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Universidad Autónoma de Madrid,

Cantoblanco, 28049 Madrid, Spain
bNIKHEF, Kruislaan 409, 1009DB Amsterdam, The Netherlands, and

IMAPP, Radboud Universiteit, Nijmegen, The Netherlands, and
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Abstract: Recently it has been shown that string instanton effects may give rise to neu-

trino Majorana masses in certain classes of semi-realistic string compactifications. In this

paper we make a systematic search for supersymmetric MSSM-like Type II Gepner ori-

entifold constructions admitting boundary states associated with instantons giving rise to

neutrino Majorana masses and other L- and/or B-violating operators. We analyze the zero

mode structure of D-brane instantons on general type II orientifold compactifications, and

show that only instantons with O(1) symmetry can have just the two zero modes required

to contribute to the 4d superpotential. We however discuss how the addition of fluxes

and/or possible non-perturbative extensions of the orientifold compactifications would al-

low also instantons with Sp(2) and U(1) symmetries to generate such superpotentials. In

the context of Gepner orientifolds with MSSM-like spectra, we find no models with O(1)

instantons with just the required zero modes to generate a neutrino mass superpotential.

On the other hand we find a number of models in one particular orientifold of the Gepner

model (2, 4, 22, 22) with Sp(2) instantons with a few extra uncharged non-chiral zero modes

which could be easily lifted by the mentioned effects. A few more orientifold examples are

also found under less stringent constraints on the zero modes. This class of Sp(2) instan-

tons have the interesting property that R-parity conservation is automatic and the flavour

structure of the neutrino Majorana mass matrices has a simple factorized form.

Keywords: Intersecting branes models, Superstring Vacua, Nonperturbative Effects,

Neutrino Physics.
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1. Introduction

String Theory, as the leading candidate for a unified theory of Particle Physics and Grav-

ity, should be able to describe all observed particle phenomena. One the most valuable

experimental pieces of information obtained in the last decade concerns neutrino masses.

Indeed the evidence from solar, atmospheric, reactor and accelerator experiments indicates

that neutrinos are massive. The simplest explanation of the smallness of neutrino masses

is the see-saw mechanism [1]. The SM gauge symmetry allows for two types of operators

bilinear on the neutrinos (with dimension ≤ 4):

Lν = Mabν
a
Rνb

R + habν
a
RH̄Lb (1.1)

where νR is the right-handed neutrino, L is the left-handed lepton doublet and H̄ is the

Higgs field. In supersymmetric theories, this term arise from a superpotential with the

above structure, upon replacing fields by chiral superfields. If Mab is large, the lightest

neutrino eigenvalues have masses

Mν = < H̄ >2 hT M−1h (1.2)

For M ∼ 1010 − 1013 GeV and Dirac neutrino masses of order charged lepton masses, the

eigenvalues are consistent with experimental results.

What is the structure of neutrinos and their masses in string theory? In specific com-

pactifications giving rise to the MSSM spectra singlet fields corresponding to right-handed

neutrinos νR generically appear. Dirac neutrino masses are also generically present but

the required Majorana νR masses are absent. This is because most MSSM-like models

constructed to date have extra U(1) symmetries, under which the right-handed neutrinos

are charged, which hence forbid such masses. In many models, such symmetries are asso-

ciated to a U(1)B−L gauge boson beyond the SM. In order to argue for the existence of νR

masses, string model builders have searched for non-renormalizable couplings of the type

(νRνRN̄RN̄R) with extra singlets NR. Once the latter fields get a vev, U(1)B−L is broken

and a Majorana mass appears for the νR. Although indeed such couplings (or similar ones

with higher dimensions) exist in some semi-realistic compactifications, such a solution to

the neutrino mass problem in string theory has two problems: 1) The typical νR masses so

generated tend to be too small due to the higher dimension of the involved operators and

2) The vevs for the NR fields breaks spontaneously R-parity so that dimension 4 operators

potentially giving rise to fast proton decay are generated. This is in a nutshell the neutrino

problem in string compactifications (see [2] for a recent discussion in heterotic setups).
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In [3] (see also [4]) two of the present authors pointed out that there is a built-in

mechanism in string theory which may naturally give rise to Majorana masses for right-

handed neutrinos. It was pointed out that string theory instantons may generate such

masses through operators of the general form

Mstring e−U νRνR . (1.3)

Here U is a linear combination of closed string moduli whose imaginary part gets shifted

under a U(1)B−L gauge transformation in such a way that the operator is fully gauge

invariant. The exponential factor comes from the semi-classical contribution of a certain

class of string instantons. This a pure stringy effect distinct from the familiar gauge

instanton effects which give rise to couplings violating anomalous global symmetries like

(B + L) in the SM. Here also (B − L) (which is anomaly-free) is violated.

This operator is generated due to existence of instanton fermionic zero modes which

are charged under (B −L) and couple to the νR chiral superfield. Although the effect can

take place in different constructions, the most intuitive description may be obtained for the

case of Type IIA CY orientifold compactifications with background D6-branes wrapping 3-

cycles in the CY. In the simplest configurations one has four SM stacks of D6-branes labeled

a,b, c,d which correspond to U(3), SU(2) (or U(2)), U(1)R and U(1)L gauge interactions

respectively, which contain the SM group. One can construct compactifications with the

MSSM particle spectrum in which quarks and leptons lie at the intersections of those SM

D6-branes. Then the relevant instantons correspond to euclidean D2-branes wrapping 3-

cycles in the CY (satisfying specific properties so as to lead to the appropriate superspace

interaction). The D2-D6 intersections lie the additional fermionic zero modes which are

charged under (B − L). For instantons with the appropriate number of intersections with

the appropriate D6-branes, and with open string disk couplings among the zero modes and

the νR chiral multiplet (see figure (2)), the operator in (1.3) is generated.

The fact that the complex modulus U transforms under U(1)B−L gauge transforma-

tions indicates that the U(1)B−L gauge boson gets a mass from a Stückelberg term. So a

crucial ingredient in the mechanism to generate non-perturbative masses for the νR’s is that

there should be massless U(1)B−L gauge boson which become massive by a Stückelberg

term. It turns out that not many semi-realistic models with U(1)B−L mass from Stückelberg

couplings have been constructed up to date. In the literature there are two main classes of

RR tadpole free models with massive B-L. The first class are non-susy type IIa toroidal ori-

entifold models first constructed in [5]. The second class are the type II Gepner orientifold

models constructed by one of the present authors and collaborators [6, 7]. The former were

already considered in [3]. In the present paper we will concentrate on the RCFT Gepner

model constructions, which lead to a large class of MSSM like models, more representative

of the general Calabi-Yau compactifications (for a recent discussion of instanton-induced

neutrino masses in a model with no RR tadpole cancellation, see [8]).

The class of constructions in [6, 7] start with any of the 168 Type II compactifications

obtained by tensoring N = 2 SCFT minimal models. In addition one can choose a number

of modular invariant partition functions (MIPF), leading to a total of 5403. Then different

consistent orientifold projections are performed on the different models. This yields a total
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of 49304 Type II orientifolds. The open string sector of the theory is defined in terms of the

boundary states of the theory. Intuitively, they play the same role as D-branes wrapping

cycles in the geometrical settings. Thus one associates boundary states a,b, c,d to the

gauge groups giving rise to the SM. Different choices for the SM boundary states lead to

different spectra. In the present paper we will make use of the data in [6] which contains

211634 different MSSM-like spectra (including also different hidden sectors). Although this

number is huge, most of these models are really extensions of the MSSM, since they have

either an extra U(1)B−L or SU(2)R × U(1)B−L group factor beyond the SM group. As we

said, we are actually only interested in models in which the U(1)B−L gets a Stückelberg

mass. Then we find that the number of MSSM-like models with these characteristics is

dramatically reduced: only 0.18 percent of the models (391) have a massive U(1)B−L.

As we said, in the geometrical setting of IIA orientifolds with intersecting D6-branes [9,

10] (see [11] for reviews and [12, 13] for the IIB counterparts), instantons are associated

to D2-branes wrapping 3-cycles, like the background D6-branes do. Analogously, in the

RCFT setting the same class of boundary states appearing in the SM constructions are

the ones corresponding to instantons. The zero modes on the instanton are computable

from the overlaps of instanton brane boundary states (zero modes uncharged under the 4d

gauge group) or of instanton and 4d spacefilling brane boundary states (zero modes charged

under the corresponding gauge factor). We find that the criteria for a non-perturbative

superpotential to be generated [14] are only fulfilled if the Chan-Paton (CP) symmetry of

the instantons is O(1). For instantons with CP symmetry1 Sp(2) or U(1) we find that there

are a few extra uncharged fermionic zero modes which would preclude the formation of the

searched superpotentials. On the other hand we argue that the addition of fluxes and/or

possible non-perturbative extensions of the orientifold compactifications would allow also

instantons with Sp(2) and U(1) symmetries to generate such superpotentials. We thus

include all O(1), Sp(2) and U(1) instantons2 in our systematic search. The computation

of charged and uncharged fermion zero modes may be easily implemented as a routine in

a systematic computer search for instanton zero modes in Gepner MSSM-like orientifolds.

Results of such a systematic computer search are presented in this article.

We find that out of the 391 models with massive U(1)B−L, there are very few admitting

instantons with the required minimal O(1) CP symmetry, and in fact none of them without

additional vector-like zero modes. On the other hand we do find 32 models admitting Sp(2)

symmetric instantons with just the required charged zero mode content (and the minimal

set of non-chiral fermion zero modes). In fact they are all variations of the same orientifold

Gepner model based on the tensor product (k1, k2, k3, k4) = (2, 4, 22, 22). These models all

in fact correspond to the same MIPF and orientifold projection, they only differ on which

particular boundary states corresponding to the four a,b, c,d SM ‘stacks’. All models

have the same chiral content, exactly that of the MSSM , with extra vectorlike chiral fields

which may in principle become massive in different points of the CY moduli space. They

have no hidden sector, i.e., the gauge group is just that of the SM. For each of the models

1We adopt the convention that the fundamental representation of Sp(m) is m-dimensional.
2We refer to the different kinds of instanton by their Chan-Paton symmetry on their volume. Since we

are not interested in gauge theory instantons, this notation should not be confusing.
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there are 8 instantons with Sp(2) CP symmetry with just the correct charged zero mode

structure allowing for the superpotential coupling (1.3) giving rise to νR Majorana masses.

As we said, they have extra uncharged fermion zero modes beyond the two required to

generate a superpotentials. However one would expect that these unwanted zero modes

might be lifted in more generic situations in which e.g. NS/RR fluxes are added.

We thus see that, starting with a ’large’ landscape of 211634 MSSM-like models, and

searching for instantons inducing neutrino masses, we find there are none admitting the

O(1) instantons with exactly the required zero mode structure, and only few (32) examples

with Sp(2) instantons with next-to-minimal uncharged zero mode structure (and exactly

the correct charged zero modes). Let us emphasize though that it is the existence of massive

U(1)B−L models which is rare. Starting with the subset of models with a massive U(1)B−L,

finding models with correct instanton charged zero modes within that class is relatively

frequent, 10 percent of the cases. Furthermore, we will see that there are further models

beyond those 32 which contain extra non-chiral instanton zero modes and which may also

be viable if these modes get massive by some effect (like e.g. the presence of RR/NS fluxes).

Instantons may generate some other interesting superpotential couplings in addition

to νR masses, some possibly beneficial and others potentially dangerous. In particular we

find that in the models which contain Sp(2) instantons which might induce νR masses,

there are also other instantons which would give rise directly to the Weinberg operator [15]

LW =
λ

M
(LHLH) (1.4)

Once the Higgs field gets a vev, this gives rise directly to left-handed neutrino masses.

Thus we find that in that class of models both the see-saw mechanism (which also gives

rise to a contribution to the Weinberg operator) and an explicit Weinberg operator might

contribute to the physical masses of neutrinos. Which effect dominates will depend on

the relative size of the corresponding instanton actions as well as on the size of the string

scale. Among potentially dangerous operators which might be generated stand the R-parity

violating operators of dimension < 5, which might give rise e.g. to fast proton decay. We

make a study of the possible generation of those, and find that in all models in which νR

masses might be generated R-parity is exactly conserved. This is a very encouraging result.

A natural question to ask is whether one can say something about the structure of

masses and mixings for neutrinos. As argued in [3] generically large mixing angles are

expected, however to be more quantitative we also need to know the structure of Yukawa

couplings for leptons. In principle those may be computed in CFT but in practice this

type of computation has not yet been developed for CFT orientifolds. Nevertheless we

show that, in the case of instantons with Sp(2) CP symmetry, a certain factorization of

the flavor structure takes place, which could naturally give rise to a hierarchical structure

of eigenvalues for neutrino masses.

The structure of this article is as follows. In the next section we present a discussion of

instanton induced superpotentials in Type II orientifolds. This discussion will apply both

to Type IIA and Type IIB CY orientifolds as well as to more abstract CFT orientifolds. We

discuss the structure of both uncharged and charged instanton zero modes. In particular

– 5 –
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we show that only instantons with O(1) CP symmetry have the appropriate uncharged

zero mode content to induce a superpotential contribution. We also discuss how Sp(2) and

U(1) might still generate superpotential contributions if extra ingredients are added to the

general setting. In section 3 we apply that discussion to the specific case of the generation

of νR Majorana masses, showing what is the required zero mode structure in this case. We

show how the flavor structure of the Majorana mass term factorizes in the case of instantons

with Sp(2) CP symmetry, leading potentially to a hierarchical structure of eigenvalues. We

further discuss the generation of other B/L-violating operators including the generation

of the Weinberg operator as well as R-parity violating couplings. In section 4 we review

the RCFT Type II orientifold constructions in [6, 7]. A general discussion of zero fermion

modes for instantons in RCFT orientifolds is presented in section 5.

The results of our general search for instantons generating νR masses are presented in

section 6. We provide a list of all Gepner orientifolds which admit instanton configurations

potentially giving rise to νR Majorana masses. We describe the structure of the models

with Sp(2) instantons having the required charged zero modes for that superpotential to

be generated. We also describe the boundary states of the corresponding instantons and

provide the massless spectrum of the relevant MSSM-like models. Other orientifolds with

zero mode structure close to the minimal one are also briefly discussed. A brief discussion

about the possible generation of R-parity violating superpotentials is included. We leave

section 7 for some final comments. Some notation on the CFT orientifold constructions, and

a discussion of the CFT symmetries in the Sp(2) examples are provided in two appendices.

