the

strongly interacting dynamics taking place within the thermalized system. As a concrete

application, properties of lepton pairs can be observed in heavy ion collision experiments

(see, e.g., refs. [1]), and may serve as an indication of whether a thermalized state with

a temperature above the deconfinement transition was momentarily reached during the

evolution [2].
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Given that various properties of the quarkonium system can be understood in great de-

tail at zero temperature [3], it could be assumed that describing quantitatively the heavy

quark-antiquark system in a thermalized medium is a relatively simple task. After all,

QCD is asymptotically free, so the effective coupling should decrease with the tempera-

ture, and ultimately confinement is lost as well. Somewhat surprisingly, this expectation

appears to be overly optimistic. In fact, all standard approximation methods develop fur-

ther systematic uncertainties at T > 0. For instance, direct lattice QCD reconstructions of

the quarkonium spectral function [4 – 6], which is a quantity determining the dilepton pro-

duction rate, develop the new problem that an analytic continuation is needed from data

collected on a short Euclidean time interval, to the observable defined in Minkowskian

spacetime. Another popular class of approaches, so-called potential models [7, 8], suffers

from the proliferation of many independent non-perturbative definitions of a “static po-

tential” which could be measured on the lattice [9, 10] and inserted into a Schrödinger

equation. A recently introduced method, the determination of the corresponding observ-

able in strongly coupled N = 4 Super-Yang-Mills theory [11], also contains unknown

systematic errors from the point of view of QCD, which cannot be reduced by increasing

the temperature, because the QCD coupling soon becomes weak [12].

The method employed in this paper is resummed weak-coupling perturbation theory.

It again suffers from novel difficulties at finite temperatures: curing infrared divergences

necessitates carrying out complicated resummations [13, 14], and even though a weak-

coupling expansion in the QCD coupling constant g can subsequently be defined, it has a

strange structure, with relative corrections suppressed only by odd powers of g [15, 16], by

logarithms like gn ln(1/g) [17, 18], or by powers of g multiplied by non-perturbative coef-

ficients [19]–[21]. Moreover, even if a number of coefficients were known, the convergence

of the series could be slow [22] (see, however, refs. [23, 12]).

Given all these problems, a suitable practical approach at the present date might be

to compute the quarkonium spectral function and the dilepton production rate with many

different methods, possessing complementary systematic errors, and to look for a consistent

pattern, which could then also represent the situation in QCD. It is in this spirit that the

purpose of the present paper is to pursue the side of resummed perturbative computations.

The resummed perturbative approach to heavy quarkonium in hot QCD was initiated

in refs. [24]–[26], of which the present paper is a direct continuation. In particular, we

expand and improve on the analysis of ref. [25]. We consider, first of all, the same observable

as in ref. [25] (quarkonium spectral function in the vector channel), but discuss more

extensively the dependence of the result on the temperature and on the heavy quark mass.

Second, we carry out a new analysis for the spectral function in the scalar channel. This

turns out to require more advanced numerical techniques than those used in ref. [25]. We

also relate the pseudoscalar and axial vector spectral functions to the vector and scalar

spectral functions. Finally, we elaborate on the physics implications of the results in more

detail than before, both conceptually, i.e. with regard to the picture they suggest for the

quarkonium system in a deconfined environment, and from the practical point of view, i.e.

with regard to the dilepton production rate.
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2. General framework

We start by specifying somewhat more quantitatively the main ideas and equations of the

resummed perturbative approach. A detailed derivation follows in sections 3, 4, while a

reader only interested in the numerical results could skip directly to section 5 after the

present section.

Let ψ̂ be a generic heavy quark field operator in the Heisenberg picture. The basic

correlation function we consider is of the form

CV
> (t; r, r′) ≡

∫

d3x
〈

ˆ̄ψ
(

t,x +
r

2

)

γµ W ψ̂
(

t,x − r

2

)

ˆ̄ψ
(

0,−r′

2

)

γµ W ′ ψ̂
(

0,+
r′

2

)〉

, (2.1)

where W , W ′ are Wilson lines connecting the adjacent operators, inserted in order to keep

the Green’s function gauge-invariant; the metric is ηµν = diag(+−−−); and the expectation

value refers to 〈. . .〉 ≡ Z−1Tr [exp(−Ĥ/T )(. . .)], where Z is the partition function, Ĥ is

the QCD Hamiltonian, and T is the temperature. The superscript in CV
> refers to the

vector channel; the subscript refers to the time-ordering in eq. (2.1). We also consider

scalar, pseudoscalar and axial vector correlators below; their precise definitions are given

in section 3.1

The significance of the Green’s function in eq. (2.1) is that if we take the limit r, r′ → 0,

and subsequently Fourier transform with respect to the time t, then we obtain a function

which is trivially related to the heavy quarkonium spectral function, ρV (ω), in the vector

channel:

ρV (ω) =
1

2

(

1 − e−
ω
T

)

∫ ∞

−∞
dt eiωt C>(t;0,0) . (2.2)

This quantity is physically important, given that the production rate of µ−µ+ pairs (with

a vanishing total spatial momentum 0 = qµ− + qµ+ and a non-vanishing total energy

ω = Eµ− + Eµ+) from a system at a temperature T , is directly proportional to ρV (ω) [27]:

dNµ−µ+

d4xd4Q
=

2c2e4

3(2π)5ω2

(

1 +
2m2

µ

ω2

)(

1 −
4m2

µ

ω2

)
1
2

nB(ω)
[

−ρV (ω)
]

, (2.3)

where we assumed ω ≥ 2mµ; e is the electromagnetic coupling; c ∈ (2
3 ,−1

3 ) is the electric

charge of the heavy quark; and nB(ω) ≡ 1/[exp(ω/T )−1] is the Bose distribution function.

Now, a systematic perturbative determination of the Green’s function in eq. (2.1), and

of the corresponding spectral function in eq. (2.2), is quite difficult for energies ω close to

the quark-antiquark threshold, ω ∼ 2M . The reason is that in this regime infinitely many

graphs, particularly so-called ladders, contribute at the same order. A further problem is

that at finite temperatures, the rungs of the ladders, containing gluons, need to be dressed

by thermal corrections.

A way to resum these infinitely many dressed contributions is not to compute the

correlator of eq. (2.1) directly, but rather to find a partial differential equation satisfied

1In ref. [24], we set r′ = 0, and denoted the correlator by Č>(t, r) ≡ CV
> (t; r,0). However, with certain

channels, it will be advantageous to keep r
′ 6= 0, because then the singularities from the static potential at

r = 0, and from the initial condition of the Schrödinger equation at r = r′, do not overlap.

– 3 –
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by this correlator, and then to solve this equation numerically. The partial differential

equation in question is just the Schrödinger equation. Indeed, it is for the sake of being

able to write a Schrödinger equation that we have introduced r, r′ 6= 0 in eq. (2.1). To be

more precise, let us consider CV
> in the limit that the heavy quark mass M is very large.

Then, as we will see, CV
> obeys

{

i∂t −
[

2M + V>(t, r) − ∇2
r

M
+ O

(

1

M2

)]}

CV
> (t; r, r′) = 0 , (2.4)

with the initial condition

CV
> (0; r, r′) = −6Nc δ(3)(r− r′) + O

(

1

M

)

, (2.5)

where Nc = 3. The terms specified explicitly in eqs. (2.4), (2.5) result from a tree-level

computation; in contrast, the potential denoted by V>(t, r) originates only at 1-loop order.

It can be defined as the coefficient scaling as O(M0), after acting on CV
> (t; r, r′) with

the time derivative i∂t. The potential V>(t, r) depends, in general, on the temperature; we

assume that T is parametrically low compared with the heavy quark mass, T ∼ (g2 . . . g)M

(cf. section 3.1).

Now, it can be argued that in order to be parametrically consistent, the static potential

in eq. (2.4) should be evaluated in the limit t ≫ r (cf. section 3.1). Then it obtains a simple

form: in dimensional regularization (cf. eqs. (4.3), (4.4) of ref. [24]),

lim
t→∞

V>(t, r) = −g2CF

4π

[

mD +
exp(−mDr)

r

]

− ig2TCF

4π
φ(mDr) + O(g4) , (2.6)

where CF ≡ (N2
c − 1)/2Nc; mD is the Debye mass parameter; and the function

φ(x) ≡ 2

∫ ∞

0

dz z

(z2 + 1)2

[

1 − sin(zx)

zx

]

(2.7)

is finite and strictly increasing, with the limiting values φ(0) = 0, φ(∞) = 1.

The first term in eq. (2.6) corresponds to twice a thermal mass correction for the heavy

quarks (cf. the first term inside the square brackets in eq. (2.4)). The second term is a

standard r-dependent Debye-screened potential. The third term represents an imaginary

part: its physics is that almost static (off-shell) gluons may disappear due to inelastic

scatterings with hard particles in the plasma. This is the phenomenon of Landau-damping,

well-known in plasma physics. As a consequence of the imaginary part, the solution of the

Schrödinger equation does not lead to a stationary wave function: rather, the bound state

decays exponentially with time, representing a short-lived transient.

