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Abstract: With an aim towards understanding the time-dependence of entanglement en-

tropy in generic quantum field theories, we propose a covariant generalization of the holo-

graphic entanglement entropy proposal of hep-th/0603001. Apart from providing several

examples of possible covariant generalizations, we study a particular construction based on

light-sheets, motivated in similar spirit to the covariant entropy bound underlying the holo-

graphic principle. In particular, we argue that the entanglement entropy associated with a

specified region on the boundary in the context of the AdS/CFT correspondence is given

by the area of a co-dimension two bulk surface with vanishing expansions of null geodesics.

We demonstrate our construction with several examples to illustrate its reduction to the

holographic entanglement entropy proposal in static spacetimes. We further show how this

proposal may be used to understand the time evolution of entanglement entropy in a time

varying QFT state dual to a collapsing black hole background. Finally, we use our pro-

posal to argue that the Euclidean wormhole geometries with multiple boundaries should

be regarded as states in a non-interacting but entangled set of QFTs, one associated to

each boundary.
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1. Introduction

One of the important questions in quantum field theories is to understand the number of

operative degrees of freedom in the theory at a given scale. In conventional RG parlance

this is measured by the Zamolodchikov’s c-function (in two dimensions) [1] which at the

critical points takes on the value of the central charge. One believes this picture to persist in

higher dimensions; in particular, there ought to exist some analog of a c-function in higher

dimensional quantum field theories of interest. Clearly there is a well-defined notion of

the central charges for conformal field theories in d > 2 [2], which may quantify the total

degrees of freedom. However, this interpretation in terms of the degrees of freedom has not

yet been rigorously proved except in two dimensions. Measuring degrees of freedom in time-

dependent backgrounds is an especially important open problem. A detailed understanding

of this issue is very important for making precise the notion of holography in quantum

gravity. For example, in the context of string theory in unstable backgrounds with closed

string tachyons, one expects that as the tachyon condenses, the number of degrees of

freedom does change [3]; to verify this expectation it is crucial to have a precise notion of

the time-dependent degrees of freedom.

A simple way to get a measure of the degrees of freedom is to couple the system to a

heat bath and study its thermal properties, in particular its entropy. However, we could

also ask the equally important question: suppose we concentrate on a particular region

of the background spacetime on which the QFT is defined and ask what is the correct

measure of the operative degrees of freedom in that region (even at zero temperature).

One important aspect of this is captured by the entanglement entropy, which provides a
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measure of how the degrees of freedom localized in that region interact (are “entangled”)

with the rest of the theory. In a sense the entanglement entropy is a measure of the effective

operative degrees of freedom, i.e., those that are active participants in the dynamics, in a

given region of the background geometry. Refer to [4] for a short review of entanglement

entropy in QFT.

Consider a QFT defined on a spacetime manifold ∂M (the peculiar choice of notation

for the background will become clear momentarily), and assume that ∂M allows the folia-

tion by time-slices ∂Nt as ∂M = ∂Nt×Rt. We wish to focus on a region At ⊂ ∂Nt at a fixed

time t. Denote also the complement of At with respect to ∂Nt by Bt so that At∪Bt = ∂Nt.

This procedure divides the Hilbert space for the total system H into a direct product of two

Hilbert spaces HA and HB for the two subsystems, corresponding to the regions At and

Bt, respectively, i.e., Htot = HA⊗HB. In this setup, one measure of the number of degrees

of freedom associated with region (or sub-system) At is given by the entanglement entropy

SAt . It is defined as the von Neumann entropy SAt(t) = −Tr ρAt(t) log ρAt(t) associated

with the reduced density matrix ρAt(t) = TrB ρtot(t), obtained by taking a trace of the

density matrix ρtot(t) for the total system at time t over the Hilbert space HB. Notice that

the entanglement entropy defined in this way is manifestly time-dependent. Below, we will

suppress the index t which shows the time-dependence when we consider a static system,

where SAt(t) does not depend on t.

In the same way, we can define the entanglement entropy SBt(t) for the other sub-

system Bt. In general, SAt(t) is different from SBt(t). However, they are equivalent if

the total system is described by a pure state |Ψ(t)〉 =|ΨAt〉⊗ |ΨBt〉, where the total and

reduced density matrices are given by ρtot(t) =|Ψ(t)〉〈Ψ(t)| and ρAt(t) = TrBt |Ψ(t)〉〈Ψ(t)|,
respectively.

In a two dimensional CFT, we can analytically calculate the entanglement entropy for

arbitrary choice of the subsystem At as shown recently in [5], generalizing the previously

known result [6]. Moreover, an analogue of the Zamolodchikov’s c-theorem (called entropic

c-theorem) has been shown in [7, 8] (see also [9]). However, in higher dimensions it is

rather difficult to obtain analytical results for generic At. Its state of the art is reviewed

in [10] from the viewpoint of the QFT.

Recently, entanglement entropies of various 1 + 1 and 2 + 1 dimensional condensed

matter systems have been actively investigated in order to understand zero temperature

quantum phase transitions [4, 11 – 14]. In this context, entanglement entropy plays an

important role of an order parameter of the phase transition. For example, in a material

exhibiting topological ordering, such as the system with anyons in fractional quantum

Hall effect, correlation functions are not useful since the theory is topological. Instead we

need a quantity which probes non-local information like fractional statistics of anyons. It

turns out that the entanglement entropy can do this job elegantly, because it is defined

non-locally [12 – 14].

As already mentioned, one of the important reasons to be interested in issues related to

measuring degrees of freedom has to do with quantum gravity and the notion of holography.

Roughly speaking, the holographic principle states that the number of degrees of freedom

in a quantum theory of gravity scales with the area of the system, in contrast to standard
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QFTs where the entropy is extensive and scales with the volume [15 – 17]. In string theory

a natural realization of the holographic principle is manifested by the AdS/CFT corre-

spondence [18, 19] which gives us a precise map between a quantum gravity theory on an

asymptotically AdS spacetime M and an ordinary QFT on the conformal boundary ∂M
of M. In this context we can ask whether there is a gravitational dual of the entanglement

entropy associated with a subsystem of the boundary QFT. Refer to [20, 21] for earlier

pioneering works.

Interestingly, for a long time it has been known that the leading ultraviolet divergent

contribution to the entanglement entropy SA in QFTs is proportional to the area of the

boundary ∂A of the subsystem A (known as the area law of entanglement entropy) [22, 23].

This means that unlike the thermal entropy, the entanglement entropy is not an extensive

quantity.1 Instead, this property looks very analogous to the holographic principle and the

area law of Bekenstein-Hawking black hole entropy. This fact strongly suggests a simple

gravitational interpretation of entanglement entropy in QFTs via a holographic relation.

Recently, a geometric procedure has been discovered to compute the entanglement

entropy of a sub-system A ⊂ ∂N in the context of the AdS/CFT correspondence [24, 10].

The construction which we review in section 2 proceeds as follows: given a region A in

∂N (at a fixed time) of a static asymptotically AdS spacetime, we construct a minimal

surface S (i.e., a surface whose area takes the minimum value) in the bulk spacetime M
which is anchored at the boundary ∂A of A. The area of this minimal surface in the bulk

Planck units provides an accurate measure of the entanglement of the degrees of freedom

in A with those in its spatial complement, B. This prescription has been verified by

several non-trivial checks [24, 10, 25, 3, 26] as well as a direct proof [27]. This holographic

prescription provides a simple way to calculate the entanglement entropy in spacetimes

with no temporal evolution. Moreover, this holographic relation is successfully applied to

the brane-world black holes [28, 29] and de-Sitter spaces [30] as well, which enable us to

interpret the horizon entropy with quantum corrections as the entanglement entropy (see

also recent discussions [31 – 33]).

The geometric perspective provided by the minimal surface construction has many ad-

vantages, especially for QFTs in dimensions d > 2, since there are relatively few techniques

to calculate the entanglement entropy in interacting field theories. Furthermore, herein lies

the hope to address an interesting question related to entanglement entropy, namely its be-

haviour as a function of time in an interacting QFT. In this context it is important to note

that since the entanglement entropy is not an extensive quantity, unlike the conventional

thermodynamic entropy, a priori it does not have to obey the Second Law. Nevertheless, it

seems natural to expect that when we consider an interacting QFT, the degrees of freedom

in region A will interact with those in B and consequently get more entangled, thereby

increasing the entanglement entropy SA. Indeed the following theorem is well-known: let

Λt (t ∈ R+) be a one parameter family of positive linear transformations of a Hilbert space

H such that they constitute a semi-group2; then S(Λt(ρ)) ≥ S(ρ). This “monotonicity”

1For systems at finite temperature, the entanglement entropy also includes a finite extensive term which

is proportional to the thermal entropy.
2Here a positive matrix is defined to be a Hermitian matrix whose trace is positive. A positive linear
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property essentially comes from the concavity of −ρ log ρ as a function of ρ. In the setup

of this theorem, we interpret Λt as the irreversible and non-unitary time-evolution such

as a quantum analogue of the Markov process. Also ρ is taken to be the reduced density

matrix ρA. On the other hand, in the case of a unitary time evolution of an excited state,

the entropy for the total system remains the same while the entanglement entropy for a

subsystem can change. Explicit examples are borne out in the analysis of [34] where the

authors analyse the situation in two dimensional field theories. However, the general story

is far from clear and one would like to get a better handle on the problem. Hence, instead

of examining time-dependence of entanglement entropy from the QFT point of view, we

would like to analyse it using the holographic prescription mentioned above.

In the context of the AdS/CFT correspondence, the prescription for calculating the

entanglement entropy from the area of a minimal surface suffers from one stumbling block:

the minimal surfaces are usually associated with Euclidean geometries. In Lorentzian

spacetimes one has trouble defining a minimal surface, because by wiggling a spacelike

surface in the time direction, one can make its area arbitrarily small. For static spacetimes,

this problem is usually avoided by Wick rotating and working in the Euclidean set-up, or

equivalently by restricting attention to a constant time slice. But for the most interesting,

dynamical questions, this method is not applicable. However, this does not necessarily

mean that the notion of the geometric dual of the entanglement entropy cannot be defined

in general. Indeed, as we have explicitly seen, entanglement entropy is well-defined in terms

of the time-dependent density matrix, and therefore has to admit a well-defined holographic

dual. By well-defined we mean generally covariant. Hence, our strategy for examining the

entanglement entropy dual in a general time-dependent scenario will be to first find a

suitable fully covariant generalization of the minimal-surface proposal, and then to use this

‘covariant holographic entanglement entropy’ definition3 to find the time-variation in the

specific cases of interest.

To motivate the possibility of generalizing the dual of entanglement entropy in time-

dependent scenarios, it is useful to think of the analogy with a spacelike geodesic (which

in fact describes the minimal surface for a 3-dimensional bulk). In Euclidean spacetimes,

spacelike geodesics are local minima of the proper length functional. However, in Lorentzian

spacetimes they are extrema of the proper length. Likewise, we expect that the natural

analog of the Euclidean minimal surface to be an extremal surface, denoted by W below,

which is a saddle point of the proper area functional. This expectation is indeed realized,

and forms the primary result of this paper.

For stationary bulk geometries with a timelike Killing field, the entanglement entropy

is likewise time independent, and there exists a canonical foliation of the bulk spacetime

M by spacelike surfaces. In a generic time-dependent background there is no preferred

canonical foliation in the bulk. In contrast, for a QFT on a fixed background we do have a

transformation is the one which maps a positive matrix to another positive matrix. Also we require that it

does not change the identity and satisfies Tr Λt(ρ) = Tr ρ for any density matrix on H.
3In what follows, to simplify the terminology somewhat, we will sometimes denote this as simply “co-

variant entanglement entropy”; it should be clear from context when we mean the gravitational dual and

when we are talking about the QFT quantity.
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natural notion of time. The issue from a gravitational standpoint is then whether a given

spacelike foliation in ∂M =
∏

t ∂Nt × Rt, extends in a unique fashion into the bulk to

provide us with the requisite foliation of M. If the answer is in the affirmative, then we can

use the spacelike slices thus constructed and find minimal surfaces localized within them.

Indeed, even in time-dependent geometries it is plausible that there is a natural slicing

of the bulk spacetime M: we can define “maximal area” co-dimension one spacelike slices

Σ, by the vanishing trace of the extrinsic curvature on Σ. Since each Σ is spacelike, we now

have a well-defined prescription for finding a minimal-area (bulk co-dimension two) surface

localized within Σ and anchored at ∂A. We denote this ‘minimal surface on maximal

slice’ by X . The surface X is covariantly defined, and like W it reduces correctly to the

requisite minimal surface for static spacetimes, thereby providing another candidate for

the covariant entanglement entropy. However, as we will see, to make contact with a

holographic perspective we will have to elevate the notion of the maximal slice to that of

a totally geodesic co-dimension one slice.

In this paper we examine the two constructions W and X motivated above, and propose

a more appealing covariant generalization Y of the geometric construction of [24, 10] to

compute entanglement entropy in general asymptotically AdS spacetimes. The basic idea

behind our proposal is to exploit the light-sheet construction of the covariant entropy

bounds of Bousso [35 – 37]. Light-sheets are a natural concept in Lorentzian spacetimes

and serve to single out a co-dimension two spacelike surface of the bulk manifold whose area

bounds the entropy passing through its light-sheet in the context of the covariant entropy

bounds. We will denote this surface, whose construction we focus on in what follows,

by Y. The minimal surface X construction also singles out a co-dimension two spacelike

surface, albeit by first picking a spacelike foliation and then finding a co-dimension one

surface within the leaves of the foliation. It is thus natural to expect that there is an

intimate relation between the light-sheet construction and minimal surfaces and indeed

we will show that they are equivalent if a given time slice is totally geodesic. We hope a

similar argument can be applied to more general spacetimes with boundaries allowing bulk

non-trivial minimal surfaces.

A natural way to motivate the light-sheet construction is to consider a cut-off field

theory in asymptotically AdS spacetimes. The dual description of the bulk is then in

terms of a cut-off field theory coupled to dynamical gravity on the cut-off surface. Due

to the gravitational dynamics in the boundary field theory the entropy associated with

any co-dimension two surface bounds the amount of information that passes through the

light-sheet associated with that surface. The spacelike co-dimension two surface can be

taken to be the boundary ∂A of the subsystem A. Aided by this construction we can

extend the light-sheets that live on the cut-off surface into bulk light-sheets and ask what

is the spacelike surface in the bulk associated with these? Imposing the constraint that

the spacelike co-dimension two4 surface in M be required to have boundary ∂A on ∂M so

that light-sheets can end on it, we can find the bulk surface we were looking for.

4Note that co-dimension two surface in the cut-off boundary corresponds to a co-dimension three surface

in the full bulk; so here the requisite surface has the same dimension as A rather than ∂A — see table 1 in

appendix A.
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While this motivates the proposal for a covariantization of the geometric prescription

for finding the entanglement entropy in terms of light-sheets in this formulation, it is

not very constructive. There is in fact a simple algorithm for actually constructing the

bulk surface Y in question: find the spacelike co-dimension two surface whose boundary

coincides with ∂A on ∂M with the constraint that the trace of the null extrinsic curvatures

(i.e. the null expansions) associated with the two null normals to Y vanish. For smooth

surfaces parameterized by two functions this leads in general to some partial differential

equations which can be solved to obtain a precise construction of the surface. Furthermore,

we can show that this definition of Y is actually equivalent to the requirement that Y is the

co-dimension two extremal surface in the Lorentzian manifold with the specified boundary

condition. In other words, Y = W. Thus this construction naturally reduces to the minimal

surface prescription of [24, 10].

As a check in a simple non-static example, we analytically compute the holographic

entanglement entropy of three dimensional rotating (BTZ) black holes employing our co-

variant prescription. The result precisely agrees with the entropy calculated in the dual

two dimensional CFT. Furthermore, we also argue that the prescription of finding the sur-

face Y using the vanishing null extrinsic curvatures can be derived from a bulk-boundary

relation a la., GKP-W relation [38, 39] for the AdS/CFT correspondence. One can set up a

variational problem by exploiting these ideas and show that the action principle in gravity

singles out the extremal surface.

Once we have a covariant prescription for computing the Lorentzian extremal surface

in M we can ask the basic questions that motivated the investigation in the first place,

such as whether the entanglement entropy has definite monotonicity properties vis a vis

temporal evolution. To address this issue we discuss the example of a spacetime background

involving a collapse scenario leading to black hole formation; the spacetime is modeled by

a Vaidya-AdS spacetime. Due to the formation of a black hole in the bulk, we expect that

the dual field theory on the boundary thermalizes. The thermalization is expected to lead

to an increase in the entanglement entropy: the ergodic mixing of the boundary degrees

of freedom would suggest that the degrees of freedom localized in region A interact more

with those in B and thereby one expects that the entanglement entropy grows in time. The

bulk computation using the light-sheet prescription bears out this picture nicely.

Another example where a covariant formulation is necessary is the case of wormhole

spacetimes in AdS with two disconnected boundaries [40]. Even though the two CFTs on

the two disconnected boundaries look decoupled from each other, there are non-vanishing

correlation functions between two theories in the dual gravity calculation as pointed out

in [40]. We would like to present a possible resolution to this puzzle by computing the

entanglement entropy between the two CFTs.

The outline of the paper is as follows: we begin in section 2 with a quick review of

the minimal surface proposal for static spacetimes and the reasons to expect a covariant

generalization of this picture. We then proceed in section 3 to motivate the light-sheet con-

struction for time-dependent backgrounds. We present a manifestly covariant holographic

entanglement entropy in this section, which is the most important conclusion of this paper.

We explain how this construction can be naturally motivated from a variational principle
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and its connection to the bulk-boundary relation within the AdS/CFT context in section 4.

In section 5 we illustrate the calculations of the entanglement entropy using our covariant

proposal and demonstrate the consistent agreement with the minimal surface prescription

of [24, 10]. We also examine rotating BTZ black holes, which are stationary but non-static,

and show that our covariant proposal precisely reproduces the entanglement entropy com-

puted from the CFT side. In section 6 we discuss the explicit time-dependent situation

of gravitational collapse and argue that the entanglement entropy increases monotonically

in this context. We discuss other interesting time-dependent backgrounds, such as AdS

wormholes and bubbles of nothing in section 7 and end with a discussion in section 8. In

appendix A we present a simpler covariant construction which whilst not reproducing the

correct minimal surface in general is nevertheless interesting in that it provides a bound

on the entanglement entropy. In appendix B we give a proof of equivalence between the

vanishing of null expansions and the extremal surface. In appendix C we presents some

details of the calculations of the time-dependent entanglement entropy in the Vaidya-AdS

background using perturbative methods.

