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1. Introduction

In the last few years a big effort has been devoted by several authors to the problem of an

efficient computation of one-loop corrections for multi-particle processes. This is a problem

relevant for both LHC and ILC physics. In the case of QCD, the NLO six gluon amplitude

has been recently obtained by different groups [1], and, in the case of e+e− collisions, com-

plete EW calculations, involving 5-point [2] and 6-point [3] loop functions are available at

the cross section level. The used techniques range from purely numerical methods to ana-

lytic ones, also including semi-numerical approaches. For analytical approaches, the main

issue is reducing, using computer algebra, generic one-loop integrals into a minimal set of

scalar integrals (and remaining pieces, the so called rational terms), mainly by tensor re-

duction [4 – 7]. For multi-particle processes though this method becomes quite cumbersome

because of the large number of terms generated and the appearance of numerical insta-

bilities due to the zeros of Gram-determinants. On the other hand, several numerical or

semi-numerical methods aim for a direct numerical computation of the tensor integrals [8].

Although purely numerical methods can in principle deal with any configuration of masses

and also allow for a direct computation of both non-rational and rational terms, their

applicability remains limited due to the high demand of computational resources and the

non-existence of an efficient automation.

In a different approach, the one-loop amplitude rather than individual integrals are

evaluated using the unitarity cut method [9], which relies on tree amplitudes and avoids

the computation of Feynman diagrams. In another development, the four-dimensional

unitarity cut method has been used for the calculation of QCD amplitudes [10], using
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twistor-based approaches [11]. Moreover, a generalization of the the unitarity cut method

in d dimensions, has been pursued recently [12].

Nevertheless, in practice, only the part of the amplitude proportional to the loop

scalar functions can be obtained straightforwardly. The remaining piece, the rational part,

should then be reconstructed either by using a direct computation based on Feynman

diagrams [13 – 15] or by using a bootstrap approach [16]. Furthermore the complexity of

the calculation increases away from massless theories.

In a recent paper [17], we proposed a reduction technique for arbitrary one-loop sub-

amplitudes at the integrand level by exploiting numerically the set of kinematical equations

for the integration momentum, that extend the quadruple, triple and double cuts used in

the unitarity-cut method. The method requires a minimal information about the form of

the one-loop (sub-)amplitude and therefore it is well suited for a numerical implementation.

The method works for any set of internal and/or external masses, so that one is able to

study the full electroweak model, without being limited to massless theories.

In this paper, we describe our experience with the first practical non-trivial imple-

mentation of such a method in the computation of a physical process: namely 2γ → 4γ,

including massive fermion loops. For the massless case, there are a few results available

in the literature. Analytical expressions were first presented by Mahlon [18] some time

ago, however his results do not cover all possible helicity configurations. More recently the

complete set of six-photon amplitudes was computed numerically by Nagy and Soper [19].

Very recently the same results were also obtained by Binoth et al. [20], that also provide

compact analytical expressions.

In section 2, we recall the basics of our method and, in particular, we show how the

knowledge of the rational terms can be inferred, with full generality, once the coefficients

of the loop functions have been determined.

In section 3, we outline our solution to cure the numerical inaccuracies related to the

appearance of zeros of Gram-determinants. We explicitly illustrate the case of 2-point

amplitudes, that we had to implement to deal with the process at hand.

In section 4, we present our numerical results. For massless fermion loops we compare

with available results. Moreover, since we are not limited to massless contributions, we

also present, for the first time, results with massive fermion loops.

Finally, in the last section, we discuss our conclusions and future applications.

2. The method and the computation of the rational terms

The starting point of the method is the general expression for the integrand of a generic

m-point one-loop (sub-)amplitude [17]

A(q̄) =
N(q)

D̄0D̄1 · · · D̄m−1
, D̄i = (q̄ + pi)

2 − m2
i , p0 6= 0 , (2.1)

where we use a bar to denote objects living in n = 4 + ǫ dimensions, and q̄2 = q2 + q̃2.1

In the previous equation, N(q) is the 4-dimensional part of the numerator function of the

1q̃2 is ǫ-dimensional and (q̃ · q) = 0.

– 2 –



J
H
E
P
0
7
(
2
0
0
7
)
0
8
5

amplitude.2 N(q) depends on the 4-dimensional denominators Di = (q + pi)
2 − m2

i as

follows

N(q) =

m−1
∑

i0<i1<i2<i3

[

d(i0i1i2i3) + d̃(q; i0i1i2i3)
]

m−1
∏

i6=i0,i1,i2,i3

Di

+

m−1
∑

i0<i1<i2

[c(i0i1i2) + c̃(q; i0i1i2)]

m−1
∏

i6=i0,i1,i2

Di +

m−1
∑

i0<i1

[

b(i0i1) + b̃(q; i0i1)
]

m−1
∏

i6=i0,i1

Di

+

m−1
∑

i0

[a(i0) + ã(q; i0)]

m−1
∏

i6=i0

Di + P̃ (q)

m−1
∏

i

Di . (2.2)

Inserted back in eq. (2.1), this expression simply states the multi-pole nature of any m-

point one-loop amplitude, that, clearly, contains a pole for any propagator in the loop,

thus one has terms ranging from 1 to m poles. Notice that the term with no poles,

namely that one proportional to P̃ (q) is polynomial and vanishes upon integration in

dimensional regularization; therefore does not contribute to the amplitude, as it should be.