As this paper was ready for submission, we noticed [16, 17], whose discussion of in-

stanton zero modes partially overlaps with our analysis in section 2.2.

2. Instanton induced superpotentials in Type II orientifolds

In this section we review the generation of superpotentials involving 4d charged fields via

D-brane instantons in type II compactifications. The discussion applies both to type IIA

and IIB models, and to geometrical compactification as well as to more abstract internal

CFT’s. For recent discussions on D-brane instantons, see [4, 3, 25, 8] .

Before starting, a notational remark in in order. Our notation is adapted to working

in the covering theory, namely the type II compactification, and orientifolding in a further

step. Thus we describe the brane configurations as a system of branes (described by

boundary states for abstract CFT’s), labeled k, and their orientifold images labeled k′.

Similarly, we denote M the brane / boundary state corresponding to the instanton brane,

and M ′ its orientifold image. If a brane is mapped to itself under the orientifold action,

we call it a ‘real’ brane / boundary, and ‘complex’ otherwise.

2.1 D-brane instantons, gauge invariance and effective operators

A basic feature of type II orientifold compactifications with D-branes is the generic presence

of Stückelberg couplings between the U(1) gauge fields on the D-branes, and certain 4d

RR closed string 2-forms. These couplings are required by the Green-Schwarz mechanism

when the U(1)’s have non-zero triangle contributions to mixed anomalies [18, 19], but can

– 6 –
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also exist for certain non-anomalous U(1)’s [5, 20]. These couplings make the U(1) gauge

bosons massive, but the symmetry remains as a global symmetry exact in perturbation

theory. Since the closed string moduli involved are scalars (0-forms) in the RR sector, the

natural candidate non-perturbative effects to violate these U(1) symmetries are instantons

arising from euclidean D-branes coupling to these fields.

In computing the spacetime effective interaction mediated by the instanton, one needs

to integrate over the instanton zero modes. In the generic case (and in particular for the

case of our interest) there are no bosonic zero modes beyond the universal ones (namely,

the four translational bosonic zero modes associated to the position of the instanton). On

the other hand, the structure of fermion zero modes will be crucial. Since we are interested

in models with non-trivial 4d gauge group, arising from a set of background 4d spacetime

filling branes, we consider separately fermion zero modes which are uncharged under the

4d gauge group and those which are charged. In this paper we restrict our discussion to

4d N = 1 supersymmetric models, and this will simplify the analysis of zero modes.

Fermion zero modes which are uncharged under the 4d gauge group determine the

kind of 4d superspace interaction which is generated by the instanton. We are interested in

generating superpotential interactions, which, as is familiar, requires the instanton to have

two fermion zero modes to saturate the d2θ superspace integration. For this, a necessary

(but not sufficient!) condition is that the D-branes are half-BPS, so these fermion zero

modes are the Goldstinos of the two broken supersymmetries. In the string description,

uncharged zero modes arise from open strings in the MM sector (in our notation, the one

leading to adjoint representations), which in particular contain these Goldstinos, and the

MM ′ sector (in our notation, the one leading to two-index symmetric or antisymmetric

tensors). Note that both are the same for ‘real’ branes. Hence we are primarily interested

in D-branes whose MM sector contains just two fermion zero modes, and whose MM ′

sector (for ‘complex’ branes) does not contain additional fermion zero modes.

In analogy with the familiar case of gauge theory instantons [21], charged fermion zero

modes determine the violation of perturbative global symmetries by the instanton-induced

interaction. Namely, in order to saturate the integration over the charged fermions zero

modes, the spacetime interaction must contain insertions of fields charged under the 4d

gauge symmetry, and in particular under the global U(1) factors, which are thus violated

by the D-brane instanton. Notice that this holds irrespectively of the number of uncharged

fermion zero modes, namely of the kind of superspace interaction induced by the instanton.

Restricting to superpotential interactions, the resulting operator in the 4d effective action

has roughly the form

Winst = e−U Φ1 . . . Φn (2.1)

Here the fields Φ1, . . . ,Φn are 4d N = 1 chiral multiplets charged under the 4d gauge

group, and in particular also under the U(1) symmetries. Note also that the instanton

amplitude contains a prefactor (which in general depends on closed and open string moduli)

arising from the Gaussian path integral over (massive) fluctuations of the instanton (hence

described by an open string annulus partition function, see [22, 23] for related work), which

we can ignore for our purposes in this paper.

– 7 –



J
H
E
P
0
6
(
2
0
0
7
)
0
1
1

For D-brane instantons, U is the closed string modulus to which the euclidean D-

brane couples. In the D-brane picture, instanton fermion zero modes charged under the

gauge factor carried by the kth stack of 4d space-filling branes (and its image k′) arise

from open strings in the Mk and Mk′ sectors, transforming as usual in the ( M , k)

and ( M , k) representations, respectively (with both related in the case of ‘real’ branes).

The (net) number of instanton fermion zero modes with such charges is given by certain

multiplicities3 IMk, IMk′ .

A D-brane instanton, irrespectively of the superspace structure of the 4d interactions

it may generate, violates U(1)k charge conservation by an amount IMk−IMk′ for ‘complex’

branes and IMk for ‘real’ branes. In particular, this is the total charge of the field theory

operator Φ1 . . . Φn in (2.1). From the Stückelberg couplings, it is possible to derive [3]

(see [23 – 25] for related work, also [26])

that for ‘complex’ instantons, gauge transformations of the U(1)k vector multiplets

Vk → Vk + Λk, transform U as

U → U +
∑

k

Nk(IMk − IMk′)Λk (2.2)

For ‘real’ brane instantons, which were not considered in [3], the shift is given by4

U → U +
∑

k

NkIMkΛk (2.3)

(this new possibility will be an important point in our instanton scan in section 6).

The complete interaction (2.1) is invariant under the U(1) gauge symmetries. How-

ever, from the viewpoint of the 4d low-energy effective field theory viewpoint, it leads to

non-perturbative violations of the perturbative U(1) global symmetries, by the amount

mentioned above.

In the string theory construction there is a simple microscopic explanation for the

appearance of the insertions of the 4d charged fields (related to the mechanism in [27]).

The instanton brane action in general contains cubic terms αΦ γ, involving two instanton

fermions zero modes α in the ( M , k) and γ in the ( p, M ) coupling to the 4d spacetime

field Φ in the ( k, p) of the 4d gauge group.5 Performing the Gaussian path integral

3In geometric type IIA compactifications with 4d spacetime-filling branes and instanton branes given by

D6- and D2-branes wrapped on Special Lagrangian 3-cycles, IMk corresponds to the intersection number

between the 3-cycles corresponding to the kthD6- and the D2-brane M (and similarly for IMk′). In geometric

type IIB compactifications, it corresponds to the index of a suitable Dirac operator. In general (even for

abstract CFT’s) it can be defined as the Witten index for the 2d theory on the open string with the

boundary conditions corresponding to the two relevant branes. We will often abuse language and refer to

this quantity as intersection number, even in section 6 where we work in the non-geometric regime of type

IIB compactifications.
4Equivalently, one may use (2.2), but must include an additional factor of 1/2 from the reduction of the

volume for a real brane (which is invariant under the orientifold action).
5 Although there is no chirality in 0 + 0 dimension, the fermion zero modes α and γ are distinguished

by their chirality with respect to the SO(4) global symmetry of the system (which corresponds to rotations

in the 4d spacetime dimensions, longitudinal to the space-filling branes, and transverse to the instanton

brane). Supersymmetry of the instantons constrains the couplings on the instanton action (such as the

cubic couplings above) to have a holomorphic structure.
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over the instanton fermion zero modes leads to an insertion of Φ in the effective spacetime

interaction. In general, and for a ‘complex’ instanton, there are several fermion zero modes

αi, γi in the fundamental (resp. antifundamental) of the instanton gauge group, coupling

to a 4d spacetime chiral operators Oij (which could possibly be elementary charged fields,

or composite chiral operators). Gaussian integration over the fermion zero modes leads to

an insertion of the form detO (for ‘real’ brane instantons, detO should be interpreted as

a Pfaffian). It is straightforward to derive our above statement on the net charge violation

from this microscopic mechanism.

Note that the above discussions show that instantons in different topological sectors

(namely with different RR charges, and different intersection numbers with the 4d space-

filling branes) contribute to different 4d spacetime operators. In particular, multiwrapped

instantons, if they exist as BPS objects, contribute to operators different from the singly

wrapped instanton. This implies that the instanton expansion for a fixed operator is very

convergent, and could even be finite.

Another important implication of the above discussion is that, in order to generate a

specific operator via an instanton process, a necessary condition is that the instanton has

an appropriate number and structure of charged zero modes. However, this is not sufficient.

Insertions of 4d fields appear only if the fields couple to the instanton fermion zero modes

via terms at most quadratic in the zero modes. In equivalent terms, only zero modes

appearing in the Gaussian part of the instanton action can be saturated by insertions of 4d

fields (those to which they couple). The requirement that the zero modes have appropriate

couplings to the 4d fields may be non-trivial to verify in certain constructions. This is the

case for the Gepner model orientifolds in coming sections, whose couplings are computable

in principle, but unknown in practice. In such cases we will assume that any coupling which

is not obviously forbidden by symmetries will be non-vanishing. Unfortunately there are

no arguments to estimate the actual values of such non-vanishing couplings, hence we

can argue about the existence of certain instanton induced operators, but not about the

coefficients of such terms.

2.2 Zero mode structure for D-brane instantons

In this section we describe more concretely different kinds of instantons and the structure

of interesting and unwanted zero modes. Our discussion will be valid for general D-brane

models in perturbative type II orientifolds without closed string fluxes, although we also

make some comments on more general F-theory vacua and the effects of fluxes. A more

specific discussion is presented in section 5.

2.2.1 Uncharged zero modes

We start discussing zero modes uncharged under the 4d gauge group. These are crucial in

determining the kind of superspace interaction induced by the instanton on the 4d theory.

In particular, we are interested in instantons contributing to the 4d superpotential, namely

those which contain just two fermion zero modes in this sector. We are also interested in

instantons which may contain additional fermion zero modes, and the possible mechanisms

that can be used to lift them. Let us discuss ‘real’ and ‘complex’ brane instantons in turn.

– 9 –



J
H
E
P
0
6
(
2
0
0
7
)
0
1
1

Real brane instantons. Real brane instantons correspond to branes which are mapped

to themselves by the orientifold action, hence M = M ′. Uncharged zero modes arise

from the MM open string sector. As discussed in section 5, there is a universal sector of

zero modes, in the sense that it is present in any BPS D-brane instanton, which we now

describe. Before the orientifold projection, we have a gauge group U(n) on the volume of n

coincident instantons. Notice that, although there are no gauge bosons in 0+0 dimensions,

the gauge group is still well-defined, since it acts on charged states (open string ending

on the instanton brane). There are four real bosonic zero modes and four fermion zero

modes in the adjoint representation. For the minimal U(1) case, the four bosons are the

translational Goldstones. The four fermions arise as follows. This sector is insensitive to

the extra 4d spacefilling branes, and feels an accidental 4d N = 2 supersymmetry. The

BPS D-brane instanton breaks half of this, and leads to four Goldstinos, which are the

described fermions.6

The orientifold projection acts on this universal sector as follows (see section 5 for fur-

ther discussion). The gauge group is projected down to orthogonal or symplectic. Hence

instanton branes with symplectic gauge group must have even multiplicity (a related ar-

gument, in terms of the orientifold action on Chan-Paton indices, is given in section 5).

For instantons with O(n) gauge symmetry, the orientifold projects the four bosonic zero

modes and two fermion zero modes (related by the two supercharges of 4d N = 1 super-

symmetry broken by the instanton) to the two-index symmetric representation, and the

other two fermion zero modes (related by the other two supercharges of the accidental

4d N = 2 in this sector) to the antisymmetric representation. Hence for O(1) instantons

(namely instantons with O(1) gauge group on their volume), we have just two fermion

zero modes, which are the Goldstinos of 4d N = 1 supersymmetry, and the instanton can

in principle contribute to the superpotential (if no additional zero modes arise from other

non-universal sectors). For instantons with Sp(n) gauge symmetry, the orientifold projects

the four bosonic zero modes and two fermion zero modes to the two-index antisymmetric

representation, and the other two fermion zero modes to the symmetric representation.

Hence, even for the minimal case of Sp(2) instantons, we have just two fermion zero modes

in the triplet representation, in addition to the two 4d N = 1 Goldstinos. Hence Sp(2) in-

stantons cannot contribute to the superpotential in the absence of additional effects which

lift these zero modes (see later).7

In addition to this universal sector, there exist in general additional modes, whose

presence and number depends on the detailed structure of the branes. Namely, on the

geometry of the brane in the 6d compact space in geometric compactifications, or on the

boundary state of the internal CFT in more abstract setups. They lead to a number

of boson and fermion zero modes in the symmetric or antisymmetric representation. The

computation of these multiplicities in terms of the precise properties of the instanton branes

6We thank F. Marchesano for discussions on this point.
7 For D-brane instantons corresponding to gauge instantons, the additional fermion zero modes in the

universal sector couple to the boson and fermion zero modes from open strings stretched between the

instanton and the 4d spacefilling brane. They act as Lagrange multipliers which impose the fermionic

constraints in the ADHM construction [28], and may not spoil the generation of a superpotential.
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is postponed to section 5. In order to generate a superpotential, one must require these

modes to be absent, except for the case of antisymmetrics of O(1) instantons, which are

actually trivial.

An important point is that extra fermion zero modes (including the extra triplet

fermion zero modes in the universal sector of Sp(2) instantons, and any two-index tensor

fermion zero mode in the non-universal sectors) are in principle not protected against ac-

quiring non-zero masses once the model is slightly modified. In other words, such fermions

are non-chiral, in terms of the SO(4) chirality in footnote 5. One such modification is

motion in the closed string moduli space, which can lift the non-universal modes if there

are non-trivial couplings between them and closed string moduli (unfortunately, such cor-

relators are difficult to compute, even in cases where the CFT is exactly solvable, like the

Gepner models). Note that extra zero modes in the universal sector of Sp(2) instantons

cannot be lifted by this effect, since it does not break the accidental 4d N = 2 in this

sector. A second possible modification which in general can lift extra zero modes is the

addition of fluxes, generalizing the results for D3-brane instantons in geometric compact-

ifications [29] (for non-geometric CFT compactifications, we also expect a similar effect,

once fluxes are introduced following [30]). Note that fluxes can lift extra zero modes in the

universal sector as well, since they can break the accidental 4d N = 2 susy in this sector.

