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1. Introduction

The AdS/CFT correspondence [1 – 4] has led to tremendous insight into gauge theory

as well as non-perturbative descriptions of theories of gravity. Much progress has been

made in understanding AdS5/CFT4 and AdS3/CFT2, where both the string theory side

and the conformal field theory side can be solved in certain limits. (For a sample of

recent advances see [5 – 13].) The AdS4/CFT3 correspondence, on the other hand, is much

less understood. Two primary classes of examples of AdS4/CFT3 have been studied so

far: (1) the duality between M-theory on AdS4 × S7 (as well as AdS4 × X7 with other

Sasaki-Einstein seven-manifolds X7) and the M2-brane CFT, which is believed to be the

infrared fixed point of the three dimensional N = 8 U(N) super-Yang-Mills theory [14];

(2) the duality between higher spin gauge theory in AdS4 and the IR fixed point of three

dimensional O(N) model [15]. In the first example, it is difficult to calculate anything in

the IR CFT from the gauge theory, which is strongly coupled. For instance, one does not

even understand from the gauge theory perspective why the IR CFT has N3/2 degrees of

freedom, as predicted from the gravity dual. The gravity side, which involves M-theory, is

also not completely formulated. In general we do not know how to go beyond supergravity

and semi-classical M-branes. In the second example, one can do computations in the CFT

in 1/N expansion and ǫ-expansion, but the gravity dual is again difficult to analyze. In

both classes of examples, there is no adjustable parameter in the theory other than N

itself.

It was pointed out in [16] that supersymmetric Chern-Simons theories, which are by

themselves topological but may be coupled to matter fields that carry physical degrees of

freedom, give rise to a natural class of classically conformal theories. Furthermore, since

the Chern-Simons level is not renormalized up to a possible 1-loop shift, such theories are

anticipated to be exactly conformal quantum mechanically, and hence potentially giving

rise to an interesting new class of AdS4/CFT3 correspondences. The non-renormalization

properties of N = 2 and N = 3 Chern-Simons theories coupled to matter fields have been

previously studied in [17 – 21].

More precisely, N = 2 and N = 3 supersymmetric Chern-Simons theories coupled

minimally to matter fields are exactly conformal, in the sense that there is no relevant

or marginal quantum corrections to the classical action. The theories are labeled by the

gauge group G, matter representation R, and the Chern-Simons level k. 1/k plays the

role of the coupling constant, and in particular the theory can be made arbitrarily weakly

coupled and can be analyzed in conventional perturbation theory. As we will show, the

N = 3 theory can be obtained as the IR fixed point of the N = 2 theory perturbed by a

certain superpotential. In fact, there is an even larger class of superconformal field theories,

obtained from more general superpotential deformations of the N = 2 CS-matter theory,

all of which have (weakly coupled) Lagrangian descriptions.

The supersymmetric Chern-Simons theories coupled to fundamental or adjoint matter

fields can often be engineered as the IR limit of the world volume theory on branes in

string theory. One might try to find the gravity dual of CS-matter theories by studying the

decoupling limit of such brane solutions. However, we do not know any example in which
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such decoupling limit exists as a smooth AdS4 solution in supergravity. It is conceivable

that the AdS4 dual of CS-matter theories, if described by a weakly coupled string theory,

always has radius at string scale.

While we do not know a direct construction of the gravity dual, we can still study

the large N limit of CS-matter theories perturbatively, and look for signatures of strings.

It is a priori not obvious whether the usual lore of gauge/string duality applies in this

case, since the Chern-Simons gauge field is effectively infinitely massive and does not carry

propagating degrees of freedom by itself. Take as an example the N = 2 U(N) Chern-

Simons theory coupled to Nf fundamental matter fields. We expect this CFT to be dual to

a theory of gravity in AdS4, with U(Nf ) gauge fields. One can consider twist-1 operators

of the form

φ̄D(µ1
· · ·Dµn)φ (1.1)

at large spin n, where φ is the scalar matter field and Dµ are gauge covariant derivatives.

At weak ’t Hooft coupling λ ∼ N/k, the leading contribution to the anomalous comes in

at two-loop. To this order we find that there are corrections of order O(λ2), bounded in

the n → ∞ limit, and corrections of order O(λ2Nf/N), which grow like ln(n) at large n.

The latter is the expected growth of the anomalous dimension of the operator dual to a

classical string spinning in AdS4. This sort of agreement was found in four dimensional

N = 4 super-Yang-Mills [22], where the ln(n) growth in fact holds to all orders in the

’t Hooft coupling. This suggests that in the large N limit, with Nf/N finite, (1.1) could

indeed be dual to a classical spinning open string in AdS4, and that N = 2 U(N) Chern-

Simons theory with fundamental matter could be dual to a open string theory in AdS4 (i.e.

with Nf space filling D-branes). The radius of AdS4 in string units will be a function of λ

and Nf/N .

The above considerations extend naturally to theories with adjoint matter. It is natural

to study spin chain descriptions of long operators in these theories. For example, the

N = 3 theory with one adjoint matter has SU(2)R × SU(2)f global symmetry. There is a

corresponding SU(2)R × SU(2)f spin chain, which turns out to be non-integrable at two-

loop. In general we do not expect the spin chain associated with CS-matter theories to

be integrable. Although we do not know the precise holographic dual of this theory, our

findings are compatible with a 7-dimensional supergravity dual at large ’t Hooft coupling,

with the geometry of the coset OSp(3|4)/SO(3, 1). Indeed, the spectrum of protected

operators consists of a tower of irreducible representations of OSp(3|4)× SU(2)f with spin

(j, j) under SU(2)R × SU(2)f for each j, as expected for the KK-tower of modes on S3.

The analysis of the spin chain reinforces this idea: giant magnon-like excitations of large

R-charge which carry spin (j − 1
2 , j) have the same anomalous dimension as excitations of

spin (j, j − 1
2). This is the behavior expected for a giant magnon moving along the equator

of the S3.

This paper is organized as follows. In section 2 we recall the N = 2 and N = 3 Chern-

Simons-matter theories, and the arguments for their non-renormalization properties. We

will show that the N = 2 theories deformed by superpotentials can flow to other weakly

coupled superconformal fixed points, including N = 3 ones. In section 3 we study the ’t

– 3 –
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Hooft limit of various CS-matter theories. For the abelian theory, we will solve the free

energy at large Nf and study the thermodynamics of the theory. We will then discuss

the operator spectrum of the U(N) Chern-Simons theory coupled to fundamental matter.

In particular, we compute the two-loop anomalous dimension of twist-1 operators at large

spin. We will also discuss supersymmetric Wilson loops and spin chain descriptions of long

operators. Section 4 contains some comments on the possible string theory AdS4 dual.

Appendix A summarizes some details of the N = 3 Lagrangian. Appendix B presents the

saddle point analysis of the abelian theory in the large Nf limit. Appendix C contains

a discussion of the free nonabelian theory on the sphere. In appendix D, we present the

computation of the two-loop anomalous dimensions of some operators.

2. Supersymmetric Chern-Simons theories coupled to matter fields

2.1 N = 2 Chern-Simons-matter theory

In this subsection we review the N = 2 Chern-Simons theory coupled to matter fields [23,

24, 19, 20], as well as its non-renormalization properties. We shall start by describing the

Lagrangian in superspace. The three dimensional N = 2 vector superfield V consists of the

gauge field Aµ, an auxiliary scalar field σ, a two-component Dirac spinor χ, and another

scalar D. The superspace Lagrangian for abelian N = 2 Chern-Simons theory, coupled to

matter chiral superfield Φ, is given by

SN=2
Ab =

∫

d3x

∫

d4θ

(

k

4π
V Σ + Φ̄eV Φ

)

(2.1)

where Σ = D̄αDαV . When there are several matter fields Φi of different charges, it is

convenient to absorb k into the charge and write the action as

SN=2
Ab =

∫

d3x

∫

d4θ
(

V Σ + Φ̄ie
qiV Φi

)

(2.2)

The nonabelian N = 2 Chern-Simons action is trickier to write in terms of the nonabelian

vector superfield V :

SN=2 =

∫

d3x

∫

d4θ

{

k

2π

∫ 1

0
dtTr

[

V D̄α(e−tV DαetV )
]

+ Φ̄eV Φ

}

(2.3)

where the matter field Φ is in an arbitrary representation R of the gauge group. Here “Tr”

is normalized to be the trace in the fundamental representation when the gauge group is

U(N) or SU(N). We will denote by trR the trace taken in representation R. In component

fields (Wess-Zumino gauge), the Chern-Simons action is simply

SN=2
CS =

k

4π

∫

Tr

(

A ∧ dA +
2

3
A3 − χ̄χ + 2Dσ

)

(2.4)

The level k is quantized to be integer valued1 to ensure invariance under large gauge trans-

formations. We will often consider Nf N = 2 chiral matter fields in some representation R,

1or half-integer valued when there is a “parity anomaly” [25, 26], depending on the matter content. This

subtlety is not essential for us as we will mostly work with weak coupling k ≫ 1 and/or ’t Hooft-like limits.

– 4 –
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denoted by Φi = (φi, ψi), with global U(Nf ) flavor symmetry. The coupling to the vector

multiplet is the standard one,

Smatter =

∫

d4θ

Nf
∑

i=1

Φ̄ieV Φi =

∫ Nf
∑

i=1

(

Dµφ̄iDµφi + iψ̄iγµDµψi − φ̄iσ2φi + φ̄iDφi

−ψ̄iσψi + iφ̄iχ̄ψi − iψ̄iχφi
)

. (2.5)

The auxiliary fields σ and D are understood to act on (φ,ψ) in the representation R.

Integrating out D sets σ = −4π
k (φ̄iT aφi)ta, where T a are generators of the Lie algebra of

the gauge group, normalized so that Tr(T aT b) = 1
2δab. Further integrating out χ, χ̄ yields

the action

SN=2 =
k

4π
CS(A) +

∫

Dµφ̄iDµφi − 16π2

k2
(φ̄iT aφi)(φ̄jT bφj)(φ̄kT aT bφk)

+iψ̄iγµDµψi − 4π

k
(φ̄iT aφi)(ψ̄jT aψj) − 8π

k
(ψ̄iT aφi)(φ̄jT aψj). (2.6)

This action is clearly classically marginal. We will now argue that it is in fact quantum

mechanically exactly marginal, in the sense that there is no relevant or marginal quantum

corrections to the action that cannot be absorbed into a redefinition of the fields.

When the matter field Φ transforms in a irreducible representation R, there is a U(1)

symmetry Φ → eiαΦ. Since there is no anomaly for continuous global symmetry in three

dimensions, this U(1) symmetry holds in the quantum theory and forbids any superpo-

tential involving Φ by holomorphy. Similarly, when the matter field lies in a reducible

representation of the gauge group, there are U(1) symmetries acting on each irreducible

part of Φ, and the same argument forbids a dynamically generated superpotential.

It is well known that the Chern-Simons level k is not renormalized beyond a possible

finite 1-loop shift [17].2 The simplest way to argue this is that k is quantized to be integer

valued in order for the path integral to be invariant under large gauge transformations [27].

Any quantum correction to k at 2-loop or higher order will be suppressed by 1/k, which

in general cannot be integer valued.

So the only possible quantum corrections to the classical Lagrangian is to the Kahler

potential. This indeed happens. However, any corrections to the Kähler potential are

either irrelevant in the IR or can be absorbed by a rescaling of Φ.3 One might also worry

about possible generation of Fayet-Iliopoulos term, when there are matter fields charged

under the U(1) part of the gauge field. Any dynamical FI parameter must be of the

form DαD̄α(· · · ) in order to preserve gauge invariance, where (· · · ) is a gauge invariant

combination of the fields. Again, such terms are irrelevant in the IR. In conclusion, there

cannot be any relevant or marginal correction to the classical Lagrangian (2.6), and hence

the theory is exactly marginal.