The coefficients of the poles can be further split in two pieces. A piece that still depend

on q (the terms d̃, c̃, b̃, ã), that vanishes upon integration, and a piece that do not depend

on q (the terms d, c, b, a). Such a separation is always possible, as shown in ref. [17], and,

with this choice, the latter set of coefficients is therefore immediately interpretable as the

ensemble of the coefficients of all possible 4, 3, 2, 1-point one-loop functions contributing

to the amplitude.

Once eq. (2.2) is established, the task of computing the one-loop amplitude is then

reduced to the algebraical problem of determining the coefficients d, c, b, a by evaluating

the function N(q) a sufficient number of times, at different values of q, and then inverting

the system. That can be achieved quite efficiently by singling out particular choices of

q such that, systematically, 4, 3, 2 or 1 among all possible denominators Di vanishes.

Then the system of equations is solved iteratively. First one determines all possible 4-point

functions, then the 3-point functions and so on. For example, calling q±0 the 2 (in general

complex) solutions for which

D0 = D1 = D2 = D3 = 0 , (2.3)

(there are 2 solutions because of the quadratic nature of the propagators) and since the

functional form of d̃(q; 0123) is known, one directly finds the coefficient of the box diagram

containing the above 4 denominators through the two simple equations

N(q±0 ) = [d(0123) + d̃(q±0 ; 0123)]
∏

i6=0,1,2,3

Di(q
±
0 ) . (2.4)

This algorithm also works in the case of complex denominators, namely with complex

masses. Notice that the described procedure can be performed at the amplitude level. One

does not need to repeat the work for all Feynman diagrams, provided their sum is known:

we just suppose to be able to compute N(q) numerically.

2If needed, the ǫ-dimensional part of the numerator should be treated separately, as explained in [21].
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As a further point notice that, since the terms d̃, c̃, b̃, ã still depend on q, also the

separation among terms in eq. (2.2) is somehow arbitrary. Terms containing a different

numbers of denominators can be shifted from one piece to the other in eq. (2.2), by relaxing

the requirement that the integral over the terms containing q vanishes. This fact provides

an handle to cure numerical instabilities occurring at exceptional phase-space points. In

section 3 we will show in detail such a mechanism at work for the 2-point part of the

amplitude.

The described procedure works without any modification in 4 dimensions. However,

even when starting from a perfectly finite tensor integral, the tensor reduction may even-

tually lead to integrals that need to be regularized. A typical example are the rank six

6-point functions contributing to the scattering 2γ → 4γ we want to study. Such tensors

are finite, but tensor reduction iteratively leads to rank m m-point tensors with 1 ≤ m ≤ 5,

that are ultraviolet divergent when m ≤ 4. For this reason, we introduced, in eq. (2.1),

the d-dimensional denominators D̄i, that differs by an amount q̃2 from their 4-dimensional

counterparts

D̄i = Di + q̃2 . (2.5)

The result of this is a mismatch in the cancellation of the d-dimensional denominators of

eq. (2.1) with the 4-dimensional ones of eq. (2.2). The rational part of the amplitude comes

from such a lack of cancellation.

In [17] the problem of reconstructing this rational piece has been solved by looking at

the implicit mass dependence in the coefficients d, c, b, a of the one-loop functions. Such

a method is adequate up to 4-point functions; for higher-point functions the dependence

becomes too complicated to be used in practice. In addition, it requires the solution

of further systems of linear equations, slowing down the whole computation. For those

reasons, we suggest here a different method. One starts by rewriting any denominator

appearing in eq. (2.1) as follows

1

D̄i
=

Z̄i

Di
, with Z̄i ≡

(

1 −
q̃2

D̄i

)

. (2.6)

This results in

A(q̄) =
N(q)

D0D1 · · ·Dm−1
Z̄0Z̄1 · · · Z̄m−1 . (2.7)

Then, by inserting eq. (2.2) in eq. (2.7), one obtains

A(q̄) =
m−1
∑

i0<i1<i2<i3

d(i0i1i2i3) + d̃(q; i0i1i2i3)

D̄i0D̄i1D̄i2D̄i3

m−1
∏

i6=i0,i1,i2,i3

Z̄i

+
m−1
∑

i0<i1<i2

c(i0i1i2) + c̃(q; i0i1i2)

D̄i0D̄i1D̄i2

m−1
∏

i6=i0,i1,i2

Z̄i +
m−1
∑

i0<i1

b(i0i1) + b̃(q; i0i1)

D̄i0D̄i1

m−1
∏

i6=i0,i1

Z̄i

+
m−1
∑

i0

a(i0) + ã(q; i0)

D̄i0

m−1
∏

i6=i0

Z̄i + P̃ (q)
m−1
∏

i

Z̄i . (2.8)
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The rational part of the amplitude is then produced, after integrating over dnq, by the

q̃2 dependence coming from the various Z̄i in eq. (2.8). It is easy to see what happens,

for any value of m, by recalling the generic q dependence of the spurious terms. In the

renormalizable gauge one has [17]