2. Entanglement entropy and time-dependent QFTs

As mentioned in the Introduction, our main aim is to find a covariant prescription for calcu-

lating the entanglement entropy associated with a given region of the boundary conformal

field theory. We begin by reviewing the minimal surface proposal of [24, 10], which pro-

vides the first step of geometrization of entanglement entropy in the AdS/CFT context, and

which will serve to set up the background and notation for the subsequent generalization

to non-stationary spacetimes. We then argue that entanglement entropy remains a well-

defined concept in time-varying states in the field theory, and motivate a correspondingly

well-defined dual geometric construction which would accommodate any time-dependence

in the bulk. Finally, we remark that there are in fact many such plausible constructions,

and give an overview of those we focus on in the present paper.

2.1 Review of holographic entanglement entropy

Consider a d + 1 dimensional asymptotically AdS spacetime M with conformal boundary

∂M. For the present we will concentrate on the static case when M admits a timelike

Killing field
(

∂
∂t

)µ
. On the boundary ∂M of M, which serves as the background for the

dual field theory, time translations are generated by
(

∂
∂t

)µ
which is simply the pullback of

the bulk Killing field. Thus we can naturally foliate the boundary ∂M by spacelike surfaces

which are normal to this timelike Killing field so that ∂M =
∏

t ∂Nt ×Rt. Consider then

a particular leaf ∂N of this foliation which we wish to divide into into two regions A and

B so that ∂N = A ∪ B. The boundary between these regions is denoted as ∂A(= ∂B)

assuming that ∂N is a compact manifold. Note that A is (d − 1)-dimensional and ∂A is

therefore (d − 2)-dimensional.

For a QFT on ∂M we can calculate the entanglement entropy associated with the

region A. Since there are infinitely many degrees of freedom in an ordinary QFT, it is

known that the entanglement entropy suffers from an ultraviolet divergence. The standard
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result is that the leading divergence of entanglement entropy scales as the area of the

boundary ∂A between the two regions (or sub-systems, as they are conventionally referred

to in the entanglement entropy literature) [22, 23]. The intuitive reason of this area law

for the divergent part is that the most entangled degrees of freedom are the high energy

ones localized within an infinitesimal neighbourhood of ∂A. Essentially,

SA = α
Area(∂A)

εd−2
+ · · · , (2.1)

where we have indicated the leading divergent behaviour (α is a constant factor). The

infinitesimally small parameter ǫ denotes the ultraviolet divergence (i.e. lattice spacing).

The subleading terms contain slower power law or logarithmic divergences apart from finite

terms which are of interest.

Since we work within the AdS/CFT context we can ask whether the entanglement

entropy for the boundary QFT can be calculated using a purely geometric construction

in the bulk; this question was answered in the affirmative in [24, 10]. The essential idea

behind the picture of [24, 10] is the following: by virtue of time translation invariance, the

boundary spacelike foliation naturally extends into the bulk to provide a canonical spacelike

foliation
∏

t Nt of M. On a given spacelike slice in the M we are instructed to construct

a minimal (area) surface which ends on ∂A ⊂ ∂N . This is a well defined problem and the

minimal surface which is a spacelike surface of vanishing mean curvature is guaranteed to

exist due to the Euclidean signature of the bulk spacelike slice. Thus, given the minimal

surface Smin, the entanglement entropy associated with region A is

SA =
Area(Smin)

4G
(d+1)
N

. (2.2)

Note that the minimal surface S is a co-dimension two surface in the bulk spacetime M
by virtue of being a co-dimension one submanifold of a particular leaf of the spacelike

foliation.

2.2 Entanglement entropy in time-dependent states in QFT

For states in QFT with trivial time-dependence, one can calculate the entanglement entropy

in a conventional manner by looking at the decomposition of the total Hilbert space on a

given time-slice. The holographic perspective of this is captured by the minimal surface

prescription indicated in (2.2). It is clear from the outset that in QFT nothing prevents

us from considering explicitly time-varying states and computing entanglement entropy

for subsystems thereof. It is easy to give a path-integral prescription for computing the

entanglement entropy in these circumstances and we outline the basic methodology below.

Consider a quantum field theory in a time-dependent background. Its evolution in

time is described by the time-dependent Hamiltonian H(t). A state at the time t = t1 is

defined by |Ψ(t1)〉. It is related to the state at the time t0 via the familiar formula

|Ψ(t1)〉 = T exp

(

−i

∫ t1

t0

dt H(t)

)

|Ψ(t0)〉 . (2.3)
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In the path integral formulation, the ket state |Ψ(t1)〉 is equivalently constructed by

the path-integral5 from t = −∞ to t = t1

Ψ (t1, φ0(x)) =

∫ t=t1

t=−∞
[Dφ] eiS(φ) δ (φ(t1, x) − φ0(x)) , (2.4)

where we represent all fields by φ. On the other hand, the bra state 〈Ψ(t1)| is expressed

as follows:

Ψ (t1, φ0(x)) =

∫ t=∞

t=t1

[Dφ] eiS(φ) δ (φ(t1, x) − φ0(x)) . (2.5)

Clearly they satisfy

i
∂

∂t
|Ψ(t)〉 = H(t) |Ψ(t)〉 , i

∂

∂t
〈Ψ(t)|= −〈Ψ(t)| H(t) . (2.6)

Let us first assume the total system is described by a pure state |Ψ(t)〉 with unit norm

at vanishing temperature. Then the total density matrix is given by

ρtot(t) = |Ψ(t)〉〈Ψ(t)| , (2.7)

and its time-evolution is dictated by the von-Neumann equation

i
∂ρtot(t)

∂t
= [H(t), ρtot(t)] . (2.8)

In the gravitational context we will consider interesting examples with event horizons.

These will be described in the dual CFT by a mixed state and so we need to formulate the

theory by using only the density matrix ρtot(t). However, even in such cases we expect to

have an equivalent description in terms of a pure state by assuming another CFT sector

hidden inside the horizons as in the Schwarzschild-AdS case [21], or other degrees of freedom

in more general circumstances as in the examples of [41]. Thus the assumption (2.7) does

not exclude the choice of density matrices, so long as we can purify the state by passage

to a enlarged Hilbert space (which, in the geometry, corresponds to another sector behind

the horizon).

Divide the total Hilbert space into a direct product of two Hilbert spaces at time t:

Htot = HA ⊗HB. In the quantum field theory, this is realized by dividing the total space

manifold ∂N at a fixed time into two parts A and B. Then the entanglement entropy SA(t)

at time t is defined as follows

SA(t) = −TrA (ρA(t) log ρA(t)) , (2.9)

where ρA(t) is the reduced density matrix

ρA(t) = TrB ρtot(t) = TrB |Ψ(t)〉 〈Ψ(t)| . (2.10)

We always normalize any (reduced) density matrices ρ such that their trace is one i.e.,

Tr ρ = 1. In order to express SA(t) in the path integral formalism, we need to first describe

5By employing the conventional i ǫ-prescription we can project the asymptotic state |Ψ(t = −∞)〉 to the

ground state.
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the reduced density matrix in that formalism (see also [5, 34, 42, 10]). Taking the trace

in the Hilbert space HB in (2.10) is equivalent to partially gluing two boundaries in (2.4)

and (2.5) along B. Thus it is described by the path-integral over the whole spacetime with

an infinitesimally small slit along A at a fixed time t

[ρA(t)]φ+φ−
=

1

Z1
·
∫ t=∞

t=−∞
[Dφ] eiS(φ)

∏

x∈A
δ (φ(t + ǫ, x) − φ+(x)) δ (φ(t − ǫ, x) − φ−(x)) ,

(2.11)

where ǫ is an infinitesimal positive constant and we also defined

Z1 =

∫ t=∞

t=−∞
[Dφ] eiS(φ) . (2.12)

Given the definition of the trace of the density matrix ρA in (2.11), it is easy to calculate

the trace Tr(ρA)n. This is calculated by integrating the products of path-integrals

[ρA(t)]φ1+φ1− [ρA(t)]φ2+φ2− · · · [ρA(t)]φn+φn−
, (2.13)

successively with the identifications: φ1− = φ2+, φ2− = φ3+, · · · and φn− = φ1+. In other

words, this is essentially the partition function Zn(t) on the (singular) manifold ∂Mn which

is defined by the n copies of the total manifold M glued along A at the fixed time t

Tr (ρA(t))n =
Zn(t)

(Z1)n
. (2.14)

Knowledge of the partition function Zn(t) on the singular manifold, then allows us to

compute the entanglement entropy using:

SA(t) = − ∂

∂n
log Tr (ρA(t))n

∣

∣

∣

∣

n=1

= log Z1 −
∂ log Zn(t)

∂n

∣

∣

∣

∣

n=1

. (2.15)

2.3 Towards holographic entanglement entropy in time-dependent states

The discussion of entanglement entropy in time-dependent QFT states in the previous

section makes it clear that there is no a priori obstruction in thinking about this issue

from a field theoretic perspective. In the AdS/CFT context we would then like to ask

whether the holographic entanglement entropy proposal of [24, 10] can be generalized

to time-dependent scenarios. In particular, can we find a suitable generalization of the

minimal surface which is fully covariant? The answer is of course yes, and in fact we

will propose several covariant constructions in this and the next section, and examine the

relations between them.

To motivate the existence of a suitable covariantly well-defined surface, we start6 by

indicating the construction of the surface which we will denote as X , which is the most naive

generalization of the minimal surface in the case of static bulk spacetimes. Consider a time-

dependent version of the AdS/CFT correspondence where the boundary theory is taken to

6Those readers who would like to know the final conclusion immediately are advised to skip to the

covariant entanglement entropy proposal (I) and (II) in section 3.1 and section 3.3.
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be in a time-varying state on a fixed background ∂M. The corresponding bulk geometry M
will have an explicit time-dependence and hence no timelike Killing field. Since the metric

on ∂M is non-dynamical in the boundary, we can choose a foliation by equal time slices,

by picking our time coordinate such that it implements the natural Hamiltonian evolution

of the field theory, so that ∂M = ∂Nt ×Rt. We can choose to consider a region At ∈ ∂Nt

on a given time slice as in section 2.2 and compute the entanglement entropy using the

path integral prescription. The question then is what is the analog of this computation

from a bulk perspective?

Naively, one would expect that the minimal surface prescription for computing the

holographic entanglement entropy should go through. However, this cannot quite be the

case; as mentioned in section 1, in Lorentzian spacetimes one has to be careful about

defining suitable minimal area surfaces due to the indefinite metric signature.

The crucial issue in a Lorentzian setting is the fact that generically, the equal-time

foliation on the boundary ∂M does not necessarily lead to a canonical (i.e., symmetry-

motivated) foliation of the bulk M. Supposing for the moment that a natural foliation

was singled out; we could then compute the holographic entanglement entropy by first

picking the preferred spacelike slice Nt of M given by extending the slice from ∂M. On

Nt the induced metric is spacelike and the notion of the minimal surface is well defined.

The holographic prescription then amounts to finding a minimal surface S ∈ N such that

∂S|∂M = ∂A.

The above observation suggests that we look for a covariantly defined spacelike slice

of the bulk, Nt, anchored at ∂Nt, which reduces to the constant-t slice for static bulk.

Generically, while one expects no preferred/natural time slicing of M, it is plausible that

for asymptotically AdS spacetimes one has a preferred foliation by zero7 mean curvature

slices i.e., slices with vanishing trace of extrinsic curvature. Physically, each of these slices

corresponds to the maximal area spacelike slice through the bulk, anchored at the boundary

slice ∂N .8 We denote the leaves of this maximal-area foliation by Σt.

One might worry that the maximal-area slice is not well defined because an area of

a given surface can always be increased by “crumpling” or wiggling the surface in the

spatial directions; however, here the crucial point is that our slice has co-dimension one,

extending over all the available spatial directions, and therefore allows no room for wiggling.

Another possible concern is the fact that in asymptotically AdS spacetimes, the area of

any spacelike slice is manifestly infinite. However, this is the familiar problem of regulating

the lengths/areas/volumes in AdS, which we know how to deal with. Below, we will use

a simple background subtraction technique, and regulate all quantities by subtracting off

the corresponding values in pure AdS.

Provided we have this special, maximal spacelike slice Σt through the bulk, we proceed

as outlined above: on this slice, we construct the minimal-area surface anchored at ∂At.

This amounts to a mini-max algorithm for the holographic entanglement entropy; find a

7In general, any constant mean curvature slice of the bulk provides a covariantly well-defined surface;

however, when this constant is non-zero it doesn’t satisfy the requirement of reducing to the constant-t slice

in static bulk.
8We thank Doug Eardley, Gary Horowitz, and Don Marolf for discussions on this issue.
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maximal slice in the bulk which agrees with the spacelike foliation of ∂M and in that

maximal slice find a minimal surface X . In this setup, one may obtain a natural proposal

that the area of X then gives the entanglement entropy,

SA =
Area(X )

4G
(d+1)
N

. (2.16)

Note that the surface X by construction satisfies the three basic pre-requisites for being

a candidate dual of the entanglement entropy of A: it is covariantly well-defined, it is

anchored at ∂A, and it reduces to the requisite minimal surface when the bulk spacetime

is static.

However, we will argue that this prescription doesn’t follow naturally from a holo-

graphic viewpoint and needs to be finessed slightly to make contact with the holographic

perspective. Thus, rather than stopping at our candidate surface X , in the next section

we will propose another candidate surface, Y, as a more natural dual of the entanglement

entropy. In fact, this holographic formulation will provide a more straightforward algo-

rithmic construction of the requisite surface Y. Our starting point is motivated by the

idea of light-sheets introduced in the context of covariant entropy bounds in gravitational

theories. We will argue that the prescription which we find in terms of light-sheets reduces

to the intuitive picture presented above, modulo some subtleties, with the added bonus of

providing an explicit equation for the extremal surface.

2.4 Preview of covariant constructions

Before delving into the details of these constructions, we briefly list them with a short

summary of our final conclusion, to orient the reader and fix the notation. In all cases,

the requisite surface is a co-dimension two bulk surface which is anchored on the boundary

at ∂At. In addition, all of these constructions are fully covariant — they do not depend

on any particular choice of coordinates — and therefore are physically well-defined. Also,

these surfaces are mutually closely related; although different symbols are used to indicate

different constructions, this is not meant to imply that the surfaces thus constructed are

necessarily distinct. In part of what follows we will examine the specific relations between

them.

• W: extremal surface, given by a saddle point of the area action. In 3-dimensional

bulk, this is simply the spacelike geodesic through the bulk connecting the points

∂At. We return to discuss this surface in section 4.1.

• X : minimal-area surface on maximal-area (co-dimension one) slice of the bulk. The

construction was motivated in section 2.3 and we will discuss some subtleties and

generalizations in section 4.2. In particular, we will show that X coincides with the

extremal surface W if X is situated on a totally geodesic spacelike surface.

• Y: surface wherefrom the null expansions along the requisite future and past light-

sheets vanish. This will be the construction we primarily focus on. In fact, we propose

two constructions, Ymin
At

in section 3.1, and Yext in section 3.3. We will later see that
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M

S

Light Rays

Light-Sheet LS

Figure 1: A light-sheet LS for a co-dimension two space-like surface S. The null geodesics on the

light-sheet are converging, i.e., the expansion is non-positive.

Ymin
At

and Yext are equivalent to the extremal surface W (we present a proof in the

appendix B).

• Z: ‘causal construction,’ discussed mainly in appendix A: maximal area surface on

the boundary of the causal wedge of the boundary domain of dependence of At.

Our main claim of this paper will be that the covariant holographic entanglement

entropy is obtained from the area of the surface W = Y. In a generic time-dependent

spacetime, we will find that another surface X deviates slightly from W = Y. We will

also confirm that W, X , and Y all reduce to the minimal surface in static bulk spacetime;

however this is not necessarily the case for Z. Nevertheless, Z will be useful because,

as we motivate in appendix A, it provides a bound on the entanglement entropy, and is

computationally simpler to find.

3. Covariant holographic entanglement entropy and light-sheets

3.1 Light-sheets and covariant constructions

To motivate the natural covariant generalization of a holographic entanglement entropy

proposal, it is useful to recall the construction of covariant entropy bounds in gravitational

theories. The main issue in defining covariant entropy bounds was to put a bound on

the entropy/information passing through a given region of spacetime in a fashion that is

independent of the choice of coordinates or slicing. A clear formulation of covariant entropy

bounds was achieved by Bousso [35 – 37] using the concept of light-sheets. A discussion of

this entropy bound applied to the AdS/CFT, which stimulates our arguments below, can

be found in [43].

Before proceeding to discuss the relevance of light-sheets for calculating entanglement

entropy, let us review the concept of a light-sheet. Given any co-dimension two spacelike

surface S in a spacetime manifold M, we construct four congruences of future/past null

geodesics from the surface in in-going and out-going directions. A light-sheet LS for S
corresponds to those null geodesic congruences for which the expansion of the null geodesics
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is non-positive definite (we will explain the definition of the expansion of null geodesics in

the next subsection; physically, we require that the cross sectional area at a constant affine

parameter along the congruence does not increase). The null geodesics along the light-sheet

are converging and will eventually develop caustics; at any such point the light-sheet gets

cut off. According to the covariant entropy bound (Bousso bound), the entropy or amount

of information SLS
that can pass through a light-sheet (i.e. the integral of the entropy flux

on the light-sheet [44]) is bounded by the area of spacelike surface as follows:

SLS
≤ Area(S)

4GN
. (3.1)

We would like to propose that the correct generalization of the holographic entangle-

ment entropy is in terms of these light-sheets. One can motivate this claim by analyzing

the QFT coupled to gravity as in a brane-world set-up (i.e., RS II model [45]). Indeed, the

Bekenstein-Hawking entropy of brane-world black holes can be interpreted as an entangle-

ment entropy in this setup, as discussed in [28, 20].