In the following two sections, we discuss the origin of the formulae presented here, and

their practical evaluation, in some more detail. We also extend the discussion to the other

channels. We return to the numerical solution of the Schrödinger equation in section 5.

3. Schrödinger equation and initial conditions

Our strategy for the derivation of the Schrödinger equation satisfied by the two-point cor-

relation functions in various channels will be quite straightforward and “modest” here2: we

2A more systematic approach might follow by generalizing the framework of PNRQCD [28] to finite T .

– 4 –
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first compute the correlation functions in tree-level perturbation theory, and then expand

in inverse powers of the heavy-quark mass. At this point we can identify the Schrödinger-

equation and the initial condition for its solution. Subsequently, radiative corrections are

expected to multiplicatively correct the terms that already appear at tree-level, and to add

other terms which are allowed by symmetries, even if they would not appear at tree-level;

the most important of these is the static potential. As long as there is a hierarchy between

the different physical scales relevant for the problem (cf. section 3.1), and we are only

sensitive to perturbative scales, general principles suggest that the system should remain

local in the presence of radiative corrections, and that a truncation to a certain order is

possible.

3.1 Power counting

Let us consider the parametric orders of magnitude of the various terms in eq. (2.4), given

the potential in eq. (2.6). We recall, first of all, that the term 2M plays no role, since

it can always be eliminated through a trivial phase factor (cf. eq. (4.1)). Around the

quarkonium peak, the time derivative (or energy) is then of the order of the kinetic terms,

i.e. ∂t ∼ ∂2
r /M . If we, furthermore, equate kinetic energy with the Coulomb potential

energy (assuming mDr <∼ 1, cf. below), we are lead to

∂r ∼ 1

r
∼ g2M , ∂t ∼

1

t
∼ g4M . (3.1)

An essential question is now to decide how the temperature, T , is to be compared with

these scales. Let us assume, first of all, that

T ∼ g2M (case 1) . (3.2)

Then mDr ∼ gTr ∼ g ≪ 1, and Debye screening plays essentially no role yet: we may

assume the bound state to exist. In this limit,

ReV> ∼ g2

r
∼ g4M ≫ ImV> ∼ g2T (mDr)2 ∼ g6M , (3.3)

and the imaginary part can indeed be neglected.

On the other hand, let us increase the temperature to

T ∼ gM (case 2) . (3.4)

Then Debye screening plays an essential role, mDr ∼ gTr ∼ 1, and we may assume that

the bound state has melted: indeed, in this limit,

Re V> ∼ g2

r
∼ g4M ≪ Im V> ∼ g2T ∼ g3M , (3.5)

so that the imaginary part of the potential, or the width of the state, dominates over the

real part of the potential, or the binding energy.

To summarise, the interesting temperature range is T ∼ (g2 . . . g)M . In principle,

parametrically consistent analyses in the two limiting cases may require different methods.

– 5 –
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In practice, we would like to have phenomenological access to the whole range; therefore,

in the present paper we work (implicitly) in the situation where Re V> ∼ Im V>, setting

us somewhere in the middle of the range. For further reference, let us point out that in

this situation, r∇A ∼ rmDA<∼A, where A is some gauge field component: the variation

of the infrared gauge fields is parametrically small on the length scales set by the bound

state radius.

3.2 Vector channel

Denoting

V µ(x; r) ≡ ψ̄

(

t,x +
r

2

)

γµ Wψ

(

t,x − r

2

)

, (3.6)

where x ≡ (t,x), the vector channel correlator we consider is in general of the type

CV
> (x; r, r′) =

〈

V µ(x; r)Vµ(0;−r′)

〉

. (3.7)

For simplicity, we have left out hats from the fields in eq. (3.6), as is appropriate once we

go over to the path integral formulation in Euclidean spacetime.

Now, even though we will carry out the computation of eq. (3.7) within QCD be-

low, it will be useful to rewrite the operators considered in the language of NRQCD [29]

(for a review, see ref. [30]), because this allows to immediately see their scaling with the

heavy quark mass M , and because this allows to relate various operators to each other in

the large-M limit. Following ref. [31], we can start by carrying out a Foldy-Wouthuysen

transformation,

ψ −→ exp

(

iγj−→Dj

2M

)

ψ , ψ̄ −→ ψ̄ exp

(

− iγj←−Dj

2M

)

, (3.8)

where
−→
Dj ≡ −→

∂j− igAj ,
←−
Dj ≡ ←−

∂ j+ igAj , and we assume a summation over spatial indices,

j = 1, 2, 3. Afterwards, we go over to the non-relativistic two-component notation by

writing

ψ ≡
(

θ

φ

)

, ψ̄ ≡ (θ† , −φ†) , (3.9)

where we already assumed a representation for the Dirac matrices with

γ0 ≡
(

l1 0

0 − l1

)

, γk ≡
(

0 σk

−σk 0

)

, k = 1, 2, 3 . (3.10)

Here σk are the Pauli matrices. Furthermore, it is useful to note that in NRQCD, the

actions for φ and θ are of first order in time derivatives; consequently, one of the degrees of

freedom propagates strictly forward in time, the other strictly backward in time, and a non-

zero mesonic correlator at t 6= 0 is only obtained from structures like 〈φ†(. . .)θ θ†(. . .)φ〉.
We now find that for V 0, the leading term with the desired structure is O(1/M) (this

term is also a total derivative in the limit r → 0). Therefore, the correlator CV
> is dominated

by the spatial components V k. At O(M0), these become

V k(x; r) = θ†
(

t,x +
r

2

)

σk Wφ

(

t,x − r

2

)

+ φ†

(

t,x +
r

2

)

σk Wθ

(

t,x− r

2

)

. (3.11)

– 6 –
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To the extent that interactions between the quark and antiquark are spin-independent

(this is violated only at O(1/M)), the Pauli-matrices play a trivial role in the two-point

correlator made out of these operators, yielding eventually Tr [σkσl], if V k and V l are being

correlated.

We now proceed to compute the correlator in eq. (3.7) at tree-level. We start in

Euclidean spacetime3 and after a spatial Fourier transform (for the moment we keep, for

generality, the spatial momentum non-zero, q 6= 0, unlike in eq. (2.1)), whereby

CV
E (τ,q; r, r′)

≡
∫

d3x e−iq·x

〈

ψ̄

(

τ,x +
r

2

)

γµ ψ

(

τ,x − r

2

)

ψ̄

(

0,−r′

2

)

γµψ

(

0,+
r′

2

)〉

(3.12)

=−Nc

∫

d3x e−iq·x∑

∫

P̃f,S̃f

ei(p̃0f−s̃0f)τ+i(s−p)·x+i(s+p)· r−r
′

2 Tr

[

γ̃µ
−i /̃P + M

P̃ 2 + M2
γ̃µ

−i /̃S + M

S̃2 + M2

]

=−8Nc
∑

∫

P̃f,S̃f

(2π)3δ(3)(s − p− q)ei(p̃0f−s̃0f)τ+i(2p+q)· r−r
′

2
p̃0fs̃0f + p · s + 2M2

(P̃ 2 + M2)(S̃2 + M2)

=−4NcT
2

∑

p̃0f,s̃0f

∫

d3p

(2π)3
ei(p̃0f−s̃0f)τ+i(2p+q)· r−r

′

2

2p̃0fs̃0f + E2
p + E2

p+q + 2M2 − q2

(p̃2
0f + E2

p)(s̃2
0f + E2

p+q)
,

where p̃0f = 2πT (n + 1
2 ) − iµ, n ∈ Z, denotes fermionic Matsubara frequencies (µ is the

quark chemical potential), and we have introduced the notation

Ep ≡
√

M2 + p2 . (3.13)

The Matsubara sums can be carried out, by making use of

T
∑

p̃0f

e±ip̃0fτ

p̃2
0f + E2

=
1

2E

[

nF(E ± µ)e(β−τ)E±βµ − nF(E ∓ µ)eτE

]

, (3.14)

T
∑

p̃0f

±ip̃0fe
±ip̃0fτ

p̃2
0f + E2

= −1

2

[

nF(E ± µ)e(β−τ)E±βµ + nF(E ∓ µ)eτE

]

, (3.15)

valid for 0 < τ < β. This yields

CV
E (τ,q; r, r′) = −Nc

∫

d3p

(2π)3
ei(2p+q)· r−r

′

2 ×

×
{

nF(Ep + µ)nF(Ep+q − µ)e(β−τ)(Ep+Ep+q)

[−q2 + 2M2 + (Ep + Ep+q)2

EpEp+q

]

+

+nF(Ep + µ)nF(Ep+q + µ)e(β−τ)Ep+τEp+q+βµ

[

q2 − 2M2 − (Ep − Ep+q)2

EpEp+q

]

+

3Since both Euclidean and Minkowskian objects appear in this paper, we try to distinguish between

them by denoting the former with a tilde. In particular, P̃ = (p̃0f,p) denotes fermionic Euclidean four-

momenta, while γ̃µ stand for Euclidean Dirac matrices, satisfying {γ̃µ, γ̃ν} = 2δµν . Any further unspecified

conventions can be found in ref. [24].