P̃ (q) = 0 ,

ã(q; i0) = ãµ(i0; 1)(q + pi0)µ ,

b̃(q; i0i1) = b̃µ(i0i1; 1)(q + pi0)µ + b̃µν(i0i1; 2)(q + pi0)µ(q + pi0)ν ,

c̃(q; i0i1i2) = c̃µ(i0i1i2; 1)(q + pi0)µ + c̃µν(i0i1i1; 2)(q + pi0)µ(q + pi0)ν ,

+ c̃µνρ(i0i1i1; 3)(q + pi0)µ(q + pi0)ν(q + pi0)ρ ,

d̃(q; i0i1i2i3) = d̃µ(i0i1i2i3; 1)(q + pi0)µ . (2.9)

eq. (2.9) simply states the fact that ã(q; i0) and d̃(q; i0i1i2i3) are at most linear in (q +pi0),

b̃(q; i0i1) at most quadratic, and c̃(q; i0i1i2) at most cubic. The tensors denoted by (· · · ; 1),

(· · · ; 2) and (· · · ; 3) stand for the respective coefficients. We will also make use of the fact

that, due to the explicit form of the spurious terms [17]

c̃µν(i0i1i2; 2) gµν = 0 ,

c̃µνρ(i0i1i2; 3) gµν = c̃µνρ(i0i1i2; 3) gµρ = c̃µνρ(i0i1i2; 3) gνρ = 0 and

b̃µν(i0i1; 2) gµν = 0 . (2.10)

The necessary integrals that arise, after a change of variable q → q − pi0 , are of the form

I
(n;2ℓ)
s;µ1···µr

≡

∫

dnq q̃2ℓ qµ1
· · · qµr

D̄(k0) · · · D̄(ks)
, with

D̄(ki) ≡ (q̄ + ki)
2 − m2

i , ki ≡ pi − p0 (k0 = 0) , (2.11)

where we used a notation introduced in [22] and r ≤ 3. Such integrals (from now on called

extra-integrals) have dimensionality D = 2(1+ ℓ− s)+ r and give a contribution O(1) only

when D ≥ 0, otherwise are of O(ǫ). This counting remains valid also in the presence of

infrared and collinear divergences, as explained, for example, in appendix B of [22] and

in [14].

We also note that, since all Z̄i are a-dimensional, the dimensionality D of the extra-

integrals generated through eq. (2.8) does not depend on m. We list, in the following, all

possible contributions, collecting the computational details in appendix A.

Contributions proportional to d(i0i1i2i3). In this case r = 0. All extra-integrals are

therefore scalars with D = −4 and do not contribute.

Contributions proportional to d̃µ(i0i1i2i3; 1). In this case r = 1. All extra-integrals

are therefore rank one tensors with D = −3 and do not contribute.

Contributions proportional to c(i0i1i2). In this case r = 0 with D = −2 and no

contribution O(1) is developed.

– 5 –
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Contributions proportional to c̃µ(i0i1i2; 1). Here r = 1 and D = −1. Therefore, once

again, there is no contribution.

Contributions proportional to c̃µν(i0i1i2; 2). Now r = 2 with D = 0 and a finite

contribution is in principle expected, generated by extra-integrals of the type

I(n;2(s−2))
s;µν . (2.12)

Nevertheless, such contribution is proportional to gµν [22]. Therefore, due to eq. (2.10), it

vanishes.

Contributions proportional to c̃µνρ(i0i1i2; 3). Now r = 3 and D = 1. The contribut-

ing extra-integrals are of the type

I(n;2(s−2))
s;µνρ , (2.13)

and one easily proves that the contributions O(1) are always proportional to gµν or gµρ or

gνρ. Therefore, thanks again to eq. (2.10), they vanish.

Contributions proportional to b(i0i1). Those are the first non vanishing contributions.

The relevant extra-integrals have r = 0 and D = 0

I(n;2(s−1))
s ,

with 2 < s ≤ m − 1. They have been computed, for generic values of s, in [22] (see also

appendix A)

I(n;2(s−1))
s = −iπ2 1

s(s − 1)
+ O(ǫ) . (2.14)

Contributions proportional to b̃µ(i0i1; 1). In this case the relevant extra-integrals are

4-vectors with D = 1

I(n;2(s−1))
s;µ with 2 < s ≤ m − 1 .

A computation for generic values of s gives

I(n;2(s−1))
s;µ = iπ2 1

(s + 1)s(s − 1)

s
∑

j=1

(kj)µ + O(ǫ) . (2.15)

Contributions proportional to b̃µν(i0i1; 2). The relevant extra-integrals are now rank

two tensor with D = 2

I(n;2(s−1)
s;µν with 2 < s ≤ m − 1 .

They read

I(n;2(s−1))
s;µν = −2iπ2 1

(s + 2)(s + 1)s(s − 1)







s
∑

j=1

(kj)µ(kj)ν +
1

2

s
∑

j=1

s
∑

i6=j

(kj)µ(ki)ν







+O(gµν) + O(ǫ) . (2.16)

The gµν part is never needed because b̃µν(i0i1; 2) gµν = 0, according to eq. (2.10).
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Contributions proportional to a(i0) They involve scalar extra-integrals with D = 2

I(n;2s)
s , with 1 < s ≤ m − 1 .

One computes

I(n;2s)
s = −2iπ2 1

(s + 2)(s + 1)s







s
∑

j=1

k2
j +

1

2

s
∑

j=1

s
∑

i6=j

(kj · ki) +
s + 2

2

s
∑

j=0

(m2
j − k2

j )







+O(ǫ) .

(2.17)

Contributions proportional to ãµ(i0; 1). This last category involves extra-integrals

with r = 1 and D = 3

I(n;2s)
s;µ , with 1 < s ≤ m − 1 .