Consider the setup of the AdSd+1/CFTd with an explicit UV cut-off in the bulk, z > ε,

where z is the AdS radial coordinate, chosen such that the boundary is at z = 0. We choose

Poincaré coordinates for AdSd+1 (with the radius of AdS set to unity for simplicity)

ds2 =
1

z2

(

−dt2 + dz2 +

d−1
∑

i=1

dx2
i

)

. (3.2)

The UV cut-off ε is infinitesimally small and is interpreted as a lattice spacing. This setup

is equivalent to the one of the brane-world where a very weak gravity exists on the d

dimensional brane located on the cut-off surface. The Newton’s constant for the brane will

be taken to be G
(d)
N . By the AdS/CFT correspondence this set-up is dual to the bulk d+1

dimensional AdS spacetime with the cut-off and a bulk Newton’s constant G
(d+1)
N related

via the rule

1

G
(d)
N

=
1

G
(d+1)
N

∫

dxd+1
√

g(d+1)R(d+1)

∫

dxd
√

g(d)R(d)
=

1

G
(d+1)
N

∫ ∞

ε

dz

zd−1
=

1

(d − 2) εd−2

1

G
(d+1)
N

. (3.3)

Since the brane-world theory has gravity coupled to the QFT, we can consider the

Bousso bound for the d dimensional boundary theory. We then would like to translate

the computation of this bound holographically into a calculation from the viewpoint of the

bulk d + 1 dimensional gravity. In the boundary the calculation would proceed by finding

the light-sheets associated with the particular region A we want to focus on. Since in the

boundary field theory the light-sheets bound the region which is relevant for any entropy

bound, the corresponding bulk prescription should likewise include no more than this re-

gion. A natural expectation is then that the co-dimension two surface in the boundary

has a canonical extension into the bulk spacetime in such a way that the associated bulk

light-sheets are anchored on the boundary light-sheets under the appropriate restriction.

Of course, there are potentially many surfaces that satisfy this requirement; we will then

pick the one that gives the strongest bound on the bulk entropy. Our claim then amounts
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to the statement that the dual bulk entropy bounds can be found by extending the bound-

ary light-sheet (which was employed to find the covariant entropy bound in the boundary

theory) into the bulk.

One intriguing consequence of this proposal is that the bulk results include quantum

corrections, while the boundary results do not, as is familiar in AdS/CFT. Let us see how

these quantum corrections look like in a specific example. We are interested in the Bousso

bound for the spacelike surface Sd−2, i.e. a d − 2 dimensional sphere with the radius l in

the d dimensional brane-world. We choose A a submanifold on a time-slice t = t0 such

that ∂A = Sd−2. At the classical level, we obtain the entropy bound

SA ≤ Area(∂A)

4G
(d)
N

. (3.4)

In order to take into account the quantum corrections, we extend the light-sheet from

∂A = Sd−2 to that from half of a d − 1 dimensional sphere SA in the bulk AdS. Then we

obtain the quantum corrected entropy bound

SA ≤ Area(SA)

4G
(d+1)
N

=
Area(∂A)

4G
(d)
N

[

1 − ε2

l2

(

log

(

l

ε

)

+ const.

)]

<
Area(∂A)

4G
(d)
N

. (3.5)

The finite difference between the above quantum and classical entropy bound is analogous

to the Casimir energy.

An alternate way to explain our motivation for considering light-sheets is to think of the

entanglement entropy as being directly related to the (thermodynamic) entropy computed

by the Bousso bound. More precisely, we would like to claim that the entanglement entropy

saturates the Bousso bound in the setup of the AdS/CFT correspondence or the related

brane-world version. While the claim that entanglement entropy is related to light-sheets

is a priori very surprising, the example of the static AdS background strongly suggests

this interpretation (see also [25]). Similarly, the bulk-boundary relation (so called GKP-W

relation [38, 39]) in the AdS/CFT correspondence leads to the same conclusion. A weaker

version of this claim will be that the entanglement entropy satisfies the Bousso bound. What

we have argued in the above is summarized as the following proposal for direct holographic

computation of entanglement entropy.

A covariant entanglement entropy proposal (I): consider the usual AdS/CFT setup

in a d+1 dimensional asymptotically AdS spacetime M with d dimensional boundary ∂M.

We will choose the boundary ∂M to be either R1,d−1 or R × Sd−1; in the following we

usually assume Poincaré coordinates for simplicity. As explained earlier, at time t, we

divide the d − 1 dimensional space of the boundary theory into At and Bt. The boundary

∂At between these domains will play an important role. Note that ∂At is a d−2 dimensional

spacelike surface in ∂M.

Now, we can construct the upper and lower light-sheets ∂L+
t and ∂L−

t for the spacelike

surface ∂At. This can be done in a straightforward manner using the conformally flat

metric on ∂M. We then consider extensions L±
t of the two light-sheets ∂L±

t into bulk such

that they are the light-sheets in M with respect to a d − 1 dimensional spacelike surface

Yt = L+
t ∩ L−

t as in the left figure of figure 2.
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∂L+

YA
A

Light-sheet L+

Light-sheet L−

YA

∂L−

A

Y1

Y2

∂M

M
Light-sheet

Figure 2: A light-sheet construction in AdS3/CFT2.

Given this, we propose that the (possibly time-dependent) entanglement entropy for

the subsystem At in the dual boundary theory is given by

SAt(t) =
minY (Area(Yt))

4G
(d+1)
N

. (3.6)

Here minY (Area(Yt)) denotes the minimum of the area over the set of Y as we vary the

form of L±
t satisfying the above mentioned conditions with ∂L±

t fixed. We denote this

minimal area surface Ymin
At

. Essentially we then have the analog of (2.2),

SAt(t) =
Area(Ymin

At
)

4G
(d+1)
N

. (3.7)

3.2 Expansions of null geodesics

As we have already seen, the definition of the light-sheet involves the expansions of null

geodesics. Since this quantity plays a crucial role in the discussions below, we will pause

to explain its definition and properties (for details refer to e.g., [46, 43, 47]).

Given a co-dimension two surface S in a spacetime manifold specified by two constraints

ϕ1(x
ν) = 0 , ϕ2(x

ν) = 0 , (3.8)

we can define two one-forms ∇ν ϕi, i = 1, 2. Non-degeneracy requires that there be two

linearly independent one-forms and so ∇ν ϕ1 + µ∇ν ϕ2 has to be a null one-form for two

distinct values of µ. Using this information one can construct two null-vectors Nµ
± that are

orthogonal to the surface of interest:

Nµ
± = gµν (∇ν ϕ1 + µ±∇ν ϕ2) . (3.9)
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We can fix the null vectors to be normalized such that

Nµ
+ Nν

− gµν = −1 . (3.10)

In terms of Nµ
± and the induced metric hµν on the surface S we can write down the null

extrinsic curvatures:

(χ±)µν = hρ
µ hλ

ν ∇ρ (N±)λ . (3.11)

The expansion of an orthogonal null geodesic congruence to the surface is then given

by the trace of the null extrinsic curvature9

θ± = (χ±)µµ . (3.12)

Physically, the null expansions measure the rate of change of the area of the co-

dimension two surface S propagated along the null vectors. Let us express the embedding

map from S to the spacetime M by Xµ(ξα), where ξα denote the coordinates on S. Under

an infinitesimal deformation δXµ(ξα) orthogonal to S with fixed boundary conditions, the

change in the area of S is obtained from the value of the expansions (see e.g. [48]):

δArea ∝
∫

S

(

θ+ Nµ
+ δXµ + θ− Nµ

− δXµ

)

, (3.13)

where the proportionality constant is positive. Therefore determining the sign of the null

expansions θ± is equivalent to finding whether the area increases or decreases when we

perform an infinitesimal deformation. In addition, (3.13) clearly shows that the surfaces

S with vanishing null expansions are extremal surfaces W, i.e., saddle points of the area

functional. An explicit proof of this is given in appendix B.

3.3 The covariant entanglement entropy prescription and extremal surface

In section 3.1 we presented a covariant proposal for calculating the holographic entan-

glement entropy based on a light-sheet construction. Although manifestly covariant, the

computation of the surface YA still involves first constructing all possible light-sheets in the

bulk L± subject to the appropriate boundary condition and then minimizing the area of

the spacelike co-dimension two slice Y = L+ ∩ L− over all the possibilities. We now argue

that this procedure can be vastly streamlined to produce a simple set of partial differen-

tial equations for the surface. Furthermore, in section 4.1 we will show that the resulting

prescription follows naturally from a bulk-boundary relation a la., GKP-W [38, 39] in the

AdS/CFT context.

The covariant construction of section 3.1 starts from the two boundary light-sheets,

∂L+
t (future) and ∂L−

t (past), which are uniquely defined given a subsystem At in the dual

9Because we are interested in null geodesic congruences, there is no natural scale associated with the

affine parameter along the congruence. We can choose to normalize the null vectors by scaling N± → γ± N±

(γ± are functions on S), whilst keeping them tangent to the null geodesics. In practice, we usually omit

the scaling, since we are typically interested only in the sign of the expansions, and these scale simply as

θ± → γ± θ±. However, if the rescaling is singular i.e., γ = 0 or γ = ∞, such simplification is not possible.

This occurs the case where S coincides with an apparent horizon as will be discussed in section 6.6.

– 18 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
2

CFT on ∂M at time t. We then pick a co-dimension two spacelike surface YAt in M whose

boundaries coincide with ∂At as in figure 2. There are many such surfaces, but we are only

interested in the ones which we can sandwich between the two light-sheets L+ (future) and

L− (past) in the bulk spacetime. The existence of such light-sheets leads to the constraints

for the expansions,

θ+̂ ≤ 0 , θ−̂ ≤ 0 , (3.14)

where θ+̂ refers to the expansion along the null congruence generating L+ and similarly

θ−̂ for L−. The expansions θ±̂ are equal to θ± defined in section 3.2 up to a sign. Along

a single light-sheet, say L+ with θ+̂ ≤ 0, small deformations of the surface YA into Y1 and

Y2 (sketched in figure 2) always yield the inequality Area(Y1) ≤ Area(YA) ≤ Area(Y2).

Among infinitely many choices of such surfaces YA, we single out the one whose area be-

comes the minimum. Of course, there is no minimal surface if we search all surfaces with the

same boundary condition due to the Lorentzian signature. The additional condition (3.14)

of the non-positive expansions along both light-sheets is crucial for the existence of this

minimum.

Now pick a generic surface YAt which is not necessarily the minimal one, such that the

null expansions are negative everywhere on YAt . We expect that such a surface reaches

in further than the minimal surface, as can be checked by examining explicit examples in

section 5. As is clear from the formula (3.13), if we slightly deform the surface towards the

boundary, its area decreases because θ±̂ ≤ 0. We will be able to continue this deformation

until both of the expansions become zero. The surface obtained in this way has the area

which is minimum among those surfaces which allow the light-sheet construction. The

validity of the assumed structure of expansions which allows such a deformation can be

confirmed in an explicit example of AdS3, as shown in the figure 3 in section 5.1.3.

The above procedure constructs the surface whose null expansions are both vanishing.

As we have seen in section 3.2, this means that this surface obtained from the minimization

procedure (3.6) is equivalent to the extremal surface defined by the stationary point of the

area functional. Clearly this argument of equivalence is rather speculative; we leave a

rigorous proof as an interesting problem for the future. To summarize, we have obtained

the following proposal:

Covariant holographic entanglement entropy proposal (II): we claim that the

holographic entanglement entropy for a region A is given by

SA =
Area(Yext)

4G
(d+1)
N

, (3.15)

where Yext is a co-dimension two surface in M which has zero null geodesic expansions, i.e.,

both θ± vanish on Yext, and which satisfies ∂Yext = ∂A. If this surface is not unique, we

choose the one whose area is minimum among all such surfaces homotopically equivalent

to A. Also by virtue of (3.13) and the discussion of appendix B, we have Yext = W. So

we can just as well replace Area(Yext) in (3.15) by Area(W) without loss of generality.

Henceforth we will drop the subscript ‘ext’ on Yext and simply denote the surface with

vanishing null expansions by Y.
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4. Relations between covariant constructions

In the previous section we have motivated a covariant prescription for calculating the

holographic entanglement entropy using light-sheets, in analogy with the covariant entropy

bounds. This construction involves finding a surface Yext with vanishing null expansions,

which as we discuss, is equivalent to the extremal surface W. We have also hitherto

introduced another natural covariant surface: a minimal surface on a maximal slice, X .

In this section, after we show that the covariant proposal (3.15) can indeed be also

derived from the basic principle of AdS/CFT, we will proceed to discuss the detailed

relations between W(= Yext) and X .

4.1 Equivalence of W and Y via variational principles

In the time-dependent setup discussed in section 2.3, we can directly apply the Lorentzian

GKP-W relation (see e.g., [49]) as long as the UV limit of the theory becomes conformal.

Assuming that the boundary field theory is in a pure state, we have the path-integral

expressions for the reduced density matrix analogous to the situation in section 2.2:

[ρA(t)]αβ =

∫

Dϕ eiSsugra(ϕ) 〈β|ϕ(t − ǫ)〉〈ϕ(t + ǫ)|α〉
∫

Dϕ eiSsugra(ϕ)
, (4.1)

The boundary conditions (which will be implemented on a suitable cut-off surface) ϕ = ϕ±
are the ones induced from the ‘indices’ ϕ± of the density matrix [ρA(t)]ϕ+ϕ−

. This is a

Lorentzian generalization of the argument in [27], where the proposal of [24, 10] was first

proven.

The CFT partition function Zn in (2.14) is now holographically equivalent to the

partition function Zsugra
n of the supergravity on the dual manifold Mn which is obtained

by solving Einstein equations while requiring that it approaches ∂Mn at the boundary.

Since the original manifold ∂Mn includes the singular surface ∂A with a negative deficit

angle 2π(1 − n), its holographical extension Mn has the co-dimension two deficit angle

surface W. If we employ the tree level supergravity approximation, the action can be

estimated10 by

i

16π G
(d+1)
N

∫

Mn

√−g (R + Λ) =
1 − n

4G
(d+1)
N

∫

W

√
g + (irrelevant terms), (4.2)

where the irrelevant terms signify those which cancel between the two terms in (2.15).

In this way, after taking the derivative with respect to n as in (2.15), we obtain the

holographic formula

SA =
Area(W)

4G
(d+1)
N

. (4.3)

Moreover, the action principle in the gravity theory instructs us to single out the extremal

surface W among infinitely many choices of co-dimension two surfaces, that a priori could

10The curvature is delta function localized along the deficit angle surface. In actual computation, we

estimate this contribution by analytically continuing to the Euclidean signature. This explains the imaginary

factor i in (4.2).
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be the extension into the bulk of the region A satisfying the required boundary conditions.

This completes the derivation of the holographic formula (3.15) of the entanglement entropy

in time-dependent backgrounds. Since a differential geometrical analysis shows W = Yext

(see appendix B), the above derivation may be viewed as a heuristic proof of our covariant

proposal.

4.2 Equivalence of X and Y on totally geodesic surfaces

In motivating the existence of a covariant formulation of holographic entanglement entropy,

we argued that one could in principle choose a preferred slicing of the bulk corresponding

to the maximal area slices and then use the holographic entanglement entropy proposal

of [24, 10]. We will argue that while the maximal surfaces X don’t generically coincide

with W or Y, there is a special case wherein this proposal for X is equivalent to the

covariant entanglement entropy proposal for Y formulated in terms of the light-sheets and

the expansion along null geodesic congruences. The specific restriction on the maximal

slices which turns out to be relevant is the notion of “totally geodesic submanifold”.

To examine this issue, it is useful to recall a few geometric facts related to foliation of

spacetimes and extrinsic curvatures. For a co-dimension one spacelike sub-manifold Σ in

M, anchored at some time t in ∂M, with τµ ≡ (∂τ )
µ being the unit timelike normal to Σ,

we define the induced metric on Σ:

γµν = gµν + τµ τν , (4.4)

and extrinsic curvature:

Kµν = γρ
µ γσ

ν ∇ρ τσ . (4.5)

Here and in the following, ∇µ will denote the covariant derivative with respect to the full

bulk metric gµν . Now, we can look for a minimal surface S in Σ. For such a putative

minimal surface S, let sµ denote the unit spacelike normal to S lying within Σ, so that

sµ τµ = 0 everywhere. Then we can again define the induced metric on the surface S:

hµν = γµν − sµ sν , (4.6)

and the extrinsic curvature of S in Σ:

πµν = hρ
µ hσ

ν Dρ sσ , (4.7)

where Dµ is the covariant derivative with respect to the metric γµν on Σ, which is related

to the spacetime covariant derivative by projection from M:

Dµ sν = γρ
µ γσ

ν ∇ρ sσ . (4.8)

This implies that

πµν = hρ
µ hσ

ν ∇ρ sσ . (4.9)

We now turn to the question of interest: assuming that S is a minimal surface on the

particular slice Σ corresponding to the maximal slice of M, under what conditions does

the null geodesic expansion along Nµ ∝ τµ ± sµ vanish?
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Since we assume that Σ is a maximal slice, we necessarily have K µ
µ = 0, i.e., the trace

of the extrinsic curvature vanishes everywhere on Σ, which implies that

∇µ τµ = 0 . (4.10)

Similarly, the constraint that S is a minimal surface in Σ implies that π µ
µ = 0, which leads

to the identity

∇µ sµ = sν τµ ∇µ τν . (4.11)

Having extracted the two relations implied by Σ being the maximal slice in M and S being

the minimal surface in Σ, we now turn to evaluate the null expansions θ±. Using (3.12)

with Nµ
± ∝ τµ ± sµ, we obtain:

θ± ∝ K µ
µ ± π µ

µ − sν sµ ∇µ τν = τν sµ ∇µ sν (4.12)

where the second equality used K µ
µ = 0, π µ

µ = 0 and sµ τµ = 0. So θ± will vanish provided

we have τν sµ ∇µ sν = 0, which is equivalent to the condition Kµν sµ sν = 0.