– 7 –
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+nF(Ep − µ)nF(Ep+q − µ)e(β−τ)Ep+q+τEp−βµ

[

q2 − 2M2 − (Ep − Ep+q)2

EpEp+q

]

+

+nF(Ep − µ)nF(Ep+q + µ)eτ(Ep+Ep+q)

[−q2 + 2M2 + (Ep + Ep+q)2

EpEp+q

]}

. (3.16)

In order to simplify the expression somewhat, we note that once we go over into

the spectral function4, and restrict to frequencies (energies) around the quark-antiquark

threshold, |ω − 2M | ≪ M , then only the first of the structures in eq. (3.16) contributes.

Second, close enough to the threshold, the δ-function expressing energy-conservation, δ(ω−
Ep − Ep+q), forces the loop momentum p to be small, |p| ≪ M . We also assume the

external momentum to be small, |q| ≪ M . Under these circumstances, we can expand

Ep ≈ M +
p2

2M
, Ep+q ≈ M +

|p + q|2
2M

, (3.17)

and the relevant part of CV
E (τ,q; r, r′) becomes

CV
E (τ,q; r, r′)

≃ −6Nc

∫

d3p

(2π)3
ei(2p+q)· r−r

′

2
−τ

[

2M+ 2p2+2p·q+q
2

2M
+O

(

1

M3

)]

[

1 + O
(

1

M2

)]

. (3.18)

Here we have also omitted effects of relative order exp(−[M ± µ]/T ), by keeping only the

leading terms in the exponentials. We note that after these simplifications, all dependence

on the temperature and on the chemical potential has disappeared from the tree-level

result.

The real-time object we are ultimately interested in, is the analytic continuation

CV
> (t,q; r, r′) = CV

E (it,q; r, r′) . (3.19)

Noting from eq. (3.18) that

−i∇r ⇔ p +
q

2
, (3.20)

the dependence on r and t in the exponential amounts to satisfying the Schrödinger equation

{

i∂t −
[

2M +
q2

4M
− ∇2

r

M
+ O

(

1

M3

)]}

CV
> (t,q; r, r′) = 0 . (3.21)

The initial condition for the solution is obtained by setting t = 0 in eq. (3.18) (after use of

eq. (3.19)): we find

CV
> (0,q; r, r′) = −6Nc

∫

d3p

(2π)3
ei(2p+q)· r−r

′

2 + O
(

1

M2

)

= −6Nc δ(3)(r− r′) + O
(

1

M2

)

. (3.22)

4Take first a Fourier transform, C̃E(ωb) =
R β

0
dτ eiωbτCE(τ ), where ωb is a bosonic Matsubara frequency;

then carry out the analytic continuation ρ(ω) = 1
2i

[C̃E(−i[ω + i0+]) − C̃E(−i[ω − i0+])]. A typical term in

CE(τ ), of the form exp(∆1τ + ∆2(β − τ )), becomes ρ(ω) = −π(eβ∆1 − eβ∆2)δ(ω + ∆1 − ∆2).
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Eqs. (3.21), (3.22) justify eqs. (2.4), (2.5) for the vector channel in the free limit.

For future reference, let us also compute ρV (ω) explicitly (general expressions for free

spectral functions can be found in refs. [38]). Eq. (3.18) (after τ → it) already shows the

solution of eqs. (3.21), (3.22), and we can then directly remove the point-splitting, setting

r, r′ = 0. Shifting p → p− q/2; taking the steps in footnote 4; and ignoring exponentially

small terms and terms suppressed by O(1/M2), we find

ρV (ω) ≈ −6Ncπ

∫

d3p

(2π)3
δ

(

ω′ − p2

M

)

= −3Nc

2π
θ(ω′)M

3
2 (ω′)

1
2 , (3.23)

where

ω′ ≡ ω −
[

2M +
q2

4M

]

. (3.24)

In the following, we will often for simplicity restrict to q = 0 (like already in eq. (2.4)),

but we can now observe from eqs. (3.23), (3.24) that the main effect of a non-zero q 6= 0

is simply to shift the threshold location 2M by the center-of-mass kinetic energy q2/4M .

The analysis so far has been at tree-level. As argued in refs. [24, 25], however, the

essential (temperature and ω-dependent) 1-loop corrections can be taken into account

simply by inserting the potential V>(∞, r), given in eq. (2.6), into eq. (3.21). There are of

course also other loop corrections, related for instance to the renormalization and definition

of M as a pole mass, and the overall normalization of the non-relativistic vector current in

eq. (3.11); these corrections are in fact known to high order at zero temperature [32, 33],5

but are not essential at our current resolution, so we mostly omit them here.

3.3 Scalar channel

Denoting

S(x; r) ≡ ψ̄

(

t,x +
r

2

)

Wψ

(

t,x− r

2

)

, (3.25)

the scalar channel correlator we consider is of the type

CS
>(x; r, r′) =

〈

S(x; r)S(0;−r′)

〉

. (3.26)

The correlator CS
>(x;0,0) is not directly physical6, but it does have the appropriate quan-

tum numbers to give a contribution to the three-particle production rate qq̄ → µ−µ+γ, i.e.

a lepton-antilepton pair together with an on-shell photon. Moreover, it is frequently mea-

sured on the lattice, which will be our most direct reference point. We will ignore the issue

of overall (re)normalization in the following, and concentrate on the shape of the spectral

function (meaning its ω-dependence in frequency space, or its t-dependence in coordinate

space).

It is again helpful to write S(x; r) with the NRQCD notation. The steps in eqs. (3.8),

(3.9) indicate that at O(M0), S = θ†θ − φ†φ, which does not lead to any non-trivial

5To 1-loop order, M = mMS(mMS)(1 + g2CF /4π2), V k
NRQCD(x;0) = V k

QCD(x;0)(1 + g2CF /2π2).
6It may be noted, for instance, that the scalar density requires renormalization, unlike the vector current.
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t-dependence. The leading non-trivial term reads

S(x; r) = . . . +
i

2M

[

θ†
(

t,x +
r

2

)←→
Djσjφ

(

t,x − r

2

)

+

+φ†

(

t,x +
r

2

)←→
Djσjθ

(

t,x− r

2

)]

+ O
(

1

M2

)

, (3.27)

where
←→
Dj ≡ W

−→
Dj(t,x − r/2) −←−

Dj(t,x + r/2)W .

To simplify eq. (3.27) a bit, let us for now assume that the gauge fields are perturbative,

so that the Wilson line can be approximated by the first term in its expansion; and that

their variation is slow on the scale set by |r|, as argued in section 3.1 (in any case, |r| is

taken to be zero at the end). Then we may write W ≈ l1 + igr · A(t,x),
−→
Dj(t,x − r/2) ≈−→

∂j− igAj(t,x) + igr · ∇Aj(t,x)/2,
←−
Dj(t,x + r/2) ≈ ←−

∂j+ igAj(t,x) + igr · ∇Aj(t,x)/2. We

now note that

θ†
(

t,x +
r

2

)←→
Djφ

(

t,x − r

2

)

≃ −2
∂

∂rj

{

θ†
(

t,x +
r

2

)

Wφ

(

t,x − r

2

)}

. (3.28)

Therefore, to leading order in the large-M expansion, and at least to some order in the

weak-coupling expansion, we can identify

S(x; r) ≃ − i

M
∇r · V(x; r) , (3.29)

where the components of V are given in eq. (3.11).

The relation between the vector and scalar channel correlators can be pushed one step

further, if we consider directly the correlators, eqs. (3.7) and (3.26). To leading order in

the large-M expansion, eqs. (3.11) and (3.29) imply that

CS
>(x; r, r′) =

〈

S(x; r)S(0;−r′)

〉

≃ 1

M2

3
∑

k,l=1

(∇r)k(∇r′)l

〈

Vk(x; r)Vl(0;−r′)

〉

=
1

3M2

3
∑

k,l=1

(∇r)k(∇r′)l δkl

3
∑

j=1

〈

Vj(x; r)Vj(0;−r′)

〉

= − 1

3M2
∇r · ∇r′

3
∑

j=1

〈

V j(x; r)Vj(0;−r′)

〉

= − 1

3M2
∇r · ∇r′ CV

> (x; r, r′) . (3.30)

We will be making use of this important relation later on.

We now return to full QCD, and outline the computation of the 2-point scalar density

correlator in eq. (3.26) at tree-level, again taking a spatial Fourier transfrom and, for

generality, keeping track of a non-zero spatial momentum q 6= 0 for the moment. Then,

CS
E(τ,q; r, r′)

≡
∫

d3x e−iq·x

〈

ψ̄

(

τ,x +
r

2

)

ψ

(

τ,x − r

2

)

ψ̄

(

0,−r′

2

)

ψ

(

0,+
r′

2

)〉

(3.31)
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= −Nc

∫

d3x e−iq·x∑

∫

P̃f,S̃f

ei(p̃0f−s̃0f)τ+i(s−p)·x+i(s+p)· r−r
′

2 Tr

[−i /̃P + M

P̃ 2 + M2

−i /̃S + M

S̃2 + M2

]

= −4Nc
∑

∫

P̃f,S̃f

(2π)3δ(3)(s− p − q)ei(p̃0f−s̃0f)τ+i(2p+q)· r−r
′

2
−p̃0fs̃0f − p · s + M2

(P̃ 2 + M2)(S̃2 + M2)

= −2NcT
2

∑

p̃0f,s̃0f

∫

d3p

(2π)3
ei(p̃0f−s̃0f)τ+i(2p+q)· r−r

′

2

−2p̃0fs̃0f − E2
p − E2

p+q + 4M2 + q2

(p̃2
0f + E2

p)(s̃2
0f + E2

p+q)
.