A last mechanism arising in more general F-theory compactifications and discussed below

for complex instantons, is valid for real instanton branes as well.

The bottom line is that in the absence of such extra effects, only O(1) instantons can

contribute to superpotential terms. However, in modifications of the model such extra

effects can easily lift the extra fermion zero modes. Hence, this kind of extra vector-like

zero modes will not be considered catastrophic, and real instantons (including the O(1)

and Sp(2) cases) with such zero modes are considered in our scan in section 6.

Complex brane instantons. Zero modes uncharged under the 4d gauge group can arise

from the MM and MM ′ open string sectors. Notice that the orientifold action maps the

MM sector to the M ′M ′, hence we simply discuss the former and impose no projection.

The discussion of the MM sector is as for real brane instantons before the orientifold

projection. The universal sector leads to a U(n) gauge symmetry, and four bosonic and

four fermionic zero modes in the adjoint representation. The bosons are translational

Goldstones, while the fermions are Goldstinos of the accidental 4d N = 2 present in this

sector. Hence, even in the minimal case of U(1) brane instantons there are two extra

fermion zero modes, beyond the two fermion zero modes corresponding to the 4d N = 1

Goldstinos. Hence U(1) instanton (except for those corresponding to gauge instantons, see

footnote 7) cannot contribute to superpotential terms in the absence of additional effects,

like closed string fluxes. However, keeping in mind the possibility of additional effects

lifting them in modifications of the model, we include them in the discussion. Also, in

what follows we will use the U(n) notation for the different fields to keep track of the

Chan-Paton index structure.

The above statement would seem in contradiction8 with computations of non-perturbative

8We thank S. Kachru for discussions on the ideas in this paragraph.
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superpotentials [14] induced by M5-branes instantons in M-theory compactifications on

Calabi-Yau fourfolds, which are dual to D3-brane instantons (with world-volume U(1)

gauge group) on type IIB compactifications. The resolution is that the M5-branes that

contribute are intersected by different (p, q) degenerations of the elliptic fiber. This implies

that U(1) D3-brane instanton only contribute if they are intersected by mutually non-local

(p, q) 7-branes. The two extra fermion zero modes exist locally on the D3-brane volume,

but cannot be defined globally due to the 7-brane monodromies. Hence such effect can

take place only on non-perturbative type IIB compactifications including (p, q) 7-branes.

Note that in perturbative compactifications, namely IIB orientifolds, the (p, q) 7-branes

are hidden inside orientifold planes [31] with their monodromy encoding the orientifold

projection; hence the only branes that can contribute to the superpotential are real branes,

for which the projection/monodromy removes the extra fermion zero modes, as discussed

above.

In addition to this universal sector, the MM sector may contain a non-universal set

of fermions and bosons, in the adjoint representation (hence uncharged under U(1)). They

depend on the specific properties of the brane instanton, and will be discussed in section 5.

These additional zero modes should be absent in order for the instanton to induce a non-

trivial superpotential. Notice however that these zero modes are uncharged under any

gauge symmetry, and hence vector-like. Thus, there could be lifted in modifications of the

model, as discussed for real instantons.

The MM ′ sector is mapped to itself under the orientifold action. Hence it leads to a

number of bosons and fermions in the two index symmetric or antisymmetric representa-

tions. Notice that the two-index antisymmetric representation is trivial for U(1), so these

modes are actually not present. On the other hand, fermion zero modes in the two-index

symmetric representation are chiral and charged under the brane instanton gauge sym-

metry. Hence they cannot be lifted by any of the familiar mechanisms, and thus spoil

the appearance of a non-perturbative superpotential, even if the model is modified. Such

fermion zero modes are considered catastrophic and we will look for models avoiding them

in our scan in section 6.

2.2.2 Charged fermion zero modes

Real brane instantons. Instanton zero modes charged under the 4d gauge group arise

from Mk open string sectors (and their image Mk′). In the generic case, there are no

scalar zero modes in these sectors. This is because in mixed Mk open string sectors the

4d spacetime part leads to DN boundary conditions, which already saturate the vacuum

energy in the NS sector. Only in the special case where the internal structure of the

spacetime filling brane k and the instanton brane are the same, there may be NS ground

states of the internal CFT which do not contribute extra vacuum energy, hence leading to

massless scalars. However, this corresponds to brane instantons which can be interpreted

as instantons of the 4d gauge theory on the 4d space-filling branes. The instantons we are

interested in for the generation of neutrino Majorana mass terms are not of this kind [3] (see

e.g. [32 – 34, 28, 25] for discussions on gauge theory instantons from D-brane instantons).
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Hence we focus on charged fermion zero modes, which are generically present in any

mixed Mk sector. Let us define LMk, LMk′ the (positive by definition) number of left-

handed chiral fermion zero modes in the representations ( M , k), ( M , k), respectively.

The net number of chiral fermion zero modes in the ( M , k) is given by IMk = LMk′−LMk.

This controls the violation of the U(1)a global charge by the instanton. Namely, such

fermion zero modes in the Mk, Mp sectors lead (if suitable couplings are present) to the

insertion of 4d charged fields Φkp and/or Φkp′.

In addition, there are PMk = min(LMk′ , LMk) vector-like pairs of fermion zero modes.

Since they are vector-like, they may be lifted by slight modifications of the model, like

moving in the closed string moduli space, or by introducing additional ingredients, like

fluxes. In addition, they may be lifted by moving in the open string moduli space of the 4d

spacefilling branes, as follows. The zero modes may lead to insertions of 4d fields Φkk, if

the kk sector contains such 4d chiral multiplets (or to insertions of composite 4d operators

in the adjoint of the kth 4d gauge factor), and if they couple to the zero modes. Although

this may not be generically not the case, many of our models in coming section contain

such adjoint fields. Hence, a non-trivial vev for the latter can lift these extra vector-like

zero modes, hence leading to instanton generating the superpotential of interest. Given

these diverse mechanisms to lift these zero modes, their presence of such zero modes is thus

unwanted, but again not necessarily catastrophic.

One last comment, related to the concrete kind of instanton search we will be interested

in. Namely, we will be searching for instantons leading to a specific operator, carrying non-

trivial charges under a specific set of 4d gauge factors. Postponing the detailed discussion

to sections 3.1, 4.2 , let us denote a, b, c, d the set of branes leading to a field theory

sector, denoted ‘observable’ (and which reproduces the SM in our examples). We will

require the instanton to have a prescribed number of chiral fermion zero modes charged

under these branes, namely we require the intersection numbers of the instanton with these

branes IMa, . . . , IMd to have specific values (as mentioned above, in the most restrictive

scan we forbid vector-like pairs of zero modes under these branes). In addition, the model

in general contains an additional sector of branes, denoted ‘hidden’ (since there is zero net

number of chiral multiplets charged under both sectors) and labeled hi, required to fulfill

the RR tadpole cancellation conditions. In general there may be instanton fermion zero

modes from e.g. the Mh1, h2M sectors, which would contribute to insertions of the 4d fields

in the h1h2 sector if there are suitable cubic couplings. These extra insertions could be

avoided if such 4d fields in the hidden sector acquire vevs (note that vevs for the (vector-like)

fields charged under the visible and hidden sectors would typically break hypercharge, and

should be avoided), and hence lift the zero modes. Equivalently, from the 4d perspective,

the unwanted extra h1h2 field insertion is replaced by its vev. However, this renders the

discussion very model dependent. Moreover, the possibility of hidden brane recombination

was not included in the search for SM-like models in [6, 7] (namely, the possibility of

allowing for chiral fields charged under the observable and hidden gauge groups, which

may become non-chiral and possibly massive upon hidden brane recombination). Hence

we will consider these chiral fermion zero modes as unwanted (as usual, non-chiral modes

are unwanted but not catastrophic, hence they are allowed for in a more relaxed search).
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Complex brane instantons. The discussion of ‘complex’ brane instantons is somewhat

analogous to the previous one, with the only complication that the brane M and its image

M ′ lead to independent modes, leading to a more involved pattern of fermion zero modes.

Instanton zero modes charged under the 4d gauge group arise from the Mk,Mk′ and related

sectors. As for ‘real’ brane instantons, there are generically no scalars in these sectors (and

certainly not in our case of interest). Hence we focus on charged fermion zero modes, which

are generically present in any mixed sector.

In contrast with ‘real’ brane instantons, a net combination of fermion zero modes in

the ( M , k)+ ( M , k) is not vector-like, but chiral under the instanton gauge symmetry.

Such a pair cannot therefore be lifted even by modifications of the theory. In general, if the

instanton has a mismatch in the total numbers nα, nγ of fermion zero modes αi in the M

and γj in the M , the instanton amplitude automatically vanishes. Namely, the matrix of

operators Oij coupling to the zero modes necessarily has rank at most min(nα, nγ). That

is , if nα > nγ there are linear combinations of the αi which do not couple, and cannot

lead to insertions. Moreover, they are not liftable by the familiar mechanisms,9 thus in our

instanton search in section 6 such excess zero modes are forbidden even in relaxed scans.

Let us thus discuss a sector of fermion zero modes with equal number nα = nγ .

Considering a given 4d space-filling brane k, let us denote LMk, LM ′k′ , LMk′, LM ′k the

(positive by definition) number of left-handed chiral fermion zero modes in the represen-

tations ( M , k), ( M , k), ( M , k), and ( M , k) respectively. The net number of chiral

fermion zero modes in the ( M , k) and ( M , k) is given by IMk = LMk′ − LM ′k′ and

IMk′ = LMk − LM ′k, respectively. This net number of fermions zero modes controls the

violation of the U(1)a global charge by the instanton. Namely, such fermion zero modes in

the Mk, Mp, Mk′, Mp′ sectors lead (if suitable couplings are present) to the insertion of

4d charged fields Φkp and/or Φkp′.

The remaining fields in this sector are vector-like pairs, in the ( M , k) + ( M , k) or

the ( M , k)+( M , k), which in principle lead to the vanishing of the instanton amplitude,

but which can be lifted by additional effects (motion in closed or open string moduli space,

or addition of fluxes), in a way consistent with the gauge symmetries in 4d spacetime and

on the instanton.

Just like for ‘real’ brane instantons, we conclude by commenting on our concrete in-

stanton search in models with a set of visible branes a, b, c, d and a set of hidden branes

hi. The requirement that the instanton leads to an operator with specific charges under

the visible branes fixes the values of the quantities IMa − IMa′ , etc. As we described

for real branes, one may still have fermion zero modes charged under the hidden sector

branes, but they lead to additional insertions, hence we rather focus on instantons with

IMhi
− IMh′

j
= 0. The two kinds of conditions, on intersection numbers with visible and

9Note that such a mismatch is always correlated with the existence of extra chiral zero modes in the MM ′

sectors, discussed above. Denoting ~Qa, ~Qorient the vector of RR charges of the 4d space-filling branes and

orientifold planes, they satisfy the RR tadpole conditions
P

a
Na

~Qa +
P

a′ Na
~Qa′ + ~Qorient. = 0. By taking

the ‘intersection’ bilinear with the RR charges ~QM of the brane instanton, we have IMa+IMa′+IM,orient = 0.

This implies that the number of fundamentals minus anti-fundamentals of the instanton gauge group is

related to the number of two-index tensors.
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hidden branes, still leave the possibility of combinations of fermion zero modes of the kind

( M , k) + ( M , k), which do not contribute to IMk, or of the kind ( M , k) + ( M , k),

which does not contribute to IMk′ . Such combinations are automatically vector-like, and

thus may be lifted in modifications of the theory. But the condition also allow combinations

like ( M , k) + ( M , k), which exploit a cancellation between IMk and IMk′ (as also does

( M , k) + ( M , k)). Such combinations are chiral by themselves, and in general imply a

mismatch of modes in the M and the M . The total mismatch can be arranged to vanish

using combinations of the kind ( M , k) + ( M , k) and ( M , p) + ( M , p) for different

branes. However, the only way to lift these pairs is by breaking the gauge symmetry on

the 4d space-filling branes k and p. This can be done without damage to the visible sector

if these are hidden branes, but this corresponds to the recombination of hidden branes

that, as mentioned already, we are not going to consider. Hence only vector-like pairs with

respect to each brane are considered to be liftable in simple modifications of the theory.

In our instanton search, these are the only additional fermion zero modes which we allow

in relaxed scans (but they are clearly not allowed for in restricted scans)

3. Instanton induced Majorana neutrino masses

In this section we discuss the possible physical effects of D-brane instantons in string models

with SM-like spectrum. In particular we describe the conditions to generate right-handed

neutrino Majorana masses. We also comment on other possible B and/or L violating

operators that can be generated by instantons. In this section we will again use the

geometrical language of IIA intersecting D-branes but it should be clear that our discussion

equally applies to general CFT orientifolds like the ones presented in the next section.

3.1 The MSSM on the branes

Let us now specify the discussion in the previous section to the case of the generation of

a right-handed neutrino mass term. In order to do that we need some realistic orientifold

construction with the gauge group and fermion spectrum of the Standard Model (SM).

In the context of Type II orientifolds perhaps the most economical brane configuration

leading to a SM spectrum is the one first considered in [5]. This consists of four stacks,

labelled a,b, c,d. The gauge factor on branes a is U(3), and contains QCD and baryon

number. The d factor is U(1)d, and corresponds to lepton number. Stack b contains

SU(2)Weak either embedded in U(2) or Sp(2). Finally brane c can either provide a U(1) or

an O(2) factor. In the brane intersection language, the chiral fermions of the SM live at

the intersections of these branes, as depicted in figure 1.

The U(1)Y factor of the standard model is embedded in the Chan-Paton factors of

branes a,c and d as

Y =
1

6
Qa −

1

2
Qc −

1

2
Qd =

1

2
(QB−L − QR) (3.1)

where Qx denotes the generator of the U(1) of brane stack x (in case the Chan-Paton

factor of brane c is O(2) one should use the properly normalized O(2) generator). Note
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Figure 1: Quarks and leptons at intersecting branes.