2See [18] for a discussion on the regularization dependence of the 1-loop shift.
3In Wilsonian effective action all corrections to the Kähler potential are non-singular at Φ = 0, hence

this argument is valid. This would not be the case for the 1PI effective action, since we would be integrating

out massless fields, and the effective Kähler potential may well be singular at Φ = 0.
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The vanishing of two-loop beta function of the matter couplings has been explicitly

shown in [19] for the abelian theory and [20] for the nonabelian theory.

As a consistency check of the existence of these conformal field theories, let us consider

the example of a U(1) CS-matter theory with both positively and negatively charged matter

fields (say of charges q and −q). The scalar potential takes the form

V (φ, φ̃) =
q4

4
(|φ|2 − |φ̃|2)2(|φ|2 + |φ̃|2) (2.7)

A generic point on the Higgs branch moduli space is parameterized by nonzero φ. This

moduli space cannot be lifted since no superpotential can be generated. Writing φ̃ = φeρ+iθ,

ρ has mass of order q2|φ|2 and θ is a Goldstone boson which can absorbed by a gauge

transformation. Similarly one fermion gets massive and the other remains massless. One

obtains the quantum corrected metric on the moduli space by integrating out the massive

fields. For example, the leading (two-loop) correction to the kinetic term for φ takes

the form q4|∂φ|2 ln(|φ|2/µ). Such corrections result in a cone-shaped metric near φ = 0,

reflecting the anomalous dimension of φ. The distance from the origin φ = 0 to a generic

point on the Higgs branch moduli space is finite, at least for small q. If a term like µ
|φ|2 |∂φ|2

were generated, it would suggest that the CFT at φ = 0 may not exist, but this doesn’t

seem to happen in the CS-matter theory, at least at weak coupling.

There may be caveats in our argument for the theory at strong coupling. In the N = 2

theory, generally, the U(1)R charge of φ gets renormalized, as we will discuss later. At

strong coupling there could be dangerously irrelevant terms in the Kähler potential being

generated, spoiling the above non-renormalization argument. We also see such possibility

from the above analysis of the Higgs branch moduli space (when exists): if the wave

function renormalization of φ is sufficiently large, the metric on the moduli space could

be such that the origin is at infinite distance, and the CFT may cease to exist. It is not

clear to us if this actually happens. The N = 3 theory, which we will describe in the next

subsection, does not have R-charge renormalization nor wave function renormalization. So

one might expect better behavior of the theory at strong coupling.

2.2 N = 3 Chern-Simons-matter theory

The maximally supersymmetric extension of Chern-Simons theory appears to be N =

3 [28, 21], which can be coupled to hypermultiplet matter fields. In N = 2 language

the matter fields consists of a pair of chiral multiplets (Q, Q̃), transforming in conjugate

representations of the gauge group. The action for the N = 3 Chern-Simons matter theory

takes the form4

SN=2 = SN=2
CS +

∫

d4θ(QeV Q + Q̃e−V Q̃) +

[
∫

d2θ

(

− k

4π
TrΦ2 + Q̃ΦQ

)

+ c.c.

]

(2.8)

4Our action may appear different from the nonabelian N = 3 action of [29], but they are in fact the

same. For example, the Chern-Simons part of the N = 3 action in [29] contains the extra term Trφ̄[σ, φ].

This term can be absorbed into the scalar potential of [29], and one recovers our F-term after redefining φ1

and φ̄2 in [29] as Q and Q̃, respectively.

– 6 –
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Here Φ is an auxiliary chiral superfield in the adjoint representation, combined with V

to give the N = 4 vector multiplet. The scalar component of Φ, which we denote by φ,

combines with σ to form a triplet under the SU(2)R symmetry. Similarly, FΦ combines

with the auxiliary field D to form a triplet.

We will often consider theories with Nf matter hypermultiplets in some irreducible

representation R. There is U(Nf ) global flavor symmetry. When R is a real representation

(say the adjoint), the flavor symmetry is enhanced to USp(2Nf ). In appendix A we write

the Lagrangian in a manifestly SU(2)R × USp(2Nf ) invariant form.

The auxiliary field Φ may be simply integrated out, resulting in a superpotential

W =
2π

k
(Q̃T aQ)(Q̃T aQ). (2.9)

In other words, the N = 3 Chern-Simons-matter theory is the same as N = 2 Chern-

Simons-matter theory with matter fields Q, Q̃ and the superpotential (2.9). Note that

the coefficient of (2.9) is fixed by N = 3 supersymmetry. Simialr non-renormalization

argument as in the previous subsection also applies to the N = 3 theory. The N = 3

theory in fact has stronger non-renormalization property, since the SU(2)R charge of the

fields cannot be renormalized, in contrast to the N = 2 theory. For example, the gauge

invariant meson operator Q̃Q is a chiral primary, whose dimension is protected. It follows

that there is no wave function renormalization for the matter fields [21]. In conclusion, the

N = 3 Chern-Simons-matter theory is also exactly conformal.

From the point of view of the N = 2 theory, the appearance of a conformal fixed

point at a finite deformation W is somewhat unexpected. Let us consider a more general

superpotential,

W =
α

2
(Q̃T aQ)(Q̃T aQ), (2.10)

with α a non-negative real constant (one can always absorb the phase of α into a redefinition

of the Q’s). No other superpotential terms can be generated by standard arguments based

on holomorphy and U(1)R symmetry.5 When α ≫ 4π/k and k ≫ 1, W dominates the

interaction, and the theory in this limit is essentially the three dimensional Wess-Zumino

model with superpotential W . This theory has a positive beta function, i.e. α decreases

going to the IR. The leading two-loop RGE for α takes the form

µ
dα2

dµ
=

b0

16π2
α2

[

α2 −
(

4π

k

)2
]

, b0 > 0. (2.11)

The coeffient b0 can be determined from the beta function of the corresponding WZ model,

b0 = 2
dimR

[

(trRT aT b)2 + trR(T aT bT aT b)
]

. This is because the theory has two conformal

fixed points, at α = 0 and α = 4π/k, and it is not hard to see that the two-loop correction

to α2 is a quadratic function in α2. Hence we learn that a small perturbation of the N = 2

theory (α = 0) by the superpotential (2.10) flows to the N = 3 conformal fixed point

(α = 4π
k ). Knowing that α = 0, 4π

k are exact fixed points, the 2-loop result (2.11) suggests

that this RG flow holds in the full theory.

5We should however be cautious with the standard non-renormalization arguments involving the gauge

coupling, since in Chern-Simons theory the coupling k cannot be promoted to a dynamical field.
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2.3 Chiral operators and chiral primaries

Let us first discuss the chiral operators in the abelian N = 2 theory. The chiral operators

are given by gauge invariant polynomials in φ’s.6 Since there is no superpotential, there is

no relations in the chiral ring, these chiral operators are also chiral primaries. In theories

where all matter fields have charges of the same sign, there are no chiral primaries. Let us

consider the N = 2 theory with oppositely charged matter fields Qi and Q̃i, i = 1, · · · , Nf .

Consider a chiral primary O = f(Q, Q̃), where f is a polynomial of homogeneous degree n.

The conformal dimension of O is given by the unitarity bound, ∆ = nqR, where qR is the

U(1)R charge of Q and Q̃. Classically qR = 1
2 , but quantum mechanically it is modified to

be less than 1
2 . In fact, we have learned from (2.11) that the superpotential perturbation

(Q̃Q)2 is relevant, and the U(1)R charge is renormalized at two-loop to

qR =
1

2
− b0

8k2
+ O

(

1

k4

)

. (2.12)

This may be confirmed by directly computing the anomalous dimension of Q̃Q. It is also

easy to check at two-loop that the anomalous dimension of (Q̃Q)n is n times that of Q̃Q,

say to order Nf/k2 (the ∼ n2 contributions cancel).

In a general nonabelian N = 2 CS-matter theory with gauge group G and matter fields

Φi in irreducible representation Ri, the chiral primaries are gauge invariant polynomials in

the Φi’s. Let us consider a few special cases:

1. G = U(N), Ri = N, i = 1, · · · , Nf . There are no chiral primaries (besides the

identity operator) in this theory.

2. G = SU(N), Ri = N, i = 1, · · · , Nf . The chiral primaries only exist for Nf ≥ N .

They are (generated by) baryon operators, of the form

Bi1···iNf−N
= ǫi1···iNf−N j1···jN

ǫa1···aN φj1
a1

· · ·φjN
aN

(2.13)

3. G = U(N), Ri = N, R̃i = N. The chiral primaries are mesons, M i
j = φi

aφ̃
a
j .

4. G = SU(N), Ri = adj, i = 1, · · · , Nf . The chiral primaries are generated by

“words”, i.e. the trace of a string of Φi’s in a particular order up to cyclic permu-

tation, Oi1···in = Tr(Φi1 · · ·Φin). Since there is no superpotential, the indices are

not necessarily symmetrized. In the infinite N limit, all the traces are independent

operators, and the number of chiral primaries of dimension n growths exponentially

∼ (Nf )n for Nf > 1 (modulo the correction due to cyclic permutations). This is a

peculiar feature. It is curious whether such chiral primaries could be dual to winding

string-like objects in negatively curved spaces, a la [30].

Let us turn to the N = 3 theory. In this case, there cannot be any quantum correction

to qR, since it is the U(1) part of the SU(2) R-symmetry. Hence there is no anomalous

6Since Σ = D̄DV is already gauge invariant, the chiral operator D̄αΣ is a descendant and will be ignored.

This is in contrast with four dimensional gauge theories, in which Σ doesn’t exist.
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dimension for the mesons Q̃Q. However, since there is the superpotential (2.9), there are

nontrivial relations in the chiral ring. In particular, the operator (Q̃Q)2 is no longer a

chiral primary, and gets a positive anomalous dimension. This is of course expected since

the perturbation by (Q̃Q)2 is irrelevant in the N = 3 theory, as dicussed in the previous

subsection.

Consider the example of N = 3 SU(N) theory with 1 adjoint hypermultiplet (Q, Q̃).

The superpotential imposes chiral ring relations of the form

Tr([[Q̃,Q], Q] · · · ) ≃ 0, Tr([[Q̃,Q], Q̃] · · · ) ≃ 0. (2.14)

The chiral primaries are given by traces of strings of Q and Q̃ symmetrized with respect to

permutation. The trace of a string of Q’s and Q̃’s that is not symmetrized will in general

acquire anomalous dimension, and may mix with other operators. The spectrum of such

operators can be mapped to that of the Hamiltonian of an SU(2)f spin chain, as we will

discuss later.

2.4 N = 2 superpotential deformations

Let us now consider the N = 2 Chern-Simons-matter theory, with matter fields Φi (i =

1, · · · , n) in the representation Ri of the gauge group G. We can deform the theory by a

superpotential

W = P (Φ1, · · · ,Φn), (2.15)

P being a gauge invariant polynomial in the Φi’s. We will consider classically marginal

deformations, i.e. P of homogenous degree 4. We can write

P (Φ1, · · · ,Φn) =
∑

i,j,k,l

αijkl(Φi ⊗ Φj ⊗ Φk ⊗ Φl)
G (2.16)

where the superscript G means taking the G-invariant part of Ri⊗Rj⊗Rk⊗Rl. When there

is more than 1 singlet in the tensor product, there are more components of αijkl, which

we suppress here. We would like to know where the theory flows to under the deformation

by (2.15) in the UV.

Firstly, standard non-renormalization arguments forbid other superpotential terms

from being generated. More precisely, if αijkl = 0 (for all singlets in Ri ⊗ Rj ⊗ Rk ⊗ Rl)

in the classically superpotential, then αijkl stays zero in the quantum superpotential. Let

us recall the argument. The theory has a classical U(1) R-symmetry, which we denote

by U(1)′, under which Φi has charge 1
2 . We must distinguish this from what we call the

quantum U(1)R symmetry, which is part of the superconformal symmetry of the IR theory,

and the corresponding U(1)R charges of fields can be renormalized, as we have seen in the

previous section. U(1)′ is nevertheless a good global symmetry of the quantum theory, and

guarantees by holomorphy that the superpotential is quartic in the Φi’s. To proceed, we

shall promote αijkl to a neutral chiral superfield Zijkl. We have a U(1)n symmetry, under

which

Φi → eiαiΦi, Zijkl → e−i(αi+αj+αk+αl)Zijkl. (2.17)
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This guarantees that the superpotential must be a sum of terms of the form Zijkl(Φi ⊗
Φj ⊗ Φk ⊗ Φl)

G. However, when there are more than 1 singlets in the tensor product,

our argument does not forbid other singlets to be generated, even if they are zero in the

classical superpotential.