(3.32)

Making use of eqs. (3.14), (3.15), this can be rewritten as

CS
E(τ,q; r, r′) = −Nc

∫

d3p

(2π)3
ei(2p+q)· r−r

′

2 ×

×
{

nF(Ep + µ)nF(Ep+q − µ)e(β−τ)(Ep+Ep+q)

[

q2 + 4M2 − (Ep + Ep+q)2

2EpEp+q

]

+

+nF(Ep + µ)nF(Ep+q + µ)e(β−τ)Ep+τEp+q+βµ

[−q2 − 4M2 + (Ep − Ep+q)2

2EpEp+q

]

+

+nF(Ep − µ)nF(Ep+q − µ)e(β−τ)Ep+q+τEp−βµ

[−q2 − 4M2 + (Ep − Ep+q)2

2EpEp+q

]

+

+nF(Ep − µ)nF(Ep+q + µ)eτ(Ep+Ep+q)

[

q2 + 4M2 − (Ep + Ep+q)2

2EpEp+q

]}

. (3.33)

With the same considerations as between eqs. (3.16) and (3.18), the interesting part of CS
E

can be approximated as

CS
E(τ,q; r, r′) ≃ Nc

2M2

∫

d3p

(2π)3
ei(2p+q)· r−r

′

2
−τ

[

2M+ 2p2+2p·q+q
2

2M
+O

(

1

M3

)]

×

×
[

4p2 + 4p · q + q2 + O
(

1

M2

)]

. (3.34)

Note again that after these simplifications, all dependence on the temperature and on the

chemical potential has disappeared from the tree-level result.

The exponential in eq. (3.34) is the same as in eq. (3.18), whereby CS
> obeys the same

Schrödinger equation as CV
> , eq. (3.21). The initial condition is different, however: setting

t = 0 in eq. (3.34) (after τ → it), we find

CS
>(0,q; r, r′) = −2Nc

M2
∇2

r

∫

d3p

(2π)3
ei(2p+q)· r−r

′

2 + O
(

1

M4

)

= −2Nc

M2
∇2

r δ(3)(r− r′) + O
(

1

M4

)

. (3.35)

This agrees, of course, with what can be deduced from eqs. (3.22), (3.30). We note that all

dependence on the external momentum q again only appears as a part of the center-of-mass

energy 2M + q2/4M , inside eq. (3.21).
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For future reference, let us finally determine the spectral function, ρS(ω). Eq. (3.34)

(after τ → it) already shows the solution of eqs. (3.21), (3.35), and we can then directly

remove the point-splitting, setting r, r′ = 0. Shifting p → p − q/2; taking the steps in

footnote 4; and ignoring exponentially small terms, we find

ρS(ω) ≈ 2Ncπ

M2

∫

d3p

(2π)3
p2 δ

(

ω′ − p2

M

)

=
Nc

2π
θ(ω′)M

1
2 (ω′)

3
2 , (3.36)

where ω′ is from eq. (3.24).

The analysis so far has been at tree-level. As discussed above eq. (3.28), the relation

in eq. (3.30) is more general, however. Therefore, we can extract a beyond-the-leading

order ρS by simply applying eq. (3.30) to a beyond-the-leading order ρV .

3.4 Other channels

In sections 3.2, 3.3, we have discussed the correlators in the vector and scalar channels.

Let us now show that in the limit of a large quark mass, the correlators in the pseudoscalar

and axial vector channels are to a good approximation equivalent to either of these two.

We note, first of all, that in the basis of eq. (3.10), the matrix γ5 becomes

γ5 = iγ0γ1γ2γ3 =

(

0 l1

l1 0

)

. (3.37)

Thereby the pseudoscalar density becomes

P (x; r) ≡ ψ̄

(

t,x +
r

2

)

iγ5 Wψ

(

t,x − r

2

)

(3.38)

= i

[

θ†
(

t,x +
r

2

)

Wφ

(

t,x− r

2

)

− φ†

(

t,x +
r

2

)

Wθ

(

t,x − r

2

)]

+ O
(

1

M2

)

,

where again only structures of the type θ†φ and φ†θ have been kept. The non-trivial

two-point correlator comes from the cross-term between the two structures in eq. (3.38),

and ignoring the spin-dependent corrections of O(1/M), a comparison with eq. (3.11) then

shows that

CP
>(x; r, r′) ≃ −1

3
CV

> (x; r, r′) , (3.39)

where CP
> (x; r, r′) ≡ 〈P (x; r)P (0;−r′)〉, and CV

> is defined in eq. (3.7).

The axial vector, on the other hand, can be defined as

Aµ(x; r) ≡ ψ̄

(

t,x +
r

2

)

γ5γ
µ Wψ

(

t,x − r

2

)

. (3.40)

In the case of V µ, we found that the dominant contribution is given by the spatial compo-

nents, but for the axial vector, the roles have interchanged: the leading term is

A0(x; r) = −
[

θ†
(

t,x +
r

2

)

Wφ

(

t,x− r

2

)

+ φ†

(

t,x +
r

2

)

Wθ

(

t,x − r

2

)]

+ O
(

1

M2

)

.
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Comparing with eq. (3.38), we find

CA0

> (x; r, r′) ≡ 〈A0(x; r)A0(0;−r′)〉 ≃ CP
>(x; r, r′) ≃ −1

3
CV

> (x; r, r′) . (3.41)

In lattice studies, however, attention is sometimes restricted to the spatial components Ak;

repeating the previous steps, we find

Ak(x; r) ≃ − 1

2M

∂

∂xk
P (x, r) (3.42)

+
ǫklm

M

∂

∂rm

[

θ†
(

t,x +
r

2

)

σl Wφ

(

t,x− r

2

)

−φ†

(

t,x+
r

2

)

σl Wθ

(

t,x− r

2

)]

.

The first term is a total derivative, and the second term has a structure close to that in

eq. (3.11), given that only the crossterm contributes in a correlation function. Therefore,

paralleling the argument in eq. (3.30), we find

∫

d3xCA
> (x; r, r′) ≡

∫

d3x 〈Ak(x; r)Ak(0;−r′)〉

≃ 1

M2
ǫklmǫkl′m′

∂2

∂rm∂r′m′

∫

d3x 〈V l(x; r)V l′(0;−r′)〉

= − 1

3M2
ǫklmǫkl′m′

∂2

∂rm∂r′m
′
δll′

∫

d3xCV
> (x; r, r′)

= 2

∫

d3xCS
>(x; r, r′) . (3.43)

To summarize, eqs. (3.39), (3.41) and (3.43) show that the pseudoscalar and axial correla-

tors do not lead to any qualitatively new structures.

4. Method to construct the spectral functions

In the previous section, we have set up the Schrödinger equation and initial conditions

satisfied by the vector channel correlator CV
> , and shown that the corresponding correlators

in the other channels can be obtained from CV
> through various relations. The aim now is

to extract the spectral functions corresponding to these correlators.

To achieve this goal, it is useful to convert the time-dependent Schrödinger equation

directly to frequency space. Let

ψ(t; r, r′) ≡ ei2Mt CV
> (t,q; r, r′) , (4.1)

and

χ(t; r, r′) ≡ ei2MtCS
>(t,q; r, r′) ≃ −1

3

∇r · ∇r′

M2
ψ(t; r, r′) . (4.2)

The corresponding frequency representations are defined by

ψ̃(ω′; r, r′) ≡
∫ ∞

−∞
dt eiω′t ψ(t; r, r′) , χ̃(ω′; r, r′) ≡

∫ ∞

−∞
dt eiω′t χ(t; r, r′) , (4.3)
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and the spectral functions are then obtained from (cf. eq. (2.2))

ρV (ω′) = lim
r,r′→0

1

2
ψ̃(ω′; r, r′) , (4.4)

ρS(ω′) = lim
r,r′→0

1

2
χ̃(ω′; r, r′) , (4.5)

where ω′ is from eq. (3.24) and we have omitted exponentially small corrections.