Intersection D = 4 fields/ zero modes Qa Qc Qd Y QM

(ab),(ab’) QL 3(3, 2) 1 0 0 1/6 0

(ca) UR 3(3̄, 1) -1 1 0 -2/3 0

(c’a) DR 3(3̄, 1) -1 -1 0 1/3 0

(db),(db’) L 3(1, 2) 0 0 1 -1/2 0

(c’d) ER 3(1, 1) 0 -1 -1 1 0

(cd) νR 3(1, 1) 0 1 -1 0 0

(Mc) αi 2(0, 0) 0 -1 0 1/2 1

(dM) γi 2(0, 0) 0 0 1 -1/2 -1

Table 1: Standard model spectrum and U(1) charges of particles and zero modes. QM stands for

the world-volume gauge symmetry in the case of U(1) complex instantons.

that in this convention the Qd generator appears with sign opposite to other conventions

in the literature, e.g. in [3]. In addition to Y these models have two additional U(1) gauge

symmetries:

Qanom = 3Qa + Qd = 9QB + QL

Y ′ =
1

3
Qa + Qc − Qd = QB−L + QR (3.2)

The first is anomalous whereas the second, which we will call B − L (with a slight abuse

of language, since it is in fact a linear combination of B −L and hypercharge), is anomaly

free. In models in which the electroweak gauge group is embedded in U(2), rather than in

Sp(2), there is a second anomalous U(1)b. The charges of the SM particles under these

U(1) symmetries are given in table 1.

The U(1)k gauge symmetries have couplings with the RR 2-forms Br of the model, as

follows

SBF =
∑

k,r

Nk(pkr − pk′r)

∫

4d
Br ∧ Fk (3.3)
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where pkr, pk′,r are given by the RR charges of the D-branes. These imply that under a

U(1)k gauge transformation Ak → Ak + dΛk the scalar ar dual to Br transforms as

ar → ar +
∑

k

Nk (pkr − pk′r)Λk (3.4)

This has two effects: 1) The linear combination of axion fields
∑

r(pkr − pk′,r)ar is eaten

up by the U(1)k massless gauge boson, making it massive. 2) For anomalous U(1)k, the

anomalies cancel through a 4d version of the Green-Schwarz mechanism. This works due

to the existence of appropriate ar F ∧F couplings, involving the gauge fields in the theory.

It is obvious that all anomalous U(1)’s become massive by this mechanism. However it

is important to realize [5] that gauge bosons of anomaly-free symmetries like U(1)B−L may

also become massive by combining with a linear combination of axions. This is interesting

since it provides a mechanism to reduce the gauge symmetry of the model without needing

explicit extra Higgsing. In the models in which U(1)B−L becomes massive in this way, the

gauge group left over is purely that of the SM. Moreover, we will see that having (B-L)

massive by this Stückelberg mechanism is crucial to allow the generation of instanton-

induced Majorana neutrino masses.

Note that the B ∧ F couplings may also be potentially dangerous, since in principle

they could also exist for hypercharge, removing U(1)Y from the low-energy spectrum. As

we will see in our RCFT examples later on, having massless U(1)Y but massive U(1)B−L

turns out to be a strong constraint in model building.

3.2 Majorana mass term generation

As discussed in the previous section, string instantons can give rise to non-perturbative

superpotentials breaking explicitly the perturbative global U(1) symmetries left-over from

U(1) gauge bosons made massive through the Stückelberg mechanism. The kind of operator

we are interested in has the form

W ≃ e−Sins νRνR (3.5)

where νR is the right-handed neutrino superfield.10 Here Sins transforms under both

U(1)B−L and U(1)R in such a way that the overall operator is gauge invariant. This

operator may be created if the mixed open string sectors lead to fermionic zero modes

αi, γi , i = 1, 2, appropriately charged under the 4d gauge factors. As we discussed in the

previous section, to generate a superpotential one needs instanton with O(1) Chan-Paton

symmetry, in order to lead to two uncharged fermion zero modes to saturate the d2θ 4d

superspace integration. On the other hand, as we argued, instantons with Sp(2) or U(1)

CP symmetries may also induce the required superpotentials if there is some additional

dynamics getting rid of the extra uncharged zero modes which in principle appear in in-

stantons with these symmetries. We thus consider all O(1), Sp(2) and U(1) instantons in

our discussion.

10Actually we denote by νR the left-handed νc
L field following the usual (a bit confusing) convention.
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Figure 2: Disk amplitude coupling two charged zero modes to νR in the geometrical Type IIA

intersecting brane approach.

In order to to get a νR bilinear, the intersection numbers of instanton M and d, c

branes are as follows

Sp(2) case : IMc = 1 ; IMd = −1 (3.6)

(since there is an extra multiplicity from the two branes required to produce Sp(2))

O(1) case : IMc = 2 ; IMd = −2 (3.7)

U(1) case : IMc = 2 ; IMd = −2 or IMd′ = 2 ; IMc′ = −2 (3.8)

Furthermore there must be cubic couplings involving the right-handed neutrino superfield

νa in the ath family and the fermionic zero modes αi, γj

Lcubic ∝ dij
a (αi νaγj) , a = 1, 2, 3 (3.9)

In type IIA geometric compactifications, this coupling arises from open string disk instan-

tons, see figure 2. In general type IIA models (resp. IIB models), the coefficients dij
a

depend on the Kähler (resp. complex structure) moduli, and possibly on open string mod-

uli. In simple CFT models (like e.g. in toroidal cases) these quantities may be in principle

explicitly computed.

These trilinear couplings appear in the instanton action and after integration of the

fermionic zero modes αi, γi one gets a superpotential coupling proportional to
∫

d2θ

∫

d2α d2γ e−dij
a (αiν

aγj) =

∫

d2θ νaνb ( ǫijǫkld
ik
a djl

b ) (3.10)

yielding a right-handed neutrino mass term. This term is multiplied by the exponential of

the instanton euclidean action so that the final result for the right-handed neutrino mass

(up to a 1-loop prefactor) has the form

MR
ab = Ms(ǫijǫkld

ik
a djl

b ) exp

(

− VΠM

gs
+ i

∑

r

qM,rar

)

(3.11)

For geometric compactifications VΠM
is roughly related to the wrapped volume. We keep

the same notation to emphasize that the effect is non-perturbative in gs. In supersymmetric
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models the term in the exponential is the linear combination U of complex structure moduli

to which the instanton D-brane couples, as described in the previous section. As explained,

the gauge U(1)c, U(1)d transformation of the bilinear piece and the e−SD2 factor nicely

cancel. Note that from the viewpoint of the 4d SM effective field theory, the instanton has

generated a Majorana neutrino mass violating B−L. Notice also that since this symmetry

is non-anomalous, its violation cannot be associated to a gauge instanton, hence this is a

pure string theory instanton effect.

3.3 Flavor and the special case of Sp(2) instantons

In order to extract more specific results for the flavor structure of the obtained Majorana

mass operator, one needs to know more details about the quantities dij
a coming from the

disk correlators. However in the particular case of Sp(2) instantons, the labels i, j are

Sp(2) doublet indices, and the symmetry requires dij
a = daǫ

ij . The mass matrix for the

three neutrinos is given by MR
ab =2Msdadb exp (−U), so that the flavour dependence on

a, b = 1, 2, 3 factorizes. More generally, as we will see in our RCFT search in section 6,

there are typically several different instantons contributing to the amplitude, so that we

actually have a result for the mass

MR
ab = 2Ms

∑

r

d(r)
a d

(r)
b e−Ur (3.12)

where the sum goes over the different contributing instantons. One thus has a structure of

the form

MR ∼
∑

r

e−Urdiag (d
(r)
1 , d

(r)
2 , d

(r)
3 ) ·







1 1 1

1 1 1

1 1 1






· diag (d

(r)
1 , d

(r)
2 , d

(r)
3 ) . (3.13)

This structure is very interesting. Indeed, each instanton makes one particular (instanton-

dependent) linear combination of the neutrinos massive, leaving two linear combinations

massless. Hence, for three or more instantons, one generically has a matrix with three non-

zero eigenvalues. It is easy to imagine a hierarchical structure among the three eigenvalues

if e.g. the exponential suppression factors exp(−Re Ur) are different for each instanton.

3.4 Other B− and L−violating operators

Our main focus in this paper is on the generation of right-handed neutrino Majorana

masses. However instantons may induce other L- and B-violating operators which we

briefly summarize in this subsection.

3.4.1 The Weinberg operator

A right-handed neutrino Majorana mass term is not the only possible operator violating

lepton number. Instanton effects may also give rise to dimension 5 operators not involving

νR. Specifically, the Weinberg operator

LW =
λ

M
(LHLH) . (3.14)
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might be generated. Once Higgs fields get a vev v this operator gives rise directly to

Majorana masses for the left-handed neutrinos of order ≃ v2/M . Indeed, it is easy to

check that in this case the required instanton M must verify

Sp(2) case : IMc = −1 ; IMd = 1 (3.15)

O(1) case : IMc = −2 ; IMd = 2 (3.16)

U(1) case : IMc = −2 ; IMd = 2 or IMc′ = 2 ; IMd′ = −2 (3.17)

(here we are assuming SU(2)weak to be embedded in an Sp(2)). Note that these intersection

numbers are different to those giving rise to νR mass terms. In particular they lead to a

transformation under B − L opposite to that of νR mass operators.11 In the present case

there are altogether four fermionic zero modes αi,γi corresponding to the intersections of

the instanton M with the branes c, d. These zero modes can have couplings involving the

left-handed leptons L and the u-type Higgs multiplet H

Ldisk ∝ cij
a (αi(L

aH)γj) . (3.18)

Upon integration over the fermionic zero modes one recovers the Weinberg operator. In

the present case the scale M of the Weinberg operator will be the string scale Ms and the

coupling λ ≃ exp(−Sins). Again, in the particular case of Sp(2) instantons the situation

simplifies (cij
a = caǫij) and one gets left-handed neutrino Majorana masses

ML
ab =

< H >2

Ms

∑

r

2c(r)
a c

(r)
b e−Sr (3.19)

where r runs over the different contributing instantons and Sr is their corresponding action.

The flavour structure of this left-handed neutrino mass matrix is the same as in eq. (3.13)

and again may potentially lead to a hierarchical structure of left-handed neutrino masses,

as is experimentally observed.

In a given model both this kind of instanton and the one giving rise to right-handed

neutrino masses (which is different) may be present. This contribution to the left-handed

neutrino Majorana mass is in principle sub-leading compared to the see-saw contribution

ML
ab(see-saw) =

< H >2

2Ms
hT

D

(

∑

r

d(r)
a d

(r)
b e−Sr

)−1

hD (3.20)

where is the ordinary Yukawa coupling constant hab
D (νa

RH̄Lb). In principle the former is

doubly suppressed both by 1/Ms and the exponential factor. On the other hand if the

exponential suppression is not too large this mechanism involving directly the Weinberg

operator may be the most relevant source of neutrino masses. This is because the see-

saw contribution coming from νR exchange is proportional to the square of the ordinary

Yukawa couplings hab
D which could be small. One could even think of having just the

Weinberg operator as the unique source of the observed left-handed neutrino masses. Note

11Instantons with these intersection numbers will be denoted with a plus sign in the instanton search

later on
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however that in string vacua like this, in which the νR’s are present and massless at the

perturbative level, having just the Weinberg operator would not be phenomenologically

correct, and instantons of the first class are still needed so that the νR’s get a sufficiently

large mass.

3.4.2 R-parity violating operators

In the case of N = 1 SUSY models like the MSSM there might be operators of dimension

3 and 4 violating lepton and/or baryon number. These are the superpotential couplings

WRp = µL
a LaH + λabcQ

aDbLc + λ′
abcU

aDbDc + λ′′
abcL

aLbEc (3.21)

in standard notation. Unlike the neutrino operators mentioned above, these operators

violate B − L in one unit (rather than 2). It is well known that the standard R-parity

of the MSSM may be identified with a Z2 subgroup of U(1)B−L, so these terms are odd

under R-parity. The simultaneous presence of all these couplings is phenomenologically

unacceptable. Indeed, the third coupling violates baryon number, and the other three

violate lepton number. Together they lead to proton decay at an unacceptably large rate.

On the other hand couplings violating either B or L are phenomenologically allowed.

It is an interesting question whether any of these operators may be induced by string

instanton effects. A first point to note is that instantons with Sp(2) Chan-Paton symmetry

can never generate operators of this type. The reason is that all charged zero modes will

necessarily come in Sp(2) doublets and hence the charged operators induced will always

involve an even number of charged D = 4 fields and R-parity is automatically preserved.

On the other hand O(1) and U(1) instantons may generate R-parity violating operators.

In particular, the LH bilinear is essentially the square root of the Weinberg operator, and

may be induced if a U(1) or O(1) instanton M exists with

IMc = −1 ; IMd = 1 or IMc′ = 1 ; IMd′ = −1 . (3.22)

(in the O(1) case the second option is not independent from the first). Again, if the

appropriate disk couplings are non-vanishing a term with µa
L ∼ Ms exp(−Sins) is generated.

The rest of the operators in WRp may also be generated. Possible instanton zero modes

which may induce them are shown in table 2. For example, the QDL operator may be

induced if a U(1) instanton M with intersection numbers

IMb = −1 ; IMc′ = 1 ; IMd = 1 (3.23)

is present and in addition couplings

Ldisk ∝ cab

(

α(UaQb
j)γ

j
)

+ c′a(βLa
j γj) (3.24)

exist. Here α, β, γ are zero modes corresponding to (Mc′), (Md) and (bM) intersections

and a, b(j) are flavor(SU(2)L) indices. Analogous trilinear or quartic disk amplitudes in-

volving two charged zero modes should exist to generate the rest of the R-parity violating

amplitudes in table 2.
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D = 4 Operator IMa IMa′ IMb IMc IMc′ IMd IMd′

νRνR 0 0 0 2 0 -2 0

LH̄LH̄ 0 0 0 -2 0 2 0

LH̄ 0 0 0 -1 0 1 0

QDL 0 0 -1 0 1 1 0

UDD -1 0 0 1 2 0 0

LLE 0 0 -1 0 1 1 0

QQQL 1 0 -2 0 0 1 0

UUDE -1 0 0 2 2 -1 0

Table 2: Zero modes required to generate Lepton/Baryon-number violating superpotential opera-

tors. Sp(2) instantons cannot give rise to R-parity violating operators whereas O(1),U(1) instantons

may in principle contribute to all of them. In the case of U(1) instantons there are additional zero

mode possibilities which are obtained by exchanging IMx ↔ −IMx
′ .