One obtains

I(n;2s)
s;µ = iπ2 1

(s + 3)(s + 2)(s + 1)s







6
s

∑

j=1

k2
j (kj)µ + 2

s
∑

j=1

s
∑

i6=j

[

k2
j (ki)µ + 2(kj · ki)(kj)µ

]

+

s
∑

j=1

s
∑

i6=j

s
∑

ℓ 6=i

(kj · ki)(kℓ)µ + (s + 3)



2

s
∑

j=0

(m2
j − k2

j )(kj)µ (2.18)

+
s

∑

j=0

s
∑

i6=j

(m2
j − k2

j )(ki)µ











+ O(ǫ) .

To conclude, the set of the five formulas in eqs. (2.14)–(2.18) allows one to compute the

rational part of any one-loop m-point (sub-)amplitude, once all the coefficients of eq. (2.2)

have been reconstructed.

3. Dealing with numerical instabilities

In this section we show how to handle, in the framework of the method illustrated in the

previous section, the simplest numerical instability appearing in any one-loop calculation,

namely that one related to the tensor reduction of 2-point amplitudes in the limit of

vanishing Gram-determinant.3 This situation is simple enough to allow an easy description,

but the outlined strategy is general and not restricted to the 2-point case.

We start from the integrand of a generic 2-point amplitude written in the form

A(q̄) =
N(q)

D̄0D̄1
, (3.1)

in which we suppose N(q) at most quadratic in q. Our purpose is dealing with the situation

in which k2
1 ≡ (p1−p0)

2 = 0 exactly (that always occur in processes with massless external

3In this case the Gram-determinant is simply the square of the difference between the momenta of the

two denominators.

– 7 –
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particles), as well as to set up an algorithm to write down approximations around this case

with arbitrary precision.

According to eq. (2.2), we can write an expansion for N(q) as follows:

N(q) = [b(01) + b̃(q; 01)] + [a(0) + ã(q; 0)]D1 + [a(1) + ã(q; 1)]D0 . (3.2)

If the Gram-determinant of the 2-point function is small, the reduction method introduced

in [17] cannot be applied, because the solution for which D0 = D1 = 0, needed to determine

the coefficients b and b̃, becomes singular,4 in the limit of k2
1 → 0, when adding the

requirement

∫

dnq b̃(q; 01) = 0 . (3.3)

Then, we must consider two separate cases:

k2
1 → 0 , but kµ

1 6= 0 ,

k2
1 → 0 , because kµ

1 = 0 . (3.4)

The former situation may occur because of the Minkowskian metric, while the latter takes

place at the edges of the phase-space, where some momenta become collinear. In the first

case one can still find a solution for which D0 = D1 = 0 by relaxing the further requirement

of eq. (3.3). Such a solution is given in appendix B and goes like 1/(k1.v), where v is an

arbitrary massless 4-vector, therefore is never singular in the first case of eq. (3.4). The

price to pay is that new non zero integrals appear of the type 5

∫

dnq
[(q + p0) · v]j

D̄0D̄1
with j = 1, 2 and v2 = 0 . (3.5)

What has been achieved with this new basis is then moving part of the 1-point functions

to the 2-point sector, in such a way that combinations well behaved in the limit k2
1 → 0

appear. The fact that solutions exist to the condition D0 = D1 = 0, still allows one to

find the coefficients of such integrals (together with all the others). This solves the first

part of the problem, namely reconstructing N(q) without knowing explicitly its analytic

structure, but one is left with the problem of computing the new 2-point integrals. In the

following, we present our method to determine them at any desired order in k2
1. Let us

first consider the case j = 1 in eq. (3.5). The contribution O(1) can be easily obtained

from the observation that6

∫

dnq
(q · v)(q · k1)

2

D̄(k0)D̄(k1)
= O(k2

1) , (3.6)

4Such a solution goes like 1/k2

1 .
5Since v2 = 0 they still fulfill the third one of eqs. (2.10), therefore, even in this case, terms O(gµν) can

be neglected in eq. (2.16).
6From now on, we shift the integration variable: q̄ → q̄ − p0. The definition of the new resulting

denominators is given in eq. (2.11).
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as it is evident by performing a tensor decomposition. On the other hand, by reconstructing

denominators, one obtains

(q · k1)
2 =

(

f

2

)2

+
D̄(k1) − D̄(k0)

2

[

(q · k1) +
f

2

]

, (3.7)

with

f = m2
1 − k2

1 − m2
0 . (3.8)

eq. (3.7), inserted in eq. (3.6) gives the desired expansion in terms of loop functions with

less points but higher rank, in agreement with well know results [23, 24]

∫

dnq
(q · v)

D̄(k0)D̄(k1)
=

1

f

∫

dnq (q · v)

(

1

D̄(k1)
−

1

D̄(k0)

)(

1+
2(q · k1)

f

)

+ O(k2
1) . (3.9)

Expansions at arbitrary orders in k2
1 can be obtained in an analogous way from the two

following equations:

(q · k1)
p =

(

f

2

)p

+
D̄(k1) − D̄(k0)

2

∑

i+j=p−1

[

(q · k1)
i

(

f

2

)j
]

,

∫

dnq
(q · v)(q · k1)

2p

D̄(k0)D̄(k1)
= O(k2p

1 ) . (3.10)