Thus we see that for the null geodesic congruence to have vanishing expansion, it does

not suffice for the surface Σ to be a maximal slice. We must in addition require that

Kµν sµ sν = 0. This is satisfied only11 when Kµν = 0 since the vector sµ can be taken to

be arbitrary. Such a surface is called a totally geodesic submanifold, and it describes a

surface whose geodesics are also geodesics of the entire spacetime. One can quickly intuit

this by noting that if sµ were tangent to a geodesic then sµ ∇µ sσ ∝ sσ, which by virtue of

sµ τµ = 0 will imply the vanishing of θ±. This leads to the following claim:

Claim: Assume that a maximal spacelike surface Σt (anchored at a constant time t on

∂M) is totally geodesic. Then the minimal surface X on Σt is equivalent to the surface Yext

in the covariant entanglement entropy prescription of section 3.3. However, if we require

Σt to be totally geodesic for all t, i.e. if the spacetime M allows a totally geodesic foliation,

then the spacetime must be static. This is because the condition Kµν = 0 means that

the hypersurface orthogonal timelike vector τµ is in fact a Killing vector. In this case, the

covariant construction reduces to the minimal surface prescription (2.2).

Hence we see that the covariant entanglement entropy candidate X reproduces the

‘correct’ prescription W = Y for all time only in the trivial case of static bulk geometries.

However, if we relax the requirement of full foliation of M by totally geodesic slices, but

rather achieve Kµν = 0 on a single slice, say at t = 0, then we still have12 Xt=0 = Yt=0.

For example, in a spacetime with time reversal symmetry t ↔ −t, at time t = 0 we can

compute the entanglement entropy by using the minimal surface Xt=0 in Σt=0 (in this case

the t = 0 slice).

11Note that while Kµν sµ sν = 0 only picks out the symmetric part of Kµν , the antisymmetric part is

automatically guaranteed to vanish whenever τµ is hypersurface orthogonal, i.e. τ[µ ∇ν τρ] = 0, which is the

present case.
12In this case we can easily prove the strong subadditivity of holographic entanglement entropy [25] as

in [26] since two minimal surfaces on the same time slice can intersect with each other if they do so at the

boundary of AdS.
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5. Consistency checks for time-independent backgrounds

Thus far we have kept our discussion at a reasonably abstract level; we have formulated

a clear algorithm for constructing the bulk surface whose area captures the entanglement

entropy associated with the boundary region A in question. A simple consistency check of

our picture is that the covariant proposal should reduce to the holographic entanglement

entropy proposal of [24, 10] whenever the bulk spacetime is static. To make contact with

that discussion, we examine several examples of asymptotically AdS static spacetimes.

This also allows us to see explicitly the equivalence between the light-sheet construction Y
and the extremal surface proposal W, thereby making explicit the arguments of section 3.1

and section 3.3. Finally we will turn to an example of a stationary spacetime (rotating

BTZ geometry) to illustrate the shortcomings of the minimal surface on a maximal slice

prescription X of section 2.3.

5.1 AdS3

First consider the AdS3 geometry described by the Poincaré metric

ds2 =
−dt2 + dx2 + dz2

z2
. (5.1)

We begin by studying the null expansions for a co-dimension two surface by choosing a

particular ansatz and compute the covariant holographic entanglement entropy.

5.1.1 Expansions of null geodesics

A general co-dimension two curve S in (5.1) is described by the constraint functions

ϕ1 = t − G(z) , ϕ2 = x − F (z) . (5.2)

The normalized null vectors orthogonal to S are then given by the following linear combi-

nations

(N±)µ = N gµν (∇ν ϕ1 + µ±∇ν ϕ2) , (5.3)

where we defined

µ± = − G′F ′

1 + (F ′)2
±

√

1 + (F ′)2 − (G′)2

1 + (F ′)2
,

N =

√

1 + (F ′)2√
2 z

√

1 + (F ′)2 − (G′)2
. (5.4)

As explained earlier, we will ignore the overall normalization N of the null vectors in most

parts of this paper as we are only interested in their signs.13 Moreover, the induced metric

13If we rescale Nµ
+ → γ Nµ

+ and Nµ
− → γ−1 Nµ

−, the normalization conditions Nµ
+ N−µ = −1 and

Nµ
± N± µ = 0 are unchanged. The geodesic expansion scales like the null vectors i.e., θ+ → γ θ+ and

θ− → γ−1 θ−. Because we are interested in the condition θ± = 0, this non-zero scale factor is inconsequen-

tial except some singular cases where apparent horizons exist.

– 23 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
2

on S is given by14

hµ
ν =

1

1 + (F ′)2 − (G′)2







−(G′)2 G′F ′ G′

−G′F ′ (F ′)2 F ′

−G′ F ′ 1






(5.5)

To compute the expansions (3.12) from S, we need to calculate the covariant derivative

of the null vectors (5.3) projected via (5.5). This yields the expression

θ± =
∓H

√

1 + (F ′)2 − (G′)2 − (G′)3 + G′(1 + (F ′)2 + zF ′F ′′) − z(F ′)2G′′ − zG′′
√

2(1 + (F ′)2) (1 + (F ′)2 − (G′)2)3/2
,

(5.6)

where we defined

H ≡ F ′(G′)2 − F ′ − (F ′)3 + z F ′′ . (5.7)

5.1.2 Extremal surface and holographic entanglement entropy

While we have written the expression for expansions for a general curve S in AdS3 pa-

rameterized as (5.2), by virtue of time translation invariance, we expect that the desired

extremal surface (curve) lies on a constant t slice. Let us therefore concentrate on a curve

S0 in (5.1) with no temporal variation, by requiring G(z) = 0. Then the expansions for S0

are simplified to

θ+ = −θ− =
−z F ′′(z) + F ′(z) + F ′(z)3

√
2 (1 + F ′(z)2)

3
2

. (5.8)

Notice that the expansion in the time direction is vanishing, i.e., θ+ + θ− = 0, because the

spacetime is static.

To find the covariant holographic entanglement entropy candidate Y to utilize our

proposal (3.15), we require that both null expansions vanish. This leads to the equation

z F ′′(z) − F ′(z) − (F ′(z))3 = 0 , (5.9)

which determines the requisite surface. We can easily find the following simple solutions:

F (z) =
√

h2 − z2 , (5.10)

where h is an arbitrary non-negative constant. This means that the half circle x2 +z2 = h2

(z > 0) is the curve YA responsible for the entanglement entropy when we choose the

subsystem A to be an interval with length 2h.

As can be easily verified, this curve also describes a spacelike geodesic in AdS3 and

likewise corresponds to the minimal surface on the constant t slice. This makes explicit the

assertion made earlier that minimal surfaces on a constant time slice in a static spacetimes

14One can check that the three-metric (5.5) is degenerate, as required. For purposes of computing the

expansions, it is more useful to work with this degenerate three-metric rather than the one-metric on the

curve, to ensure the correct projections of ∇µ Nν .
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have vanishing null expansions. Hence we have verified, for the AdS3 example, that WA =

XA = YA for any region A, and given an explicit equation for this surface. To compute the

holographic dual of the entanglement entropy SA itself, we need to calculate the proper

length along this bulk surface.

The length L of YA is found to be

L = 2h

∫ h

ε

dz

z
√

h2 − z2
= 2 log

2h

ε
, (5.11)

where ε is the lattice spacing corresponding to the UV cut-off. Using the relation between

the central charge of the dual CFT and the bulk Newton’s constant c = 3

2G
(3)
N

[50], we

obtain the expression in the dual CFT language

SA =
L

4G
(3)
N

=
c

3
log

2h

ε
. (5.12)

This reproduces the well-known formula in 2D conformal field theory [6, 5].

5.1.3 Structure of the sign of expansions

The signs of expansions of null geodesics are directly related to the change of the area of a

given spacelike surface under an infinitesimal deformation as the formula (3.13) shows. In

this subsection, we discuss how the signs of the expansions change in explicit examples.

We start with the 3 dimensional flat spacetime R1,2: ds2 = −dt2 + dx2 + dz2. If

we consider the curve t = constant and x = F (z), the null vectors Nµ
± are given by the

formula (5.3) with the modification that N of (5.4) now becomes N =
√

1+F ′2√
2 (1+F ′2+G′2)

. The

expansions are found to be

θ+ = −θ− = − F ′′(z)√
2 (1 + F ′(z)2)3/2

. (5.13)

In the particular case of the circle x2 + z2 = h2, we find θ+ = −θ− = 1√
2 h

> 0 when x ≥ 0.

When x is negative we obtain the opposite result.

From the formula (3.13) and the normalization (N+)µ (N−)µ = −1, we find that θ±
measure the increase of area under the infinitesimal deformations δXµ ∝ −Nµ

∓. The signs

θ+̂ ≡ −θ+ < 0 and θ−̂ ≡ θ− < 0 for the circle can be intuited directly as the null vector

N+̂ = −N+ is ingoing along the future light-cone and N−̂ = N− is ingoing along the past

light-cone. We thus see that the past and future light-cones emanating from the circle

are examples of light-sheets as we have explained in (3.14) (see figure 1). Note also that

θ+− θ− > 0 means that the expansion in the spacelike direction is positive, which illustrates

the basic fact that the length of the circle increases as the radius h becomes larger.

Now we move on to the more interesting case (5.1) of AdS3. The null expansions for

static curves are already computed in (5.8). On the curve defined by the ellipse x2+b2 z2 =

h2 for a positive constant b, we find that when x ≥ 0 (for x < 0 the result has the signs

reversed),

θ+ = −θ− =
b4 (1 − b2) z3

√
2 (h2 + b2 (b2 − 1) z2)3/2

. (5.14)
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t

z

θ+̂ = 0

θ±̂ > 0

θ−̂ > 0, θ+̂ < 0

Extremal Surface

θ−̂ = 0

Y2Y1

θ−̂ < 0, θ+̂ > 0

Ymin
A (θ±̂ = 0)

θ±̂ < 0

Figure 3: The signs of expansions θ
±̂

for the ingoing null geodesics in AdS3. We projected the

AdS3 to the plane x = 0 assuming a particular series of curves whose null expansions each take the

same sign at any points. The shaded region denotes the region where two light-sheets exist.

Thus the expansions of ingoing null geodesics θ+̂ = −θ+ and θ−̂ = θ− are negative when

b < 1, i.e., when the curve goes deep into the IR region, while it becomes positive when

b > 1. Furthermore, the expansions in AdS3 are vanishing when the curve is a half-

circle, which coincides with the minimal surface. Thus we conclude that the null geodesic

congruences on this ellipse can be used as light-sheets only when b ≤ 1.

In the AdS3 background we can notice one more interesting fact: for any curve on the

light-cone, one of the two null expansions is vanishing, as will also be shown in section 5.2.3.

For example, if we consider an arbitrary curve on the future light-cone t = −
√

x2 + z2, it

turns out that θ+̂ = 0 when x ≥ 0, while θ−̂ = 0 when x < 0. This property can be easily

generalized to higher dimensional AdS spaces. The behavior of expansions θ±̂ in AdS3 is

summarized in figure 3.

In this way we observed that in (asymptotically) AdS spacetimes, the expansions of

null geodesics can change their sign at the specific points in the bulk. This property clearly

plays a crucial role in our holographic computation of entanglement entropy.

5.2 Higher dimensional examples: AdSd+1

We can repeat the above computations of null expansions for AdSd+1 (3.2). In these higher

dimensional examples, there are many different choices for the shape of region A. Working

in Poincaré coordinates we can choose an arbitrary region on the boundary R1,d−1 and in

principle figure out the associated extremal surfaces. For simplicity, we will concentrate on

two specific examples, where we assume the subsystem A in the dual CFT is given by (i)

an infinite strip and (ii) a spherical ball in R1,d−1.
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5.2.1 Infinite strip in AdSd+1

On the boundary of AdSd+1 in Poincaré coordinates we choose the region A to be an

infinite strip defined as

A := {(t, ~x) | t = 0, |x1| ≤ h, xi = arbitrary for i = 2, . . . , d − 1} . (5.15)

Here we have singled out one of the spatial coordinates in R1,d−1 called x1 to take values

in finite range. To find the associated extremal surface in the bulk, we choose an ansatz for

co-dimension two surface in AdSd+1 by the two constraints (5.2), with a trivial relabeling

x1 → x. We require that when restricted to the boundary z → 0, the extremal surface is

reduced to the boundary ∂A of infinite strip.

The null expansions of this surface can be shown to be (here d̃ = d − 1)

θ± =
∓H

√

1+(F ′)2−(G′)2−d̃ (G′)3+G′ (d̃+d̃ (F ′)2+z F ′ F ′′)−z (F ′)2 G′′ − z G′′
√

2 (1 + (F ′)2) (1 + (F ′)2 − (G′)2)3/2
,

(5.16)

where we define

H = d̃ F ′(G′)2 − d̃ F ′ − d̃ (F ′)3 + z F ′′. (5.17)

Again by virtue of the staticity of the background it suffices to consider only F (z) 6= 0

while G(z) = 0. It is easy to see that the vanishing of both the null expansions for the

surface localized on a constant t slice leads to the known minimal surface [24, 10],

F ′(z) =
zd̃

√

z2d̃
∗ − z2d̃

, (5.18)

where z∗ is the maximal z value reached by the surface, given in terms of the width of the

region A by the relation

z∗ =
Γ( 1

2d̃
)

√
π Γ( d̃+1

2d̃
)
h . (5.19)

We can obtain the entanglement entropy from the area of this surface. For details, we refer

the reader to [10].

5.2.2 3-dimensional ball in AdS5

Our previous examples have focussed on planar symmetry and we now turn to an example

where the region A of interest is a ball in Rd−1 ⊂ R1,d−1 with radius h. The region A is

given as (for simplicity we choose t = 0)

A :=
{

(t, ~x) | t = 0, ξ2 ≤ h2
}

, (5.20)

where ξ is the radial coordinate of the Poincaré metric in the polar coordinates

ds2 =
−dt2 + dz2 + dξ2 + ξ2 dΩ2

3

z2
. (5.21)
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An ansatz for surfaces which respect the spherical symmetry is given by

ϕ1 = t − G(z), ϕ2 = ξ − F (z) . (5.22)

Further imposing the staticity inherited from the background leads to the simplification15

G(z) = 0. For the particular case of AdS5 the null vectors normalized according to our

usual convention are then given by:

Nµ
± =

z√
2

(

(∂t)
µ ∓ F ′

√
1 + F ′2 (∂z)

µ ± 1√
1 + F ′2 (∂ξ)

µ

)

. (5.23)

One can check that the induced metric on the surface is given by

hµν =















0 0 0 0 0

0 F ′2

1+F ′2
F ′

1+F ′2 0 0

0 F ′

1+F ′2
1

1+F ′2 0 0

0 0 0 ξ2 0

0 0 0 0 ξ2 sin2 θ















. (5.24)

Plugging these expressions into the formula for the null congruence expansions we find:

θ± = ± 1√
2

z4

ξ (1 + F ′(z)2)7/2
(−9F ′(z)5 ξ−3F ′(z)7 ξ+F ′(z)4 ξ z F ′′(z) − 9F ′(z)3 ξ

+2F ′(z)2 ξ z F ′′(z)−3F ′(z) ξ+ξ z F ′(z)−2 z−6 z F ′(z)2−6 z F ′(z)4−2 z F ′(z)6) .

(5.25)

One can check these null expansions vanish for the minimal surface

F (z) =
√

h2 − z2 . (5.26)

The entanglement entropy associated with the region A of (5.20) can be calculated from

the area of this surface. As expected, the surface (5.26) coincides with the minimal surface

of [10]. We refer the interested reader to [10] for a detailed discussion of the area and

comparisons of the holographic entanglement entropy thus obtained to the field theory

calculations at weak coupling.

5.2.3 Area and expansion of surfaces on the light-cone

In section 3.2 we presented the relation between the change in the area of a spacelike surface

under a small deformation and the expansions of the null geodesics. Here we would like to

understand this relation geometrically in the specific example of AdSd+1.

Consider the set-up of the infinite strip region on the boundary as in section 5.2.1 and

take a surface which infinitely extends in the directions x2, x3, · · · , xd−1. Such surfaces can

15One can evaluate the expansions for non-zero G(z) just as easily and check that the surface given

in (5.26) does indeed have vanishing expansions.
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be described by the ansatz (5.2), with x → x1. We would like to concentrate on the case

where the surfaces lie on the light-cone16 t2 = x2
1 + z2. These can be parameterized as

x1 = p(s) cos(s) , z = p(s) sin(s) , t(s) = h − p(s), (5.27)

with the boundary condition p(0) = p(π) = h.

The area of any of these surfaces given by a particular choice of p(s) is expressed as

Area(Y) =

∫ π−ǫ2

ǫ1

ds

sind−1(s) p(s)d−2
. (5.28)

where the boundary condition on the cut-off surface z = ε is being implemented through

the boundary condition z(s = ǫ1,2) = ε.

When d = 2, the expression (5.28) does not depend on the function p(s) which repre-

sents the choice of the curve. This means that the deformation of any curve on a light-cone

in AdS3 does not change its area (as long as we neglect the UV cut-off). This nicely agrees

with the fact that the expansion along the light-sheet is vanishing for any curve on it, as

mentioned in section 5.1.3. If we consider the opposite light-cone t+h =
√

x2
1 + z2, we can

find that on the half circle defined by x2
1 + z2 = h2, t = 0 and z > 0, the null expansions

are both vanishing, i.e. this is an extremal surface as we noticed in (5.10).

On the other hand, in higher dimensions d > 2, the area becomes dependent on

p(s). Furthermore, we can see the inequality Area(Y1) > Area(YA) > Area(Y2) where the

surfaces are labeled in accord with the conventions of figure 2. This in particular shows

that the ingoing expansion along this light-cone t = −
√

x2
1 + z2 is positive. Thus we can

conclude that we cannot regard the light-cone (5.27) as a light-sheet in d > 2. This fact

can also be confirmed by direct evaluation of the expansions using (5.16).

5.3 BTZ black hole (non-rotating)

Our next example will be one which is not globally static, but one which has a horizon and

a static patch extending out to the boundary. Consider the BTZ black hole, with a mass

proportional to m, in the Poincaré coordinates [51, 19]

ds2 = −(r2 − m) dt2 +
dr2

(r2 − m)
+ r2 dx2 . (5.29)

We will pick the region A on the boundary R1,1 with coordinates (t, x) to be at a constant

t slice and a finite interval in x with |x| ≤ h. One can again take as an ansatz for the

extremal surface (5.2) and compute the expansions to derive the differential equations for

the functions G(z) and F (z). It is however simpler to exploit the fact that the extremal

surfaces in AdS3 are spacelike geodesics on a constant t slice and find the relevant surface

directly.