3.4.3 Dimension 5 proton decay operators

There are also superpotential dimension-5 operators violating B and L which may be

constructed from the MSSM matter superfields. Indeed the dimension 5 operators

(

1

M

)

QQQL ;

(

1

M

)

UUDE (3.25)

are in fact the leading source of proton decay in SUSY GUT models with R-parity. Unlike

the other operators considered here these ones preserve B − L (hence R-parity) but not

B+L. These operators do not contribute directly to a proton decay but need to be ’dressed’

by a one loop exchange of some fermionic SUSY particle. This makes that, even although

they are suppressed only by one power of the relevant fundamental scale, the loop factor

and the corresponding couplings make the overall rate in SUSY-GUTS (barely) consistent

with present experimental bounds for M of order the GUT scale or larger.

These dimension 5 operators may also be induced in D-brane models of the class

here considered by the presence of instantons with appropriate intersection numbers. For

instance, the first operator may be induced through O(1) or U(1) instantons M with

IMb = IMb′ = −2 ; IMa = 1 ; IMd = 1 (3.26)

Again Sp(2) instantons cannot induced this operator, since the the Ma intersection would

yield 6 (rather than 3) colored fermionic zero modes. The proton decay rate obtained from

these operators depend on the ratio exp(−Sins) × 1/Ms. For Ms of order 1016 GeV, the

rate is consistent with present bounds if exp(−Sins) provides a suppression of a few orders

of magnitude. On the other hand, models with a low string scale may be in danger unless

the exponential suppression is sufficiently large (or such particular instantons are absent).

As a general conclusion, these phenomenological aspects of instanton induced operators

very much depend on the action of the instanton, e.g. the volume of the wrapped D2-

instanton in the intersecting D-brane constructions. In any event it is clear that the
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instantons here considered may indeed induce proton decay at a model-dependent rate.

However in certain models R-parity will be preserved and prevent too rapid proton decay.

Indeed, this is what we find in our instanton search in Gepner orientifolds. As we said

Sp(2) instantons automatically preserve R-parity. More generally, models that violate R-

parity are rare, and the corresponding instantons actually generate very high dimensional

operators, so R-parity breaking effects seems quite suppressed. In fact in our search within

MSSM-like models in Gepner model orientifolds we do not find instantons with just the

correct charged zero modes to generate the low dimensional couplings discussed above. So,

at least within our class of RCFT constructions, R-parity preservation is quite a common

feature.

4. CFT orientifolds

In this section we describe the 4d string models we consider, namely orientifolds of type

IIB Gepner model compactifications. This is a very large class, on which one can carry out

large scans for certain desired properties. And moreover at present the only known class

of (SUSY) models with massive B − L.

4.1 Construction of the models

In general, RCFT orientifolds are orientifold projections of closed string theories con-

structed using rational conformal field theory. Although this includes in principle rational

tori and orbifolds, the real interest lies in cases where the two-dimensional CFT is inter-

acting, because such theories are hard to access by other methods. A disadvantage of the

use of RCFT is that this method is algebraic, and not geometric in nature, so that one

cannot easily explore small deformations of a certain string theory. It is best thought of as

a rational scan of moduli spaces.

The most easily accessible examples are the orientifolds of tensor products of minimal

N = 2 conformal field theories (“Gepner models”) forming a type IIB closed string theory.

During the last decade, examples in this class have been studied by many authors (see [35 –

42]), and searched systematically in [6] and [7]. Although the Gepner models form only

a small subset of RCFT’s, they already offer a large number of possibilities. The total

number of tensor products with the required central charge c = 9 is 168. On top of

this, one can choose a large number of distinct modular invariant partition functions on

the torus. The orientifold formalism is not available for all of them, but it has been

completely worked out [43] for all simple current invariants (based on the charge conjugation

invariant). This yields a total of 5403 distinct MIPFs. On top of this, we may choose various

orientifold projections. Here the only known possibilities are a class of simple-current based

choices [44 – 47]. This then yields a total of 49304 orientifolds.

For each orientifold choice, the full open string partition function is

1

2





∑

a,b,i

NaNbA
i
abχi

(

τ

2

)

+
∑

a,i

NaM
i
aχ̂i

(

τ

2
+

1

2

)



 (4.1)
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Here Ai
ab are the annulus coefficients, M i

a the Moebius coefficients, Na the Chan-Paton

multiplicities and χ(τ) are the closed string characters, and χ̂i(τ) = T−1/2χi(τ). The set

of integers i is simply the set of primary fields of the closed string CFT, and depends only

on the tensor product. The integers a, b are the boundary labels; this set depends on the

MIPF. Our notation and labelling conventions for these CFT quantities are explained in

appendix A. The integers Ai
ab and M i

a depend in addition also on the orientifold choice;

in the case of Ai
ab the latter dependence is very simple: all distinct annuli can be written

as AΩ,i
ab =

∑

c Ai c
a CΩ

cb, where Ω is the orientifold choice (which we usually do not specify

explicitly) and CΩ
cb is the boundary conjugation matrix, which acts as an involution on the

set of boundaries.

Suppressing some details (which can be found in [43]) we may write these integers as

AΩ,i
ab =

∑

m,J,K

Si
mRa,(m,J)g

Ω,m
JK Rb,(m,K)

S0m
(4.2)

MΩ,i
a =

∑

m,J,K

P i
mRa,(m,J)g

Ω,m
JK UΩ

(m,K)

S0m
(4.3)

Here m is the label of an Ishibashi-state (the set of states that propagates in the transverse

(or closed string) channel of the the annulus or Moebius diagrams). It is a subset of the set

of closed string labels i, but in general there are degeneracies, so that more than one distinct

Ishibashi state belongs to a given closed string label. These degeneracies are distinguished

by the labels J,K (see appendix A). The complex numbers R and U are respectively the

boundary and crosscap coefficients. Note that the latter depend on the orientifold choice,

but the former do not. The only dependence of the annulus coefficients on the orientifold

choice is through the Ishibashi metric gΩ
JK , which is a matrix on each Ishibashi degeneracy

space, and which can be a sign if there are no degeneracies. Finally, the matrix P is given

by P =
√

TST 2S
√

T , where S and T are the generators of the modular group of the torus.

Similar expressions exist for the Klein bottle multiplicities defining the unoriented closed

sector, but they will not be needed in this paper.

The boundary labels a, b, . . . refer to all boundaries that respect the bulk symmetries

of the CFT. This includes the individual N = 2 chiral algebras of the factors in the

tensor product, the alignment currents12 that ensure the proper definition of world-sheet

supersymmetry and the space-time supersymmetry generator that imposes a generalized

GSO-projection on the spectrum. The latter implies that all characters χi respect (at

least) N = 1 space-time supersymmetry. By construction, the boundary states are then

supersymmetric as well. Both conditions (boundary and bulk space-time supersymmetry)

can in principle be relaxed within the formalism, but this leads to a much larger set of bulk

and boundary states. The precise labelling of the boundaries is explained in appendix A

and involves a subset of the closed string labels i and a degeneracy label, distinct from the

one used for the Ishibashi states. The set of boundary labels is complete in the sense of [45].

12These are spin-3 currents consisting of products of the world-sheet supercurrents of the factors in the

tensor product, including the NSR space-time factor.

– 24 –



J
H
E
P
0
6
(
2
0
0
7
)
0
1
1

This means that no additional boundary states exist that respect all the aforementioned

symmetries. It also means that the matrices R are square matrices (although their rows

and columns are defined in terms of different index sets). It is in principle possible to write

down additional boundary states that break some of the world-sheet symmetries. This is

an important possibility to keep in mind, but we will not consider it here.

The massless spectrum is obtained by restricting the characters χi to massless states.

Since the characters are supersymmetric those massless states are either vector multiplets

or chiral multiplets. The latter can be restricted to one chirality (e.g. left-handed); the other

choice merely produces the CPT conjugates. Boundaries are called real if a = a′, where the

conjugate boundary a′ is defined by CΩ
a,a′ = 1, and complex otherwise. The Chan-Paton

multiplicities Na give rise to gauge groups U(Na) for complex boundaries and SO(Na) or

Sp(Na) for real ones. In the latter case Na must be even. To count bi-fundamentals we

define

Lab ≡
∑

i

Ai
abχi

(

τ

2

)

massless,L

. (4.4)

Note that because of the factor 1
2 in (4.1) and the fact that Lab is symmetric, the value of

Lab is indeed precisely the number of bi-fundamentals in the representation (Na, Nb). It is

convenient to introduce the intersection matrix13

Iab ≡ Lab′ − La′b , (4.5)

which is manifestly antisymmetric in a and b. Note that for a pair of complex boundaries

a, b with conjugates a′, b′ one can define four quantities that are relevant for the massless

spectrum, two of which are chiral, namely Iab and Iab′ .

It is often convenient to associate a geometric picture to these integers. Thus we will

often refer to the boundary labels and their multiplicities as “stacks of branes”, and view

the integers Iab as brane intersection numbers. This is only done for convenience and does

not imply a concrete brane realization; indeed, it does not make sense to say that a given

boundary label corresponds to a Dp-brane for some give p. Such an interpretation might

be valid in a large radius limit, assuming such a limit exists.

In general, for a choice of Chan-Paton multiplicities Na there will be tadpoles in the

one-point closed string amplitudes on the disk and the crosscap. These have to be cancelled

in order to make the theory consistent (since we work with supersymmetric strings we do

not have the option of cancelling RR and NS-NS tadpoles separately). This leads to a

13Note that Lab is a symmetric matrix giving the number of chiral multiplets in the ( a, b) bi-

fundamental. This is a natural quantity in unoriented CFT’s, where a symmetric definition for the annulus

amplitude exists. In oriented CFT the annulus is, in general, not symmetric, but on the other hand it is

possible to choose the branes in such a way that only ( , ) bi-fundamentals appear. This has become

the customary way of counting states in the intersecting brane literature, even for orientifold models. The

quantity Iab is defined in such a way that it is anti-symmetric in a and b. This is why boundary conjugations

appear in the right hand side. This has the additional advantage of making I a more familiar quantity for

readers used to the standard intersection brane conventions.
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condition on the Chan-Paton multiplicities:

∑

a

NaRa,(m,J) = 4ηmUm,J (4.6)

where η0 = 1 and all other η’s are −1; there is such a condition for any Ishibashi label

(m,J) that leads to a massless scalar in the transverse channel. The one for m = 0 (which

is non-degenerate) is the dilaton tadpole condition. It has the special feature that all

coefficients Ra0 are real and positive. The crosscap coefficient U0 is also real and can be

chosen positive (in the CFT both signs are acceptable). If U0 6= 0 (4.6) limits the Chan-

Paton multiplicities; if U0 = 0 the only solution is Na = 0 for all a, which rules out any

realization of the Standard Model. This reduces the number of usable orientifolds to 33012.

Tadpole cancellation condition implies cancellation of RR-charges coupling to long-

range fields, and absence of local anomalies. There is a second condition that has to be

taken into account, which has to do with Z2 charges that do not couple to long-range

fields, usually referred to as “K-theory charges” in geometric constructions. Uncancelled

K-theory charges may lead to global anomalies in symplectic factors of the gauge group.

But even if this symptom is absent, the disease may still exist. A much more general way

to probe for uncancelled K-theory charges is to require the absence of global anomalies not

only in the Chan-Paton gauge group but also on all symplectic brane-anti-brane pairs that

can be added to it as “probe-branes” [48]. Presently this is the most general constraint

that be imposed in these models, but it is not known if additional ones are required. This

probe brane constraint leads to a large number of mod-2 constraint and is potentially very

restrictive, but almost harmless in practice [49]. It is satisfied by all models we consider in

the present paper.

4.2 Search for SM-like models

The complete set of solutions to these conditions is finite but huge, but the vast majority is

of no phenomenological interest. In the last few years systematic searches have been carried

out for models that contain the Standard Model. The models that were considered have

the property that the set of Chan-Paton labels can be split into two subsets, the observable

and the hidden sector. The former has been limited, for practical reasons, to at most four

complex brane stacks, required to contain the Standard Model gauge group and the right

intersections to yield three families of quarks and leptons, plus (in general) some non-chiral

(vector-like) additional matter. The hidden sector is only constrained by the requirement

that there be no net number of chiral multiplets charged under both the observable and

hidden sector, and by practical computational limitations. The main purpose of the hidden

sector in these models is to provide variables that can be used to satisfy the tadpole and

global anomaly conditions, since the multiplicities in the observable sector are already fixed.

In some cases the observable sector already satisfies the constraints by itself, and there is

no hidden sector.

The observable sector can be realized in many different ways if one only imposes the

constraint that the standard model should be contained in it. These possibilities were

recently explored in [7]. We will focus on the realization described in section 3.1, first
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considered in [5]. There are four stacks, namely a (containing QCD and baryon number as

U(3)), b (containing electroweak SU(2) embedded as U(2) or Sp(2)), c (providing a U(1)

or an O(2) factor,14 and d (providing another U(1) factor).

The standard model hypercharge generator is, defined in (3.1):

Y =
1

6
Qa − 1

2
Qc −

1

2
Qd (4.7)

where Qx denotes the generator of the U(1) of brane stack x; in case the Chan-Paton factor

of brane c is O(2) one should use the properly normalized O(2) generator. In addition

to Y these models have two or three additional U(1) gauge symmetries (the latter case if

electroweak SU(2) arises from U(2)). These (except the combination B−L) are anomalous,

with anomaly cancelled by the Green-Schwarz mechanism, implying the existence of a B∧F

coupling making them massive. In fact, as already mentioned, such Stückelberg couplings

may be present for non-anomalous U(1)’s as well. We are interested in models where the

hypercharge gauge boson does not have such couplings (otherwise the model would be

phenomenologically unacceptable), but where the B − L gauge boson is massive by such

couplings (both in order that the gauge group reduces to the SM one, and that neutrino

Majorana masses may be induced by string instantons, as discussed in previous sections).