To deal with the case j = 2 in eq. (3.5) one starts instead from the equation

∫

dnq
(q · v)2(q · k1)

2p+1

D̄(k0)D̄(k1)
= O(k2p

1 ) . (3.11)

This procedure breaks down when the quantity f vanishes. In this case a double expansion

in k2
1 and f can still be found in terms of derivatives of one-loop scalar functions. We

illustrate the procedure for the case j = 1 of eq. (3.5). Our starting point is now the

equation

D̄(k0) = D̄(k1) − 2(q · k1) + f . (3.12)

By multiplying and dividing by D̄(k0) one obtains

∫

dnq
(q · v)

D̄(k0)D̄(k1)
=

∫

dnq
(q · v)

D̄(k0)2D̄(k1)

[

D̄(k1) − 2(q · k1) + f
]

=

∫

dnq
(q · v)

D̄(k0)2
− 2

∫

dnq
(q · v)(q · k1)

D̄(k0)2D̄(k1)
+ O(f) . (3.13)

Applying once more eq. (3.12) to the last integral gives

∫

dnq
(q · v)(q · k1)

D̄(k0)2D̄(k1)
=

∫

dnq
(q · v)(q · k1)

D̄(k0)3D̄(k1)

[

D̄(k1) − 2(q · k1) + f
]

=

∫

dnq
(q · v)(q · k1)

D̄(k0)3
− 2

∫

dnq
(q · v)(q · k1)

2

D̄(k0)3D̄(k1)
+ O(f) . (3.14)
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Since the last integral in the previous equation is O(k2
1), the final result reads

∫

dnq
(q · v)

D̄(k0)D̄(k1)
=

∫

dnq
(q · v)

D̄(k0)2
− 2

∫

dnq
(q · v)(q · k1)

D̄(k0)3
+ O(k2

1) + O(f) . (3.15)

In a similar fashion, expansions at any order can be obtained.

We now turn to the second case of eq. (3.4), namely kµ
1 → 0. In this case no solution

can be found to the double cut equation

D(k0) = D(k1) = 0 . (3.16)

The reason is that now D(k1) and D(k0) are no longer independent:

D(k0) = D(k1) + f + O(k1) , (3.17)

and clearly no q exists such that the two denominators can be simultaneously zero. Notice

that this also implies that one cannot fit separately the coefficients of the 2-point and 1-

point functions in eq. (3.2). This results is a singularity 1/(k1 · v) in the system given of

appendix B and we should change our strategy. We than go back to eq. (3.1) and split the

amplitude from the beginning by multiplying it by

1 ≡
D̄(k0) − D̄(k1)

f
+

2(q · k1)

f
, (3.18)

resulting to

A(q̄) = A(1)(q̄) + A(2)(q̄) + O(k1) , (3.19)

with

A(1)(q̄) =
1

f

N(q)

D̄(k1)
, A(2)(q̄) = −

1

f

N(q)

D̄(k0)
. (3.20)

Now the two amplitudes A(1,2) can be reconstructed separately, without any problem of

vanishing Gram-determinant. Notice also that corrections at orders higher than O(k1) are

perfectly calculable by inserting again eq. (3.18) in the term O(k1) of eq. (3.19).

Once again, when f → 0, double expansions in k1 and f can be obtained involving

derivatives of scalar loop functions by using eq. (3.12). For example, at the zeroth order

in k1 and at the first one in f , one gets

A(q) =
N(q)

D̄(k0)D̄(k1)
=

N(q)

D̄(k0)2D̄(k1)

[

D̄(k1) − 2(q · k1) + f
]

=
N(q)

D̄(k0)2
+ f

N(q)

D̄(k0)3D̄(k1)

[

D̄(k1) − 2(q · k1) + f
]

+ O(k1)

=
N(q)

D̄(k0)2
+ f

N(q)

D̄(k0)3
+ O(k1) + O(f2) . (3.21)

This last case exhausts all possibilities.
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Figure 1: Comparison with figure 5 of ref. [19]. Helicity configurations [+ + −−−−] and

[+ −− + +−] for the momenta of eq. (4.1), represented by black dots and gray diamonds re-

spectively, and comparison with the analytic result of ref. [18] (continuous line).

The same techniques can be applied for higher-point functions. For example, in the

case of a 3-point function, instead of k1, one introduces the 4-vector

sµ = det

∣

∣

∣

∣

∣

kµ
1 kµ

2

(k2 · k1) (k2 · k2)

∣

∣

∣

∣

∣

, (3.22)

with the properties

s · k2 = 0 , s2 ∝ ∆(k1, k2) , (k1 · s) ∝ ∆(k1, k2) , (3.23)

where ∆(k1, k2) is the Gram-determinant of the two momenta k1 and k2. Then, instead of

eq. (3.6) one has, for example,

∫

dnq
(q · v)(q · s)2

D̄(k0)D̄(k1)D̄(k2)
= O(∆(k1, k2)) . (3.24)

As before, ∆(k1, k2) can vanish either because s2 = 0 or sµ = 0 and the two cases should

be treated separately.