In supersymmetric Yang-Mills theories, it is usually possible to further argue non-

renormalization of each coupling in the superpotential (modulo global anomalies say in four

dimensions), by promoting the gauge coupling to a chiral superfield. This is not possible

for the Chern-Simons level k, since it would otherwise violate (small) gauge invariance.

So nothing protects the αijkl’s from 1/k corrections, and in fact, they do receive such

corrections.

Suppose all αijkl’s are small. Then the RG flow is dictated by the anomalous dimension

of Oijkl = (Φi ⊗Φj ⊗Φk ⊗Φl)
G. This operator is a chiral primary in the N = 2 CS-matter

theory (with no superpotential), and hence its dimension is determined in terms of its

U(1)R charge, ∆ijkl = qR
i + qR

j + qR
k + qR

l . The quantum corrected U(1)R charge qR
i of Φi

appears to be always less than 1
2 . When

⊕

Ri is the sum of a (reducible) representation

and its conjugate, the theory can be deformed into the N = 3 theory and qR
i < 1

2 follows

easily as in the previous subsections. We computed the two-loop correction to qR
i explicitly

in the theory with M adjoint matter fields in the planar limit in appendix D.1, and indeed

find that the correction is negative. We expect qR
i < 1

2 to hold in general. Consequently,

all the quartic superpotential terms are relevant perturbations, and will take the N = 2

CS-matter theory away from αijkl = 0.

On the other hand, if one or several αijkl are much bigger than 1/k, at least when

k ≫ 1 these αijkl’s dominate and the theory is again approximated by the Wess-Zumino

model, which has positive beta function and hence these αijkl’s decrease in the IR. In

conclusion, αijkl’s are bounded as the theory flows to the IR.

Therefore, the N = 2 theory deformed by the superpotential (2.16) must flow to some

other nontrivial IR fixed point at finite αijkl, which will not be an N = 3 theory in general.

It is easy to write down the two-loop RG equations for the couplings,

µ
dαijkl

dµ
=(qR

i +qR
j +qR

k +qR
l −2)αijkl+

1

16π2
(Bi

rαrjkl+Bj
rαirkl+Bk

rαijrl+Bl
rαijkr)+O(α5)

(2.18)

where Bj
i is due to the two loop wave function renormalization in the Wess-Zumino model

with superpotential (2.16) (i.e. k → ∞ limit), which is proportional to α and α.

Specializing to U(N) gauge theory with M adjoint matter fields Φi, and the superpo-

tential deformation

W =
∑

ijkl

αijklTr(ΦiΦjΦkΦl). (2.19)

For simplicity we will work in the planar limit, but the discussion generalizes easily to the

non-planar case as well. We have Bi
j = 1

2N2αiklmαjklm. By U(M) flavor symmetry of

the N = 2 theory, we can diagonalize the Hermitian matrix Bj
i to Bi

j = 1
2N2ciδ

j
i , with

ciδ
j
i = αiklmαjklm. All the matter fields Φi have the same renormalized R-charge qR in the

undeformed theory, and the two-loop RG equation has fixed points at (assuming αijkl 6= 0
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Figure 1: A four-loop contribution to the beta function of αijkl. The dotted lines are N = 2

Chern-Simons gauge propagators. The solid lines are matter superfield propagators.

for some j, k, l)
1

2
− qR =

N2

32π2
ci. (2.20)

Or equivalently,

αiklmαjklm =

(

1

2
− qR

)

32π2

N2
δj
i . (2.21)

Note that the quantum correction to the R-charge is of order λ2 = (N/k)2, and hence the

fixed point values of αijkl are of order 1/k. When M is even, this includes the N = 3

theory with M/2 adjoint matters. But there is clearly more, in fact, a continuous family

M of fixed points. The question is whether they survive when higher loop corrections are

included.

While we have not calculated the four-loop beta functions for αijkl, it appears that

there are contributions of the form N4

k2 αijmnαklpqα
mnpq, from supergraphs such as the one

in Fig 1. We do not see any reason why such contributions would cancel. These corrections

will generate nontrivial RG flow along M.

In general, since the two-loop fixed point values of α’s are of order 1/k, higher loop

corrections will be suppressed by N/k. So at least for weak coupling N/k ≪ 1, the full

RG flow can be approximated by a flow on the manifold M. Note that M is compact

and smooth, and is freely acted by the U(M) flavor symmetry. The RG flow can then be

represented by the flow according to a vector field on

M0 = M/U(M) ≃ V//U(M), (2.22)

where V is the parameter space of αijkl’s. For example, when M is even, the N = 3 theory

with M/2 adjoints corresponds to one point in M0. In general, the number of critical

points (if discrete) of the vector field that dictates the RG flow, counted with sign, is given

by the Euler characteristic χ(M0). So we learn that if only discrete RG fixed points (up

to the U(M) action) survive when higher loop corrections are included, their number is

at least χ(M0). In fact, the cohomology of M0 is generated by the Chern classes of the

rank-M tautological bundle on M0, and hence χ(M0) is positive and grows with M .

The two-loop fixed point locus M has codimension M2 in V . The superpotential W

imposes chiral ring relations ∂W/∂Φi ∼ 0, and in particular Tr(Φi ∂W
∂Φj

) are M2 descendants,

while the remaining quartic chiral operators are in one-to-one correspondence with chiral
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primaries. It follows that on M, the two-loop renormalization of the U(1)R charge vanishes.

It would be interesting to know whether/how the U(1)R charge is renormalized at the exact

conformal fixed points near M, when higher loop effects are included.

3. Large N limit

3.1 The abelian theory at large Nf

As a starter, we will consider the U(1) Chern-Simons-matter theories in the large Nf limit,

i.e. k,Nf → ∞, with λ = 4πNf/k = q2Nf kept finite (the ’t Hooft coupling λ for the

nonabelian theory will be defined differently). This limit of the U(1) theory is rather

trivial. For example, finite dimensional operators only receives anomalous dimension to

subleading order in 1/Nf . Nevertheless, the theory can have nontrivial thermodynamics.

It is a standard exercise to compute the free energy of the theory in the infinite Nf limit,

by a saddle point approximation of the path integral. The details of the calculation can be

found in appendix B. We shall discuss the main results here.

The U(1) N = 3 theory with Nf charged hypermultiplets, as well as say U(1) N = 2

CS-matter theory with Nf pairs of oppositely charged matter fields (Qi, Q̃i), have rather

trivial thermodyanmics at large Nf : their free energies at finite temperature are the same

as that of the free field theory, at order O(Nf ). One can easily convince himself/herself

by examining the cancelation among the Feynman diagrams. It can also be confirmed

through a saddle point analysis, as shown in appendix B.3. We argued earlier that the

N = 2 theory with (Q, Q̃) flows to the N = 3 under a superpotential perturbation, and

hence we expect that when 1/Nf corrections are included, the free energy of the former to

be greater than the latter, as the number of degrees of freedom decreases under RG flow,

although we have not checked this explicitly.

The N = 2 U(1) theory with equally charged matter fields, on the other hand, has

nontrivial free energy in the infinite Nf limit. The free energy of the theory in flat space,

F (T ) = 1
A ln Z(T ) (A being the spatial area), takes the form

F (T ) = NfT 2(c0(λ) + O(1/Nf )) (3.1)

The function c0(λ) can be computed from the saddle point approximation. It is an analytic

function in λ except at λ = 0 due to an infrared divergence. This divergence is absent in

the free energy of the theory on a sphere. c0(λ) decreases monotonously as λ increases,

and asymptotes to a nonzero value in the λ → ∞ limit. At weak ’t Hooft coupling, it is

given by

c0(λ) =
7ζ(3)

4π
+

λ2(ln λ)3

32π2
+ · · · , λ ≪ 1. (3.2)

In the strong coupling limit, we find c0(∞) ≃ 0.593071. The function c0(λ) is plotted (at

large coupling) in figure 2.

More generally, one can consider N = 2 QED with Nf charged matter fields, with

N = 2 Chern-Simons term at level k. In the IR the Yang-Mills coupling is irrelevant, and

the theory flows to the Chern-Simons-matter theory. On the other hand, we can take the
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Figure 2: The free energy as a function of the ’t Hooft coupling λ.

Chern-Simons coupling to infinity (k/Nf → 0), and consider the strongly coupled IR fixed

point of N = 2 QED. The question is whether the k/Nf → 0 limit and the IR limit are

interchangeable. The answer appears to be yes, as far as the free energy is concerned. One

can compute the low temperature free energy of N = 2 QED in the large Nf limit by the

saddle point approximation, and arrive at the same result as that of the N = 2 abelian

CS-matter theory at infinite λ.

It is a much more subtle (and important) question whether the infinite ’t Hooft coupling

limit of the U(N) N = 2 or N = 3 CS-matter theory (i.e. k/N → 0) captures the IR fixed

point of corresponding Yang-Mills theory with matter fields. The answer is not clear to us.

3.2 The U(N) theory: general remarks on the operator spectrum

Now let us turn to the U(N) Chern-Simons theory coupled to Nf fundamental matter

fields. We will focus on the large N limit, with λ = N/k and c = Nf/N finite. The ’t

Hooft limit of this theory is much less trivial than the abelian theory. We will see that

this theory has a number of features suggesting that it should be dual to a (non-critical)

string theory in AdS4. The radius of the AdS4 scales like R ∼
√

Nlpl, and the string scale

is finite compared to 1/R when the ’t Hooft coupling is finite.

Let us examine the spectrum of gauge invariant operators, starting with the free theory.

In the free theory there are infinitely many conserved currents of the form

J īj
µ1µ2···µs

= φ̄iD(µ1
Dµ2

· · ·Dµs)φ
j + · · · (3.3)

where the scalar φ is in the fundamental representation of U(N). If there is an AdS4 dual,

these currents should be dual to spin s massless gauge fields in the bulk in the λ → 0

limit [15]. The spectrum of gauge invariant operators in the free theory is analyzed in

appendix C by studying the thermodynamics of the theory on a sphere. An expected

transition from N2
f degrees of freedom at low temperature to NNf degrees of freedom at

high temperature is demonstrated explicitly.

In the interacting theory most of (3.3) will acquire anomalous dimensions. There will

still be conserved currents, the stress-energy tensor Tµν , the U(1)R current JR
µ , and the
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flavor current J
U(Nf )
µν , as well as fermionic currents related by supersymmetry. These are

dual to the graviton, graviphoton, and U(Nf ) gauge fields in the bulk.

In the N = 2 theory with fundamental matter, there are no chiral primaries of small

dimensions, since gauge invariant operators of dimension less than N must involve matter

fields in both fundamental and anti-fundamental representations, and hence must depend

on both φ and φ̄. This suggests the absence of Kluza-Klein modes in the bulk. When

Nf ≥ N , there are baryonic chiral primary operators (2.13).7 The bulk theory has 8

supersymmetries, and in particular the U(Nf ) gauge fields should lie in four dimensional

N = 2 vector multiplets. The latter also contains a complex scalar, which is dual to the

operators

φ̄iφj , ψ̄iψj +
8π

k
(φ̄lφl)(φ̄

iφj). (3.4)

By examining their supersymmetry variations, one can see that they lie in the same super-

multiplet as the U(Nf ) flavor current. A surprising consequence is that the dimension of

φ̄aφb is protected to be 1, despite that it is not a chiral primary operator. This is checked

explicitly at two-loop in appendix D.1. Recall that in the N = 2 theory, the chiral pri-

maries in fact have negative anomalous dimensions due to the renormalization of U(1)R
charge.