Therefore we would like to find the spacelike geodesics of the form t = constant and r =

r(x) in order to calculate the entanglement entropy. The conservation equation resulting

16The light-cone in question is the flat space light-cone by virtue of the Poincaré metric (3.2) being

conformally flat.
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from the the fact that ∂x is a Killing field leads to a constant Hamiltonian:

dr

dx
= r

√

(r2 − m)

(

r2

r2
∗
− 1

)

. (5.30)

where r∗ is determined by the fact |x| ≤ h:

2h =

∫ ∞

r∗

dr

r
√

(r2 − m)(r2/r2
∗ − 1)

=
1√
m

log
r∗ +

√
m

r∗ −
√

m
. (5.31)

For future use we also record the exact relation between x and r

x = − 1

2
√

m
log

(

−2r∗
√

m(r2 − m)(r2 − r2∗) − 2mr2
∗ + r2r2

∗ + mr2

r2(r2
∗ − m)

)

=
1

2
√

m
log

(

r∗ +
√

m

r∗ −
√

m

)

− r∗
2r2

+ · · · (5.32)

The spacelike geodesics in BTZ for compact x are plotted on constant t slices in figure 4

for various values of m.

Finally, the length L of the geodesics in the BTZ spacetime is given as

L = 2

∫ r∞

r∗

r dr

r∗
√

(r2 − m) (r2/r2
∗ − 1)

= 2 log(2 r∞) − log(r2
∗ − m) = 2 log(2 r∞) + log

sinh2(
√

m h)

m
. (5.33)

where we introduced the UV cut-off at r = r∞. This is related to the lattice spacing defined

in (5.11) via r∞ = 1
ε .

For large m we find that the regularized length of the geodesic is given by

Lreg = L − 2 log(2 r∞) ≃ 2
√

m h , (5.34)

which can be interpreted as the length of a part of the horizon.17

Using the relation between the mass and the inverse temperature β = 2π√
m

[51, 19], we

finally obtain the entanglement entropy computed holographically [24, 10] from the BTZ

black hole:

SA =
L

4G
(3)
N

=
c

3
log

(

β

π ε
sinh

2π h

β

)

, (5.35)

where c is again the central charge of the dual 2D CFT. The result (5.35) agrees perfectly

with the known result in the 2D CFT at finite temperature [5].

5.4 Star in AdS5

Our final example of a static spacetime is the 5-dimensional AdS radiation star back-

ground18 considered in [52],

ds2 = −f(r) dt2 + h(r) dr2 + r2 dΩ2
3 , (5.36)

17When m is very small, we find Lreg ∼ ml2

12
+ log l2

4
.

18These considerations can be generalized of course to any static, spherically symmetric, asymptotically

AdS spacetime.
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0.1 0.5 1 2

Figure 4: Minimal surface in BTZ (in this 3-d case a geodesic) plotted on r − x slice of the bulk;

the radial coordinate r is compactified using tan−1 function, the thick outer circle represents the

global AdS boundary, and the thick (red) inner circle the horizon radius,
√

m = 0.1, 0.5, 1, 2, as

labeled.

where the function h(r) is given in terms of the mass M(r) of the star within radius r by

h(r) =

[

r2 + 1 − 8G
(5)
N

3π

M(r)

r2

]−1

, (5.37)

and the mass density ρ(r), defined by Ttt = ρ(r) f(r), is related to the mass function by

M(r) ∝
∫ r
0 ρ(r̄) r̄3 dr̄. (For further details, see [52].)

We consider the entanglement entropy defined by dividing the S3 into two hemispheres

A and B. The minimal surface for SA is clearly given by the largest two-sphere ∂A times

the radial direction r. Thus its area is given by

Area = 4π

∫ ∞

0
dr r2

√

h(r) . (5.38)

We are interested in the difference ∆SA between the entanglement entropy for the region

A in the star geometry (5.36),(5.37) and in pure AdS5. This difference will capture the

excess entanglement by virtue of the state of the boundary theory being an excited state

of the CFT, and in a sense provide a measure of how many degrees of freedom are excited

(and entangled) in the region in question. One can check that ∆SA is finite and positive;

the finite increase of the entanglement entropy clearly represents the degrees of freedom of

the matter which composes the star.

When M(r) is very small we approximate the increase in entanglement entropy (mea-

sured with respect to pure AdS or the CFT vacuum) by

∆SA =
∆Area

4G
(5)
N

≃ 4

3

∫ ∞

0
dr

M(r)

(1 + r2)
3
2

> 0 . (5.39)

5.5 Stationary spacetimes: the rotating BTZ geometry

Our final example of a spacetime with a timelike Killing field (outside ergo-regions) will be

a rotating black hole spacetime. We will use this example to illustrate the inadequacy of the

min-max proposal of section 2.3, providing a more robust confirmation of our light-sheet

construction discussed in section 3.3.
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5.5.1 The holographic computation of entanglement entropy

We consider 3 dimensional Kerr-AdS solution (i.e., rotating BTZ black hole) and compute

the holographic entanglement entropy for a finite interval on the boundary. In this example,

as we will see one can no longer assume any constant time slice on which the extremal curve

lives.

The metric is given by

ds2 = −(r2 − r2
+) (r2 − r2

−)

r2
dt2 +

r2

(r2 − r2
+) (r2 − r2

−)
dr2 + r2

(

dx +
r+r−
r2

dt
)2

, (5.40)

where the coordinate x is compactified as x ∼ x + l and we assume r+ ≥ r−. The mass M

and angular momentum J of this black hole becomes

8G(3)M = r2
+ + r2

− , J =
r+r−
4G(3)

. (5.41)

If we set r− = 0, then the angular momentum becomes zero and the black hole (5.40)

becomes identical the static example (5.29) discussed in section 5.3 by setting m = r2
+.

This rotating black hole background (5.40) is dual to a 1+1 dimensional CFT on a

circle at finite temperature β−1 with a potential Ω for the momentum. The radius of the

circle is defined to be l and we assume that the system is at a very high temperature

(β ≪ l). The potential Ω is conjugate to the angular momentum of the rotating black hole.

The temperature and the potential in the dual CFT are found from the relations

β± ≡ β (1 ± Ω) =
2π l

∆±
, ∆± ≡ r+ ± r− . (5.42)

The dual CFT is then described by the density matrix

ρ = e−β H+β Ω P , (5.43)

where H and P are the Hamiltonian and the momentum of the CFT. Equivalently we can

regard β± = β (1 ± Ω) as the inverse temperatures for the left and right-moving modes.

To obtain the geodesics explicitly, it is convenient to remember that all BTZ black

holes are locally equivalent to the pure AdS3. Explicitly, this map is given by (cf., [53])

w± =

√

r2 − r2
+

r2 − r2
−

e(x±t) ∆± ≡ X ± T,

z =

√

r2
+ − r2

−
r2 − r2

−
ex r++t r− . (5.44)

This maps the metric (5.40) to the Poincaré metric

ds2 =
dw+dw− + dz2

z2
. (5.45)

We know that the spacelike geodesics in pure AdS3 (5.45) are given by the half circles

of the form (X − X∗)2 + z2 = h2 on a constant T slice and their boosts w± → γ±1 w±.
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Indeed, by mapping these geodesics in pure AdS3 into the rotating black hole, we can obtain

the relevant extremal surface. Note that despite the spacetime being just stationary, the

extremal surface W = Yext is indeed given by spacelike geodesics.

Thus we can assume that a series of spacelike geodesics in AdS3 are all situated on

some spacelike hypersurface

γ w+ − γ−1 w− = const. (5.46)

Since we are considering the subsystem A which is an interval at a fixed time t0, the value

of t should be the same at the two endpoints of the geodesic. If we define the value of x at

the endpoints by x1 and x2, this requirement leads to the constraint

γ2 e(x1+t0)∆+ − e(x1−t0)∆− = γ2 e(x2+t0)∆+ − e(x2−t0)∆− . (5.47)

The geodesic length in AdS3 (5.45) leads to the holographic entanglement entropy

SA = c
3 log ∆x

ε when the length of the interval A on the boundary is ∆x as we have seen

in section 5.1. The UV cut-off z = ε is mapped to the cut-off in the background (5.40) via

ε1,2 =

√

r2
+ − r2

−

r∞
er+ x1,2+r− t0 , (5.48)

where ε1,2 denote the cut-off at each of the two endpoints in (5.45). Further, the UV cut-off

r∞ in (5.40) can be identified with the cut-off (i.e., the lattice spacing) ε in the dual CFT

via r∞ = 1/ε. The length of the interval ∆x is easily found to be

(∆x)2 = ∆w+ ∆w− =
(

e∆+(x1+t0) − e∆+(x2+t0)
) (

e∆−(x1−t0) − e∆−(x2−t0)
)

. (5.49)

Putting these together we obtain the holographic entanglement entropy in the rotating

BTZ geometry to be

SA =
c

6
log

(∆x)2

ε1 ε2
=

c

6
log

[

β+ β−
π2 ε2

sinh

(

π ∆l

β+

)

sinh

(

π ∆l

β−

)]

, (5.50)

where ∆l = (x1 − x2) is the length of the interval in the dual CFT. The final answer is

manifestly time-independent as required. Further, if we set Ω = 0, then the above result

reduces to the non-rotating BTZ answer (5.35).

5.5.2 CFT and left-right asymmetric ensembles

We would like to compare the holographic result (5.50) with the entanglement entropy

calculated directly from two dimensional CFT in the ensemble (5.43). This can be done

by exploiting the fact that the value Tr (ρn
A) for the reduced density matrix ρA for the sub-

system A is equal to the two point function of twist operators whose conformal dimension

is ∆n = c
24(n − 1

n) as shown in [5].

For a CFT defined on a 2 dimensional non-compact plane (Euclidean) and a region A
whose boundaries are at u1 and u2, one can show that

Tr (ρn
A) =

( |u1 − u2|
ε

)− c
6

(n− 1
n

)

, (5.51)
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where ε is the UV cut-off in the CFT. This leads to the well-known formula of the entan-

glement entropy at zero temperature

SA = − ∂

∂n
log Tr (ρn

A)

∣

∣

∣

∣

n=1

=
c

3
log

|u1 − u2|
ε

. (5.52)

To derive the result at finite β and Ω described by (5.43), we need to periodically

identify the (Euclidean) two dimensional manifold on which the CFT is defined. The total

partition function of this system is given by

Z1 = Tr
(

e−β H+i β ΩE P
)

, (5.53)

where we defined ΩE = −iΩ. For the Euclidean CFT we will take ΩE to be real as is

conventional. This is achieved by the following conformal map

w′ =
β (1 − iΩE)

2π
log w . (5.54)

Notice that the new coordinate w′ satisfies the periodicity w′ ∼ w′ + i β (1 − iΩE), in

agreement with (5.53). Performing the conformal transformation, we find

Tr (ρn
A) =

[

β2(1 + Ω2
E)

π2 ε2
sinh

(

π ∆l

β (1 + iΩE)

)

sinh

(

π ∆l

β (1 − iΩE)

)]− c
12

(n− 1
n

)

, (5.55)

where we have set ∆l = β(1−iΩE)
2π log u1

u2
, which is the length of the interval A in the

w′ coordinate. After differentiating with respect to n as in (5.52) and remembering the

relation ΩE = −iΩ, this precisely agrees with (5.50). It is also intriguing to notice that

the expression factorizes into the left and right moving contributions: SA = SL
A + SR

A,

suggesting a left-right decoupling in the two dimensional CFT.

5.5.3 Comments on the min-max construction

The prime reason for focusing on the rotating BTZ geometry is that it clarifies some

of the arguments regarding the min-max proposal and the associated surface X . While

we motivated the existence of a covariant construction using X , a minimal surface on a

maximal slice, in section 2.3, we subsequently argued that this prescription doesn’t agree

with the light-sheet construction of section 3.3. In fact, we claimed in section 4.2 that

the surfaces X and W(=YExt) generically agree only when the spacetime admits a totally

geodesic foliation.

The rotating BTZ black hole has a Killing field (∂t)
µ which is timelike outside the ergo-

regions, but is not hyper-surface orthogonal.19 As a result, while it is true that surfaces of

constant t are maximal, i.e., have Kµ
µ = 0, they do not contain the extremal surface W.

This is also clear from the fact that constant t surfaces are not everywhere spacelike. From

our explicit construction of the geodesic (5.44) and (5.46) it is apparent that the geodesic

moves in t despite being pinned on the boundary at t = t0 at both ends of the interval A.

19A necessary and sufficient condition for a vector field ξµ to be hypersurface orthogonal is ξ[µ∇ν ξρ] = 0.

It is easy to check that (∂t)
µ doesn’t satisfy this condition in the metric (5.40).
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By an explicit CFT computation we have confirmed that the covariant holographic

entanglement entropy obtained from the surface W is indeed the correct one. While a

priori it was plausible that the surface X provided the covariant generalization of the

holographic entanglement entropy prescription, this example makes it manifest that light-

sheets or extremal surfaces are crucial to capture the correct measure of entanglement.

This example should therefore be viewed as a strong support for our covariant proposal.

6. Entanglement entropy and time-dependence

One of the motivations behind covariantizing the holographic entanglement entropy pro-

posal was to be able to address the question of entanglement entropy in genuine time-

dependent states. We will now turn to applying our proposal to geometries with explicit

time-dependence. By virtue of the AdS/CFT duality these spacetimes will correspond to

states in the CFT with non-trivial time evolution. However, we do not always have an

explicit CFT description of the state in question. While this hinders direct comparison of

the results on time variation of the entanglement entropy from the geometric perspective

with field theory, it nevertheless provides an interesting qualitative picture (which could

be made quantitative once the dictionary between states in the field theory and geometry

becomes more explicit).

6.1 Vaidya-AdS spacetimes

One of the most important examples in time-dependent gravitational backgrounds will be

the black hole formation process via a collapse of some massive object. As a simplest

such example, we would like to study the Vaidya background which describes the time-

dependent process of a collapse of an idealized radiating star (cf., [54]). The metric of d+1

dimensional Vaidya-AdS spacetime is given in Poincaré coordinates as

ds2 = −
(

r2 − m(v)

rd−2

)

dv2 + 2 dv dr + r2
d−1
∑

i=1

dx2
i , (6.1)

and in global coordinates by

ds2 = −
(

r2 + 1 − m(v)

rd−2

)

dv2 + 2 dv dr + r2 dΩ2
d−1 . (6.2)

If we assume that the function m(v) does not depend on the (light-cone) time v, then

the background is exactly the same as the Schwarzschild-AdS black hole solution after a

coordinate transformation. In this sense the Vaidya metric is a simple example of black

hole with a time-dependent mass or temperature.

The property of null geodesics in AdS Vaidya background has been studied in [52]

from the view point of AdS/CFT correspondence. The authors were interested in using

the geodesics to compute singularities of boundary correlation functions. It was argued

that the geodesic structure (which clearly probes the spacetime geometry) can be read off

from the correlation function and thus a map was provided between geometric information
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in the spacetime and the natural observables of the field theory. In particular, it was shown

how the field theory correlation functions could be used to ascertain the formation of a

horizon in the bulk spacetime.

Given that null geodesics can be used to decipher the map between field theory ob-

servables and geometry, a natural question is whether there is some more information to

be gained from studying other geometric structures — spacelike geodesics or surfaces. We

expect this to be generally the case, because in certain cases, such as in spacetimes with

null circular orbits, spacelike geodesics probe more easily further into the bulk than null

geodesics. Furthermore, null geodesics are manifestly insensitive to conformal rescaling of

the spacetime, which is not the case for the spacelike ones. Motivated by these ideas we

wish to ask whether the entanglement entropy of the boundary theory can be used as a

non-local probe of the bulk geometry.

Hence in the following we wish to calculate a time-dependent entanglement entropy in

the Vaidya-AdS background. We will specifically focus on the 3-dimensional Vaidya-AdS

metric

ds2 = −f(r, v) dv2 + 2 dv dr + r2 dx2 , f(r, v) ≡ r2 − m(v), (6.3)

for simplicity. The coordinate x can be either non-compact (Poincaré coordinate) or com-

pact (global coordinate). When m(v) is a constant m, this background is same as the BTZ

black hole (5.29), which can be confirmed using the coordinate transformation

v = t +
1

2
√

m
log

(

r −√
m

r +
√

m

)

≃ t − 1

r
− m

3 r3
+ · · · , (6.4)

where we have also recorded the large r expansion for future use. In the metric (6.3),

the only non-zero component of the energy-momentum tensor (defined by the Einstein’s

equation Tµν = Rµν − 1
2 R gµν + Λ gµν) is

Tvv =
1

2 r

dm(v)

dv
. (6.5)

By imposing the null energy condition i.e., TµνNµNν ≥ 0 for any null vector Nµ, we find

that the time-dependent mass m(v) always increases as the time v evolves

dm(v)

dv
≥ 0 . (6.6)

Below we would like to see how the entanglement entropy computed holographically changes

under this time-evolution.

6.2 Extremal surface in Vaidya-AdS

In order to compute the holographic entanglement entropy, we need to find the minimal

surface and then compute its area. The advantage of our example of the 3 dimensional

Vaidya-AdS spacetime is that the minimal surface is the same as the spacelike geodesic.

We can express the general geodesic by using (the non-affine) parameterization

ϕ1 = r − r(x) = 0, ϕ2 = v − v(x) = 0 . (6.7)
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We define the subsystem Av at time v by the region −h ≤ x ≤ h so that it always

has the width 2h. In the dual gravity side, this leads to the following boundary condition

along the geodesic:

r(h) = r(−h) = r∞ , v(h) = v(−h) = v , (6.8)

where r∞ → ∞ is the UV cut-off which is inversely related to the lattice spacing ε i.e.,

r∞ = 1/ε. Note that we can require r(x) = r(−x) and v(x) = v(−x) due to the reflection

symmetry of the background.