4. Results and comparisons

We started by checking our implementation of the rational terms. For 4-point functions up

to rank four, we reproduced the results obtained with the alternative technique illustrated

in [17]. Furthermore, we reproduced the rational part of the full 2γ → 2γ amplitude given

in [25]. We also checked with an independent calculation [26] the rational terms coming

from all of the 6-point tensors up to rank six. Finally, we computed the rational piece of

the whole 2γ → 4γ amplitude by summing up all 120 contributing Feynman diagrams and

finding zero, as it should be [14].
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Figure 2: Helicity configurations [+ + −−−−] and [+ + −− +−] for the momenta of eq. (4.2),

represented by black dots and gray diamonds respectively, and comparison with the analytic result

of ref. [18] (continuous line).

As a first test on full amplitudes, we checked our method by reproducing the contribu-

tion of a fermion loop to the 2γ → 2γ process. This result is presented in eqs. (A.18)-(A.20)

of ref. [25], for all possible helicity configurations. We are in perfect agreement with the

analytic result, in both massless and massive cases.

The next step was the computation of the 2γ → 4γ amplitude with zero internal mass,7

finding the results given in figure 1 and figure 2. It should be mentioned that our results

are obtained algebraically, so there is no integration error involved.

In figure 1, we reproduce the results presented by Nagy and Soper [19] and very recently

also by Binoth et al. [20]. We employ the same values of the external momenta as in figure

5 of ref. [19], namely the following selection of final state three-momenta {~p3, ~p4, ~p5, ~p6}:

~p3 = (33.5, 15.9, 25.0) ,

~p4 = (−12.5, 15.3, 0.3) ,

~p5 = (−10.0,−18.0,−3.3) ,

~p6 = (−11.0,−13.2,−22.0) . (4.1)

After choosing the incoming photons such that they have momenta ~p1 and ~p2 along the

z-axis, we present in the plot the amplitude obtained by rotating the final states of an-

gle θ about the y-axis. This is done for both helicity configurations [+ + −−−−] and

[+ −− + +−]. In the same plot also appears the analytic results for the configuration

[+ + −−−−] obtained by Mahlon [18]. In figure 2, we use a different set of external

7We thank Andre van Hameren for providing us with his program to compute massless one-loop scalar

integrals.
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Figure 3: Helicity configuration [+ + −−−−] for the momenta of eq. (4.1) for different values of

the fermion mass in the loop: mf = 0.5 GeV (diamond), mf = 4.5 GeV (gray box) and mf = 12

GeV (black dots). The continuous line is the result for the massless case.

momenta. Starting from the following choice of {~p3, ~p4, ~p5, ~p6}:

~p3 = (−10.0,−10.0,−10.0) ,

~p4 = (12.0,−15.0,−2.0) ,

~p5 = (10.0, 18.0, 3.0) ,

~p6 = (−12.0, 7.0, 9.0) (4.2)

we proceed as in the previous case. The results for the amplitudes are plotted in figure 2

for the helicity configurations [+ + −−−−] and [+ + −− +−]. It is known that the six-

photons amplitude vanish for the helicity configurations [+ + + + ++] and [+ + + + +−],

we checked this result for both choices of the external momenta. Finally, using the external

momenta of eq. (4.1), we computed the amplitude introducing a non-zero mass mf for the

fermions in the loop.8 The results are plotted in figure 3, for the three cases mf = 0.5

GeV, mf = 4.5 GeV and mf = 12 GeV.

The code we prepared for producing the results presented in this section is written in

FORTRAN 90. Even if we did not spend too much effort in optimizations, it can compute

about 3 phase-space points per second, when working in double precision. All figures in

this section are actually produced by using double precision, but, to perform a realistic

integration, we still need quadruple precision, that slows down the speed by about a factor

60. We are working in implementing the expansions presented in the previous section with

the aim of being able to perform a stable integration over the full phase space, that is a

“proof of concept” for any method.

8We used here the scalar one-loop functions provided by FF [27].
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5. Conclusions

Computing the massless QED amplitude for the reaction 2γ → 4γ, although still unob-

served experimentally, is a very good exercise for checking new methods to calculate one-

loop virtual corrections. Such a process posses all complications typical of any multi-leg

final state, for example a non trivial tensorial structure, but also keeps, at the same time,

enough simplicity such that compact analytical formulas can still be used as a benchmark.

However, it is oversimplified in two respects. Firstly, the amplitude it is completely mass-

less. Secondly, the amplitude is cut constructible, namely does not contain any rational

part.

In the most general case of one-loop calculations, the presence of both internal and

external masses prevents from obtaining compact analytical expressions. Then one has to

rely on other computational techniques. For example, it is known that cut-constructible

amplitudes can be obtained through recursion relations. But, even then, the presence of

rational parts usually requires a separate work.

For such reasons, it would be highly advisable to have a method not restricted to

massless theories, in which moreover both cut-constructible and rational parts can be

treated at the same time. Such a method has been introduced recently in ref. [17] and, in

this paper, we applied it to the computation of the six-photon amplitude in QED, giving

also results for the case with massive fermions in the loop. We also showed in detail how

the rational part of any m-point one-loop amplitude is intimately connected with the form

of the integrand of the amplitude. Once this integrand is numerically computable, cut-

constructible and rational terms are easily obtained, at the same time, by solving the same

system of linear equations. This is a peculiar property of our method, that we tested in the

actual computation of the six-photon amplitude. In practice, we did not use the additional

information on its cut-constructibility and verified only a-posteriori that the intermediate

rational parts, coming from all pieces separately, drop out in the final sum.

Finally, we presented all relevant formulas needed to infer the rational parts from the

integrand of any m-point loop functions, in the renormalizable gauges.