In the N = 3 theory there are in addition mesons [21], M i
j = Q̃i

aQ
a
j , which are dual to

a complex scalar in the N = 4 U(Nf ) gauge multiplet in AdS4. There are two more U(Nf )

adjoint complex scalars in the four dimensional N = 4 gauge multiplet. One of them is

ψ̃iψj + 8π
k (Q̃lQl)Q̃

iQj, the other one consists of Q
i
Qj − Q̃iQ̃j and ψ

i
ψj − ψ̃iψ̃j + · · · .

In N = 2 or N = 3 theories with several adjoint matter fields, there are a lot more

chiral primaries given by unsymmetrized traces of chiral fields, as described before. Their

number grows exponentially in dimension. It would be interesting to understand its mean-

ing in the holographic dual (if exists). However, this behavior is likely to be “non-generic”,

i.e the N = 2 theory deformed by a generic superpotential will flow to an IR fixed point,

where the number of chiral primaries may not have the exponential growth.

Since the Chern-Simons gauge field does not carry propagating degrees of freedom, the

central charge of the theory with Nf fundamental flavors is expected to be of the form

c(λ) = NNff(λ), (3.5)

where f(λ) is some nonzero function, at least for sufficiently weak (but finite) ’t Hooft

coupling λ. Comparing this to the central charge expected for a theory of gravity in AdS4,

of radius R ≫ lpl, c ∼ (R/lpl)
2, we expect

R ∼ (NNf )
1
2 f(λ)

1
2 lpl (3.6)

When N,Nf are large, we expect the AdS4 dual to be a theory of gravity coupled to U(Nf )

gauge fields as well as massive fields, with large AdS4 radius in Planck units. In the next

section we will present evidence for the existence of semi-classical strings in this theory.

7In the case of U(N) gauge group with Nf fundamental matter, the U(1) part only contribute to the

anomalous dimensions to subleading order in 1/Nf .
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Figure 3: Mixing of On,∆ with ψ̄γ(µ1
Dµ2

· · ·Dµn)ψ. The solid lines are φ propagators and the

double lines are ψ propagators.

3.3 Twist-1 operators

Let us now consider the twist-1 operators of the form

(On,∆)i
j = φ̄iD(µ1

· · ·Dµn)|φ
j∆µ1 · · ·∆µn (3.7)

for large spin n, where ∆ is an arbitrary null vector. The subscript | indicates the subtrac-

tion of traces in Lorentz indices. The analog of such operators in four dimensional N = 4

super-Yang-Mills theory in the large spin limit is dual to a folded semi-classical spinning

string in AdS5. We anticipate a similar interpretation in CS-matter theory: (3.7) should

be dual to a long spinning open string in AdS4 in the limit of large n. As noted in [22],

the operators (3.7) are closely related to light-like open Wilson lines,

φ̄i(x)Pei
R x

y
Aφj(y) =

∞
∑

n=0

1

n!
(Oµ1···µn)i

j(x − y)µ1 · · · (x − y)µn . (3.8)

The one-loop anomalous dimension of (3.7) vanishes trivially due to kinematics. There is a

(regularization dependent) 1-loop shift of the Chern-Simons level k, and hence the ’t Hooft

coupling λ = N/k. Since there is no logarithmic divergence at 1-loop, this shift does not

affect the anomalous dimension at 2-loop. One may need a more careful treatment of the

regularization of the Chern-Simons propagator at higher than two loops.

There is another set of twist-1 operators, of the form ψ̄γ(µ1
Dµ2

· · ·Dµn)|ψ, which may

mix with (3.7), through diagrams such as the one in figure 3.

Such contribution will however be suppressed at large spin n. For example, the loop

integral involved in figure 3 takes the form

∫

d3kd3l
(k · ∆)n/l

(k2)2l2(k + l − p)2
→

∫

d3k
(k · ∆)n(/k − /p)

(k2)2|k − p| (3.9)

After introducing a Feynman parameter and performing the integral over k, one ends

up with

∼ (p · ∆)n−1/∆ lnΛ

∫ 1

0
dxn(1 − x)xn− 3

2 , (3.10)

whose contribution to the operator mixing goes like 1/n at large n. In conclusion, we can

ignore operator mixing in our computation.

We will now describe the computation of the leading two-loop anomalous dimension

of (3.7). The leading contribution to the anomalous dimension comes from 2-loop diagrams

as in figure 4, (a) − (d).
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(a) (b) (c) (d)

Figure 4: Two-loop contributions to the anomalous dimension of Jµ1···µn
.

(e) (f) (g)

Figure 5: Some diagrams that are suppressed in the large spin limit.

The diagram (d) includes the 1-loop corrections to the gauge field propagator from a

loop of the gauge field, ghost, and the matter fields. The gauge and ghost bubbles cancel,

and only the matter field bubble contributes. These diagrams are computed in appendix

D.2. We find that (b) vanishes,8 (a) and (c) give contributions of order λ2 that is finite

in the n → ∞ limit, whereas (d) gives a contribution of order λ2Nf/N that grows like

ln(n) in the large n limit. Diagrams that involve exchange of gauge fields or matter fields

between the two external scalar lines, such as the ones in figure 5, are suppressed in the

large n limit.

We find that the anomalous dimension of the operator Jµ1···µn is given to two-loop

order by

∆ − n − 1 = const · λ2 +
Nf

N

λ2

8
ln(n) + higher order corrections, n ≫ 1. (3.11)

Note that the above two-loop computation is essentially identical for N = 3 theories, as

well as theories with adjoint matter fields (for which the coefficient of ln(n) does not depend

on N), since the vertices involving only matter fields do not contribute at this order.

Naively one might have expected higher loop corrections to give contributions to the

anomalous dimension that grow like powers of ln(n). On the other hand, we have already

seen nontrivial cancelations: one might have expected diagram (a) in figure 4 to grow

with n, but in fact it doesn’t. In four dimensional gauge theories, the ln(n) growth of the

anomalous dimension of twist-2 operators at large spin n is well known, and is related to

the cusp anomalous dimension of Wilson lines [31 – 33]. Namely, the Wilson line consisting

of two straight pieces with a turn of (Lorentzian) angle γ acquires an anomalous dimension

of the form Γcusp(γ, λ) = γΓcusp(λ) + O(γ0) in the large γ limit, where Γcusp(λ), the cusp

anomalous dimension, is a function of the coupling only. The coefficient of ln(n) in the

8More generally, whenever two adjacent gauge field propagators coming out of O are joined by a cubic

Chern-Simons vertex, the diagram is zero.
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anomalous dimension of the twist-2 operator is in fact equal to −2Γcusp(λ). The linearity

of Γcusp(γ, λ) in γ at large angles is argued in [31] by examining in a physical gauge the

logarithmic divergences from the integration over momenta collinear to the (almost) light-

like direction [34] along an edge of the Wilson line.

In Chern-Simons-matter theory in three dimensions, the matter-corrected gauge prop-

agator is the sum of a piece that takes the same form as the Yang-Mills propagator in

four dimensions in position space, i.e. proportional to ηµν(x − y)−2 plus gauge dependent

terms, and the pure Chern-Simons propagator, which in a physical gauge is a contact term

in position space.9 In fact, the YM-like piece of the matter-corrected gauge propagator

in diagram 4(d) is responsible for the ln(n) growth of the two-loop anomalous dimension

computed above. It is therefore plausible that a scaling argument similar to that of [31]

should go through for Chern-Simons-matter theory as well. Hence we anticipate the ln(n)

growth of the anomalous dimension of twist-1 operators to hold to all orders in perturbation

theory.10

When Nf/N ≪ 1, we expect the large n growth of the anomalous dimension to be of

the form
Nf

N f(λ) ln(n), for some function f . In [22] a classical folded closed string spinning

in AdS space with energy E and spin J was considered, and it was found that in the large

spin limit,

E − J =
R2

πα′ ln

(

α′J
R2

)

+ · · · (3.12)

The result for a spinning open string is similar, with α′ replaced by 2α′. If the N = 2 U(N)

Chern-Simons-matter theory is dual to a string theory in AdS4, we expect (for Nf/N ≪ 1)

R2

α′ ∼ f(λ)
Nf

N
(3.13)

On the other hand, by comparing the central charge in gravity with that of the gauge

theory, we expect

R ∼ (NNf )
1
2 f̃(λ)lpl (3.14)

for some other function f̃(λ). Therefore,

α′

l2pl

∼ N2 f̃(λ)2

f(λ)
(3.15)

This is consistent with the expectation (say by examining three-point functions) that in

the large N limit, the string coupling is independent of Nf .

Note that the U(Nf ) gauge fields in the bulk also has coupling of order 1/N (times

some function of λ), and hence (four-dimensional) ’t Hooft coupling of order Nf/N . In

the large N limit, with Nf/N = c ≪ 1, the bulk theory is effectively weakly coupled,

which justifies the above discussion. A naive attempt to get large AdS4 radius in string

units is to take Nf/N large. In this case, however, the bulk gauge theory becomes strongly

9In the axial gauge, for instance, the pure CS propagator is given by ǫijsgn(x3 − y3)δ
2(~x − ~y).

10Although, we do not understand the possible subtleties in the scaling argument involving the singular

looking CS propagator in a physical gauge, which clearly deserves a more careful analysis.
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coupled. This is particularly intriguing in the case of N = 3 CS-matter theory, where the

bulk theory contains four-dimensional U(Nf ) N = 4 SYM coupled to N = 3 supergravity,

as well as infinitely many massive fields. As Nf/N increases, we expect the radius R to

increase as well. In the limit of large Nf/N , the suitable description of the bulk theory may

involve a further holographic dual to a five dimensional theory of gravity. This suggests

that flavor singlets in the Chern-Simons-matter theory of the form

(Q̃i1Qi2)(Q̃
i2Qi3) · · · (Q̃inQi1) (3.16)

could be dual to closed strings in the five dimensional theory.

3.4 Supersymmetric Wilson loops

In this section we will describe supersymmetric Wilson loops in the theory. First consider

the N = 2 Chern-Simons theory. The supersymmetry transformations of the gauge field

Aµ and auxiliary field σ are of the form

δǫAµ =
i

2
(ε̄γµχ − χ̄γµε), δǫσ =

i

2
(ε̄χ − χ̄ε). (3.17)

The Wilson line

P exp

[∫

dτ
(

Aµẋµ + σ|~̇x|
)

]

(3.18)

locally preserves 1/2 supersymmetries, whose supersymmetry parameters are solutions of

γµ
ẋµ

|~̇x|ε = −ε. Globally, only the straight Wilson line can preserve half of the N = 2

supersymmetries. Similarly, the straight Wilson line also preserves one half of the spe-

cial supercharges of the superconformal algebra OSp(2|4). More generally, any conformal

transformation of the straight Wilson line (3.18) will preserve one half of the supersym-

metries as well. As pointed out in [35], large conformal transformations in R3 that take

a point on the Wilson line at finite distance to infinity will not preserve the expectation

value of the BPS Wilson line.

In the pure Chern-Simons theory, it is well known that the Wilson loops are topolog-

ical [36]. This is no longer the case when the Chern-Simons theory is coupled to matter

fields. Note that the gauge field propagator (in Feynman gauge) in the 1PI effective action

takes the form
δab

1 − Π(k)2

[

ǫµνρp
ρ

2p2
+ Π(k)

δµν − pµpν/p
2

p

]

(3.19)

where Π(k) is due to loops involving the matter fields, a, b are gauge indices. k here is

the Chern-Simons level, not to be confused with momentum. The structure of (3.19) is

constrained by conformal invariance. From the one-loop matter bubble correction we have

Π(k) = −πNf

4k + O( 1
k2 ). The Fourier transform of (3.19) to position space is

〈Aa
µ(x)Ab

ν(y)〉 ∼ δa
b

1 − Π(k)2

[

ǫµνρ(x − y)ρ

2|x − y|3 + Π(k)

(

δµν

|x − y|2 − ∂µ∂ν ln |x − y|
)]

(3.20)

We see that the second term on the r.h.s. of (3.20) takes the same form as the Yang-Mills

propagator in four dimensions. Using the method of [35], it may be possible to compute
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say the exact expectation value of circular Wilson loops by localizing the contributions to

a point. (See [37] for a perturbative approach to Wilson loops in pure CS theory.) We

leave this problem to future investigation.