We would like to calculate the length L of this geodesic

L =

∫ h

−h
dx

√

r2 + 2 r′ v′ − f(r, v) v′2 , (6.9)

where the derivative with respect to x is denoted by the prime ′. This length functional

being independent of x, we have a conserved quantity

r4

r2
∗

= r2 + 2 r′ v′ − f(r, v) v′2 , (6.10)

where r∗ is a constant. In addition, we get two equations of motion for r and v from the

action principle. As usual, only one of them is independent of the previous conservation

equation (6.10). It is given by

r2 − r2 (v′)2 − r v′′ + 2 v′ r′ = 0 . (6.11)

Thus we have to solve these ODEs (6.10) and (6.11) in order to find the geodesics.

For a generic m(v), it is unfortunately not easy to find an analytical solution. To ob-

tain an explicit example, we performed a numerical analysis in the specific case smoothly

interpolating between pure AdS and BTZ,

f(r, v) = r2 − m0 + 1

2
tanh

v

vs
− m0 − 1

2
. (6.12)

Roughly speaking, this corresponds to a null shell of characteristic thickness vs collapsing

to form a BTZ black hole of mass m0 at time v = 0. We can numerically integrate to find

the spacelike geodesics in this geometry. For definiteness, for the result shown below, we

chose vs = 1 and m0 = 1. (Note that in 3 dimensions, unlike in the higher dimensional

analogs, the horizon starts at finite v; in this case v = 0.)

Figure 5 shows several plots (snapshots for different times v(rmin) ≡ v0 as labeled) of a

series of extremal surfaces.20 As the horizon grows with increasing v, the plots look similar

to different size static BTZ black holes.

20The surfaces will now vary in time as well; here we show just the r − x behaviour. In fact, it is easy to

confirm that the extremal surface W cannot coincide with the minimal surface on a maximal slice X . This

follows simply from the fact that the geodesics anchored at constant v on the boundary do not all lie on a

single spacelike surface in the bulk Vaidya-AdS spacetime.
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v0 = 0.1 v0 = 0.5 v0 = 1

v0 = -2 v0 = -1 v0 = 0

Figure 5: Minimal surface in Vaidya-AdS (in this 3-d case a geodesic) projected onto r − x slice

of the bulk (x is compact); the radial coordinate r is compactified using tan−1 function, the thick

outer circle represents the global AdS boundary, and the thick (red) inner circle the horizon radius

at the value of v = v0 reached by the geodesic at minimum radius, as labeled.

6.3 Null expansions in Vaidya-AdS

Having seen the behaviour of the spacelike geodesics which give us the requisite minimal

surface, we next study the null expansions for the curve defined by (6.7) in the three

dimensional Vaidya-AdS background (6.3). Consider a generic curve parameterized as

in (6.7) which is not necessarily a geodesic. Its two orthogonal null vectors are given by

Nµ
± = N

(

µ± (∂v)
µ + (1 + µ± f(r, v)) (∂r)

µ − 1

r2

(

v′ + µ± r′
)

(∂x)µ

)

, (6.13)

where we have defined

N =
1√
2

√

r2 f(r, v) + r′2

r2 + 2 r′ v′ − v′2 f(r, v)
,

µ± = −r2 + r′ v′ ∓ r
√

r2 + 2 r′ v′ − v′2 f(r, v)

r2 f(r, v) + r′2
. (6.14)

The expansions for these null vectors are then found to be

θ+ + θ− = − Θ1√
2

√

r2 f(r, v) + r′2 (r2 + 2 r′ v′ − f(r, v) v′2)3/2
,

θ+ − θ− =
Θ2√

2
√

r2 f(r, v) + r′2 (r2 + 2 r′ v′ − f(r, v) v′2)
, (6.15)

– 38 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
2

where we have defined

Θ1 = −2 r2 r′′ + 2 r′ v′ r2∂rf + 2 r2 f v′′ + r2 v′2 ∂vf − 2 f r r′ v′ + 2 r r′2

+3 v′2 r′2 ∂rf + 2 r′2 v′′ − r′ v′3 f ∂rf − 2 r′ r′′ v′ + r′ v′3 ∂vf,

Θ2 = 2 r2 f + 2 r r′ v′ ∂rf − 2 r r′′ − r f v′2 ∂rf + r v′2 ∂vf + 4 r′2 . (6.16)

After some algebra we can show that both null expansions θ± are vanishing iff the equations

of motion for the geodesic (6.10) and (6.11) are satisfied. This justifies our assertion in the

previous sub-section that the extremal surface in question is given by a spacelike geodesic

in Vaidya-AdS.

6.4 Time-dependent entanglement entropy

Having obtained the extremal surface W for the Vaidya-AdS geometry, we can compute

the entanglement entropy of the region A using the area of W. In particular, we would now

like to return to the original question about time-dependence of the entanglement entropy.

If we assume that the time-dependence of the mass function m(v) in (6.3) is very weak,

m′(v) ≪ 1, then we can use the adiabatic approximation. First we compute the entropy

for the static three dimensional AdS black hole (i.e. BTZ) and then treat the mass as a

function of time v.

In the BTZ black hole background, the length of the geodesic is given by the for-

mula (5.33). The adiabatic approximation allows us to regard m as a time-dependent

function m(v), so that the finite part of the geodesics length, denoted by Lreg(v), becomes

Lreg(v) = L(v) − 2 log(2 r∞) = log
sinh2(

√

m(v) h)

m(v)
. (6.17)

When the mass is very small m(v) ≪ 1, (6.17) reduces to a regularized proper length as a

function of (light-cone) time v:

Lreg(v) ≃ 2 log h +
h2

3
m(v) . (6.18)

Now let us recall the monotonicity property (6.6). If we combine it with the ex-

pression (6.17), we can show that the entanglement entropy increases in the adiabatic

approximation. Hence assuming that the matter undergoing collapse to form the black

hole satisfies the null energy condition, it is clear from the adiabatic approximation that

the entanglement entropy ∆SA(v) ∝ Lreg(v) increases in the process of a gravitational

collapse.

This claim can also be checked by a direct numerical analysis as shown in figure 6 for

the profile (6.12). Not only is it apparent that the proper length increases monotonically

with time, but we can also see that the adiabatic formula (6.17) is actually quite accurate

for vs = 1,m = 1. Note that there is a slight offset in the v-values between the two plots;

presumably this is because of the dynamics, in particular the identification of the v values.

However, if we shift the v value appropriately and overlay the two plots, the fit is almost

perfect as shown in figure 7.
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Figure 6: Left: Regularised proper length Lreg as a function of the boundary v∞, for several

regions, φ0 = 0.8, 0.9, 1, 1.1, 1.2 in the Vaidya-AdS spacetime (6.12). Right: the corresponding

prediction in BTZ from (6.17) .
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Figure 7: Regularised proper length Lreg as a function of the boundary v∞, for the particular

region φ0 = 1 in the Vaidya spacetime (6.12) (red dots) and the corresponding prediction in BTZ

from (6.17), with a shifted v value (black curve).

Below we will see that the monotonicity property can be proven via a direct per-

turbative analysis and furthermore that it is related to the second law of the black hole

thermodynamics.

6.5 Perturbative proof of entropy increase

Consider the change of the area functional when the surface is deformed slightly. The

infinitesimal shift of the d−1 dimensional spacelike surface W is described by the deviation

δXµ. In general we find

δArea = δ

∫

W
dξd

√

det gαβ =

∫

W
dξd δXν Πν +

∫

∂W

√
g gαβ gµν

∂Xµ

∂ξα
δXν ,
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where gαβ = gµν
∂Xµ

∂ξα
∂Xν

∂ξβ is the induced metric on the surface. β in the final expression is

orthogonal to the submanifold ∂W and Πν is defined such that the equation of motion for

this variational problem is given by Πν = 0.

This clearly shows that the area of extremal surface does not change under any in-

finitesimal deformation provided we keep the same boundary condition or the surface W
is closed. However, since we are interested in changing the boundary condition, corre-

sponding to the time-evolution, the final term in (6.19), which comes from the boundary

contribution via the partial integration, plays an important role.

Let us now concentrate on the specific case of the three dimensional Vaidya-AdS space-

time and assume that Wv is the extremal surface at the asymptotic time v as in (6.8). The

equation of motion vanishes on shell by definition; so only the boundary term contributes

and it can be written as:
∫

∂W

√
g gαβ gµν

∂Xµ

∂ξα
δXν = 2 δv0 r

(

1 − f(r, v0)
dv

dr

)∣

∣

∣

∣

r=r∞

, (6.19)

where the right hand side should be evaluated on the boundary with the cut-off r = r∞.

The factor of two in (6.19) arises due to the two endpoints x = ±h. To derive the above

result, we set ξ = r and use the fact g = grr ≃ 1
r2 and the deviation δXµ = δv0 (∂v)

µ. As

a consequence, we obtain the following expression for the time-dependence of the geodesic

length for any choice of m(v):

dL(v)

dv
= −2 r3

[(

dv

dr

)

− 1

r2

]∣

∣

∣

∣

r=r∞

. (6.20)

Here we have used that the fact that in the UV limit r = r∞ → ∞, the leading behavior

of the relation between r and v becomes v ≃ constant − 1
r . This result (6.20) shows a

remarkable fact that the time-dependence of the entanglement entropy only depends on

the asymptotic form of the function v = v(r).

To evaluate (6.20) explicitly, let us perform a perturbative analysis by assuming that

the time-dependent mass m(v) is very small and by keeping only its leading perturbation.

The details of this computation are described in the appendix C. The upshot is that the

asymptotic expansion of dv
dr is found using (C.19), to be

dv

dr
≃ 1

r2
− h2 m′(v0)

6 r3
+ O(r−4) . (6.21)

Plugging this into (6.19), we finally find the time-dependence of the geodesic length

dL(v)

dv
=

h2 m′(v0)

3
≥ 0. (6.22)

This precisely agrees with the one obtained from an adiabatic argument (C.15). Notice

that this is non-negative when we impose the null energy condition (6.6).

In this way we have confirmed the monotonicity property of the entanglement entropy

in the process of a gravitational collapse. It would be an interesting problem to prove this

for any general function m(v). We leave this for future investigation.
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Figure 8: The behavior of the null geodesics near an apparent horizon.

6.6 Relation to the second law of black hole thermodynamics

Up to now we have used holography to examine the entanglement entropy for a subsystem

Av at a time v in a two dimensional theory. It is interesting to consider the limit where

the subsystem approaches the total space. In this limit, it turns out that the extremal

surface W covers the whole apparent horizon, as we will explain below. Thus the finite

part of the holographic entanglement entropy is dominated by the contribution from the

area of apparent horizon. The analogous result for static AdS black holes has been already

obtained in [24, 10]. When Av finally coincides with the total system, the end points ∂Av

annihilate with each other and the extremal surface becomes the closed surface defined by

the apparent horizon at time v∗, where v∗ is the limiting value of the coordinate v on the

extremal surface toward IR region.

The (future) apparent horizon is defined by the boundary of a (future) trapped sur-

face [46]. In other words, on the apparent horizon the expansion θout of the outgoing

future-directed null geodesics is vanishing, while the other expansion θin of the ingoing null

geodesics is non-positive (see figure 8),

θout = 0 , θin ≤ 0 . (6.23)

Let us find an apparent horizon in the Vaidya metric (6.3). Consider the particular class

of co-dimension two surfaces defined by r = constant and v = constant. Then the null

expansions can be read from (6.15) as follows:

θin = −θ+ = −
√

r2 − m(v)√
2 r

, θout = −θ− =

√

r2 − m(v)√
2 r

. (6.24)

One might naively think the expansions of null geodesics are both vanishing at r =
√

m(v). However, this is actually not true because we have not normalized the null vectors

N± (6.13) such that they satisfy the geodesic equations Nµ
±∇µNν

± = 0. The correct null

vectors are given by

Nµ
in = − (∂r)

µ , Nµ
out = 2 γ(r, v) (∂v)

µ + f(r, v) γ(r, v) (∂r)
µ , (6.25)
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where γ(r, v) is a positive function determined as a solution to 2∂vγ(r, v) + ∂rγ(r, v) +

2 r γ(r, v) = 0 which is smooth at r =
√

m(v). The corresponding expansions of the null

geodesic congruences then become

θin = −1

r
< 0 , θout =

f(r, v) γ(r, v)

r
. (6.26)

With these correct normalizations we find that the condition (6.23) for an apparent horizon

is satisfied at f(r, v) = 0. Thus we can conclude that r =
√

m(v) is an apparent horizon

in the 3-dimensional Vaidya-AdS metric. While in general in time-dependent backgrounds

the apparent horizon does not coincide with the event horizon, we are guaranteed that

event horizon always lies outside the apparent horizon [46].

In the above example, the formula (6.15) did not give the correct sign of the expansions,

as the rescaling needed to satisfy the geodesic equation is singular. Since this occurs because

f(r, v) = r2−m(v) vanishes on the apparent horizon, for generic curves which do not reach

the apparent horizon this problem does not appear and we can read off the correct sign of

expansion from (6.15).

Let us now return to the reason for the extremal surface W to almost wrap the apparent

horizon when the subsystem is taken to be as large as the total system. Finding the

extremal surface is equivalent to solving for the vanishing null expansion given by (6.15);

the apparent horizon provides a solution to this criterion, as is manifest from (6.24). Thus

we can conclude that the limit of the subsystem engulfing the entire system, the extremal

surface appears to coincide with a spatial section of the apparent horizon21 (this fact can

also be observed nicely in figure 5).

Therefore we can argue that the total entropy Stot(t) = −Tr ρ(t) log ρ(t) in the dual

time-dependent theory is given by the area of the apparent horizon at t = v∗. The time-

dependence of Stot means that the evolution of the system is non-unitary; this is the usual

issue of evolution of a density matrix.22 It is also interesting to note that for reproducing

a physical quantity, the apparent horizon, which is defined using local quantities, is more

crucial than the event horizon, whose definition is rather global.

The second law of black hole thermodynamics tells us that the area of apparent hori-

zon always increases under any physical process which satisfies the appropriate energy

condition [46] (also cf., [47]). This can be shown explicitly from the condition (6.23) and

the basic formula (3.13), which guarantees that the area increases under an infinitesimal

deformation δXµ along the evolution of the apparent horizon δXµ ∝ Nµ
out − Nµ

in. On the

21Strictly speaking, as we have argued above, the apparent horizon is not a minimal surface. Moreover,

the full apparent horizon is a bulk co-dimension one surface. We will interpret the fact that the extremal

surface W dips down almost all the way to the location of the apparent horizon and wraps the spatial

section before returning back to the boundary to signify that the area of the apparent horizon plays an

important role in computing the entanglement entropy in the limit of the subsytem A approaching the full

system ∂N .
22One could try to interpret this as unitary evolution in a tensor product theory, where the second Hilbert

space is hidden behind the horizon, as in the eternal AdS black hole [21]. Of course, in the dynamical

situation we do not have exact thermal periodicity and this would imply that the ‘shadow CFT’ lives on a

shifted locus in the complex time plane.
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other hand, we can derive this second law of the apparent horizon area from the mono-

tonicity property (6.22) by taking the mentioned limit of the minimal surface. In this

way the two concepts are naturally connected with each other. Notice that on both sides

the monotonicity stems from the positive energy condition (with a further assumption of

homogeneity on the boundary state).

We note in passing that in the limit of the subsystem A engulfing the system, the

temporal evolution of the extremal surface W is captured by the behaviour of dynamical

horizons. A dynamical horizon is defined to be a smooth, co-dimension one spacelike

submanifold of the spacetime, which can be foliated by a family of closed spacelike surfaces,

such that the leaves of the foliation have one null expansion vanishing and the other null

expansion being strictly negative [55, 47] as in (6.23). It is tempting to infer from this that

the results proved for the area increase of dynamical horizons can be ported to the present

situation and in particular used to establish a “second law of entanglement entropy” from

holographic considerations.

7. Other examples of time-dependent backgrounds

7.1 Wormholes in AdS and entanglement entropy

Consider the (entanglement) entropy Stot = −Tr ρtot log ρtot for the total system as in

section 6.6. It is vanishing if the system is in a pure state. When it is non-vanishing, it

is usually interpreted as the thermal entropy and correspondingly its AdS dual spacetime

is expected to have an event horizon. In such examples the total entropy Stot is dual to

the Bekenstein-Hawking entropy of the black hole in question. In Lorentzian geometries

such as the eternal Schwarzschild-AdS geometry, we can equivalently regard the entropy

as arising from the entanglement between the total system and another identical system

hidden behind the horizon as in [21] (cf., also [41] for other examples). A recent discussion

of issues relevant to this context can be found in [56].

In this section we would like to point out an example which has a non-zero total entropy

Stot and its origin seems to be different from the example mentioned above. In particular,

the example we have in mind is an Euclidean spacetime with no event horizons. These are

the Euclidean AdS wormholes discussed in [40].

They are obtained by considering the hyperbolic slices of Euclidean AdSd+1(= Hd+1)

dsHd+1
= dρ2 + cosh2 ρ ds2

Hd
, (7.1)

and by taking a quotient of Hd by a discrete group Γ to generate a compact manifold.

We mainly consider the case d = 2, because in this case the background is perturbatively

stable [40]. Also the dual two dimensional CFT is well-defined on a background of negative

curvature H2/Γ; a Riemann surface. The two boundaries ∂M1 and ∂M2 are given by the

two limits ρ → ∞ and ρ → −∞. After the quotient by the Fuchsian group Γ, the two

boundaries become the same Riemann surface with genus g ≥ 2 (see figure 9).
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ρ = 0
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Figure 9: The AdS wormhole geometry and the topologically non-trivial cycle C on the boundary.

Such a solution leads us to a puzzle23 immediately as pointed out in [40]. From the

CFT side, we expect that the two CFTs on the two boundaries are decoupled from each

other. Thus all correlation functions between them should be vanishing. However, from

the gravity side, there are non-trivial correlations since the two boundaries are connected

through the bulk.

Here we would like to point out a possible resolution to this problem. Our claim is

that the CFT1 on ∂M1 and the CFT2 on ∂M2 are actually entangled with each other

despite the absence of an event horizon. To check CFT1 and CFT2 are indeed entangled,

we need to compute the entanglement entropy S1 for the total system of CFT1. This should

coincide with the entanglement entropy S2 for the CFT2 (we expect that the total system

CFT1 ∪ CFT2 to be in a pure state).

When we choose a Euclidean time-direction locally in the two dimensional space ∂M1,

the total system (at a specific time) in CFT1 is defined by a circle C in ∂M1, which is

topologically non-trivial. This setup can be regarded as a higher genus generalization of

the computation at a finite temperature using Euclidean BTZ black hole done in [10, 24].