In addition, we presented, by analyzing in detail the 2-point case, an idea to cure the

numerical instabilities occurring at exceptional phase-space points, outlining a possible way

to build up expansions around the zeroes of the Gram-determinants.

Having been able to apply our method to the computation of the massive six-photon

amplitude, we are confident that our method can be successfully used for a systematic and

efficient computation of one-loop amplitudes relevant at LHC and ILC.
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A. Computing the extra-integrals

In this appendix, we compute the extra-integrals listed in section 2. Since a contribution

O(1) can only develop for non-negative dimensionality D, the integrand in the Feynman

parameter integral is always polynomial. First we decompose the integration as follows
∫

dnq̄ =

∫

d4q dǫµ (q̃2 = −µ2) , (A.1)

then, after using Feynman parametrization and performing first the integral over dǫµ and

then that one over d4q, one derives, for the extra-integrals of eqs. (2.14)–(2.18)

I(n;2(s−1))
s = −iπ2Γ(s − 1)

∫

[dα]s + O(ǫ) ,

I(n;2(s−1))
s;µ = iπ2Γ(s − 1)

∫

[dα]s (Ps)µ + O(ǫ) ,

I(n;2(s−1))
s;µν = −iπ2Γ(s − 1)

∫

[dα]s (Ps)µ(Ps)ν + O(gµν) + O(ǫ) ,

I(n;2s)
s = −iπ2Γ(s)

∫

[dα]s Xs + O(ǫ) ,

I(n;2s)
s;µ = iπ2Γ(s)

∫

[dα]s Xs(Ps)µ + O(ǫ) , (A.2)

where
∫

[dα]s =

∫ ∞

0
dα0 · · · dαs δ

(

1 −
s

∑

j=0

αj

)

,

Xs = P 2
s + M2

s ,

Ps =

s
∑

j=0

αjkj ,

M2
s =

s
∑

j=0

αj(m
2
j − k2

j ) , (k0 = 0) . (A.3)

In the following, we compute, as an illustrative example, the first three integrals of eq. (A.2).

The remaining two can be obtained analogously. We start by changing the integration

variables as follows:

α1 = ρ1ρ2 · · · ρs

α2 = ρ1ρ2 · · · ρs−1(1 − ρs)

α3 = ρ1ρ2 · · · ρs−2(1 − ρs−1)

...

αs = ρ1(1 − ρ2)

α0 = (1 − ρ1) , (A.4)
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so that
∫

[dα]s =

∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s−1)
1 ρ

(s−2)
2 · · · ρs−1 , (A.5)

from which one trivially obtains the first integral

I(n;2(s−1))
s = −iπ2 Γ(s − 1)

Γ(s + 1)
+ O(ǫ) . (A.6)

To compute the second integral an integration over (Ps)µ in needed. Since the integrand

is symmetric when interchanging all ki, we concentrate on the coefficient of, say, k1. Since

∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s−1)
1 ρ

(s−2)
2 · · · ρs−1 α1k1µ

= k1µ

∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s)
1 ρ

(s−1)
2 · · · ρ2

s−1ρs

= k1µ
1

Γ(s + 2)
, (A.7)

the final result reads

I(n;2(s−1))
s;µ = iπ2 Γ(s − 1)

Γ(s + 2)

s
∑

j=1

(kj)µ + O(ǫ) . (A.8)

To compute the third integral we need to integrate over the product (Ps)µ(Ps)ν . Once again,

given the symmetry of the problem, we can focus on the two contributions proportional to

k1µk1ν and k1µk2ν . The first one gives

∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s−1)
1 ρ

(s−2)
2 · · · ρs−1 α2

1k1µk1ν

= k1µk1ν

∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s+1)
1 ρ

(s)
2 · · · ρ3

s−1ρ
2
s

= k1µk1ν
2

Γ(s + 3)
, (A.9)

and the second reads
∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s−1)
1 ρ

(s−2)
2 · · · ρs−1 α1α2k1µk2ν

= k1µk2ν

∫ 1

0
dρ1

∫ 1

0
dρ2 · · ·

∫ 1

0
dρs ρ

(s+1)
1 ρ

(s)
2 · · · ρ3

s−1ρs(1 − ρs)

= k1µk2ν
1

Γ(s + 3)
. (A.10)

Summing up all of the possibilities one obtains

I(n;2(s−1))
s;µν = −2iπ2 Γ(s − 1)

Γ(s + 3)







s
∑

j=1

(kj)µ(kj)ν +
1

2

s
∑

j=1

s
∑

i6=j

(kj)µ(ki)ν







+ O(gµν) + O(ǫ) .