There are also supersymmetric Wilson lines in the N = 3 theory, of the form

P exp

[
∫

dτ
(

Aµẋµ + siẏ
i
)

]

(3.21)

where si’s are the SU(2)R multiplet of auxiliary fields containing σ and Φ. (xµ(τ), yi(τ))

parameterizes a path in R3 × R3, where the second R3 is an internal space acted by the

SU(2)R. The condition for (3.21) to locally preserve supersymmetries is |~̇x| = |~̇y|. The

preserved supersymmetry parameter εi are solutions of

γµẋµεi + iǫijkẏ
jεk = 0. (3.22)

A straight Wilson line of the form (3.21) with constant ẏi preserves 1/3 of the N = 3

supercharges.

3.5 The anomalous dimension of a Wilson line with an angle

As recalled earlier, the ln(n) growth of the anomalous dimension of the twist-1 operator

is related to the anomalous dimension of a Wilson line with a turn of angle γ, in the

large γ limit. In this subsection we describe an intuitive physical picture of the latter,

following [38]. Let us first consider the Euclidean version. Take a Wilson line consisting

of two straight pieces, labelled by vectors u, v, joined at the origin. The turning angle θ

is given by cos θ = u·v
|u||v| . Since the Chern-Simons-matter theory is conformal, we can map

the configuration conformally to one on S2 ×R, with the two straight pieces of the Wilson

line at two points separated by the angle π − θ on the S2, extending in R. The anomalous

dimension of the Wilson line is equivalent to the potential energy between a pair of quark

and anti-quark on the S2.

To leading order the potential energy is determined by the two point function of the

gauge fields (3.20). The part that contributes is similar to the four-dimensional Yang-Mills

propagator in position space, resulting in a potential energy

V (π − θ) ∝ θ cot θ + const (3.23)

Note that this should be interpreted as the potential due to a quark at θ = π and a uniform

background charge on the S2 that cancels the charge of the quark, due to the Gauss law

constraint.

In Lorentzian signature, the angle is γ = iθ, with cosh γ = u·v
|u||v| . The analytic con-

tinuation of the above conformal transformation brings R2,1 to AdS2 × R, with the time

direction of the AdS2 compactified on a circle. The anomalous dimension of the Wilson

loop, to leading order (one-loop in the matter-corrected gauge propagator), is given by

Γ(γ) ∼ γ coth γ + const (3.24)
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(a) (b)

Figure 6: Two-loop diagrams contributing to the anomalous dimension of a string of Q’s and Q̃’s.

Indeed, at large angle γ, the anomalous dimension is linear in γ. This essentially reproduces

the result of the two-loop calculation of section 3.3. Less obviously, we expect the linearity

at large γ to hold for the analytic continuation of the potential function on the S2, to all

orders in perturbation theory, based on arguments along the lines of [31].

3.6 The N = 3 spin chain

A powerful technique that can be used to understand the operator spectrum is to map

the dilatation operator to a spin chain Hamiltonian (see [39] for a review of the subject).

In this subsection we consider the N = 3 theory with one adjoint hypermultiplet matter

(Q, Q̃). A basic chiral primary operator is TrQJ . By acting on it with SU(2)R × SU(2)f
symmetry, we obtain a more general class of protected operators,

Tr
[

(vAQA(u))J
]

, (3.25)

where QA(u) are defined as in appendix A, ua and vA are doublets of SU(2)R and SU(2)f
respectively. Among these there are symmetrized traces of Q’s mixed with Q̃’s, which

are N = 2 chiral primaries. A perhaps less obvious class of protected operators are the

symmetrized traces of Q’s mixed with Q̃’s.

The operators obtained by inserting a few Q̃ “impurities” in Tr(QQ · · ·Q), without

symmetrization inside the trace, is not a chiral primary and will receive anomalous dimen-

sion, due to the superpotential W = π
k Tr([Q, Q̃]2). Similarly, if Q̃’s are inserted in TrQJ ,

but not symmetrized, the operator is not protected and has anomalous dimension. We

shall compute the two-loop anomalous dimension of such operators in the planar limit,

assuming that the operator is very long and the impurities are far away from one another.

The kind of diagrams that contribute are shown in figure 6.

Let us first consider Q̃-impurities, corresponding to excitations of the SU(2)f spin

chain, since Q and Q̃ are a doublet of SU(2)f . The operators of interest are of the form

Tr(Q · · ·QQ̃Q · · ·QQ̃Q · · ·Q)

Diagram 6(a) may involve a sextic scalar coupling coming from the superpotential, of the

form
4π2

k2
Tr

(

[Q̃, [Q̃,Q]][Q̃, [Q̃,Q]] + [Q, [Q̃,Q]][Q, [Q̃,Q]]
)

(3.26)

There are also sextic scalar interactions coming from the coupling to N = 2 Chern-Simons

gauge multiplet, Tr([Q,σ][σ,Q] + [Q̃, σ][σ, Q̃]), but they do not in fact contribute to the
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anomalous dimension in the planar limit. Similarly, the diagrams involving fermions (Fig

6 (b)) do not contribute in the planar limit either. It is a simple exercise to derive the

two-loop spin chain Hamiltonian from (3.26), and we find

H
SU(2)f

(2) =
λ2

4

∑

i

(4Pi,i+1 − Pi,i+2 − 6), (3.27)

where Pi,j is the operator that interchanges the i-th and j-th sites. This is the Hamiltonian

of an su(2) XXX spin-1
2 chain with next-to-nearest neighbor interactions. Such a spin

chain is in fact not integrable. This suggests that the dual string worldsheet sigma model,

if exists, will probably not be integrable either.

Let us now consider Q̃ impurities, corresponding to excitations of the SU(2)R spin

chain. In this case, diagram (a) in Fig 6 gives rise to next-to-nearest neighbor interactions,
∑

Pi,i+2, whereas diagram (b) gives rise to nearest neighbor interactions,
∑

Pi,i+1. The

resulting two-loop spin chain Hamiltonian H
SU(2)R

(2) in fact takes the identical form as (3.27).

It follows from (3.27) that the spectrum of anomalous dimensions for operators in the

SU(2)f or SU(2)R sector, in the limit of large J (length) and few impurities, is given by

∆ − J

2
=

λ2

4

∑

m

[

2 sin

(

πlm
J

)]4

+ O(λ3), lm ∈ Z, (3.28)

where lm is the “momentum” of the m-th impurity. This is clearly a very different dispersion

relation from that of string modes in ordinary pp-wave backgrounds [40].

In the SU(2)f × SU(2)R invariant notation of appendix A, Q = q11, Q̃ = q21, and

Q̃ = −q12. There are two more basic impurities, given by insertions of fermions ψ11
α . As

we will partially justify, insertions of other fields such as Q = q22 in the infinitely long spin

chain can be thought of as bound states of the four basic impurities. The superconformal

group OSp(3|4) has a subgroup SU(1|2) that leaves q11 invariant. The bosonic part of

SU(1|2), U(1) × SU(2), is generated by ∆ − J3
R and the rotations in R3. The fermionic

generators are the chiral supercharges Qα and S
α
.

The symmetrized traces of Q’s with Q̃ or Q̃ insertions, i.e. impurities with zero mo-

menta, are protected because they sit in reduced representations of SU(1|2). In fact, at zero

momentum, q21 is a singlet, whereas (q12, ψ11
α ∼ Qαq12) form a fundamental representation

of SU(1|2). A more general representation of SU(1|2) can be obtained by acting Qα on a

primary of anomalous dimension and spin (h, j). The resulting representation consists of

U(1) × SU(2) content

(h, j) ⊕
(

h +
1

2
, j +

1

2

)

⊕
(

h +
1

2
, j − 1

2

)

⊕ (h + 1, j + 1) (3.29)

It is convenient to consider impurities in an infinitely long spin chain of q11’s, to allow

states with a single impurity of momentum p (finite traces always have total momentum

zero by cyclicity). When there is nonzero momentum, the basic impurities are no longer

in reduced representations of SU(1|2), and will acquire anomalous dimensions. Due to the

superpotential of the N = 3 theory, we have

Qαψ11
β ∼ ǫαβ

1

k
[[q11, q21], q11] (3.30)
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In an infinitely long spin chain, the extra factors of q11 are unimportant, but the different

terms in the commutators receive different phase factors e2πipn. Therefore, we have

Qα|ψ11
β (p)〉 ∼ ǫαβ

1

k
[2 sin(πp)]2 |q21(p)〉 (3.31)

Consequently, the impurities (q12, q21, ψ11
α ) with nonzero momentum p sit in a long multiplet

of SU(1|2). A somewhat unexpected consequence is that the SU(2)R impurity and the

SU(2)f impurity have the same anomalous dimension, agreeing with our calculations of

the two-loop spin chain Hamiltonian.

Unlike N = 4 SYM, our basic impurities do not sit in any shortened representation

of the supergroup, hence we cannot deduce the form of the exact anomalous dimensions

to all order based on the deformed superalgebra for the infinite chain. Also note that the

product of two representations corresponding to the basic impurities is a sum of irreducible

representations (as opposed to one long representation in the case of N = 4 SYM), the two

impurity scattering S-matrix will be determined by several scattering phases. A detailed

exploration of these topics is beyond the scope of the current paper.

3.7 The N = 2 spin chain

Let us briefly describe the spin chain in the N = 2 theory with one adjoint matter Φ =

(φ,ψ). A basic chiral primary is TrφJ . We will again consider infinitely long chain, with

SU(1|2) symmetry. The basic impurities are (φ̄, ψα, ψ̄α,Dµ), forming a long multiplet of

SU(1|2) (unlike the N = 3 case, where such impurities are bound states of more elementary

impurities). The action of the chiral supercharge Qα on the fields are schematically

Qαφ̄ ∼ ψ̄α,

Qαψ̄β = 0,

Qαψβ ∼ −iγµDµφ +
2π

k
[[φ, φ̄], φ], QαDµφ ∼ (γµ)α

β 2π

k
[φ, ψ̄β ], (3.32)

or in terms of impurities with momentum p,

Qα|φ̄(p)〉 ∼ |ψ̄α(p)〉,
Qα|ψ̄β(p)〉 = 0,

Qα|ψβ(p)〉 ∼ −iγµ|Dµ(p)〉 +
2π

k
[2 sin(πp)]2 |φ̄(p)〉,

Qα|Dµ(p)〉 ∼ (γµ)α
β 2π

k
(e2πip − 1)|ψβ(p)〉, (3.33)

One should be cautious that Dµ at zero momentum always have dimension 1, whereas φ

itself has dimension qR, renormalized to be less than 1/2.

The two-loop Hamiltonian of the chain made of φ’s and φ̄’s takes the form

HN=2
(2) =

λ2

4

∑

i

(3Pi,i+1 − Pi,i+2 − 4) + (zero momentum contribution) (3.34)

where the zero momentum contribution gives the anomalous of the symmetrized traces.

Note that in the continuum limit, the dispersion relation of the φ̄ impurity goes like
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sin2(πp), as familiar in ordinary pp-wave limits, in contrast to the sin4(πp) behavior we

saw for the N = 3 theory.

As discussed in section 2, one can turn on a superpotential W = αTrΦ4, and flow to

a different SCFT. This superpotential will kill all the chiral primaries of the form TrφJ

except Trφ2. Together with its descendants Trφψα and Trψαψβǫαβ , they are dual to an

N = 2 hypermultiplet in the bulk AdS4.

4. Some preliminary attempts to construct the holographic dual

There are many ways of engineering three dimensional gauge theories with Chern-Simons

coupling in string theory. We will describe some examples in this section, in attempt to

find gravity duals of the Chern-Simons-matter system. However we have not been able to

find AdS4 dual in the supergravity regime.