Let us define the circle Cmin in the Riemann surface to be cycle with minimal length

among those which are homotopic to C. Then the minimal surface which is relevant to

the holographic computation of S1 turns out to be the circle Cmin at the throat ρ = 0.

This can be understood as follows; see figure 9 below. We first consider the entropy SA
assuming that A is a submanifold of C. Then we can easily find the minimal surface whose

end point at ρ = ∞ coincides with ∂A. As we gradually increase the size of A, the minimal

surface anchored on one boundary dips deeper into the bulk. In the limit A → C the two

end points of ∂A annihilate and the minimal surface gets localized at the throat. So the

maximum entropy is given by the area of the neck. It is clear from the geometric picture

that S1 = S2, since both are measured by the area of the throat.

In this way we find that the entanglement entropy S1 between CFT1 and CFT2 is

23There is another possibility that the path-integral over infinitely many such geometries cure the problem

as discussed in [40]. Here we are assuming that each of perturbatively stable asymptotically AdS solutions

should have its dual CFT interpretation before summing over the geometries.
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Figure 10: The computation of entanglement entropy in the presence of two boundaries in the

AdS wormhole geometry at fixed value of the Euclidean time.

given by

S1 = S2 =
Area(C)

4G
(3)
N

> 0. (7.2)

As this is clearly non-vanishing due to the throat connecting the two boundaries, we can

conclude that the two CFTs are entangled with each other. Interestingly, the existence of

such a minimal surface at the throat also plays the crucial role when we present a generic

definition of wormhole as discussed in [57].

The above definition of entanglement entropy between two CFTs only depends on the

topological class of the cycle C. Thus we can define 2g different entropies when ∂M1 = ∂M2

is a genus g Riemann surface. We would also like to stress that the genus one version of the

above calculation is equivalent to the ordinary Euclidean computation of the Bekenstein-

Hawking entropy of black holes.

In the above discussion, we have concentrated on Euclidean wormholes. In the

Lorentzian case, the topological censorship [58] (with assumptions about energy condi-

tions) guarantees that disconnected boundaries are separated from each other by event

horizons. This is a simple consequence of null geodesic convergence following from Ray-

chaudhuri’s equation; essentially if two disconnected boundaries were in causal communi-

cation then null geodesics which are initially contracting will have to re-expand, violating

the null convergence condition. If we allow the presence of some exotic matter so that

the Lorentzian wormholes exist, the above computation of the entanglement entropy in

wormhole geometries can be equally applied to the Lorentzian case.

7.2 Entanglement entropy of the AdS bubble

Our final example of a time-dependent asymptotically AdS background is the AdS bubble
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solution [59, 60]

ds2 = f(r) dχ2 +
dr2

f(r)
+ r2

(

−dτ2 + cosh2 τ dΩ2
2

)

, (7.3)

where f(r) = 1+r2− r2
0

r2 . This is obtained via a double Wick rotation of the Schwarzschild-

AdS black hole in the global coordinates. This solution represents a background where a

bubble of nothing shrinks from infinite size to a minimum value r2
+ (7.4) and subsequently

re-expands out as the time evolves from τ = −∞ to τ = ∞. If we consider a double Wick

rotation of the (planar) Schwarzschild-AdS black hole in Poincaré coordinates, we obtain

the static AdS bubble (or AdS soliton), whose entanglement entropy was computed in [3]

and a quantitative comparison with the dual Yang-Mills has been made successfully.

The coordinate χ in (7.3) is compactified and the smoothness of this solution requires

the periodicity χ ∼ χ + ∆χ, where ∆χ is given by

∆χ =
2π r+

2 r2
+ + 1

, r2
+ ≡ 1

2

(

√

1 + 4 r2
0 − 1

)

. (7.4)

One can show that this solution is asymptotically AdS as r → ∞. The important point

is that the time t in the asymptotically AdS global coordinate is different from τ in (7.3).

They are related via [60]:

tan t =
r√

r2 + 1

sinh τ

cosh χ
. (7.5)

The boundary of the metric (7.3) is dS3 × S1
χ, with τ being the deSitter time coordinate.

Now we are interested in the entanglement entropy SA at fixed time t = t0 in the

boundary theory on dS3 × S1
χ. The radius of S2 ⊂ dS3 has a time varying radius ∼ cosh τ .

We define the subsystem A such that its boundary ∂A is T 2 = S1
χ × S1, where the second

S1 is the equator of the S2. Then the extremal surface will be given by the two dimensional

surface defined by g(τ, χ, r) = 0 times the S1. To explicitly determine the function g, one

needs to solve a complicated set of partial differential equations.

If we assume24 r0 ≪ 1 (i.e., ∆χ ∼ 2π r0 ≪ 1), then the condition t = constant is

approximated by τ = constant. To avoid solving the differential equations, we consider

a minimal surface on the time slice defined by t = const. as a further approximation.25

Under this approximation we can easily find the entanglement entropy:

SA(t) =
Area(W)

4G
(5)
N

≃ 2π

4G
(5)
N

cosh τ

∫ ∞

r0

r dr

∫ 2πr0

0
dχ =

π2r0

2G
(5)
N

(r2
∞ − r2

0) cosh τ, (7.6)

where r∞ is the UV cut-off. We find that the entropy is proportional to cosh τ ≃ 1
cos t . This

is consistent with the known area law of the entanglement entropy because Area(∂A) ∝
cosh τ . Note that the finite term has a minus sign. This is because the emergence of

24Recall that we are working in units where the AdS radius is set to unity.
25Clearly this surface does not coincide with Y in our covariant construction except τ = t = 0. However,

we believe that we can obtain a qualitative behaviour of the time-dependent entanglement entropy using

this approximation.
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the bubble means the disappearance of degrees of freedom as discussed in [3] about the

static AdS bubble example. It would be interesting to understand this time-dependent

entanglement entropy from the dual field theory side and to find the explicit extremal

surface for this geometry.

8. Discussion

In this paper, we have presented the covariant holographic formula (3.15) (or equiva-

lently (3.7)) of the entanglement entropy (or von-Neumann entropy) in AdS/CFT corre-

spondence within the supergravity approximation. We propose that it is simply given by

the area of the extremal surface in a given asymptotically AdS background. This allows us

to calculate entanglement entropy of dual (conformal) field theories even in time-dependent

backgrounds. This is a natural generalization of the previously proposed holographic for-

mula for static AdS backgrounds [10, 24].

Our covariant holographic proposal claims that the entanglement entropy SA for the

subsystem A is equal to the area of a certain bulk surface S, which is anchored at the

boundary ∂A, in Planck units as in the Bekenstein-Hawking formula. Our main conclusion

is that the surface S is given by the extremal surface W, which is an extremum of the area

functional. We argued that W is equivalent to the surface Y, which we motivated from the

covariant entropy bound. In particular, Y is defined to be the minimal area surface among

the family of co-dimension two bulk surfaces satisfying the requisite boundary conditions

with the additional constraint that they support two light-sheets i.e., the null geodesic

congruences directed toward the boundary have non-positive expansion. More construc-

tively, Y corresponds to the surface with vanishing null expansions. We gave an argument

which supports our claim W = Y; a rigorous proof is left as an intriguing problem for the

future. We also pointed out another potential candidate for a covariantly defined surface,

a minimal surface on a maximal time-slice, X , which reduces to the minimal surface in

static spacetimes. We showed that X coincides with W when the bulk spacetime is foliated

by totally geodesic spacelike surfaces and argued that generically X doesn’t capture the

holographic entanglement entropy of a specified boundary region.

We argued that our covariant proposal can be derived naturally using the light-sheet

construction and thus is closely related to the covariant entropy bound (Bousso bound) [35].

At first sight, this relation is rather surprising, since the entropy bound is usually asso-

ciated with the thermodynamic entropy while the entanglement entropy has a different

origin. It strongly supports the historical idea that the entanglement entropy is connected

with a microscopic origin of the gravitational entropy with quantum corrections [22, 23]

(see also [20, 28] and references therein). We leave further exploration of this relation as

an important open problem. It would also be interesting to generalize the covariant holo-

graphic formula beyond the supergravity approximation assumed in the above discussion

(see [27] for recent progress in the Euclidean case).

We believe that deeper understanding of the entanglement entropy will provide crucial

insights into the nature of the holographic relation between quantum gravity and its dual

non-gravitational lower dimensional theory. One reason for this stems from the universality
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of the definition of this quantity for any system described by the laws of quantum mechanics.

We can deal equally well with diverse systems such as spin chains, quantum Hall liquids,

gauge theories, matrix models, and even cosmological models from this viewpoint. For

each, we can then examine if a holographic dual exists, and then exploit the covariant

construction above to compute the entanglement entropy. The second reason is that the

entanglement entropy is holographically described by a basic geometrical quantity, namely

the area of a well-defined co-dimension two surface, as we have discussed extensively. Given

a specific bulk geometry, which is described by some particular CFT state, we can calculate

the proper areas of the requisite surfaces which we have conjectured to correspond to the

entanglement entropy for that state.

Conversely, given a specific state of the boundary theory, we can ask how much infor-

mation is encoded in the entanglement entropy. In particular, for a system in a given state

admitting a gravitational dual, if we know the entanglement entropy for all subsystems A
of the boundary, can we decode the full geometry of the gravitational dual corresponding

to that state, at least at the supergravity level? Even though we leave the actual metric

extraction for future work, we believe that most, if not all, of the metric information can

indeed be extracted from the entanglement entropy data by a suitable inversion technique.

An analogous problem has been discussed in [52], where the singularities in the CFT

correlators, the so-called bulk-cone singularities, were used to distinguish different geome-

tries. The basic idea is that the bulk-cone singularities occur for correlators whose operator

insertions are connected by a null geodesic through the bulk spacetime; and since bulk

geodesics are determined by the bulk geometry, knowing the endpoints of null geodesics

allows us to extract a large amount of information about the bulk geometry. Using this

technique, [61] has numerically demonstrated metric extraction for a class of static, spher-

ically symmetric bulk spacetimes.

However, null geodesics have their limitations. They are insensitive to conformal rescal-

ing of the metric, and they probe only the part of the bulk which allows their endpoints

to remain pinned at the boundary. Hence the metric extraction of [61] does not probe

the bulk past null circular orbits. In this respect, a spacelike geodesic, or more generally

a spacelike surface, would bypass both of these shortcomings. This has been confirmed

in [63]. Not only are spacelike geodesics sensitive to the conformal factor, but also they

probe deeper into the bulk while remaining pinned at the boundary. This is demonstrated

in figure 4, where metric extraction would be allowed all the way down to the horizon.

Moreover, when the bulk is 4 or higher dimensional, the co-dimension two surfaces are

likewise higher-dimensional, and therefore may be expected to contain a larger amount of

information than geodesics which are only one-dimensional quantities.

The computation of the entanglement entropy in a time-dependent background is in

general a very hard question due to technical complications. However, our holographic

formula allows us to solve this problem simply, provided the system under consideration

has a holographic dual. In this paper, we examined several examples of time-dependent

backgrounds. First we considered the 3-dimensional AdS-Vaidya background, which is

dual to a time-dependent background of a 2-dimensional CFT. There we found that the

entanglement entropy computed holographically increases under time evolution. We have
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also seen that this is closely related to the second law of the black hole thermodynamics.

This result suggests the expected monotonicity property; namely that given the null energy

condition, in any gravitational collapse the entanglement entropy always increases. It

would be interesting to see if monotonicity is preserved once we take into account quantum

corrections described by the Hawking radiation on the gravity side.

Another example we discussed concerns wormholes in AdS. Even though the two dual

CFTs on the two disconnected boundaries look decoupled from each other, there are non-

vanishing correlation functions from the bulk gravity viewpoint [40]. We proposed a pos-

sible resolution to this puzzle by showing that the entanglement entropy between the two

CFTs is actually non-vanishing. This confirms that they are quantum mechanically entan-

gled.

Since the concept of entanglement entropy is well-defined in any time-dependent sys-

tem, it provides a very useful physical quantity to analyze in a quantum system which is

far from the equilibrium, where we cannot define the usual thermodynamical quantities.

At the same time, it is an important quantity bearing on quantum phase transitions of

various low dimensional systems at zero temperature. Therefore our results can be re-

garded as a first step toward the analysis of condensed matter physics using the AdS/CFT

correspondence (see e.g., [62] for other recent interesting approach).
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A. Covariant construction of causally-motivated surface Z

Above we have discussed three distinct constructions as candidate covariant duals of the

entanglement entropy, namely the surfaces W, X , and Y. All of these require solving an

extremization problem. However, in section 2.4 we have also mentioned an alternate con-

struction, Z, which may be computationally simpler to find. This is because the requisite

co-dimension one surface on which we define Z is constructed purely based on causal rela-

tions and therefore does not require e.g. solving for geodesics (though in practice, in many

examples it is quite easy to find this by using null geodesics).

The causal covariant construction Z will be achieved by a series of steps:

(i) Starting with the spatial region At ⊂ ∂Nt ∈ ∂M, construct its domain of dependence

Dt ⊂ ∂M. This is the set of all boundary points q through which all causal boundary

curves γq necessarily intersect At,

Dt = { q ∈ ∂M | ∀ γq ∈ ∂M, { γq ∩ At } 6= ∅ } (A.1)
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Figure 11: Sketch of the proposed construction of the desired bounding surface Zt.

(ii) Construct the bulk “causal wedge” Ct of the boundary region Dt. This is defined

as the set of bulk points p from which there exists both a future-directed and a

past-directed causal curve, γ+
p and γ−

p , which intersects26 Dt.

Ct = { p ∈ M | ∃ γ+
p , { γ+

p ∩ Dt } 6= ∅ and ∃ γ−
p , { γ−

p ∩ Dt } 6= ∅ } (A.2)

(iii) Let Bt be the boundary (in the bulk) of Ct. In some simple cases, this is constructed

from the future and past bulk light-cones from the past and future tip of Dt.

Bt = { p ∈ M\ ∂M ∩ p ∈ ∂Ct } = ∂Ct \Dt (A.3)

(iv) Finally, consider the set of all spacelike surfaces lying in Bt and pinned at ∂At. From

these spacelike surfaces, take one with the maximal area.27 We denote this maximal

surface by Zt. So we have Zt ∈ Bt ∈ M, ∂Zt = ∂At.

In figure 11 we indicate the construction of Z more explicitly by sketching various

2-dimensional slices of the spacetime, as labeled.

In table 1 we show the dimensionality of the various regions discussed and specify

whether they lie in the bulk or in the boundary. Recall that the Zt is a co-dimension

two surface in M, as is the boundary region At. Furthermore, this construction does not

depend on a choice of coordinates, but only on physically meaningful quantities: causal

relations in the spacetime and proper “area” of a given spacelike surface. This ensures that

we can apply the same construction for time dependent bulk geometries just as easily.

26For purposes of this definition we treat ∂M as a subset of M, so that a bulk curve can “intersect” (i.e.,

terminate on) the boundary. This is motivated by using the usual “cut-off” surface instead of the actual

boundary. More technically, we want the ideal points associated with the TIP or TIF of the requisite curve

through p to lie in Dt.
27There may in general be more than one such surface, but we are ultimately interested in the area of

such a surface, and this value is unique. The fact that the area is bounded from above is tied to the fact

that we are looking for a surface which has only one dimension less than Bt; lower dimensional surfaces

could achieve arbitrarily high area by “crumpling”.
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region dimensionality bulk/bdy

M d + 1 M
∂M d ∂M
At d − 1 ∂M
∂At d − 2 ∂M
Dt d ∂M
Ct d + 1 M
Bt d M
Zt d − 1 M

W,X ,Y d − 1 M

Table 1: Dimensionality of the various regions discussed.

A.1 Discrepancy in AdSd+1 for d ≥ 3

Now let us consider whether the construction Z provides a viable candidate for the dual

of the entanglement entropy. In order for the area of Z to be equal to the entanglement

entropy for general states, a minimal requirement is that Z reduces to the correct minimal

surface for static spacetimes. Therefore we wish to check whether in any static spacetime,

Z coincides with W (which, as we argued above, automatically coincides with X and Y for

all static spacetimes).

We can find an easy counter-example, even for pure AdS, in more than three dimensions

for non-spherical regions. For simplicity, let us consider the infinite strip in AdS4, in

Poincaré coordinates. The bulk metric is ds2 = 1
z2

(

−dt2 + dz2 + dx2 + dy2
)

, and let the

region A on the boundary be an infinite strip extended along the y direction; {t = 0, x ∈
(−h, h)}. The minimal surface is given by (5.18), with x(z) given by d̃ = 2 and smeared

over all y. On the other hand, the causal construction of Z outlined above is determined

by past/future directed null geodesics at constant y, from {z = 0, x = 0, t = ±h} into the

bulk. Since these are insensitive to the conformal factor of the bulk metric, they behave

just as in flat spacetime; the maximal area surface, lying on the intersection of the future

and past light-cones from the tips of D0, is given simply by the half-circle z2 + x2 = h2,

uniformly smeared in the y-direction.

We can easily check that this surface Z does not coincide with the minimal surface

W since Z does not satisfy28 (5.18). In particular, figure 12 demonstrates the difference

between the two surfaces. Moreover, we can easily check that the area of Z is much larger

than the area of W (since Z lies closer to the boundary where the warp factor diverges),

so the former cannot yield the entanglement entropy.

The above discrepancy gets exacerbated in higher dimensions, where as d increases,

the solution to (5.18) becomes more separated from the curve Z, given by z2 + x2 = h2,

which is independent of d. In fact, in the more physically interesting case of AdS5, we

have an infinite discrepancy between the area of Z and that of W. Here, we can actually

28Note however that, remarkably, for a circular region A, the two surfaces Z and W would coincide

exactly.
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Figure 12: A constant-y cross-section of the two surfaces Z and W for infinite strip of width 2h

in AdS4. This example demonstrates that Z 6= W = X = Y.

compare our results directly with a free Yang-Mills calculation, and check explicitly which

surface yields a better estimate of the entanglement entropy. In particular, the entropy

density corresponding to W, which coincides with the minimal surface considered in [10]

(see eq. (7.6) of that paper), is given by

SW =
1

4G
(5)
N

(

1

ε2
− 0.32

1

4h2

)

, (A.4)

where z = ε is the usual UV cut-off. Note that we are quoting here the result for the

entropy density and the AdS radius is set to unity. On the other hand, the entropy density

associated with Z can be easily computed to be

SZ =
1

4G
(5)
N

(

1

ε2
− 2

1

4h2
+

1

h2
log

2h

ε

)

. (A.5)

Note that apart from the standard 1/ε2 divergence, SZ also suffers from a logarithmic

divergence (related to the conformal anomaly), so that the discrepancy in the areas of Z
and W is actually infinite, though the leading divergence is the same.