We now recall from ref. [24] that the imaginary part of V>(t, r) (eq. (2.6)) is odd in

t → −t. Furthermore, we recall from section 3.1 that a consistent perturbative solution

allows (or, to be more precise, demands) considering the limit |t| ≫ r. Denoting

V>(r) ≡ lim
t→+∞

V>(t, r) , (4.6)

the equations to be solved (eq. (2.4)) then read

[

Ĥ − i| Im V>(r)|
]

ψ(t; r, r′) = i∂tψ(t; r, r′) , t > 0 , (4.7)

[

Ĥ + i| Im V>(r)|
]

ψ(t; r, r′) = i∂tψ(t; r, r′) , t < 0 , (4.8)

where we indicated explicitly that the imaginary part is negative for t → +∞ [24, 26], and

defined a Hermitean differential operator Ĥ through

Ĥ ≡ −∇2
r

M
+ Re V>(r) . (4.9)

Since the effective Hamiltonian is time-independent both for t < 0 and for t > 0, we

can formally solve eqs. (4.7), (4.8):

ψ(t; r, r′) =

{

e−iĤt−|Im V>(r)|t ψ(0; r, r′) , t > 0

e−iĤt+|Im V>(r)|t ψ(0; r, r′) , t < 0
, (4.10)

where, according to eqs. (3.22), (4.1),

ψ(0; r, r′) = −6Ncδ
(3)(r − r′) . (4.11)

Taking a Fourier-transform, we get

ψ̃(ω′; r, r′) =

∫ ∞

−∞
dt eiω′tψ(t; r, r′)

=

{[

iω′ − iĤ − | Im V>(r)|
]−1

eit(ω′−Ĥ)−|Im V>(r)|t
∣

∣

∣

∞

0
+

+

[

iω′ − iĤ + | Im V>(r)|
]−1

eit(ω′−Ĥ)+|Im V>(r)|t
∣

∣

∣

0

−∞

}

ψ(0; r, r′)

=
1

i

{[

ω′ − Ĥ − i| Im V>(r)|
]−1

−
[

ω′ − Ĥ + i| Im V>(r)|
]−1}

ψ(0; r, r′) .

(4.12)
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To give a concrete meaning to the inverses in eq. (4.12), we define a function Ψ̃(ω′; r, r′) as

the solution of the equation

[

ω′ − Ĥ + i| Im V>(r)|
]

Ψ̃(ω′; r, r′) = −6Ncδ
(3)(r− r′) . (4.13)

Then the result of eq. (4.12) can be rewritten as

ψ̃(ω′; r, r′) = −2 Im

[

Ψ̃(ω′; r, r′)

]

. (4.14)

According to eqs. (4.2), (4.4), (4.5), the spectral functions are now obtained from

ρV (ω′) = − lim
r,r′→0

Im

[

Ψ̃(ω′; r, r′)

]

, (4.15)

ρS(ω′) ≃ lim
r,r′→0

1

3M2
Im

[

∇r · ∇r′Ψ̃(ω′; r, r′)

]

. (4.16)

To summarize, we have reduced the determination of the spectral functions to the solution

of a time-independent inhomogeneous Schrödinger equation, eq. (4.13).

As the next step, following ref. [36], we introduce the ansatz

Ψ̃(ω′; r, r′) ≡
∞

∑

l=0

l
∑

m=−l

g̃l(ω
′; r, r′)

rr′
Ylm(Ω)Y ∗

lm(Ω′) . (4.17)

Here Ylm are the spherical harmonics, normalised as
∫

dΩ Y ∗
lm(Ω)Yl′m′(Ω) = δll′δmm′ , where

dΩ = dcos θ dφ, and satisfying

∑

lm

Y ∗
lm(Ω′)Ylm(Ω) = δ(Ω − Ω′) ≡ δ(cos θ − cos θ′) δ(φ − φ′) . (4.18)

The δ-function can be written as

δ(3)(r− r′) =
1

rr′
δ(r − r′)δ(Ω − Ω′) , (4.19)

whereby eq. (4.13) becomes

[

ω′ − Ĥr + i| Im V>(r)|
]

g̃l(ω
′; r, r′) = −6Ncδ(r − r′) , (4.20)

with

Ĥr ≡ − 1

M

∂2

∂r2
+

l(l + 1)

Mr2
+ Re V>(r) . (4.21)

The remaining goal is to reduce the problem to the solution of the homogeneous equa-

tion. Following refs. [36, 8], we introduce the ansatz

g̃l ≡ Agl
<(r<)gl

>(r>) , (4.22)

where gl
< is a solution of the homogeneous equation regular at zero; gl

> is a solution of the

homogeneous equation regular at infinity; and r< = min(r, r′), r> = max(r, r′).
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Obviously, the function g̃l is symmetric in r ↔ r′, and continuous at r = r′. Given the

well-known form of the solution gl
<, it must thus behave as

g̃l ∼ [rl+1 + O(rl+2)][(r′)l+1 + O((r′)l+2)] (4.23)

at small r, r′. For the vector channel spectral function, eqs. (4.15), (4.17) now imply that

ρV (ω′) = − lim
r,r′→0

1

4πrr′
Im

[

g̃0(ω
′; r, r′)

]

, (4.24)

i.e. that only the S-wave (l = 0) solution of the homogeneous part of eq. (4.20) contributes.

Consider then the scalar channel. According to eq. (4.16), the scalar channel spectral

function can be extracted from the same function Ψ̃ as the vector channel one, by taking

two derivatives and then extrapolating r, r′ → 0. Inspecting eq. (4.23), we see that we at

least get a contribution from the P-wave (l = 1). However, according to eq. (4.23), it is

also possible to get a contribution from the subleading S-wave terms, g̃0 ∼ [r +O(r2)][r′ +

O((r′)2)]. As far as we can see, this contribution was omitted in ref. [8].

We relegate a more detailed discussion on how to write the solutions for the spectral

functions ρV , ρS to appendix A, given that the further steps are quite technical in nature,

and give here just the final formulae. Introducing the dimensionless variables ̺ ≡ rαM

and α ≡ g2CF /4π, the vector channel spectral function from eq. (4.24) can be simplified

to
ρV (ω′)

M2
= −6Ncα

4π
lim
δ→0

∫ ∞

δ
d̺ Im

{

1

[g0
<(̺)]2

}∣

∣

∣

∣

g0
<(̺)=̺−̺2/2+...

, (4.25)

while the scalar channel spectral function becomes

ρS(ω′)

M2
=

Ncα
3

8π
lim
δ→0

∫ ∞

δ
d̺ Im

{

1

[g0
<(̺)]2

+
36

[g1
<(̺)]2

}
∣

∣

∣

∣

g1
<(̺)=̺2−̺3/4+...

. (4.26)

We remark that because of the factor 36, the first (S-wave) term is numerically subdominant

in eq. (4.26), and would be totally negligible, were it not for the fact that is does lead to a

resonance peak, unlike the second term.

5. Numerical results

In the previous section, we have reduced the numerical determination of the vector and

scalar channel spectral functions to eqs. (4.25), (4.26), respectively. In these equations the

functions gl
<, l = 0, 1, denote the regular solutions of the homogeneous part of eq. (4.20),

[

ω′ − Ĥr + i| Im V>(r)|
]

gl
< = 0 , (5.1)

where Ĥr is from eq. (4.21). Further details can be found in appendix A.

In practice, the procedure of determining ρV , ρS starts from some small value, ̺ ≡ δ,

with for instance δ = 10−2, at which point we impose as initial conditions the properties

of the regular solutions at small ̺, g0
<(δ) = δ − δ2/2 + . . . , g1

<(δ) = δ2 − δ3/4 + . . . .
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Figure 1: The resummed perturbative vector channel spectral function ρV (ω), in units of ω2, in

the non-relativistic regime, (ω−2M)/M ≪ 1, for M = 2, 4, 6GeV (from left to right). To the order

considered, M is the heavy quark pole mass. Note that for better visibility, the axis ranges are

different in the rightmost figure.
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Figure 2: The resummed perturbative vector channel spectral function ρV (ω), in units of ω2, in

the non-relativistic regime, (ω−2M)/M ≪ 1, for T = 250, 350, 450MeV (from left to right). To the

order considered, M is the heavy quark pole mass. Note that for better visibility, the axis ranges

are different in the leftmost figure.

We then integrate eq. (5.1) towards larger ̺, constructing simultaneously the quantities in

eqs. (4.25), (4.26). After a while, g0
<(̺) and g1

<(̺) start to grow rapidly and the integrals

in eqs. (4.25), (4.26) settle to their asymptotic values. Subsequently, we check that the

results obtained are independent of the starting point δ. The numerics is straightforward

and poses no problems.

Apart from the pole mass M , the solution depends on what is plugged in for g2 and

mD. We employ here simple analytic expressions that can be extracted from ref. [37],

g2 ≃ 8π2

9 ln(9.082T/ΛMS)
, m2

D ≃ 4π2T 2

3 ln(7.547T/ΛMS)
, for Nc = Nf = 3, µ = 0 . (5.2)

We also fix ΛMS ≃ 300 MeV; for the uncertainties related to this, see figure 2 of ref. [24].
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Figure 3: The resummed perturbative scalar channel spectral function ρS(ω), in units of ω2, in

the non-relativistic regime, (ω−2M)/M ≪ 1, for M = 2, 4, 6GeV (from left to right). To the order

considered, M is the heavy quark pole mass. Note that for better visibility, the range of x-axis is

different in the rightmost figure.