4.1 N = 2 U(N) theory with one adjoint

One can obtain N = 2 U(N) Chern-Simons theory at level k coupled to an adjoint matter

as the low energy limit of the world volume theory of N M5-branes wrapped on a special

Lagrangian lens space S3/Zk in a Calabi-Yau 3-fold (say the cotangent bundle of S3/Zk),

at least for large k. The M-theory reduces to type IIA string theory compactified on a

five-manifold involving an S2, with k units of FRR
(2) flux on the S2, and the M5-branes turn

into D4-branes wrapped on the S2. The RR-flux on the S2 induces Chern-Simons coupling

in the D4-brane world volume gauge theory. The gauge theory is three dimensional N = 2

super-Yang-Mills with Chern-Simons coupling, coupled to an adjoint matter (corresponding

to the 2 transverse coordinates of the D4-brane in R1,4), with no superpotential. At low

energies the Yang-Mills coupling becomes irrelevant, and the theory flows to N = 2 Chern-

Simons-matter theory.

The gravity solutions of supersymmetric M5-branes wrapped on special Lagrangian

cycles were solved in [41], with the sLag 3-cycle being either a quotient of S3 or a quotient

H3 of the hyperbolic 3-space. It turns out that a smooth near horizon AdS4 regime in

the supergravity exists only when the M5-branes are wrapped on H3, and not S3 (nor its

quotient). Since H3 cannot be realized as a circle fibration over a Riemann surface, the

corresponding M5-brane configuration is “intrinsically M-theoretic”. In conclusion we do

not find an AdS4 dual to Chern-Simons theory with one adjoint matter in the supergravity

regime. It is plausible, however, that when α′-corrections are included, there could be a

smooth near-horizon limit of the S2-wrapped D4-brane, involving an AdS4 whose radius is

at string scale. If such a solution were found, it would be presumably dual to N = 2 CS

coupled to 1 adjoint matter.

4.2 D2-branes in massive IIA theory

Another way of obtaining Chern-Simons coupling is to consider D2-branes in massive IIA

theory, with FRR
(0) = k. Fundamental matter fields can be introduced by adding D6 or

D8-branes. Let us consider the system of N D2-branes and Nf D6-branes, with the D2

lying inside the world volume of D6 in flat space. There are 3 N = 2 adjoint matter
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fields Φi, i = 1, 2, 3, as well as fundamental and anti-fundamental matter fields Qj, Q̃j ,

j = 1, · · · , Nf . Φ1 corresponds to the 2 coordinates of the D2-brane transverse to the D6,

where as Φ2,3 correspond to the transverse coordinates of the D2 within the world volume

of D6. There is a superpotential of the form

W = TrΦ1[Φ2,Φ3] + Q̃jΦ1Q
j (4.1)

In the IR, it is conceivable that Qj, Q̃j ,Φ2,Φ3 remain of dimension 1
2 , whereas Φ1 becomes

a dimension 1 field, so that W , of dimension 2, is marginal. The kinetic term for Φ1 then

becomes irrelevant. If we introduce a small deformation of the superpotential 1
2ǫTrΦ2, so

that the total superpotential is

W =
1

2
ǫTrΦ2

1 + TrΦ1[Φ2,Φ3] + Q̃jΦ1Q
j, (4.2)

we can then integrate out Φ1 and obtain an equivalent superpotential

W =
1

2ǫ
Tr

(

[Φ2,Φ3] + QjQ̃j
)2

(4.3)

When ǫ ≪ k, the superpotential dominates the interaction due to Chern-Simons coupling,

and acquires positive anomalous dimension (i.e. positive beta function). As in our previous

discussion of N = 3 Chern-Simons-matter theory, the theory with superpotential (4.3)

flows to the point where the coefficient 1/ǫ becomes π/k, and the theory becomes nothing

but the N = 3 U(N) Chern-Simons theory coupled minimally to an adjoint hypermultiplet

(Φ2,Φ3) and Nf fundamental hypermultiplets (Qj , Q̃j).

It is thus conceivable that the world volume theory of D2-D6 in massive IIA theory flows

to the N = 3 Chern-Simons-matter theory under the deformation given by a small mass

term for Φ1. Recall that the N = 2 Chern-Simons-matter theory also flows to the N = 3

theory, but in the opposite direction along the line of the coefficient of the superpotential.

It would be interesting to study the near horizon geometry of D2-D6 system in massive

IIA theory, and see if the above RG flow can be described in the gravity dual.

4.3 Hints from spin chains

The spin chain analysis in the previous section provides several useful hints on the holo-

graphic dual of N = 3 CS coupled to one adjoint hypermultiplet. There is a tower of

short representations of OSp(3|4) × SU(2)f generated by TrQJ with spin (J
2 , J

2 ) under

SU(2)R×SU(2)f . This resembles the spectrum of KK modes of a 7-dimensional supergrav-

ity on AdS4×S3. The fact that the SU(2)R and SU(2)f impurities have the same spectrum

further reinforces the idea that the two SU(2)’s should appear in the dual geometry in a

symmetric fashion, as left and right rotations of an S3. The supercoset OSp(3|4)/SO(3, 1)

has AdS4 × S3 as its bosonic part, and the correct symmetry group.

The N = 2 CS with one adjoint matter Φ, deformed by the superpotential TrΦ4,

should be dual to a theory of gravity in AdS4, whose massless sector is N = 2 supergravity

coupled to a universal hypermultiplet. It might be possible that when the ’t Hooft coupling

is large, all other fields become infinitely massive, and only the supergravity sector remains.

We leave the detailed analysis of the holographic dual geometries to future investiga-

tion.
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5. Concluding remarks

We found a surprisingly large class of three dimensional N = 2 SCFTs with Lagrangian

descriptions, whose couplings can be made arbitrarily weak, as superpotential deformations

of N = 2 Chern-Simons-matter theories. This allows perturbative understanding of the

SCFTs in 1/k. For U(N) theories, we can also study the 1/N expansion. We have seen

evidences for the existence of a weakly coupled string theory dual in the large N limit,

although we have not been able to construct the AdS4 dual in a supergravity regime. It is

possible that the holographic dual of these theories are described by string theory on AdS4

whose radius is at string scale. It would be interesting to investigate the α′ corrections in

the brane constructions in type II string theories that give rise to Chern-Simons couplings,

as well as exploring AdS4 compactifications of massive IIA supergravity/string theory. In

the example of N = 3 theory, we have seen that certain sectors of long operators can be

described by (non-integrable) spin chains. One may learn about the possible dual string

sigma model from this.

The rich structure of RG flows among the superpotential deformations of N = 2 CS-

matter theories is intriguing. In the context of M-theory compactified on AdS4 times a

Sasakian-Einstein seven-manifold, there is also a rich structure of holographic RG flows, as

explored in [42 – 44]. It would be interesting to see if there are connections between them.

More ambitiously, one may wonder if there are connections of the CS-matter theories to

the vast number of AdS4 string vacua in flux compactifications (see for example [45]).
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A. The N = 3 Lagrangian

In this appendix we write the Lagrangian of N = 3 Chern-Simons theory coupled to Nf

hypermultiplets in a real representation R in component fields with manifest USp(2Nf )×
SU(2)R symmetry. Let a, b, · · · be SU(2)R indices, A,B, · · · indices for the fundamental

representation of USp(2Nf ), and α, β, · · · SO(2, 1) spinor indices.

The components of the matter fields are scalars qAa and fermions ψAa
α , with reality

condition

(q†)Aa = ωABǫabq
Bb, ψ̄α

Aa = ωABǫabǫ
αβψBb

β . (A.1)

where ωAB is a symplectic form. They are related to the fields (Q, Q̃) in the N = 2 notation

by

qA1 = (Q, Q̃), qA2 = (− ¯̃Q, Q̄). (A.2)
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The on-shell supersymmetry transformations are

δα
abA

m
βγ =

4π

k
qA(aT

mψA
b)(γδα

β),

δα
abqAc = ψα

A(aǫb)c, δ
α
abψ

β
Ac = −i∇αβqA(aǫb)c +

4π

k
(qBcT

mqB
(a)T

mqb)A. (A.3)

Introducing auxiliary fields sm
ab = 4π

k qA(aT
mqA

b), χm
ab =−4πi

k qA(aT
mψA

b), χm =−4πi
k qAaT

mψAa,

the Lagrangian can be written as

L =
k

4π

[

CS(A) + Tr

(

Dabsab −
1

2
χabχab + χχ +

1

6
sab[sbc, s

c
a]

)]

+
1

2
|∇µqaA|2 +

1

2
qAaD

abqA
b −

1

4
|sabq

Ac|2

+
i

2
ψaAγµ∇µψaA − 1

2
ψa

Asabψ
Ab + iqA

aχabψ
Ab + iqAaχψAb. (A.4)

To study BPS (chiral) operators one needs to pick a chiral supersymmetry generator δ+ =

uaubδab for some twistor variable ua. Then QA(u) ≡ uaqaA are the chiral fields.

B. Thermodynamics of the abelian theory at large Nf

B.1 N = 2 theory with equally charged matter in flat space

In this section we will consider the free energy of the N = 2 theory with equally charged

matter fields in flat space. Keeping the auxiliary fields in the vector super-multiplet, we

can integrate out the matter fields, and compute the thermal partition function via the

path integral

∫

dAdDdσdχdχ̄ exp

[

−Nf

λ

∫

(ωCS(A) + 2Dσ − χ̄χ)

−NfStr ln

(

−DµDµ + σ2 + D χ̄

chi i/D + σ

)]

(B.1)

on R2 × S1
β. In the large Nf limit, the path integral by the saddle point contribution.

We must be careful with the definition of this path integral: the superspace action (2.3)

is linear in the auxiliary field D, and integration over D results in a delta functional that

gives rise to a (Euclidean) action which is bounded from below. While keeping D in (B.1),

we cannot naively minimize the action with respect to D, as it would obviously give a

divergent answer. The correct prescription is to extremize the effective action with respect

to D first, and then minimize the effective action with respect to the other fields.11

The saddle points involve translational invariant (as well as rotational invariant in

the case of finite temperature) field configurations. So we can set Ai = 0, χ = 0, and

11To see this more explicitly, consider a potential function V (D, x) = xD + f(x). “Integrating out”

D sets the potential to f(0). On the other hand, “integrating out” x amounts to a Legendre transform,

D = −f ′(x). The potential V (D, x(D)) is extremized with respect to D at x(D) = 0. Whether it is a local

maximum or minimum in D depends on the sign of f ′′(0).
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D,σ,A0 = α to constants. We then have the very simple effective action in the constant

modes D,σ, α, at finite temperature T = 1/β,

Seff = NfAβ

[

−2Dσ

λ
+ β−1

∑

n∈Z

∫

d2p

(2π)2
ln

p2 +
(

2π
β n + α

)2
+ σ2 + D

p2 +
(

2π
β

(

n + 1
2

)

+ α
)2

+ σ2

]

(B.2)

We can dimensionally regularize the integral over spatial momenta, and then regularize

the sum over the momentum along Euclidean time direction using zeta function regular-

ization. The 1/ǫ divergence cancel after the zeta function regularization, and we end up

with

Seff = NfAβ

{

−2Dσ

λ
− 1

4πβ

∑

n∈Z

[

(

2πn

β
+ α

)2

+ σ2 + D

]

ln

[

(

2πn

β
+ α

)2

+ σ2 + D

]

+
1

4πβ

∑

n∈Z

[

(

2π(n + 1
2)

β
+ α

)2

+ σ2

]

ln

[

(

2π(n + 1
2)

β
+ α

)2

+ σ2

]}

(B.3)

To evaluate it, we shall use the formula (free energy of a harmonic oscillator)

∑

n∈Z

ln

[

x2 +

(

2πn

β
+ α

)2
]

= βx + ln(1 − e−βx+iβα) + ln(1 − e−βx−iβα) (B.4)

Integrating this, we obtain

∑

n∈Z

[

x2 +

(

2πn

β
+ α

)2
]

ln

[

x2 +

(

2πn

β
+ α

)2
]

=
2β

3
x3 + 4

∞
∑

k=1

1 + kβx

β2k3
e−kβx cos(kβα) =

2β

3
x3 + 4β−2I(βx, βα) (B.5)

=
2β

3
x3 +

2x

β

[

Li2
(

e−β(x+iα)
)

+ Li2
(

e−β(x−iα)
)

]

+
2

β2

[

Li3
(

e−β(x+iα)
)