The combined requirements of having a massive B − L and a massless Y turn out

to be difficult to satisfy. In fact, if the group on brane c is O(2) they are impossible to

satisfy simultaneously, because the O(2) component of the vector boson does not couple to

any axions, and hence the B − L and Y bosons have the same mass. But even in models

with a U(1) group on brane c it happens rather rarely that both constraints are satisfied

simultaneously, at least in the searches that have been done so far.

We will make use here of the data presented in [6, 7], which are available in slightly

improved form on the website www.nikhef.nl/∼t58/filtersols.php. This database consist of

211634 distinct spectra. Here “distinct” means that they are physically different for a given

MIPF15 if the hidden sector is ignored. Hence the differences can be the number of vector-

like states of various kinds or the dilaton couplings of branes a, b, c, d. Geometrically,

these spectra may originate from the same moduli space, but then in any case from different

points on this moduli space. The improvements in comparison with the data presented in [6]

consist of taking into account the full global anomaly conditions from probe branes. In some

cases this required nothing more than checking these conditions for an existing solution of

the tadpole conditions, but in other cases a new solution had to be found. As a result, a

few models disappeared from the original database, but due to improved algorithms a few

new ones could be added. The net result is some small but inconsequential changes in the

total number of models of various kinds. The numbers we will mention below are based on

the improved database.

The total number of models in that database with a Chan-Paton group U(3)×Sp(2)×
U(1) × U(1) is 10587. Of these, 391 (about 4%) have a massive B − L vector boson.

For U(3) × U(2) × U(1) × U(1) these numbers are, respectively, 51 and 0. Hence no

14In [6] also Sp(2) was considered, but this requires an additional Higgs mechanism.
15Rare cases of identical spectra and couplings originating from different MIPFs are treated as distinct.
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examples of the latter type were found, although they were found with 1,2 and 4 families

(in a limited search), in a few percent of the total number of models. It seems therefore

reasonable to expect that U(3) × U(2) × U(1) × U(1) with massive B − L do exist, and

that their absence is just a matter of statistics. Just for comparison, the total number of

U(3) × Sp(2) × O(2) × U(1) models is 56627.

5. Fermion zero modes for instantons on RCFT’s

In this section we discuss D-brane instantons for general compactifications, including ab-

stract CFT ones. We also provide the spectrum of zero modes on an instanton brane,

using the information about their internal structure i.e. in the compactified dimension in

geometric models, or of the internal CFT in more abstract setups like in previous section.

We will be interested in the latter case.

A first question that should be addressed is what this internal structure is. For instance,

in type IIA geometric compactifications, it corresponds to a supersymmetric (i.e. special

lagrangian) 3-cycle. Notice that these are the same kind of 3-cycles already used to wrap

the D6-branes that give rise to the 4d gauge symmetry of such models. For general CFT’s,

D-branes are described as boundary states. To describe instantons, one can simply use the

same boundary state of the internal CFT to describe the 4d space-filling branes present

in the model and the instanton branes. The only difference is that boundaries satisfy

Neumann conditions in the 4d space-filling case, and Dirichlet in the instanton case. This

exploits the fact that whenever a boundary state of the internal CFT, and with Neumann

boundary conditions in the 4d space is an acceptable state of the full CFT, the same

boundary state of the internal CFT, combined with Dirichlet boundary conditions in the

4d space also gives an acceptable state of the full CFT. For geometric compactifications

this is related to Bott periodicity of the K-theory classes associated to the D-brane charges,

but it is possible to show it in general.

Since instanton D-branes can thus be naturally associated to the boundary states of 4d

space-filling branes, it is convenient to express the spectrum of zero modes of the former in

terms of the massless states of the latter. This is particularly useful, since the computation

of the spectra on 4d space-filling branes for Gepner model orientifolds has already been

described (although the arguments below are valid also for geometric compactifications).

Hence, let us denote by M a 4d space-filling brane associated with the same boundary state

of the internal CFT as the instanton brane M of interest. Note that the 4d space-filling

brane M is an auxiliary tool, and need not be (and, for our instantons of interest, will not

be) one of the 4d space-filling branes present in the model.

‘Real’ brane instantons. Let us first consider the case of ‘real’ brane instantons. Con-

sider a set of m 4d space-filling branes M, and focus first on the massless spectrum in the

MM sector. Before the orientifold projection, it leads to a universal 4d N = 1 U(m) vector

multiplet, and a number LMM of adjoint chiral multiplets. The orientifold operation maps

this sector to itself, acting on the Chan-Paton labels with a matrix γΩ,M. This matrix
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satisfies

γT
Ω,Mγ−1

Ω,M = ±1m (5.1)

The two possibilities can be chosen to correspond to γΩ,M = 1m or γΩ,M = ǫm, with

ǫm =

(

0 1r

−1r 0

)

, and m = 2r hence necessarily even in the latter case. They correspond

to the SO and Sp projections, respectively.

The orientifold projection on the N = 1 vector multiplet Chan-Paton matrices is given

by

λ = −γΩ,M λT γ−1
Ω,M (5.2)

and leads to SO(m) or Sp(m) vector multiplets for the SO or Sp projection (hence the

name). Concerning the N = 1 chiral multiplets, they fall in two classes of p−, p+ (with

p− + p+ = LMM) which suffer the projections

λ = ±γΩ,M λT γ−1
Ω,M (5.3)

For the SO projection, this leads to p+, p− chiral multiplets in the , representation.

For the Sp projection, there are p+, p− chiral multiplets in the , representation.

The sectors Ma (where a is a 4d space-filling branes present in the model) are mapped

to sectors Ma′, so it is enough to focus on the former. After the orientifold projection one

gets LMa, LMa′ chiral multiplets in the ( M, a), ( M, a).

Let us now obtain the zero modes for a set of m instanton branes M in terms of the

above spectrum. The MM sector is closely related to the MM sector, by changing the NN

boundary conditions in 4d spacetime to DD boundary conditions (which can be done in

a covariant formalism, but not in the light-cone gauge). Before the orientifold projection,

one obtains the same set of states (since moddings for NN and DD boundary conditions

are identical, both in the NS and R sector), but with different world-volume interpretation.

Also, the change in boundary conditions implies that some polarization states which are

unphysical for the 4d spacefilling brane are physical in the instanton brane. Hence, the

U(m) gauge bosons on the 4d space-filling brane M correspond to four adjoint real scalars

in the instanton brane M . Similarly, the 4d spinors in M, correspond to four fermion zero

modes on M , transforming as two spinors of opposite chiralities θα, θ̃α̇ of the SO(4) rotation

group in transverse space. The orientifold projection maps the MM sector to itself, acting

on Chan-Paton indices with a matrix γΩ,M . In close analogy with the argument in [50] for

the familiar D5-D9-brane system in type I (see [51, 52] for related derivations), one can

show that the condition (5.1) flips sign upon changing four NN boundary conditions to

DD, hence

γT
Ω,Mγ−1

Ω,M = ∓1m (5.4)

Namely, the instanton brane has Sp(m) gauge group when the 4d space-filling brane (with

same internal boundary state) has gauge group O(m), and vice-versa. We still refer to

these projections as SO and Sp, hoping no confusion arises. Note that, as mentioned in
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section 2.2, although there are no gauge bosons in 0 + 0 dimensions, the gauge group is

present on the instantons in that it acts on open string endpoints.

Let us consider the effect of the orientifold projection on the MM states, as compared

with the effect on MM states. Again, following arguments familiar in the D5-D9 brane

system in type I, one can show that the signs in conditions like (5.2), (5.3) remain un-

changed upon changing four NN dimensions to DD, except for bosonic modes polarized

along the directions longitudinal to these four dimensions (and for fermions related to them

by the unbroken susy of the total system). To be concrete, considering the four MM ad-

joint bosons, and two MM adjoint fermions θα associated to the universal MM vector

multiplets, they suffer the projection

λ = +γΩ,M λT γ−1
M (5.5)

Hence they transform in the of Sp(m) for the SO projection, and in the of SO(m) for

the Sp projection. On the other hand, for the two fermion zero modes θ̃α̇, the projection

is

λ = −γΩ,M λT γ−1
M (5.6)

and leads to two fermion zero modes in the of Sp(m) for the SO projection, and in the

of SO(m) for the Sp projection.

This implies that in order to obtain two fermion zero modes from this universal multi-

plet, in order to generate a superpotential, one should consider instantons with orthogonal

gauge group and multiplicity one (O(1) instantons). For instantons with symplectic gauge

group and multiplicity two (Sp(2) instantons), there are two additional fermion zero modes

in the triplet representation. As mentioned, we will continue to consider such instantons in

our relaxed scan. Multiple instantons, i.e. boundary states with higher multiplicity, lead to

a larger amount of additional fermion zero modes (due to the larger gauge representations

for the fermions), and do not contribute to superpotentials; we will not consider such cases

even in relaxed scans, since they also very often lead to too many charged fermion zero

modes and cannot contribute to the operators of interest (except possibly for O(2) and

U(2) instantons with low intersections, which are kept in our scan as a curiosity).

Similarly, for the p± sets of MM scalars and fermions associated to the MM 4d chiral

multiplets, the projection is

λ = ±γΩ,M λT γ−1
Ω,M (5.7)

with the same sign choice as in (5.3). The different structure of γΩ implies that, for the

SO projection we get p+, p− sets of scalars and fermions in the , , while for the Sp

projection there are p+, p− sets of scalars and fermions in the , .

This concludes the discussion of the MM sector. Let us not consider the Ma sectors,

from the information from the Ma sectors. Notice that this implies changing four NN

boundary conditions to DN, which have different moddings. Hence the states are different

in both situations, but the information on the multiplicities is preserved. Specifically, in

the NS sector the DN boundary condition introduce an additional vacuum energy which
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Proj. Multiplet in M M (before orient.) M (after orient.) M (after orient.)

SO N = 1 vect. mult. U(m) O(m) Sp(m)

2 f + 2 f + 4 b

N = 1 ch. mult. (p+ + p−)Ad p+ + p− 2p+ ( f + b )+

2p− ( f + b )

Sp N = 1 vect. mult. U(m) Sp(m) O(m)

2 f + 2 f + 4 b

N = 1 ch. mult. (p+ + p−)Ad p+ + p− 2p+ ( f + b )+

2p− ( f + b )

Any N = 1 ch. mult. LMa′( M, a)+ LMa′( M, a)+ LMa′( M , a) f

LMa( M, a) LMa( M, a) LMa( M , a) f

net IMa( M, a) net IMa( M , a) f

Table 3: Orientifold projection for real branes: Massless modes of the 4d space-filling branes M
(before and after the orientifold projection) and zero modes on the instanton branes M (denoted

with sub-indices b, f for bosonic and fermionic modes)

generically makes all states massive. Hence there are no massless scalar zero modes in

generic Ma sectors. In the R sector, the change in the moddings reduces the dimension

of the massless ground state, leading to a single (chiral) fermionic degree of freedom.

Since the orientifold action maps the Ma sector to Ma′ sectors, there are no subtleties

in the orientifold projection. The end result is LMa, LMa′ fermion zero modes in the

( M, a), ( M, a). The net number of chiral fermion zero modes in the ( M, a) is given

by IMa = LMa′ − LMa, i.e. the net number of chiral multiplets in the related Ma sector.

The results for orientifold projections for real branes are shown in table 3.

Complex brane instantons. We now consider the case of complex brane instantons.

The arguments are very similar, hence the discussion is more sketchy. Consider m 4d

spacefilling branes M, associated to the internal boundary state of the instanton brane M

of interest. The MM leads to a 4d N = 1 U(m) vector multiplet and a number LMM′

of adjoint chiral multiplets. The orientifold action maps it to the M′M′ sector, hence we

may keep just the former and impose no projection. The MM′ sector is mapped to itself

under the orientifold projection. Denoting by γΩ,M the action on Chan-Paton indices, the

MM′ modes split into sets L±
MM , L±

M ′M ′ , which suffer a projection

λ = ±γΩ,M λT γ−1
Ω,M (5.8)

leading, for γΩ,M = 1m, to L+
MM, L−

MM chiral multiplets in the , , and L+
M′M′ ,

L−
M′M′ chiral multiplets in the , . The net number of chiral multiplets in the , is

I+
MM′ = L+

M,M − L+
M′M′ , I−MM′ = L−

M,M − L−
M′M′ . And oppositely for γΩ,M = ǫm.

Finally, the Ma, Ma′ and related sectors lead, after the orientifold projection, to

LMa′ , LMa, LM′a′ , LM′a chiral multiplets in the ( M, a), ( M, a), ( M, a), ( M, a).

In order to simplify notation, we replace M → M in these expressions in our discussions

of instanton zero modes.
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Proj. Multiplet in M M (before orient.) M (after orient.) M (after orient.)

Any N = 1 vect. mult. U(m) × U(m)′ U(m) U(m)

4Ad f + 4Ad b

N = 1 ch. mult. padj Ad + padjAd′ padjAd 2padj ( Ad f + Ad b )

SO N = 1 ch.mult. LMM( M, M′) L+
MM M + L−

MM M 2L+
MM b,f + 2L−

MM b,f

LM′M′( M, M′) L+

M′M′ M + L−

M′M′
M

2L+

M′M′
b,f

+ 2L−

M′M′ b,f

Sp N = 1 ch.mult. LMM( M, M′) L+
MM M + L−

MM M 2L+
MM b,f + 2L−

MM b,f

LM′M′( M, M′) L+
M′M′

M
+ L−

M′M′ M L+
M′M′ b,f + L−

M′M′
b,f

Any N = 1 ch. mult. LMa′( M, a)+ LMa′( M, a) LMa′( M , a) f

. . . LMa( M, a) LMa( M , a) f

. . . LM′a′( M, a) LM′a′( M , a) f

. . . LM′a( M, a) LM′a( M , a) f

net IMa( M, a) net IMa( M , a) f

net IMa′( M, a) net IMa′( M , a) f

Table 4: Orientifold projection for complex branes: Massless modes of the 4d space-filling branes

M (before and after the orientifold projection) and zero modes on the instanton branes M (denoted

with sub-indices b, f for bosonic and fermionic modes)

Let us now consider m brane instantons M and compute their zero mode spectrum in

terms of the above. In the MM (and its image M ′M ′) sector there are four scalar modes

and four fermions in the adjoint of the U(m) gauge symmetry group; these are related to

the 4d vector multiplet in the MM sector. In addition, there are LMM ′ sets of scalars and

fermions in the adjoint, related to the LMM′ non-universal chiral multiplets in the MM
sector. The MM ′ sector is mapped to itself, and one has to impose the orientifold projection

(recalling that the matrix γΩ,M differs from γΩ,M). For γΩ,M = 1, hence γΩ,M = ǫ, we

obtain L+
MM , L−

MM chiral multiplets in the , , and L+
M ′M ′ , L−

M ′M ′ chiral multiplets in

the , . The net number of chiral multiplets in the , is I+
MM ′ = L+

MM − L+
M ′M ′ ,

I−MM ′ = L−
MM − L−

M ′M ′ . And oppositely for γΩ,M = ǫ hence γΩ,M = 1.