The results for −ρV /ω2 (eq. (4.25) divided by −ω2/M2) are shown in figures 1, 2, and

those for ρS/ω2 (eq. (4.26) divided by ω2/M2) in figures 3, 4. The results are given in a

range of ω where relativistic corrections, i.e. terms of higher order in a Taylor expansion

in (ω − 2M)/M , are estimated to be at most at the 10% level. We show a scan of mass

values, given that the inherent theoretical uncertainties of the charm and bottom pole

masses are several hundred MeV (for a pedagogic discussion, see ref. [39]), and that in

lattice simulations there are further uncertainties, related to scale setting etc, which make

it difficult to sit precisely at the physical point. As far as the other channels are concerned,

we recall from eqs. (3.39), (3.41), (3.43) that

ρP ≃ −1

3
ρV ; ρA0 ≃ −1

3
ρV ; ρA ≃ 2ρS . (5.3)

5.1 Comparison with lattice

As of today, lattice reconstructions of the spectral functions in various channels [4 – 6] suffer

from significant uncertainties. Apart from the usual problems, it may be mentioned that

the Compton wavelength associated with the heavy quarks tends to be of the order of the

lattice spacing, so that we may expect even more significant discretization artifacts than

in the usual quenched or 2+1 light flavour simulations; and that the analytic continuation

from Euclidean lattice data to the Minkowskian spectral function necessarily involves model

input, whose uncertainties are difficult to quantify. Nevertheless, it has been claimed that

the latter types of uncertainties may be under reasonable control from a practical point of

view [40]. The most recent lattice results in this spirit can be found in refs. [5, 6].

It has become fashionable recently not to compare directly the spectral functions,

but the Euclidean correlators for which direct lattice data exists. Though this removes the

uncertainties related to the analytic continuation, it also comes with a heavy price: most of

the structure in a Euclidean correlator is determined by values of ω far from the threshold,
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Figure 4: The resummed perturbative scalar channel spectral function ρS(ω), in units of ω2, in

the non-relativistic regime, (ω − 2M)/M ≪ 1, for T = 250, 350, 450MeV (from left to right). To

the order considered, M is the heavy quark pole mass. Note that for better visibility, the range of

x-axis is different in the leftmost figure.

ω ≪ 2M or ω ≫ 2M , so that the actual physics we are interested in tends to be hidden in

tiny effects somewhere in the middle of the Euclidean time interval. For this reason, we do

not consider Euclidean correlators to be as interesting as the spectral functions, and touch

only the latter in the following.

Most of the lattice data exists for the charmonium case. The temperatures where the

charmonium peak disappears from the spectral function are rather low, however; in fact

they are in a regime where our analysis is probably not yet justified. Assuming the char-

monium pole mass to be in the range M ∼ (1.5 . . . 2.0) GeV, we nevertheless observe from

figure 1(left) that at T ≈ 250 MeV a certain “enhancement” can still be seen in the vector

(and thus, in the pseudoscalar) channel. This then disappears at higher temperatures.

In contrast, in the scalar channel, figure 3(left), there is practically no structure. These

observations are certainly not in conflict with the lattice results of refs. [5, 6]. Further-

more, we may note that the absolute magnitudes of ρV and ρS in figures 1(left), 3(left) are

qualitatively in a similar relation to each other as the spectral functions measured on the

lattice: the difference of about an order of magnitude is due to the 1/M2-suppression in

the scalar case. At the same time, it needs to be kept in mind that in the scalar case the

operators require renormalization, and that we have in any case not computed radiative

corrections to the absolute magnitudes of the spectral functions, so that the comparison

cannot be taken too seriously.

Data for the bottomonium case, where our predictions should be more reliable, can be

found in ref. [5]. There is again an inherent uncertainty of several hundred MeV in the bot-

tom quark pole mass, but realistic values are presumable in the range M ∼ (4.5 . . . 5.0) GeV.

According to figures 1, 2 (middle to right), there is now a clear peak in the vector channel

spectral function, up to a temperature of perhaps 500 MeV. In the scalar channel case, fig-

ures 3, 4 (middle to right), the structure is much less pronounced, but a tiny enhancement

can be observed up to a temperature of about 400 MeV. These results are qualitatively in

better agreement with the lattice data in ref. [5] than the potential model results of ref. [8],
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Figure 5: The physical dilepton production rate, eq. (2.3), from charmonium (left) and bottomo-

nium (right), as a function of the energy, for various temperatures. The mass M corresponds

to the pole mass, and is subject to uncertainties of several hundred MeV; we use the intervals

1.5. . . 2.0GeV and 4.5. . . 5.0GeV to illustrate the magnitude of the corresponding error bands. The

low mass corresponds to the upper edge of each error band.

where no peak was found in the scalar channel case; as we have explained in section 4, the

discrepancy can be traced back to a difference in the reconstruction of the spectral function

from a Schrödinger equation. Nevertheless, in practice, it should again be stressed that

systematic uncertainties of the lattice data are certainly too large to make a quantitative

comparison.

5.2 Dilepton rate

Apart from the spectral functions, it is interesting to plot also the physical observable, the

dilepton production rate given in eq. (2.3). This is shown in figure 5. The significant differ-

ence with respect to the vector channel spectral function is the existence of the Boltzmann

factor (or, to be more precise, Bose-Einstein factor) in eq. (2.3). Obviously, for a fixed fre-

quency around the threshold, ω ∼ 2M , the Boltzmann factor exp(−ω/T ) ∼ exp(−2M/T )

introduces a strong dependence of the dilepton rate on the temperature or, for a given tem-

perature, on the mass. The exponential boosts the rate at high temperatures, and makes

it decrease rapidly at large frequencies. Thereby the dilepton rate shows a much stronger

resonance-like behaviour than the spectral function, figure 1. In particular, some kind of a

peak structure remains visible in the dilepton rate in figure 5 even at temperatures which

are so high that there is only a smooth step-like behaviour visible in the spectral function

in figure 1.
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6. Physical picture of heavy quarkonium in a thermal plasma

Conceptually, the most important difference between our analysis and traditional poten-

tial models [7, 8] is the existence of an imaginary part in the static potential, eq. (2.6).

Physically, the imaginary part implies that quarkonium at high temperatures should not

be thought of as a stationary state. Rather, the norm of its wave function decays exponen-

tially with (Minkowski) time. This is due to the fact that, apart from experiencing Debye

screening, there is also a finite probability for the off-shell gluons binding the two quarks

to disappear, due to Landau damping, i.e. inelastic scatterings with hard particles in the

plasma. Once T ∼ gM , the imaginary part is in fact parametrically larger than the binding

energy (cf. section 3.1). At the same time, for low enough temperatures, T ∼ g2M , the

imaginary part plays a subdominant role (cf. section 3.1).

It may be useful to remark that if, on the contrary, one goes to a Euclidean lattice,

then a non-zero wave function can be defined at any finite value of the “imaginary time”

coordinate τ , 0 < τ < β. Introducing also gauge-fixing, such wave functions have been

measured with Monte Carlo simulations in ref. [34] (for a recent review, see ref. [35]).

With regard to the discussion above, the physical significance of such wave functions for

Minkowski-time observables is not obvious; hence we do not discuss them here.

7. Conclusions

The purpose of this paper has been to experiment, as generally as possible, with the

resummed perturbative framework that was introduced in refs. [24, 25], in order to offer

one more handle on the properties of heavy quarkonium in hot QCD, thus supplementing

the traditional approaches based on potential models and on lattice QCD.

The key ingredient of our approach is a careful definition of a finite-temperature

real-time static potential that can be inserted into a Schrödinger equation obeyed by

certain heavy quarkonium Green’s functions. The potential in question, denoted by

limt→∞ V>(t, r), has both a real and an imaginary part (cf. eq. (2.6)). An important

conceptual consequence from the existence of an imaginary part is that heavy quarkonium

should not be thought of as a stationary state at high temperatures, but as a short-lived

transient, with the quark and antiquark binding together only for a brief moment before

unattaching again.

On the more technical level we have noted that, in terms of eq. (4.17), the vector

channel spectral function gets a contribution only from the S-wave, l = 0, while the scalar

channel spectral function gets a contribution both from the S-wave and P-wave, l = 0, 1.

Here we differ from the potential model analysis in ref. [8] where, as far as we can see, only

l = 1 was considered for the scalar channel. The reason for the difference is discussed at

the end of section 4. The difference is significant, since the S-wave contribution introduces

a small reasonance peak to the scalar channel spectral function as well.

The phenomenological pattern we find for the spectral functions within this frame-

work is not too different from indications from lattice QCD: scalar channel charmonium

displays practically no reasonance peak above a temperature of 200 MeV; vector channel
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charmonium has some peak-like structure up to a temperature of about 300 MeV; scalar

channel bottomonium is again weakly bound but does show a small enhancement up to

a temperature of about 400 MeV; vector channel bottomonium can support a resonance

peak up to a temperature of about 500 MeV. (Because of unknown higher order corrections,

these numbers are subject to uncertainties of several tens of MeV.)