+ Li3
(

e−β(x−iα)
)

]

where we defined the function

I(x, α) =
∞
∑

k=1

1+kx

k3
e−kx cos(kα)=

∞
∑

k=1

cos(kα)

k3
+x2 ln

∣

∣

∣

∣

2 sin

(

α

2

)∣

∣

∣

∣

− x3

6
+

x4

32 sin2(α
2 )

+O(x6)

(B.6)

Note that when x = 0, α = 0, (B.5) reproduces the contribution to the free energy

from a massless free field. The effective action is then

Seff = −NfAβ

{

2Dσ

λ
+

1

6π

[

(σ2 + D)
3

2 − |σ|3
]

+
I(β(σ2 + D)

1

2 , βα) − I(β|σ|, βα + π)

πβ3

}

(B.7)

To separate the temperature dependence, we can rescale the variables σ̃ = βσ, D̃ =

β2D, α̃ = βα, and write

Seff = −NfAβ−2

{

2D̃σ̃
λ + 1

6π

[

(σ̃2 + D̃)
3

2 − |σ̃|3
]

+ I((σ̃2+D̃)
1
2 ,α̃)−I(|σ̃|,α̃+π)

π

}

(B.8)
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We shall first minimize the effective action with respect to α. This is achieved simply

at α = 0. Define ρ̃ = (σ̃2 + D̃)
1

2 . The saddle point equations for ρ̃ and σ̃ are now simply

−4π

λ
σ̃∗ = ln

(

2 sinh
ρ̃∗
2

)

,
2π

λ
(ρ̃2

∗ − 3σ̃2
∗) = σ̃∗ ln

(

2 cosh
σ̃∗
2

)

. (B.9)

For λ ≪ 1, this becomes

σ̃∗ = − λ

4π
ln(

√
3σ̃∗) ∼

λ| ln λ|
4π

, ρ̃∗ =
√

3σ̃∗ ∼
√

3λ| ln λ|
4π

. (B.10)

On the other hand, in the strong coupling limit λ → ∞, the solution is

ρ̃∗ = ln
3 +

√
5

2
, σ̃∗ =

2πρ̃2
∗

λ ln 2
→ 0. (B.11)

The free energy is given by

F (λ, T ) =
NfT 2

π

{

2π(ρ̃2
∗ − σ̃2

∗)σ̃∗
λ

+
ρ̃3
∗ − σ̃3

∗
6

+

∞
∑

k=1

(1 + kρ̃∗)e−kρ̃∗ − (−)k(1 + kσ̃∗)e−kσ̃∗

k3

}

(B.12)

The free energy is analytic in λ except at λ = 0, and decreases monotonously as λ increases.

We have

F (λ = 0, T ) = NfT 2 7ζ(3)

4π
≃ 0.669597Nf T 2,

F (λ = ∞, T ) =
NfT 2

π

[

3

4
ζ(3)+

1

6

(

ln
3+

√
5

2

)3

+ln

(

3+
√

5

2

)

Li2

(

2

3+
√

5

)

+Li3

(

2

3+
√

5

)]

≃ 0.593071Nf T 2. (B.13)

At weak coupling, we can expand the free energy to first subleading order as

F (λ, T ) = NfT 2

[

7ζ(3)

4π
+

λ2(ln λ)3

32π2
+ · · ·

]

, λ ≪ 1. (B.14)

There exists another set of saddle point solutions at small λ, which have nonzero α.

Their contribution to the free energy is always smaller than the saddle points described

above. Note that the strong coupling limit result of the free energy in (B.13), apart from

the contribution from free fermion, is the same as that of the IR fixed point of three

dimensional U(Nf ) model in the infinite Nf limit.

B.2 On the sphere

The free energy of N = 2 Chern-Simons-matter theory on a sphere of radius R = 1 is given

in the large Nf by the extremizing the function

−Seff(σ,D,α) = Nf

[

8πβ

λ
D̃σ̃ − ZB(β,

√

σ̃2 + D̃, α) + ZF (β, |σ̃|, α)

]

(B.15)
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where we have defined D = β2D̃, σ = βσ̃. ZB and ZF are given by

ZB(β, x, α) =

∞
∑

l=0

(2l + 1)



β

√

x2 +

(

l +
1

2

)2

+ ln
(

1 − e
−β

q

x2+(l+ 1

2
)2+iα

)

+ ln
(

1 − e
−β

q

x2+(l+ 1

2
)2−iα

)

]

, ZF (β, x, α) (B.16)

=
∞
∑

l=1

2l
[

β
√

x2 + l2 + ln
(

1 + e−β
√

x2+l2+iα
)

+ ln
(

1 + e−β
√

x2+l2−iα
)]

.

After regularizing the divergent parts of the sums, we have

ZB(β, x, α) = β
∞

∑

l=0

(2l + 1)





√

x2 +

(

l +
1

2

)2

−
(

l +
1

2

)

− x2

2l + 1



 + JB(β, x, α),

ZF (β, x, α) = β

[

−x2

2
+

∞
∑

l=1

2l

(

√

x2 + l2 − l − x2

2l

)

]

+ JF (β, x, α), (B.17)

with

JB(β, x, α) =
∞
∑

l=0

(2l + 1)

[

ln
(

1 − e
−β

q

x2+(l+ 1

2
)2+iα

)

+ ln
(

1 − e
−β

q

x2+(l+ 1

2
)2−iα

)

]

,

JB(β, x, α) =
∞
∑

l=0

2l
[

ln
(

1 + e−β
√

x2+l2+iα
)

+ ln
(

1 + e−β
√

x2+l2−iα
)]

. (B.18)

Note that the infinite sums in (B.17) are convergent. JB and JF are suppressed by powers

of e−β in the low temperature limit. The free energy is now analytic in λ at λ = 0, as there

is no infrared divergence.

We will now compute the free energy in the strict large Nf limit at low temperature.

At the saddle point α = 0. To leading order in e−β, the saddle point equations for σ̃ and

ρ̃ =
√

σ̃2 + D̃ are

8π

λ
σ̃∗ − 2e−β/2 +

π2

4
ρ̃2
∗ + O(e−β) = 0,

8π

λ
(ρ̃2

∗ − σ̃2
∗) − σ̃∗ + O(e−β) = 0 (B.19)

The solutions are

σ̃∗ =
λ

4π(1 + λ2

256 )
e−β/2, ρ̃∗ =

λ

4
√

2π
√

1 + λ2

256

e−β/4. (B.20)

The free energy is then given by

F = Nf

[

2e−β/2 +

(

5 − β

32π2

λ2

1 + λ2

256

)

e−β + O(e−3β/2)

]

(B.21)
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Figure 7: The solid lines and double lines represent the scalar and fermion respectively.

This expression is valid for all values of λ in the low temperature limit. The term of

order βe−β in (B.21) can be reproduced by summing up diagrams as in figure 7. When

higher order terms in e−β are included, diagrams involving the |φ|6 vertices also contribute.

Let us note that the saddle point approximation in the strict large Nf limit is not

sufficient to extract the spectrum of low dimensional operators. In the free theory for

instance, the lowest dimensional gauge invariant operator other than 1 is φ̄iφj , of dimension

1. There are N2
f such operators. They contribute to the partition function N2

f e−β. In

order to see this in the low temperature expansion of the partition function, we would

need N2
f e−β ≪ 1. The saddle point approximation breaks down in this regime. For

example, we must integrate out α in the full path integral in order to see that the partition

function only sums up gauge invariant states. This becomes invisible in the saddle point

approximation, where α is set to zero. In fact, a simple diagrammatics reveals that the

anomalous dimensions of finite dimensional operators are subleading in 1/Nf , and vanish

in the infinite Nf limit.

B.3 N = 2 theory with oppositely charged matter

The effective action for the saddle point is of the form

− β2

NfA
Seff =

2Dσ

λ
+

fB(
√

σ2 + D) + fB(
√

σ2 − D) − 2fF (|σ|)
π

(B.22)

where fB , fF are given by

fB(x) = I(x, 0) +
x3

6
=

∞
∑

k=1

1 + kx

k3
e−kx +

x3

6
,

fF (x) = I(x, π) +
x3

6
=

∞
∑

k=1

(−)k
1 + kx

k3
e−kx +

x3

6
. (B.23)

as before. A subtlety is that, the saddle point of interest may lie in the regime |D| > σ2,

and we would need to consider fB(x) with imaginery x. This is not a serious problem. In

fact, one can analytically continue fB(x), so that fB(x) is real for both real and imaginery

x, and is an even function in x. The saddle point equations are now written as

−4π

λ
σ = ln

∣

∣

∣

∣

∣

sinh
√

σ2+D
2

sinh
√

σ2−D
2

∣

∣

∣

∣

∣

,

2π

λ
D = σ ln

∣

∣

∣

∣

∣

cosh2(σ
2 )

sinh
√

σ2+D
2 sinh

√
σ2−D

2

∣

∣

∣

∣

∣

. (B.24)
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The only saddle point is D = σ = 0, and hence the free energy is identical to that of the

free theory. For the N = 3 theory, the only difference in the effective action (B.22) is that

one replaces σ and D with su(2)-valued σaγ
a and Daγ

a, where γa are Pauli matrices, and

take the trace over the doublet. The saddle points lead to the same result, i.e. the free

energy of the N = 3 theory is the same as that of the free theory to leading order in 1/Nf .

C. Thermodynamics of the free U(N) theory on the sphere

In this appendix, we study the operator spectrum of the free theory (λ = 0) from the point

of view of thermodynamics. We are essentially reproducing here some of the results of [46].

One might naively expect the thermodynamics to be trivial for the free theory. This would

be the case in flat space, but is not the case on the sphere due to the restriction to gauge

invariant states [47]. The partition function of the free theory reduces to a unitary matrix

model of the form
∫

[dU ]U(N)e
−Seff (U) (C.1)

where U is the holonomy of the gauge field along the thermal circle, U = eiα, α being the

zero mode of A0. The matrix model action is given by

Seff(U) = −2Nf

∞
∑

n=1

zS(xn) + (−)n+1zF (xn)

n
(trUn + trU−n), (C.2)

where x = e−β , zS(x) and zF (x) are the partition functions of a conformally coupled scalar

particle and spin 1/2 particle on the sphere,

zS(x) =

∞
∑

l=0

(2l + 1)xl+
1
2 =

x
1
2 (1 + x)

(1 − x)2
,

zF (x) =

∞
∑

l=1

2lxl =
2x

(1 − x)2
. (C.3)

Diagonalizing the unitary matrix U = diag(eiα1 , · · · , eiαN ), the matrix integral becomes

∫

∏

dαi exp

{

−
[

∑

i6=j

∞
∑

n=1

cos(n(αi−αj))

n
−4Nf

∑

i

∞
∑

n=1

zS(xn)+(−)n+1zF (xn)

n
cos(nαi)

]}

=

∫

∏

dαi exp

{

−
[

∑

i6=j

∞
∑

n=1

cos(n(αi−αj))

n
−2Nf

∑

i

∞
∑

n=1

cosh(nβ
2 )+(−)n+1

n sinh2(nβ
2 )

cos(nαi)

]}

(C.4)

In the large N limit, we can represent the eigenvalues by the eigenvalue density ρ(θ), with

the property

ρ(θ) ≥ 0,

∫ 2π

0
dθρ(θ) = 1. (C.5)
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The potential function in (C.4) now becomes

N2
∞
∑

n=1

1

n

[

ρ2
n − 2cρn

cosh(nβ
2 ) + (−)n+1

sinh2(nβ
2 )

]

(C.6)

where ρn =
∫

dθρ(θ) cos(nθ), and c = Nf/N . Defining the function

fn(β) =
cosh(nβ

2 ) + (−)n+1

sinh2(nβ
2 )

, (C.7)

we can rewrite (C.6) as

N2
∞
∑

n=1

(ρn − cfn(β))2 − c2fn(β)2

n
(C.8)

At low temperatures, the saddle point is given by ρn = cfn(β), and the free energy of the

theory on the sphere is

Flow(β) = N2
f

∞
∑

n=1

fn(β)2

n
(C.9)

temperatures, the saddle points are very different since (C.5) severely constrains the ρn’s.