(A.11)
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B. The general basis for the 2-point functions

In this appendix, we solve the problem of reconstructing the coefficients of the 2-point part

of the integrand of any amplitude

A(q̄) =
N(q)

D̄0D̄1
, (B.1)

by assuming N(q) at most quadratic in q and k1 ≡ (p1 − p0) 6= 0. In particular also the

case of vanishing k2
1 is included. First, we introduce a massless arbitrary 4-vector v, such

that (v · k1) 6= 0, that we use to rewrite k1 in terms of two massless 4-vectors (we also take

ℓ2 = 0)

k1 = ℓ + α v , (B.2)

giving

γ ≡ 2 (k1 · v) = 2 (ℓ · v) and α =
k2
1

γ
. (B.3)

Then, we introduce two additional independent massless 4-vectors ℓ7,8 defined as

ℓµ
7 = < ℓ|γµ|v] , ℓµ

8 =< v|γµ|ℓ] , (B.4)

for which one finds

(ℓ7 · ℓ8) = −2γ , (B.5)

and we decompose qµ + pµ
0 in the basis of k1, v, ℓ7 and ℓ8

qµ = −pµ
0 + ykµ

1 + yvv
µ + y7ℓ

µ
7 + y8ℓ

µ
8 , (B.6)

so that N(q) takes the form

N(q) = b + b̂0[(q + p0) · v] + b̂00[(q + p0) · v]2 + b̃11[(q + p0) · ℓ7] + b̃21[(q + p0) · ℓ8]

+b̃12[(q + p0) · ℓ7]
2 + b̃22[(q + p0) · ℓ8]

2

+b̃01[(q + p0) · ℓ7][(q + p0) · v]

+b̃02[(q + p0) · ℓ8][(q + p0) · v] + O(D0) + O(D1) . (B.7)

Notice that, because of the identity

2 (q · k1) = D1 − D0 + (d1 − d0) , with di = m2
i − p2

i , (B.8)

any term proportional to [(q + p0) · k1] either contributes to the constant term b or it is

included in the terms O(D0,1) we are neglecting.9 The same happens for the combination

[(q + p0) · ℓ7][(q + p0) · ℓ8].

9We suppose to determine them at a later stage of the calculation.
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To be able to determine all of the coefficients appearing in eq. (B.7), disentangling

completely the contributions O(D0,1), we look for a q that fulfill the requirement

D0 = D1 = 0 . (B.9)

For a q written as in eq. (B.6) this implies the system

y7y8 = Fy

yv =
d1 − d0 − 2yk2

1

γ
, (B.10)

where

Fy = −
1

4γ

(

m2
0 − y (d1 − d0) + y2k2

1

)

. (B.11)

It is convenient to introduce two classes of solutions. In the first class, that we call q±yk,

we take y fixed and choose y7 = ±eiπ/k. In the second class, that we call q′±yk, we take y

fixed but choose y8 = ±eiπ/k. The coefficients b, b̃11, b̃21, b̃12 and b̃22 can be obtained by

evaluating eq. (B.7) at the values

q±01 , q±02 , q±03 , (B.12)

or

q′±01 , q′±02 , q′±03 . (B.13)

In the first case, the coefficients read

b0 = b , b1 = −2γb̃21 , b2 = 4γ2b̃22 , b−1 = −2γF0b̃11 , b−2 = 4γ2F 2
0 b̃12 , (B.14)

with

b±1 = −
1

2

[

T−(q1) ± iT−(q2)
]

,

b0 =
T+(q1) + T+(q2)

2
,

b±2 =

[

T+(q1) − T+(q2)

2
− e±2iπ/3(T+(q3) − b0)

]

1

1 − e∓2iπ/3
, (B.15)

and where

T±(qk) ≡
N(q+

0k) ± N(q−0k)

2
. (B.16)

In the second case, one obtains instead

b′0 = b , b′1 = −2γb̃11 , b′2 = 4γ2b̃12 , b′−1 = −2γF0b̃21 , b′−2 = 4γ2F 2
0 b̃22 , (B.17)
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with

b′±1 = −
1

2

[

T−(q′1) ± iT−(q′2)
]

,

b′0 =
T+(q′1) + T+(q′2)

2
,

b′±2 =

[

T+(q′1) − T+(q′2)

2
− e±2iπ/3(T+(q′3) − b′0)

]

1

1 − e∓2iπ/3
, (B.18)

and where

T±(q′k) ≡
N(q′+0k) ± N(q′−0k)

2
. (B.19)

The reason why we have chosen two sets of solutions is that, in some special kinematical

configurations, F0 can vanish. Therefore, numerical stable solutions are obtained by taking

b̃21 and b̃22 from eq. (B.14), and b̃11 and b̃12 from eq. (B.17), while b is well defined in both

cases.

The coefficients b̂0 and b̂00 can be determined, in terms of additional solutions of the

kind q±λ1 and q±σ1, by defining the combinations

S(q) ≡ N(q) − b − b̃11[(q + p0) · ℓ7] − b̃21[(q + p0) · ℓ8]

−b̃12[(q + p0) · ℓ7]
2 − b̃22[(q + p0) · ℓ8]

2 ,

U(λ) ≡
S(q+

λ1) + S(q−λ1)

2
, (B.20)

as the two solutions of the system

(

U(λ)

U(σ)

)

=

(

λγ
2

λ2γ2

4
σγ
2

σ2γ2

4

)(

b̂0

b̂00

)

. (B.21)

The determinant of the matrix above is always different form zero, for non vanishing λ and

σ, when σ 6= λ, so that numerical inaccuracies never occur.

Finally, the two last coefficients b̃01 and b̃02 are determined, in terms of q+
λk and q′+σk,

as solutions of the system







Z(q+
λk)

Z(q′+σk)






=







−λγ2Fλe−iπ/k −λγ2eiπ/k

−σγ2eiπ/k −σγ2Fσe−iπ/k













b̃01

b̃02






, (B.22)

where

Z(q) ≡ S(q) − b̂0[(q + p0) · v] − b̂00[(q + p0) · v]2 . (B.23)

Once again one verifies that when, for example, k = 3 the system never becomes singular.
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