At the same time, we stress that in the physical dilepton rate, figure 5, the quarkonium

peak always becomes more pronounced with increasing temperature, irrespective of the

disappearance of the resonance structure from the spectral function. This boost is due

to an interplay of the free quark continuum in the spectral function, and the Boltzmann

factor exp(−ω/T ).

There are a few directions in which our work could be extended, in order to go beyond

a purely perturbative approach. In particular, the imaginary part of the real-time static

potential has been measured with classical lattice gauge theory simulations in ref. [26], and

could thus to some extent be used in a non-perturbative setting. Hopefully, the real part

of our static potential could also be related to quantities that are measurable with lattice

Monte Carlo methods, thereby allowing us to probe more reliably the phenomenologically

interesting temperature regime around a few hundred MeV.
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A. Numerical method for finding the spectral functions

In this appendix we provide details concerning the numerical method that we have used

for determining the vector and scalar channel spectral functions. The basic approach is

from ref. [36], where it was applied for the vector channel at zero temperature; the method

was extended to the scalar channel case in ref. [8]. Our presentation is rather close to

that in ref. [8], but we choose to spell out the details anew due to the fact that, as already

mentioned in section 4, we find one additional term in the scalar channel case. Furthermore,

the existence of an imaginary part in our static potential simplifies certain points of the

analysis. We should point out that the method presented here appears to be numerically

superior to that introduced for the vector channel in ref. [25].

A.1 Vector channel

We proceed with the evaluation of eq. (4.24). Given the ansatz in eq. (4.22), it remains to

determine A, gl
<, gl

>, and then to extrapolate r, r′ → 0. We thus need to know, in particular,

the asymptotic behaviours of the functions gl
<, gl

> near the origin. Let gl
r and gl

i be the
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solutions regular and irregular around the origin, respectively:

gl
r = rl+1

∞
∑

n=0

anrn ≈ a0r
l+1 , (A.1)

gl
i = gl

r(r)

∫ r

δ
dr′

1

[gl
r(r

′)]2
≈ − 1

a0

r−l

2l + 1
. (A.2)

We may then choose

gl
<(r) = gl

r(r) , (A.3)

gl
>(r) = gl

i(r) + Blgl
r(r) , (A.4)

where the coefficient Bl is defined such as to guarantee the regularity of gl
>(r) at infinity,

Bl = − lim
r→∞

gl
i(r)

gl
r(r)

= −
∫ ∞

δ
dr′

1

[gl
r(r

′)]2
. (A.5)

Combining eqs. (A.2), (A.4), (A.5), we can write

gl
>(r) = −gl

r(r)

∫ ∞

r
dr′

1

[gl
r(r

′)]2
. (A.6)

Let us next compute the coefficient A in eq. (4.22). Integrating both sides of eq. (4.20)

with
∫ r′+0+

r′−0+ dr (. . .), yields

A =
6NcM

gl
>(r′)dgl

<(r′)/dr′ − gl
<(r′)dgl

>(r′)/dr′
. (A.7)

Involving a Wronskian, this expression is independent of the position r′ at which it is

evaluated, so we can do this at small r′. Then we can use the asymptotic forms from

eqs. (A.1), (A.2), to find that

A = −6NcM . (A.8)

Note that this expression is independent of l.

We finally take the limit r, r′ → 0, while keeping r < r′, so that r< ≡ r, r> ≡ r′.

Inserting eqs. (4.22), (A.1), and (A.8) into eq. (4.24), yields

ρV (ω′) =
6NcM

4π
lim

r,r′→0

1

rr′
Im

[

g0
>(r′)g0

<(r)

]

= −6NcMa0

4π
lim
r′→0

Im

{

g0
r (r

′)

r′

∫ ∞

r′
dr′′

1

[g0
r (r

′′)]2

}

, (A.9)

where we assumed a0 to be real.

Let us now analyse the origin of the imaginary part in eq. (A.9). It will be convenient

to express the r-dependence in terms of the dimensionless variable ̺ ≡ rαM , where α ≡
g2CF /4π. In these units, the homogeneous Schrödinger equation (eq. (5.1)) reads

[

∂2

∂̺2
− l(l + 1)

̺2
+

1

̺
+ O(1)

]

gl
r(̺) = 0 , (A.10)
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implying

gl
r(̺) = ̺l+1 − 1

2(l + 1)
̺l+2 + . . . . (A.11)

At some order the solution also develops an imaginary part; let us write an ansatz

gl
r(̺) = ̺l+1 − 1

2(l + 1)
̺l+2 + . . . + iγ1̺

x , γ1 ∈ R . (A.12)

The imaginary part in eq. (4.20) behaves as ∼ iγ2̺
2 at small ̺. Inserting into the

Schrödinger equation, we get for the leading imaginary term

iγ1̺
x−2[x(x − 1) − l(l + 1)] + iγ2̺

2 · ̺l+1 = 0 , (A.13)

implying x = l + 5.

Returning to eq. (A.9), there are in principle two possibilities for the

origin of the imaginary part. However, according to eqs. (A.11), (A.13),

limr′→0 Im[g0
r /r

′]
∫ ∞
r′ dr′′ Re{1/[g0

r (r′′)]2} ∼ limr′→0(r
′)4/(r′) = 0. Therefore the imaginary

part can only arise from Im{1/[g0
r (r′′)]2}. Inserting the asymptotic form of Re[g0

r /r
′] from

eq. (A.11); using the variable ̺; and noting that this corresponds to the choice a0 = αM ,

we then obtain eq. (4.25).

It is useful to crosscheck that eq. (4.25) produces the correct result in the free limit.

In the free case there is no i| Im V>(r)| in eq. (4.20), and a factor iǫ ≡ i0+ needs to be

inserted instead, to pick up the correct (retarded) solution. In dimensionless units, the

homogeneous equation then becomes

[

∂2

∂̺2
+

ω̂′

α2
+ iǫ

]

g0
r (̺) = 0 , (A.14)

where ω̂′ ≡ ω′/M . We denote

k ≡
√

ω̂′

α2
+ iǫ . (A.15)

The solution with the correct behaviour around the origin (with a0 = αM) reads

g0
r (̺) =

1

k
sin(k̺) . (A.16)

We can write
1

[g0
r (̺′)]2

= −k
d

d̺′

{

cos
(

k̺′
)

sin
(

k̺′
)

}

. (A.17)

The integral in eq. (4.25) can now be carried out; the substitution at the upper end gives a

contribution from the exponentially growing terms exp(−ik̺′), present both in the cosine

and in the sine. Their ratio gives −i, and the total is then

ρV (ω′)

M2
= −6Ncα

4π
Im

{(

ω̂′

α2
+ iǫ

)
1
2

i

}

= −3Nc

2π
θ(ω′) (ω̂′)1/2 . (A.18)

This indeed agrees with eq. (3.23).
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A.2 Scalar channel

In the scalar channel case, the equations to be solved are (4.16), (4.17), (4.20); the ansatz

for the solution is in eq. (4.22), with A given by eq. (A.8).

Let us first work out the contribution from the mode l = 0 (S-wave). According to

eqs. (4.17), (4.22), (A.3), (A.6), the relevant term of Ψ̃, denoted by δoΨ̃, is

δ0Ψ̃(ω′; r, r′) = − 1

4πrr′
Ag0

r (r)g
0
r (r

′)

∫ ∞

r′
dr′′

1

[g0
r (r′′)]2

. (A.19)

Inserting into eq. (4.16), making use of eq. (A.8), and going over into the dimensionless

variable ̺, we get

δ0ρ
S(ω′)

M2
=

2Ncα
3

4π
lim

̺,̺′→0
Im

{

d

d̺

(

g0
r (̺)

̺

)

d

d̺′

(

g0
r (̺

′)

̺′

∫ ∞

̺′
d̺′′

1

[g0
r (̺′′)]2

)}

. (A.20)

According to eq. (A.11), the first term inside the curly brackets is lim̺→0 d̺(g
0
r /̺) = −1/2,

so that we get

δ0ρ
S(ω′)

M2
= −Ncα

3

4π
lim
̺′→0

Im

{

d

d̺′

(

g0
r (̺

′)

̺′

∫ ∞

̺′
d̺′′

1

[g0
r (̺′′)]2

)}

. (A.21)

In principle there are again two possible origins for the imaginary part. However, as

we saw in the vector channel case, Im[g0
r /̺

′]
∫ ∞
̺′ d̺′′ Re{1/[g0

r (̺′′)]2} ∼ (̺′)3, so that a non-

zero contribution can only arise from Im{1/[g0
r (̺′′)]2}. Furthermore, the derivative can

only act on the combination multiplying the integral, since

Re[g0
r (̺

′)]

̺′
Im

{

1

[g0
r (̺′)]2

}

≈ Im

{

1

[g0
r (̺

′)]2

}

≈ Im

{

1

(̺′)2 + 2iγ1(̺′)6

}

≈ −2γ1(̺
′)2 .

(A.22)

Making use of lim̺′→0 d̺′(g
0
r /̺

′) = −1/2, the S-wave contribution to the scalar spectral

function thus becomes

δ0ρ
S(ω′)

M2
=

Ncα
3

8π
lim
δ→0

∫ ∞

δ
d̺ Im

{

1

[g0
r (̺)]2

}
∣

∣

∣

∣

g0
r (̺)=̺−̺2/2+...