In the Ma, Ma′ and related sectors, there are generically no bosonic zero modes, and

there are LMa, LM′a′ , LMa′ , LM′a chiral fermion zero modes in the ( M , a), ( M , a),

( M , a), and ( M , a) respectively. The net number of chiral fermion zero modes in the

( M , a) and ( M , a) is given by IMa = LMa′ − LM′a′ and IMa′ = LMa − LM′a. In

order to simplify notation, we replace M → M in these expressions in our discussions of

instanton zero modes.

The results for orientifold projections for real branes are shown in table 4.

6. Search for M instantons

In this section we perform a search of models which admit an instanton inducing a right-

handed neutrino Majorana mass operator. Namely, for each model with the chiral content

of the SM in the classification described in section 4.2, we first scan over boundary states,

searching for all instantons with the required uncharged and charged fermion zero mode

structure to yield neutrino masses. We then relax our criteria a bit and allow for instantons

with correct charged zero mode structure but having extra non-chiral zero modes (both
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charged and uncharged). The idea is that these non-chiral zero modes could be lifted by

diverse effects, as discussed.

It is important to recall that the cubic couplings between instanton zero modes and

4d chiral multiplets are difficult to compute in Gepner model orientifolds. Hence, we will

simply assume that such couplings are non-zero if there is no symmetry forbidding them.

6.1 The instanton scan

Our detailed strategy will become clear along the description of the results. Given a set

of a,b,c,d standard model branes, we must look for additional boundary states M that

satisfy the requirements of a (B − L)-violating instanton. From the internal CFT point of

view this is just another boundary state, differing from 4d spacefilling branes only in the

fully localized 4d spacetime structure. The minimal requirement for such a boundary state

is B − L violation, which means explicitly

IMa − IMa′ − IMd + IMd′ 6= 0 (6.1)

It is easy to see that the existence of such an instanton implies (and hence requires) the

existence of a Stückelberg coupling making B − L massive. To see this, consider adding

to the Standard Model configuration a 4d spacefilling brane M (in fact used in section 5)

associated to the boundary state M (RR tadpoles can be avoided by simultaneously in-

cluding M antibranes, which will not change the argument). The new sector in the chiral

spectrum charged under the branes M can be obtained by reversing the argument in sec-

tion 5, and is controlled by the intersection numbers of M . From the above condition it

follows that the complete system has mixed U(1)B−L × (GM)2 anomalies, where GM is

the Chan-Paton-factor of brane M. These anomalies are cancelled by a Green-Schwarz

mechanism involving a (B − L)-axion bilinear coupling, which ends up giving a mass to

B−L via the Stückelberg mechanism. This coupling is in fact not sensitive to the presence

of the brane M, hence it must have been present already in the initial model (without M).

Hence the existence of a boundary label M that satisfies (6.1) implies that B − L is

massive. Unfortunately the converse is not true: even if B − L has a Stückelberg mass,

this still does not imply the existence of suitable instantons satisfying (6.1).16 Indeed, in

several models we found not a single boundary state satisfying (6.1).

Note that, since hypercharge must be massless, one can use the reverse argument and

obtain that

IMa − IMa′ − IMc + IMc′ − IMd + IMd′ = 0 (6.2)

in all models. We verified this for all models we considered as a check on the computations.

As already discussed in section 4.2, in the search for SM constructions in Gepner

orientifold, there are 391 models with massless hypercharge and massive B − L. In these

16From intuition in geometric compactifications, one expects that there may always exist a D-brane with

the appropriate topological pairings, but there is no guarantee that there is a supersymmetric representative

in that topological sector, and even less that it would have no additional fermion zero modes. Note also

that even if such D-brane instantons exists, there is no guarantee that it will fall in the scan over RCFT

boundary states.
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models we found a total of 29680 instantons with B − L violation, i.e. with intersection

numbers satisfying (6.1). Of course, in order to serve our purpose of generating a Majorana

mass superpotential, the instantons have to satisfy some more conditions. Let us consider

them in order of importance, and start with the conditions on the net number of chiral

fermion zero modes charged under the 4d observable sector. Clearly we need IMa = IMa′

and IMb = IMb′ . The latter condition is automatically satisfied in this case, because the

b-brane is real in all 391 models. The chiral conditions on the zero modes charged under

the branes c and d are as in [3]17 and are given in equations (3.6), (3.7) (3.8) of the present

paper. These are the instantons of most interest, and on which we mainly focus. However,

as discussed in section 3.4, other important B- and/or L- violating operators (such as

the Weinberg operator or the LH operator) can be generated by instantons with similar

intersection numbers, up to a factor of 2 and a sign, see table 2. For this reason we also

allow at this stage any instanton which has the correct number of charged zero modes

to generate them. Imposing these conditions reduces the number of candidate instantons

potentially contributing to neutrino masses in any of the models to 1315.

All instantons satisfying these requirements are summarized in the table 5. In columns

1,2 and 3 we list the tensor combination, MIPF and orientifold choice for which the model

occurred. The latter two numbers codify simple current data that describe respectively a

MIPF and an orientifold. MIPFs are in general defined by means of a subgroup H of the

simple current group G, plus a certain matrix X of rational numbers [55]. Orientifolds are

defined by a simple current and a set of signs [43]. In previous work [6] we have enumerated

these quantities (up to permutation symmetries) and assigned integer labels to them for

future reference. We only refer to these numbers here, but further details are available upon

request. Usually for each MIPF and orientifold which contains the standard model there are

several choices a,b,c,d for which it is obtained. For a given choice of tensor combination,

MIPF and orientifold and SM branes there may be several instantons. For clarity we put

all such instantons together in the information in table 5. In column 4 we indicate which

type of instanton branes were found. Five types are distinguished: O1, O2, S2, U1 and

U2, corresponding to O(1), O(2), Sp(2), U(1) and U(2) Chan-Paton symmetry on the

instanton volume. The number indicates the instanton brane multiplicity that gives the

correct number of instanton charged zero modes from the a, b, c, d branes, to lead to right-

handed neutrino Majorana masses. The number of zero modes is in general the product

of the instanton brane multiplicity and ‘intersection number’ with the corresponding 4d

spacefilling brane. As discussed in section 5, for symplectic branes the smallest possible

brane multiplicity is 2. As we discussed there, only O1 instantons may have the required

universal minimal set of two zero modes in the uncharged sector. Still we look for all

O(1), Sp(2) and U(1) instantons which may yield a superpotential if the extra uncharged

fermion zero modes. In this vein we also include a search for O2 and U2 instantons. Note

also that such O2 or U2 instantons imply the existence of other instantons involving the

same boundary state, but with multiplicity 1, which may lead to the R-parity violating

operator LH. We will discuss the generation of R-parity violating operators at the end

17Note that there is a sign change in the contribution of the U(1)d generator to Y in comparison to [3]
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of this section. The third character (+ or −) in the instanton in table 5 is the sign of

IMc′ − IMc. For the instantons giving rise to right-handed neutrino Majorana masses this

sign should be negative, whereas it should be positive for instantons giving rise to the

Weinberg operator (or the LH operator), see table 2.

The 1315 instantons are divided in the following way over the different types: 3 of

types O1+ and O1−, 46 of type U1+, 24 of type U1−, 550 S2+, 627 S2−, 27 of types

U2+ and U2− and four of types O2+ and O2−. Notice that the vast majority (97.5%)

of the instanton solutions are of type S2+ and S2−. This is encouraging given the nice

properties of such instantons, concerning e.g. R-parity conservation. Note also that in

almost all cases both S− and S+ are simultaneously present,18 so both sources of physical

neutrino Majorana masses (from the see-saw mechanism or the Weinberg operator) are

present. The other instanton classes possibly generating right-handed neutrino masses are

O1− and U1−, which are much less abundant. There is just one orientifold with O1−
instantons, for which one can obtain cancellation of RR tadpoles, see below. On the other

hand we have found no orientifold with U1− instantons and cancellation of tadpoles, see

below.

Most models have a hidden sector containing extra boundary states beyond the SM

ones. In the same spirit of imposing chiral conditions first, we should require that IMh =

IMh′ , where h is a hidden sector brane. This is to guarantee that the generated superpoten-

tial does not violate some hidden sector gauge symmetry which would require the presence

of hidden sector fields along with the νR bilinear. The latter condition is not imposed

on the previously known hidden sector (i.e. the one in [6, 7]), but instead a new search

for tadpole solutions was performed, for each M , restricting the candidate hidden sector

branes to those satisfying IMh = IMh′ (as discussed in section 5). This is because in general

the known hidden sector in [6, 7] is just a sample out of a huge number of possibilities.

In column 5 we indicate for which instantons it was possible to satisfy the tadpole

conditions with this additional constraint. With regard to observable-hidden matter we

use the same condition as in [6], namely that it is allowed only if it is vector-like. Such a

solution could be found for 879 of the 1315 instantons, with ten cases inconclusive (i.e it

was computationally too difficult to decide if a solution does or does not exist). The latter

are indicated with a question mark in column 5 (for most of the undecidable cases there is

a tadpole solution for a different instanton with the same characteristics; for that reason

just one question mark appears).

Independently of the RR tadpole condition (since there may be alternative sources

for its cancellation, or hidden sectors which fall beyond the reach of RCFT), we can also

consider the further constraint that the number of charged fermion zero modes is exactly

right, not just in the chiral sense. This means IMa = IMa′ = IMb = IMb′ = 0, IMc =

2, IMc′ = 0 and IMd = −2, IMd′ = 0 or vice-versa. Furthermore we require that there

are no adjoint or rank-2 tensor zero-modes (note that the latter could be chiral if the

18In some models contributing many instantons there is an exact symmetry between S− and S+. This

explains the approximate symmetry in the full set. In some cases this symmetry can be understood in terms

of flipping the degeneracy labels of boundary states. We regard it as accidental, since it is not found in all

models.
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Tensor MIPF Orientifold Instanton Solution

(1,16,16,16) 12 0 S2+, S2− Yes

(2,4,12,82) 19 0 S2−! ?

(2,4,12,82) 19 0 U2+!, U2−! No

(2,4,12,82) 19 0 U1+, U1− No

(2,4,14,46) 10 0

(2,4,14,46) 16 0

(2,4,16,34) 15 0

(2,4,16,34) 15 1

(2,4,16,34) 16 0 S2+, S2− Yes

(2,4,16,34) 16 1

(2,4,16,34) 18 0 S2− Yes

(2,4,16,34) 18 0 U1+, U1−, U2+, U2− No

(2,4,16,34) 49 0 U2+, S2−!, U1+ Yes

(2,4,16,34) 49 0 U1− No

(2,4,18,28) 17 0

(2,4,22,22) 13 3 S2+!, S2−! Yes!

(2,4,22,22) 13 2 S2+!, S2−! Yes

(2,4,22,22) 13 1 S2+, S2− No

(2,4,22,22) 13 0 S2+, S2− Yes

(2,4,22,22) 31 1 U1+, U1− No

(2,4,22,22) 20 0

(2,4,22,22) 46 0

(2,4,22,22) 49 1 O2+, O2−, O1+, O1− Yes

(2,6,14,14) 1 1 U1+ No

(2,6,14,14) 22 2

(2,6,14,14) 60 2

(2,6,14,14) 64 0

(2,6,14,14) 65 0

(2,6,10,22) 22 2

(2,6,8,38) 16 0

(2,8,8,18) 14 2 S2+!, S2−! Yes

(2,8,8,18) 14 0 S2+!, S2−! No

(2,10,10,10) 52 0 U1+, U1− No

(4,6,6,10) 41 0

(4,4,6,22) 43 0

(6,6,6,6) 18 0

Table 5: Summary of instanton branes.

instanton brane is complex, and indeed they are in some of the 1315 cases). This reduces

the 1315 instantons to 263. In column 4 we indicate those cases with an exclamation

mark. It is noteworthy that the success rate for solving the tadpole conditions is highest

for these instantons: 254 of the 263 allow a solution (with 3 undecided). If an exclamation

mark appears in column 4, this only indicates that some of the instantons are free of the

aforementioned zero modes, not that all of them are. But in all cases, if there are tadpole

solutions, they exist in particular for the configurations with an exclamation mark. Finally

we may impose the condition that IMh and IMh′ are separately zero. This is indicated

with and exclamation mark in column 5. This turns out to be very restrictive. The only
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cases where this happens have no hidden sector at all.

It is worth remarking that the only instantons having exactly the correct set of charged

zero modes and cancelling tadpoles are of S2± type. Also those instantons are the only

cases marked with an exclamation mark in column 4 and 5. These examples, which will

be discussed below in some detail, also have just the minimal set of fermion zero modes,

except for the universal sector (which for Sp(2) instantons contains two extra triplets).

The main conclusion about this scan is that we did not find any instantons with

exactly the zero mode fermions to generate the neutrino mass superpotential. However

we have found a number of examples which come very close to that, with exactly the

required charged zero modes and a very reduced set of extra uncharged zero modes from

the universal sector. These extra zero modes are non-chiral and hence one expects that

e.g. RR/NS fluxes or other effects may easily lift them, as we discussed in section 2.

Concerning O(1) instantons, which have just the two required fermion zero modes in the

universal sector, we have found one example, with the appropriate net structure of charged

zero modes. However, it has plenty of other extra zero modes. We discuss examples of

O(1) and Sp(2) instantons in the following subsections.

6.2 An O1 example

Let us first discuss the case of O(1) instantons. In principle they would be the more

attractive since they have no undesirable universal zero modes at all. Unfortunately this

type of instanton is rare within the set we scanned, and we found just one example with a

solution to the tadpole equations without any unwanted chiral zero-modes. The instanton

however has a very large number of uncharged and charged vector-like zero modes.