The free energy in the high temperature limit is simply given by the flat space result

Fhigh(β) ≃ NNf
7ζ(3)

β2
(C.10)

There is a transition from N2
f degrees of freedom at low temperature to NNf degrees

of freedom at high temperature.

At nonzero coupling, we can still integrate out all the matter fields while keeping the

Chern-Simons auxiliary fields, and obtain a path integral of the form

∫

dAdDdσdχdχ̄ exp

[

−N

λ

∫

(ωCS(A) + 2Dσ − χ̄χ)

−NfStr ln

(

−DµDµ + σ2 + D χ̄

chi i/D + σ

)]

(C.11)

where the “Str” in the second term in the effective action involves a trace in the fundamental

representation of U(N). However, we can no longer integrate out all but one field in the

Chern-Simons multiplet. The saddle point approximation to the path integral (C.11) at

large N is no longer valid, since there are ∼ N2 fields in (C.11) while the action is only

multiplied by N .

D. Two-loop anomalous dimensions

D.1 The two-loop anomalous dimension of φ̄φ

It was predicted that in N = 2 CS-matter theory, the anomalous dimension of φ̄iφj is

zero, since it lies in the same supermultiplet as the U(Nf ) flavor current. It is nevertheless
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(a) (b) (c) (d) (e)

Figure 8: The solid and double lines stand for scalar and fermion propagators, respectively. The

shaded bubble in (b) represents matter loops. The 1-loop gauge and ghost bubbles cancel.

(f) (g)

Figure 9: Two-loop renormalization of the operator φ̄iφj .

instructive to verify this through an explicit two-loop computation. The contributions

come from wave function renormalization, as shown in Fig 8, as well as 1PI diagrams in

Fig 9. We will work in Feynman gauge, regularizing the loop integrals with dimensional

reduction method.

For simplicity we will do the calculation in the planar limit (for fundamental and adjoint

matter), although the diagrams in Fig 8 and Fig 9 are not drawn as planar diagrams. The

circle in Fig 9 represents the operator insertion of φ̄iφj . We have only shown diagrams with

nonzero momentum integral. One must be careful with the planar combinatorics. This is

most easily taken care of by keeping the propagators of auxiliary fields σ,D, χ, which have

been integrated out in Fig 8 and 9.

Some relevant loop integrals are

∫

d3k

(2π)3
d3l

(2π)3
1

k2l2(k + l)2
=

ln Λ

16π2

∫

d3k

(2π)3
d3l

(2π)3
2k · l

k2l2(p + k + l)2
=

p2

3

ln Λ

16π2
+ · · ·

∫

d3k

(2π)3
d3l

(2π)3
(ǫµνρp

µkν lρ)2

k2l2(k + l)2(p + k)2(p + k + l)2
=

p2

6

ln Λ

16π2
+ · · · (D.1)

where we omitted power divergent and finite terms. The wave function renormalization is

computed to be

δZ =

(

2π

k

)2(

− 5

3
NNf +

8

3
NNf +

1

3
N2 + 0 − 4

3
N2

)

ln Λ

16π2

=

(

2π

k

)2

(NNf − N2)
lnΛ

16π2
, (D.2)

where the terms in the parenthesis in the first line come from diagrams (a − e). The
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contributions from the diagrams (f) and (g) to the anomalous dimension precisely cancel

the correction due to δZ, confirming that φ̄iφj has zero anomalous dimension at two-loop.

For the N = 2 theory with M adjoint matters (in the planar limit), the wave function

renormalization is

δZ =

(

4π

k

)2 [

−1

3
N2(5M + 2) +

8

3
N2M +

1

2
N2 +

4

3
N2 − 2

3
N2

]

lnΛ

16π2

=

(

4π

k

)2 (

N2M +
1

2
N2

)

ln Λ

16π2
, (D.3)

where the five terms in the first line come from diagrams (a − e). The contribution from

(f), (g) is
(

4π

k

)2 [

−N2(M + 2) +
3

2
N2

]

ln Λ

16π2
(D.4)

This precisely cancels (D.3), confirming that the anomalous dimension of Tr(Φ̄iΦj) is zero.

On the other hand, the operator Tr(ΦiΦj) is a chiral primary, whose anomalous dimension

is entirely due to the renormalization of the U(1)R charge of Φ. For this operator, the

contribution from (f) and (g) is
(

4π

k

)2 (

N2M +
3

2
N2

)

ln Λ

16π2
(D.5)

We find that the anomalous dimension of TrΦaΦb is

∆ − 1 = −2(M + 1)λ2, (D.6)

or equivalently, qR
Φ = 1

2 − (M + 1)λ2, at two-loop. When M is even, this result can be

reproduced by simply comparing to the N = 3 theory with M/2 adjoint hypermultiplets,

as in described section 2.

D.2 Computation of the two-loop anomalous dimension of twist-1 operators

In this section we compute the two-loop diagrams of figure 4, for the anomalous dimension

of twist-1 operators at large spin n.

The loop integral from diagram 4(a) is evaluated as follows:

1

4

n−2
∑

i=0

n−2−i
∑

j=0

∫

d3k

(2π)3
d3l

(2π)3
ǫµναkαǫρνβlβ∆µ∆ρ

k2l2(k+l+p)2
(∆ · (k+l+p))i(∆ · (l+p))j(∆ · p)n−2−i−j

=
1

4

∑

i,j

∫

d3k

(2π)3
d3l

(2π)3
((k − l) · ∆)((l − p) · ∆)

k2(k − l)2(l − p)2
(∆ · k)i(∆ · l)j(∆ · p)n−2−i−j

=
∑

i,j

2π3

4(2π)6
lnΛ

∫ 1

0
dx

∫ 1−x

0
dy

(∆ · p)n

(1 − y)3/2

(

x + y − x2

1−y

)3/2

(

x

1 − y
− 1

)

(
x

1 − y
)i

×
(

y

x + y − x2

1−y

− 1

)(

y

x + y − x2

1−y

)i+j+1

=
∑

i,j

2π3

4(2π)6
(∆ · p)n ln Λ

∫ 1

0
dx

∫ 1−x

0
dy

uv

(xy)
3

2

(1 − u)i+
3

2 (1 − v)i+j+ 3

2 , (D.7)
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where we have defined u ≡ x/(1 − y), v ≡ y/(x + y − x2

1−y ), and have thrown away power

divergences. In the n → ∞ limit, the integral is in fact finite, and is given by

1

64π2
(∆ · p)n ln Λ (D.8)

The contribution from (b) is

1

4

∑

i,j

∫

d3k

(2π)3
d3l

(2π)3
ǫρµα(l − k)αǫσνβ(p − l)βǫρσηǫτηγ(p − k)γ∆µ∆ν(p + k)τ

k2(k − l)2(p − l)2(p − k)2

×(∆ · k)i(∆ · l)j(∆ · p)n−2−i−j (D.9)

Let us examine the integral over l,

∫

d3l
(l − k)α(p − l)β(∆ · l)j

(k − l)2(p − l)2

= −
∫ 1

0
d3l

(l + x(p − k))α(l + (1 − x)(k − p))β(∆ · (l + xp + (1 − x)k))j

(l2 + x(1 − x)(k − p)2)2

= (· · · )δαβ + ∆α(· · · )β + ∆β(· · · )α (D.10)

When contracted with ǫρσηǫρµαǫσνβ∆µ∆ν , this is just zero. Hence the contribution from

diagram (b) vanishes.

Diagram (c) is given by

1

4

n−1
∑

i=0

∫

d3k

(2π)3
d3l

(2π)3
ǫµνα(k + l)αǫρσβ lβǫητγkγǫρνη(2p + k)τ (2p + 2k + l)σ∆µ

k2l2(k + l)2(p + k)2(p + k + l)2

×((p + k + l) · ∆)i(p · ∆)n−1−i (D.11)

=

n−1
∑

i=0

∫

d3k

(2π)3
d3l

(2π)3
ǫµναǫρσβǫητγǫρνηlα(l − k)βkγ(p + k)σpτ∆µ

k2l2(l − k)2(p + k)2(p + l)2
((p + l) · ∆)i(p · ∆)n−1−i

We will do the integral in two steps. First, the integral over k

∫

d3k
(l − k)βkγ(p + k)σ

k2(k − l)2(k + p)2

= 2

∫ 1

0
dx

∫ 1−x

0
dy

(−k + (1 − x)l + yp)β(k + xl − yp)γ(k + xl + (1 − y)p)σ

[k2 + x(1 − x)l2 + y(1 − y)p2 + 2xyp · l]3
(D.12)

When multiplied by ǫµναǫρσβǫητγǫρνηlαpτ , the integral (D.12) simplies drastically to

3π2

2

∫ 1

0
dx

∫ 1−x

0
dy

−xδβγ lσ + (1 − x)δγσlβ
√

x(1 − x)l2 + y(1 − y)p2 + 2xyp · l
(D.13)

– 35 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
6

The full integral (D.11) is now

3π2

(2π)6
Γ(5

2)

Γ(1
2)

n−1
∑

i=0

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1

0
dz

∫ 1−z

0
dw(zx(1 − x))−

1

2

×
∫

d3l
(p · ∆)n−1−i((p + l) · ∆)i

[

−(l · ∆)(p · l) + (p · ∆)l2
]

[

l2 + 2(w + zy
1−x)p · l + (w + zy(1−y)

x(1−x) )p2
] 5

2

−→ 3π3

(2π)6
(p · ∆)n lnΛ

n−1
∑

i=0

∫ 1

0
dx

∫ 1−x

0
dy

∫ 1

0
dz

∫ 1−z

0
dw(zx(1 − x))−

1

2

×
[

2 + (i − 2)

(

w +
yz

1 − x

)](

1 − w − yz

1 − x

)i−1

(D.14)

This integral is also finite in the n → ∞ limit, and is given by

9 ln 2

16π2
(p · ∆)n ln Λ (D.15)

Diagram (d) involves the 1-loop correction to the gauge field propagator from the loop

of gauge fields, ghosts, as well as the matter fields. The contributions from the gauge field

loop and the ghost loop cancel. The former is given by

1

2

∫

d3l
ǫρµηǫνστ ǫσραlαǫητβ(k + l)β

l2(k + l)2
=

1

2

∫

d3l
lµ(k + l)ν + lν(k + l)µ

l2(k + l)2
, (D.16)

where the latter is

−
∫

d3l
(k + l)µlν
l2(k + l)2

(D.17)

Indeed they cancel as expected from the pure Chern-Simons theory [48]. So far we have

computed the 2-loop diagrams involving gauge interactions only, and found that the anoma-

lous dimension of the twist-1 operator Jµ1···µn to order λ2 is bounded in the large spin n

limit.

Now we consider the correction of order λ2Nf/N , coming from the matter loop in

diagram (d). The correction to the gauge field propagator is

∫

d3p

(2π)3
(2p + k)µ(2p + k)ν − Tr [γµ/pγν(/p + /k)]

p2(p + k)2
=

∫

d3p

(2π)3
kµkν + 2δµνp · (p + k)

p2(p + k)2
(D.18)

After the contraction with 1
4ǫρµα

kα

k2 ǫνσβ
kβ

k2 , and dropping linear divergences, (D.18) becomes

simply

1

32

δρσk2 − kρkσ

(k2)
3

2

(D.19)
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The full integral is now

− 1

32

n−1
∑

i=0

∫

d3k

(2π)3
(k · ∆)k · (2p + k) − ((2p + k) · ∆)k2

(k2)
3

2 (p + k)2
((p + k) · ∆)i(p · ∆)n−1−i

−→ 1

32

n−1
∑

i=0

∫

d3k

(2π)3
(2p + k) · ∆

(k2)
1

2 (p + k)2
((p + k) · ∆)i(p · ∆)n−1−i

=
1

128π2
(p · ∆)n ln Λ

n−1
∑

i=0

∫ 1

0
dx(1 + x)xi− 1

2

∼ 1

128π2
ln(n)(p · ∆)n ln Λ (n ≫ 1) (D.20)
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