. (A.23)

In other words, comparing with eq. (4.25), δ0ρ
S(ω′) = −α2ρV (ω′)/12; the factor α2 is

a manifestation of the suppression ∼ ∇2
r/M

2 apparent in eq. (3.30), combined with the

parametric order of magnitude of ∇r/M from eq. (3.1).

Consider then the contribution from the mode l = 1 (P-wave). The relevant term from

eq. (4.22), denoted by δ1Ψ̃, is

δ1Ψ̃(ω′; r, r′) = A
g1
<(r)

r

g1
>(r′)

r′

1
∑

m=−1

Y1m(θ, φ)Y ∗
1m(θ′, φ′) . (A.24)

Hence we will need

Y10(θ, φ) =

√

3

4π
cos θ , Y1±1(θ, φ) = ∓

√

3

8π
sin θe±iφ . (A.25)

– 25 –



J
H
E
P
0
1
(
2
0
0
8
)
0
4
3

In order to take the derivatives in eq. (4.16), we stay with radial coordinates, so that

∇r = er
∂

∂r
+ eθ

1

r

∂

∂θ
+ eφ

1

r sin θ

∂

∂φ
. (A.26)

Moreover, we choose again r < r′, so that r< ≡ r, r> ≡ r′. We will set Ω′ = Ω af-

ter taking the derivatives in eq. (4.16), so that the basis is orthogonal. Making use of

eqs. (A.26), (A.25), the terms m = ±1 both yield

∇r′ · ∇r δ1Ψ̃ = A
3

8π

{

∂

∂r

[

g1
<(r)

r

]

∂

∂r′

[

g1
>(r′)

r′

]

sin2θ +
g1
<(r)

r2

g1
>(r′)

(r′)2

[

cos2θ + 1

]}

, (A.27)

while the term m = 0 yields

∇r′ · ∇r δ1Ψ̃ = A
3

4π

{

∂

∂r

[

g1
<(r)

r

]

∂

∂r′

[

g1
>(r′)

r′

]

cos2θ +
g1
<(r)

r2

g1
>(r′)

(r′)2
sin2θ

}

. (A.28)

Summing together, we get

∇r′ · ∇r δ1Ψ̃ = A
3

4π

{

∂

∂r

[

g1
<(r)

r

]

∂

∂r′

[

g1
>(r′)

r′

]

+ 2
g1
<(r)

r2

g1
>(r′)

(r′)2

}

. (A.29)

We now insert g1
<(r) = g1

r (r), g1
>(r′) = −g1

r (r
′)

∫ ∞
r′ dr′′ 1/[g1

r (r′′)]2 from eqs. (A.3), (A.6),

and recall that at small r, g1
r (r) ≈ ̺2 = (rαM)2. Thereby

lim
r,r′→0

∇r′ ·∇r δ1Ψ̃ = −3A

4π
(αM)3 lim

̺′→0

{

d

d̺′

(

g1
r (̺

′)

̺′

∫ ∞

̺′

d̺′′

[g1
r (̺

′′)]2

)

+
2g1

r (̺′)

(̺′)2

∫ ∞

̺′

d̺′′

[g1
r (̺

′′)]2

}

.

(A.30)

Inserting this into eq. (4.16), and making use of eq. (A.8), we get

δ1ρ
S(ω′)

M2
=

3Nc

2π
α3 lim

̺′→0
Im

{[

d

d̺′

(

g1
r (̺

′)

̺′

)

+
2g1

r (̺
′)

(̺′)2

]
∫ ∞

̺′

d̺′′

[g1
r (̺

′′)]2
− 1

̺′g1
r (̺

′)

}

. (A.31)

Once again, we need to inspect the origin of the imaginary part. According to

eqs. (A.11), (A.13), Re[g1
r (̺

′)] ∼ (ρ′)2, Im[g1
r (̺

′)] ∼ (ρ′)6, and consequently

Re

{

1

[g1
r (̺

′′)]2

}

≈ 1

(̺′′)4
, Im

{

1

̺′g1
r (̺

′)

}

≈ Im

{

1

(̺′)3 + iγ1(̺′)7

}

≈ −γ1̺
′ , (A.32)

so that the only possibility is to consider Im{1/[g1
r (̺′′)]2}. The prefactor multiplying this

can be trivially determined, and we end up with

δ1ρ
S(ω′)

M2
=

9Nc

2π
α3 lim

δ→0

∫ ∞

δ
d̺ Im

{

1

[g1
r (̺)]2

}
∣

∣

∣

∣

g1
r (̺)=̺2−̺3/4+...

, (A.33)

in analogy with eq. (4.25). Combining eqs. (A.23), (A.33), the complete scalar channel

spectral function can be written as in eq. (4.26).

To conclude, let us again check that the procedure introduced does yield the correct

tree-level result. Somewhat unfortunately, the first term in eq. (4.26) does not contribute

in this limit: the subleading term in eq. (A.11) would be of O(̺l+3) in the free case, so
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that g0
r /̺ ∼ ̺2 in eq. (A.20), and δ0ρ

S vanishes. However, the second term in eq. (4.26)

survives. In dimensionless variables, the homogeneous Schrödinger equation reads
[

d2

d̺2
− 2

̺2
+

ω̂′

α2
+ iǫ

]

g1
r (̺) = 0 . (A.34)

Since there is no imaginary potential, we have had to introduce ǫ ≡ 0+ to pick up the

retarded solution. The solution normalised to give the desired small-̺ behaviour [g1
r (̺) =

̺2 + . . .] is

g1
r (̺) =

3

k2

[

sin(k̺)

k̺
− cos(k̺)

]

, (A.35)

where k is from eq. (A.15). We note that
[

sin(k̺)

k̺
− cos(k̺)

]−2

=
1

k

d

d̺

[

cos(k̺) + k̺ sin(k̺)

k̺ cos(k̺) − sin(k̺)

]

, (A.36)

whereby

ρS(ω′)

M2
=

9Nc

2π
α3 lim

̺→∞
Im

{

1

9

(

ω̂′

α2
+ iǫ

)
3
2 cos(k̺) + k̺ sin(k̺)

k̺ cos(k̺) − sin(k̺)

}

=
Nc

2π
α3 Im

{(

ω̂′

α2
+ iǫ

)
3
2

i

}

=
Nc

2π
θ(ω′) (ω̂′)

3
2 . (A.37)

This indeed agrees with eq. (3.36).
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M. Döring, K. Hübner, O. Kaczmarek and F. Karsch, Color screening and quark-quark

interactions in finite temperature QCD, Phys. Rev. D 75 (2007) 054504 [hep-lat/0702009].

[11] K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of

mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195];

H. Liu, K. Rajagopal and U.A. Wiedemann, An AdS/CFT calculation of screening in a hot

wind, Phys. Rev. Lett. 98 (2007) 182301 [hep-ph/0607062];
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F. Di Renzo, M. Laine, V. Miccio, Y. Schröder and C. Torrero, The leading non-perturbative

coefficient in the weak-coupling expansion of hot QCD pressure, JHEP 07 (2006) 026

[hep-ph/0605042].

[22] E. Braaten and A. Nieto, Free energy of QCD at high temperature, Phys. Rev. D 53 (1996)

3421 [hep-ph/9510408].

– 29 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB458%2C90
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB458%2C90
http://arxiv.org/abs/hep-ph/9508379
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C63%2C1129
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB334%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB334%2C199
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB337%2C569
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB337%2C569
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB346%2C115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB346%2C115
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB148%2C461
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C7232
http://arxiv.org/abs/hep-ph/9507380
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C074032
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C074032
http://arxiv.org/abs/hep-ph/0212283
http://arxiv.org/abs/0708.4232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB124%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB124%2C407
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C7603
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD50%2C7603
http://arxiv.org/abs/hep-ph/9408276
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD51%2C1906
http://arxiv.org/abs/hep-ph/9410360
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C105008
http://arxiv.org/abs/hep-ph/0211321
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3967
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3967
http://arxiv.org/abs/hep-ph/9308232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB96%2C289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB96%2C289
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C53%2C43
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=RMPHA%2C53%2C43
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C7208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C7208
http://arxiv.org/abs/hep-ph/9508280
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB459%2C259
http://arxiv.org/abs/hep-lat/9905004
http://jhep.sissa.it/stdsearch?paper=01%282005%29013
http://arxiv.org/abs/hep-lat/0412008
http://jhep.sissa.it/stdsearch?paper=11%282006%29060
http://arxiv.org/abs/hep-lat/0609015
http://jhep.sissa.it/stdsearch?paper=07%282006%29026
http://arxiv.org/abs/hep-ph/0605042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C3421
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C3421
http://arxiv.org/abs/hep-ph/9510408


J
H
E
P
0
1
(
2
0
0
8
)
0
4
3

[23] J.P. Blaizot, E. Iancu and A. Rebhan, On the apparent convergence of perturbative QCD at

high temperature, Phys. Rev. D 68 (2003) 025011 [hep-ph/0303045];
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