Now, to compare these gravity results with the Yang-Mills results, we consider the

direct free Yang-Mills computation. This leads to the following entropy density when we

expressed it in terms of AdS quantities [10]:

SYM =
1

4G
(5)
N

(

(const) · 1

ε2
− 0.49 · 1

4h2

)

. (A.6)
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Of course, we do not expect the free Yang-Mills result to agree quantitatively with the

AdS gravity computation, since the latter corresponds to the strongly coupled gauge the-

ory. Also we cannot directly compare the divergent term since the UV cutoff in Yang-Mills

calculation is not necessarily equal to the one in the AdS side. However, we do expect that

the finite part of entropy should agree with each other semi-quantitatively as evidenced

by the famous 4/3 entropy factor for the black D3-branes.29 Comparing (A.6) with (A.4)

and (A.5), we immediately see that the extremal surface W yields a much better approx-

imation of the entanglement entropy for the free Yang-Mills system than Z. We expect

this to remain true even at strong coupling.

A.2 3-Dimensional static bulk geometries

Above we have seen that for AdSd+1 with d ≥ 3, the surface Z does not necessarily

coincide with the requisite minimal surface for static spacetimes. This a priori rules it

out as a candidate covariant dual of entanglement entropy in time-dependent scenarios as

well. However, we may still ask whether in 3 dimensions the Z construction works better.

After all, the dual field theory lives in 2 dimensions, so we would expect many special

properties. Indeed, from the geometrical point of view, 3-dimensional bulk is special: since

A is 1-dimensional, Bt is always described simply by a light-cone. Moreover, performing the

above check for d = 2, we find that Z = W, since the surface z2 + x2 = h2 satisfies (5.18).

In fact, slightly less trivially, we can likewise check by explicit calculation that in global

AdS3, with ds2 = −(r2 + 1) dt2 + dr2

r2+1 + r2 dϕ2 and A = { (t, ϕ) | t = 0 , ϕ ∈ (−φ0, φ0) },
both Z and W are given by

r2(ϕ) =
cos2 φ0

sin2 φ0 cos2 ϕ − cos2 φ0 sin2 ϕ
. (A.7)

Similarly, in BTZ, with ds2 = −(r2 − r2
+) dt2 + dr2

r2−r2
+

+ r2 dϕ2, Z and W likewise coincide

and are given by

r2(ϕ) = r2
+

cosh2(r+ φ0)

sinh2(r+ φ0) cosh2(r+ ϕ) − cosh2(r+ φ0) sinh2(r+ ϕ)
. (A.8)

Let us therefore ask whether this agreement holds in general. Specifically, consider a

metric for a general static, spherically symmetric 3-dimensional spacetime,

ds2 = −f(r) dt2 + h(r) dr2 + r2 dϕ2 (A.9)

which we take to be asymptotically AdS (f(r) → r2 and h(r) → 1/r2 as r → ∞). Let the

boundary region A be the same as above, A = { t = 0 , ϕ ∈ (−φ0, φ0) }. We want to ask

whether Z and W coincide in this general static case. Note that W is simply a spacelike

geodesic anchored at ϕ = ±φ0, whereas Z is the projection to t = 0 of a null geodesic

congruence from the tip of D0.

29In fact, it’s amusing to note that the ratio of the coefficients of the leading finite terms in the entan-

glement entropy expressions (A.6) and (A.4) also lies very close to 4/3.

– 54 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
2

The effective potential for geodesics with energy E and angular momentum L, defined

by ṙ2 + Veff(r) = 0, is given by

Veff(r) =
1

h(r)

[

−κ − E2

f(r)
+

L2

r2

]

(A.10)

where κ = 0 for null geodesics and κ = 1 for spacelike geodesics. Since W corresponds to

the spacelike geodesic at constant t, pinned at ϕ = ±φ0, we have κ = 1, E = 0, which fixes

the relation between L and φ0. Also, the minimum radius reached rmin is easy to find from

Veff(rmin) = 0; we simply have rmin = L. Expressing W as ϕ(r), we then obtain

ϕ(r̄) = ±L

∫ r̄

L

√

h(r)

r2 − L2

1

r
dr . (A.11)

To construct Z, we consider a null geodesic congruence labeled by ℓ ≡ L/E (and we choose

parameterization such that E = 1). Then t and ϕ along the ℓ geodesic, written in terms

of r, are given by

tℓ(r̄) = φ0 −
∫ ∞

r̄

√

h(r)

r2 − ℓ2 f(r)

r
√

f(r)
dr , (A.12)

ϕℓ(r̄) = ±ℓ

∫ ∞

r̄

√

h(r)

r2 − ℓ2 f(r)

√

f(r)

r
dr . (A.13)

Now, let r0(ℓ) be the value of r along the ℓ geodesic at which tℓ reaches zero, tℓ(r0(ℓ)) = 0.

Then Z is given by ϕℓ(r0(ℓ)), which as written is a parametric curve parameterized by ℓ,

but out of which ℓ should be eliminated to compare directly with A.11.

To make progress, consider the change in ϕℓ as we vary r0 (i.e., as we vary ℓ):

δϕℓ(r0(ℓ))

δr0(ℓ)
=

∂ϕℓ(r0(ℓ))
∂ℓ

∂r0(ℓ)
∂ℓ

=
∂ℓϕℓ(r0(ℓ))

r′0(ℓ)
(A.14)

which we can find using the generalized Leibnitz rule. We want to compare the resulting

expression with the corresponding variation for the spacelike geodesic W,

dϕ(r)

dr
=

L

r

√

h(r)

r2 − L2
at r = r0(ℓ) . (A.15)

We then obtain a long integral equation, which we can simplify (eliminate the integral) by

observing that ∂ℓtℓ(r0(ℓ)) = 0, which follows from the definition of r0(ℓ); we can again use

the generalized Leibnitz rule to write this explicitly.

Hence the assumption that Z = W reduces to the much simpler equation, which we

wish to verify/falsify for general f(r), and for all ℓ:

r2
0(ℓ) − ℓ2 f(r0(ℓ)) = L2 . (A.16)

While it is straightforward to check that this mysterious relation does hold for the cases

discussed above of AdS and BTZ, as consistency demands, it is less trivial to check it for
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general f(r). Resorting to numerical analysis, we find that unfortunately (A.16) is not

satisfied for arbitrary f(r) (although Z is typically well-approximated by W). Hence we

conclude that even in 3 dimensions, Z 6= W.

To understand better why this is the case, consider the particular point on the surfaces

Z and W corresponding to ϕ = 0, namely when r reaches its minimal value. For the

spacelike geodesic W, this is simply L; whereas for Z, it corresponds to r0(ℓ = 0) ≡ r0.

Therefore a simple way to check that Z 6= W is to show that in general r0 6= L. We can

extract the relation between r0 and L by writing φ0 using the spacelike geodesic (A.11)

and the null geodesic (A.12) with ℓ = 0:

φ0 =

∫ ∞

r0

√

h(r)

f(r)
dr =

∫ ∞

L

√

√

√

√

h(r)

r2
(

r2

L2 − 1
) dr . (A.17)

But this relation clearly indicates that whereas for any fixed φ0, L depends only on h(r)

(since the spacelike geodesic at constant t cannot be sensitive to f(r)), r0 depends on both

h(r) and f(r) — so r0 cannot coincide with L for arbitrary f(r). This provides a proof

that Z 6= W for general 3-dimensional static spherically symmetric spacetimes.

A.3 Use of Z to bound the entanglement entropy

Above, we have described the construction Z and argued that it does not in general coincide

with X , Y, or W, even in static backgrounds. Hence, although Z is based only on causal

relations and therefore carries a certain appeal due to its simplicity, we may well ask what

is it useful for.

In the context of entanglement entropy, we propose that computing Z is useful (if

simpler than computing W, Y, or X ) because it provides a bound on the entanglement

entropy. In particular, we expect that the area of Z is larger than (or equal to) the areas

of W and Y, at least for “sensible” spacetimes. If the spacetime is static, this is clearly

true by definition because the correct surface W = Y is the minimal area surface. In more

general case, one (3.7) of our covariant constructions, implies this speculation, though we

cannot offer a general proof.

Imagine the situation where we want to find the minimal surface W = Y for a compli-

cated choice of the subsystem A in order to compute the holographic entanglement entropy

in a static higher dimensional spacetime. In this case, it seems almost impossible to find the

minimal surface analytically because we need to solve a partial differential equation with

a generic initial condition. However, to find null geodesics will be much more tractable.

Then we can find a definite and useful bound for the entanglement entropy by employing

the construction of Z.

B. Null expansions and extremal surfaces

B.1 Definition of extrinsic curvature

Consider a d-dimensional spacelike submanifold S in a D-dimensional spacetime M with

Lorentzian signature. The coordinates of M are denoted by xµ and those of the submanifold

S are ξα.
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We define the extrinsic curvature K
(m)
µν as follows. There are D − d vectors n

(m)
µ

(m = 1, 2, . . . ,D − d) on S which are orthogonal to S. The extrinsic curvature is defined

by

∇µn(m)
ν = K(m)

µν . (B.1)

In particular, if we choose a coordinate system adapted to S so that xµ = (ξα, yl), where

l = 1, 2, . . . ,D − d labels the directions normal to S, then we obtain

K
(m)
αβ = −Γl

αβ n
(m)
l . (B.2)

Picking any two tangent vectors uµ, vµ ∈ TS, we can equivalently define the extrinsic

curvature by

K(m)
µν uµvν = (uµ∇µ vν)n(m)

ν . (B.3)

B.2 Extremal surfaces

We define an extremal surface by the saddle point of the area functional

Area(S) =

∫

S
(dξ)d

√

det g, (B.4)

where gαβ is the induced metric and is written in terms of the total spacetime metric gµν

as gαβ = gµν
∂Xµ

∂ξα
∂Xν

∂ξβ .

After a little algebra, the equation of motion can be rewritten as

Πµ
αβ gαβ = 0 , (B.5)

where Πµ
αβ is defined by

Πµ
αβ = ∂α∂βXµ + Γµ

νλ∂αXν∂βXλ − Γγ
αβ∂γXµ . (B.6)

It is possible to show that Πµ
αβ is orthogonal to TS i.e., Πµ

αβ ∂γXµ = 0. Thus the only

independent components are D − d vectors n
(m)
µ Πµ

αβ .

Let us choose the specific coordinate system such that Xµ = (ξα, yl) as before. Then

it is easy to see

n(m)
µ Πµ

αβ = Γl
αβ n

(m)
l = −K

(m)
αβ . (B.7)

Thus we find that the extremal surface condition is equivalent to the vanishing of the trace

of the extrinsic curvature

−gαβK
(m)
αβ = gαβn(m)

µ Πµ
αβ = 0 . (B.8)

In a generic coordinate frame, this is expressed as

gµνK(m)
µν = 0 . (B.9)

– 57 –



J
H
E
P
0
7
(
2
0
0
7
)
0
6
2

B.3 Expansions of null geodesics: relation to extremal surfaces

Consider a co-dimension two spacelike surface S. There are two independent normal vectors

at each point on S. We can choose them to be lightlike and call them Nµ
+ and Nµ

−. They

are normalized such that Nµ
+N+µ = Nµ

−N−µ = 0 and Nµ
+N−µ = −1. We can define the

extrinsic curvatures K
(±)
µν for these vectors.

The two null expansions θ± are defined by

θ± = gµνK(±)
µν . (B.10)

It is clear from the above definition of the extrinsic curvature that when gµνK
(±)
µν = 0 (i.e.,

S is a extremal surface), both of the expansions are zero θ± = 0.

Also from this definition we can find that when Nµ is a null Killing vector, i.e., ∇µ Nν +

∇ν Nµ = 0, the null expansion θ is obviously vanishing.

C. Details of perturbative analysis in Vaidya-AdS background

We perform a perturbative analysis by only keeping the linear order about the mass m(v)

in the Vaidya.

We consider the extremal surface (or equivalently a geodesic) in the background (6.3)

assuming that m(v) is very small. At the boundary r = r∞ → ∞, the two end points of

the geodesic are given by (v, r, x) = (v0, r∞,±h). We assume the following profile

r(x) =
1√

h2 − x2
+ s(x),

v(x) = v0 −
√

h2 − x2 + u(x), (−h ≤ x ≤ h). (C.1)

After we plug this into (6.10) and (6.11), we obtain the differential equations for the

perturbation s(x) and u(x) at linear order:

2x(h2 − x2)3/2s′(x) − 2
√

h2 − x2(2x2 + h2)s(x) + x2(h2 − x2)m[v(x)] + 2ǫh = 0 , (C.2)

(h2 − 4x2)s(x) + 2x(h2 − x2)s′(x) − (h2 − x2)u′′(x) = 0 , (C.3)

where, we have defined the very small quantity ǫ by

h =
1

r∗
+ ǫ . (C.4)

(Recall that h = 1
r∗

if m = 0.)

Integrating (C.2), we obtain

s(x) = − x

(h2 − x2)
3
2

[

−ǫh

x
+

∫ x

0
dy

m[v(y)]

2
(h2 − y2)

]

. (C.5)

Clearly we find s(0) = ǫ
h2 and this is consistent with (C.4). Notice also the property

s(x) = s(−x). To make sense of our perturbative argument, we need to require that s(x)
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does not include the singular term ∼ (h − x)−3/2 when we take the limit x → h. This

determines the value of ǫ as follows:30

ǫ =
1

2

∫ h

0
dy m[v(y)] (h2 − y2) . (C.6)

The other function u(x) can be found by integrating (C.3) twice by using (C.5).

After some analysis we can show that the UV cut-off r = r∞ is related to the UV

cut-off x = h − δ of x via

δ =
(

1 +
ǫ

h

) 1

2h r2∞
. (C.7)

The total geodesic length L is then found to be

L =

∫ h−δ

−(h−δ)
dx

r(x)2

r∗
= (h − ǫ)

∫ h−δ

−(h−δ)
dx

(

1

h2 − x2
+

2s(x)√
h2 − x2

)

. (C.8)

Explicit calculations of geodesic length: consider the following specific approxima-

tion to the time-dependent mass:

m(v) = m(v0) + m′(v0)(v − v0). (C.9)

This is true when the time-dependence is small and is exact when the mass is linear function

of the time v. Further we assume the mass itself is also very small. Under these conditions

we obtain from (C.6)

ǫ =
1

2

∫ h

0
dx(m(v0) − m′(v0)

√

h2 − x2)(h2 − x2) =
h3

3
m(v0) −

3πh4

32
m′(v0) . (C.10)

With the specific profile (C.9), we can integrate (C.5) and (C.8) analytically. After a

somewhat lengthy computation we find

L(v0) = log

(

2h

δ

)

+
2

3
h2m(v0) −

5π

32
h3m′(v0). (C.11)

Substituting the relation (C.7) into (C.11), we obtain the final expression

L(v0) = 2 log(2hr∞) +
1

3
h2m(v0) −

π

16
h3m′(v0). (C.12)

The finite part of the geodesic length after we subtract the universal divergent piece

2 log(2h r∞) is now given by

Lreg =
1

3
h2m(v0) −

π

16
h3m′(v0) . (C.13)

In the case of the linear profile (or when m′′(v0) is small enough) we find the geodesic

length at generic time v

Lreg(v) =
1

3
h2[m(v0) + m′(v0)(v − v0)] −

π

16
h3m′(v0)

≃ m(v − 3πh/16) , (C.14)

and its time derivative is given by

d

dv
Lreg(v) =

1

3
h2m′(v) . (C.15)

30When m is a constant this leads to ǫ = m
3

h2, which is consistent with our previous analysis in the BTZ

geometry.
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Explicit form of s(x) and u(x): under the assumption (C.9), we can find the following

explicit solutions for the functions s(x) and u(x) introduced in (C.1):

s(x) = s
2h2 − x2

6
√

h2 − x2
m(v0)

+
−9πh5 + (30h2x2 − 12x4)

√
h2 − x2 + 18h4x arctan

(

x√
h2−x2

)

96(h2 − x2)
3
2

m′(v0) ,

u(x) =
x2

√
h2 − x2

6
m(v0) +

[

x2(4x2 − 9h2)

48
− 3

32
h4 log h2

+
1

32
√

h2 − x2

(

6h4x arctan

(

x√
h2 − x2

)

− 3πh5

)]

m′(v0). (C.16)

Asymptotic expansion of r(x) and v(x): from the previous explicit expression of s(x)

and u(x), the asymptotic expansion of r(x) in the limit x → h is given by

r(x) ≃
(

1√
2h

+
h

3
2

6
√

2
m − 3h

5
2 π

64
√

2
m′

)

(h − x)−
1
2 (C.17)

+

(

1

4
√

2h
3
2

+
3
√

h

8
√

2
m − 9h

3
2 π

256
√

2
m′

)

(h − x)
1
2 − h

5
m′(h − x) + O((h − x)

3
2 ) .

Notice that the coefficient of (h − x)−
1
2 in (C.17) is the same as

√

r∗
2 ≃ 1√

2h
(1 + ǫ

2h).

On the other hand, the asymptotic expansion of v(x) in the limit x → h becomes

v(x) ≃ v0 − h4

(

7

24
+

9

96
log h2

)

m′ +

(

−
√

2h +

√
2

6
h

5
2 m − 9

√
2π

192
h

7
2 m′

)

(h − x)
1
2

+
h3

6
m′(h − x) + O((h − x)2) . (C.18)

Finally, the asymptotic relation between r(x) and v(x) can be shown with some effort to

be:

v(x) = v0 −
h4m′(v0)

48
(14 + 9 log h) − 1

r
+

h2m′(v0)

12r2
+ O(r−3). (C.19)

The first two terms represent the constant contribution v ≡ v(h) as considered in (6.8).
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