The standard model brane configuration occurs for tensor product (2, 4, 22, 22), MIPF

49, orientifold 1, boundaries (a,b,c,d) = (487, 1365, 576, 486). As usual we only provide

this information in order to locate this model in the database. Further details are available

on request.

The bi-fundamental fermion spectrum of this model in the (a,b,c,d) sector is fairly

close to the MSSM: there is an extra up-quark mirror pair, two mirror pairs of lepto-quarks

with down quark charges and one with up-quark charges, plus two extra right-handed

neutrinos (i.e. a total of five right-handed neutrinos). There are three MSSM Higgs pairs.

The tensor spectrum is far less appealing, in particular for brane c: this has 25 adjoints

and 7 vector-like pairs of anti-symmetric tensors.

As we said, there is just one instanton brane of type O1−. It has exactly the right

number of zero-modes with brane d, but five superfluous pairs of vector-like zero-modes

with brane c, plus one vector-like pair with brane a. In addition there are four symmetric

tensor zero-modes on the instanton brane (which of course are vector-like, since it is a real

brane): the parameter p+ in table 3 is equal to 2.

The tadpole solution that is (chirally speaking) compatible with this instanton has a

large hidden sector: O(1)×O(2)4×O(3)×U(1)2×Sp(2)2×U(3) (there are other possibilities,

but no simple ones). This hidden sector introduces more undesirable features: vector-

like observable/hidden matter, vector-like instanton/hidden sector modes, plus chiral and

non-chiral matter within the hidden sector. Finally the coupling ratios are as follows:
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α3/α2 = .54, sin2θw = .094, and the instanton coupling is 3.4 times weaker than the QCD

coupling (α3/αInstanton = 3.4).

Despite these unappealing features this model does demonstrate the existence of this

kind of solution.

6.3 The S2 models

As we have mentioned, these are the examples which come closer to the minimal set of

fermion zero modes. As we see in table 5, all such instantons satisfying the criteria on the

zero mode structure (except for the extra universal zero modes) appear for models based

on the same CFT orientifold. It is the one obtained from the (2, 4, 22, 22) Gepner model

with MIPF 13 and orientifold 3 in the table. The model is obtained as follows.

6.3.1 The closed string sector

We start with the tensor product (2,4,22,22). This yields a CFT with 12060 primary

fields, 48 of which are simple currents, forming a discrete group G = Z12 × Z2 × Z2. After

taking into account the permutation symmetry of the last two factors, we find that this

tensor product has 54 symmetric MIPFs, and we choose one of them to build the model of

interest. For convenience we specify all quantities in terms of a standard minimal model

notation, but also in terms of the labelling of the computer program “kac” that generates

the spectrum. This particular MIPF is nr. 13. To build it we choose a subgroup of G,

which is isomorphic to H = Z12 × Z2. The generator of the Z12 factor is primary field

nr. 1, (0, 0, 0, {24,−24, 0}, {24, 20, 0}), and the Z2 factor is generated by primary field nr.

24, (0, 0, 0, 0, {24, 20, 2}). The representations are specified on a basis (NSR, k = 2, k =

4, k = 22, k = 22), i.e. the boundary conditions of the NSR-fermions and the four minimal

models in the tensor product. Here 0 indicates the CFT vacuum, and for all other states

we use the familiar (l, q, s) notation for the N = 2 minimal models. The first generator has

conformal weight h = 11
12 and has ground state dimension 1. The second has weight h = 11

2

and has ground state dimension 2: the ground state contains both (0, 0, 0, 0, {24, 20, 2})
and (0, 0, 0, {24, 20, 2}, 0). The matrix X defining the MIPF according to the prescription

given in [53 – 55] is

( 1
12 0

0 1
2

)

(6.3)

This simple current modification is applied to the charge conjugation invariant of the tensor

product. This defines a MIPF that corresponds to an automorphism of the fusion rules,

and that pairs all the primaries in the CFT off-diagonally. The number of Ishibashi states,

and hence the number of boundary states is 1080. The MIPF is invariant under exchange

of the two k = 22 factors: this maps current 24 to itself, and current 1 to current 11, which

is also in H. Hence this symmetry of the tensor product maps H into itself, and it also

preserves the matrix X.

To define an orientifold, we must specify a “Klein bottle current” plus two signs defined

on the basis of the simple current group. For the current K we use the generator of
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the second Z2 in G, primary field nr. 12. This is the representation (0, 0, {4,−4, 0},
{(24, 16, 2)}, {(24,−12, 2)}) which is degenerate with nine other states, all of dimension 1

and conformal weight 7. The crosscap signs are chosen, on the aforementioned basis of H
as (+,−). This results in a crosscap coefficient of 0.0464731, and it is orientifold nr. 3 of

a total of 8. The orientifold is also invariant under permutation of the identical factors.

The closed string spectrum contains 14 vector multiplets and 60 chiral multiplets.

6.3.2 The standard model branes

To build a standard model configuration we have to specify the boundary state labels. It

turns out that we have four choices for label a and b, one for c and two for d. This leads to

a total of 32 possibilities. Among these 32 there are 22 have distinct spectra (distinguished

by the number of vector-like states), but for all 32 choices one obtains the same set of

dilaton couplings. It seems plausible that these choices simply correspond to putting the

a, b and d branes in slightly different positions, so that we move the configuration in

brane moduli space. The choices are as follows (these are boundary labels assigned by the

computer program, and can be decomposed in terms of minimal model representations;

this will be explained in table 6 below)

a : 10, 22, 130, 142

b : 210, 282, 290, 291

c : 629

d : 712, 797

There are additional possibilities, but they do not give rise to additional distinct spectra.

The second column gives the boundary labels in terms of a primary field label and a

degeneracy label (boundaries not indicated by square brackets are not degenerate). The

labels appearing in columns 1 and 2 are assigned by the computer program, and are listed

here only for the purpose of reproducing the results using that program. In column 2,

the boundary labels are expressed in terms of primary field labels, as in formula (A.4).

If a single number appears, this is a representative of an H-orbit corresponding to the

boundary. If square brackets are used, this means that the H-orbit has fixed points, and

that it corresponds to more than one boundary label. The second entry in the square

brackets is the degeneracy label, and refers to a character of the “Central Stabilizer”

defined in [43]; the details of the definition and the labelling will not be important here.

In this case the first entry within the square brackets refers to an orbit representative.

These orbit representatives can also be expressed in a standard form for minimal model

tensor products. This is done in column 3. This is basically the same expansion shown

in (A.4), except that the degeneracy label ΨI turns out to be trivial in all cases, both for

the standard model and for the instanton branes shown below (although the theory does

contain primaries with non-trivial Ψ’s). In columns 4 and 5 we specify the weight and

ground state dimension of the corresponding highest weight representation. These data

are not directly relevant for the boundary state, but helps in identifying it.
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Label Orbit/Deg. Reps Weight Dimension

10 240 (0, 0, 0, 0, {10, 0, 0}) 5/4 1

130 2760 (0, 0, 0, {10, 0, 0}, 0) 5/4 1

22 [528,0] (0, 0, 0, {1,−1, 0}, {11, 1, 0}) 3/2 1

(0, 0, 0, {1, 1, 0}, {11,−1, 0}) 3/2 1

142 [3048,0] (0, 0, 0, {11,−1, 0}, {1, 1, 0}) 3/2 1

(0, 0, 0, {11, 1, 0}, {1,−1, 0}) 3/2 1

210 4248 (0, 0, {3, 3, 0}, {3,−3, 0}, {9,−9, 0}) 1/2 1

282 5760 (0, 0, {3, 3, 0}{9,−9, 0}{3,−3, 0}) 1/2 1

290 [5952,0] (0, 0, {1, 1, 0}{9, 7, 0}{11,−11, 0}) 5/6 1

291 [5952,24] (0, 0, {1, 1, 0}{9, 7, 0}{11,−11, 0}) 5/6 1

629 [9348,30] (0, (1,−1, 0), 0, {9, 9, 0}{5,−3, 0} 7/12 1

712 [9852,0] (0, {1, 1, 0}{3,−3, 0}{1, 1, 0}{5, 5, 0}) 1/2 2

(0, {1, 1, 0}{1,−1, 0}{1, 1, 0}{5,−3, 0}) 1/2 2

797 [10356,30] (0, {1, 1, 0}{3,−3, 0}{5, 5, 0}{1, 1, 0}) 1/2 2

(0, {1, 1, 0}{1,−1, 0}{5,−3, 0}{1, 1, 0}) 1/2 2

Table 6: Branes appearing in standard model configurations

Since boundaries are specified by orbit representatives, it is not straightforward to

compare them, since the standard choice (the one listed in column 2) is arbitrary. For this

reason we have used another representative in columns 3, 4 and 5, selected by an objective

criterion: we choose the one of minimal dimension and minimal conformal weight (in that

order). If there is more than one representative satisfying these criteria we list all.

6.3.3 The open string spectrum

In table 7 we summarize the spectra of the 32 models. The first four columns list the

a,b,c,d brane labels. The last eight columns specify the total number of multiplets of

types Q (quark doublet), U (up quark singlet), D (down quark singlet), L (lepton doublet),

E (charged lepton singlet), N (neutrino singlet), Y (lepto-quark) and H (Higgs). The

numbers given are for the total number of lefthanded fermions in the representation, plus

their complex conjugates. So for example a 7 in column “Q” means that there are 5

quark doublets in the usual representation (3, 2, 1
6), plus two in the complex conjugate

representation (3∗, 2,−1
6 ).

This yields the required three families of quark doublets, plus two mirror pairs. Hence

the smallest number that can occur in the six columns QUDLEN is three, if there are

no mirrors (note that cubic anomaly cancellation requires three right-handed neutrinos in

this class of models). The lepto-quarks Y are all in the same representation as the down-

quarks (D), or the conjugate thereof, and they occur only as vector-like mirror pairs. They

differ from D-type mirror quarks because they carry lepton number, because they come

from open strings ending on the d-brane instead of the c-brane. In general, there can also

exist U-type lepto-quarks, but in these models they do not occur. Finally the numbers 10,
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U(3) Sp(2) U(1) U(1) Q U D L E N Y H

10 210 629 712 7 3 3 9 5 3 6 10

22 210 629 712 7 3 3 9 5 3 6 10

130 210 629 712 3 3 3 9 5 3 2 10

142 210 629 712 3 3 3 9 5 3 2 10

10 282 629 712 3 3 3 5 5 3 6 26

22 282 629 712 3 3 3 5 5 3 6 26

130 282 629 712 7 3 3 5 5 3 2 26

142 282 629 712 7 3 3 5 5 3 2 26

10 290 629 712 3 3 3 3 5 3 6 18

22 290 629 712 3 3 3 3 5 3 6 18

130 290 629 712 3 3 3 3 5 3 2 18

142 290 629 712 3 3 3 3 5 3 2 18

10 291 629 712 3 3 3 3 5 3 6 18

22 291 629 712 5 3 3 3 5 3 6 18

130 291 629 712 3 3 3 3 5 3 2 18

142 291 629 712 3 3 3 3 5 3 2 18

10 210 629 797 7 3 3 5 5 3 2 10

22 210 629 797 7 3 3 5 5 3 2 10

130 210 629 797 3 3 3 5 5 3 6 10

142 210 629 797 3 3 3 5 5 3 6 10

10 282 629 797 3 3 3 9 5 3 2 26

22 282 629 797 3 3 3 9 5 3 2 26

130 282 629 797 7 3 3 9 5 3 6 26

142 282 629 797 7 3 3 9 5 3 6 26

10 290 629 797 3 3 3 3 5 3 2 18

22 290 629 797 3 3 3 3 5 3 2 18

130 290 629 797 3 3 3 3 5 3 6 18

142 290 629 797 3 3 3 3 5 3 6 18

10 291 629 797 3 3 3 3 5 3 2 18

22 291 629 797 5 3 3 3 5 3 2 18

130 291 629 797 3 3 3 3 5 3 6 18

142 291 629 797 3 3 3 3 5 3 6 18

Table 7: Spectrum all 32 configurations.

18 and 26 in column ’H’ mean that there are 5, 9 or 13 MSSM Higgs pairs H + H̄. It is

worth noticing that right-handed quarks U,D and neutrinos N = νR do not have vectorlike

copies. On the other hand right-handed leptons E always have one and the left-handed

fields Q,L may have up to 3 vector-like copies.

In the following table we list the multiplicities Laa and Laa′ of the branes that occur

in these models, leading to vector-like sets of adjoints and rank-2 tensors. Since brane b is

symplectic, the number of adjoints is equal to the number of symmetric tensors.

It should be emphasized that CFT constructions generically correspond to particular

points in moduli space of CY orientifolds. Due to this, they usually have an ‘enhanced’

massless particle content with extra vector-like matter and closed string gauge interactions.

Thus one would expect that many of the massless vector-like chiral fields present in this

class of models could gain masses while moving to a nearby point in moduli space.
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Boundary Adjoints Anti-symm. Symm.

a(10) 2 2 6

a(22) 2 2 2

a(130) 2 2 6

a(142) 2 2 2

b(210) - 14 10

b(282) - 14 10

b(290) - 14 6

b(291) - 14 6

c(629) 9 - 14

d(712) 3 - 6

d(797) 3 - 6

Table 8: 4d matter from the aa and aa′ sectors.

6.3.4 The instantons

Each of these 32 Standard Model compactifications admits 8 instantons. The instanton

labels are identical for all the 32 models. They are listed in table 9. The first five columns

use the same notation as for the standard model boundary labels. In column 6 we list

the numerical value of the dilaton coupling to the instanton brane. This quantity is pro-

portional to 1
g2 . It is instructive to compare these couplings to the gauge couplings, in

order to gain intuition on the suppression factor for our instantons. In these models the

U(3) dilaton couplings are 0.00622, so that the instantons are more strongly coupled than

QCD.19 On the other hand in this particular model the ratio α3/α2 at the string scale is

3.23 (the value of sin2θw at the string scale is 0.527). All of these couplings are subject

to renormalization group running, and there are plenty of vector-like states to contribute

to this, if one assumes that they acquire masses at a sufficiently low scale. One should

perform a detailed renormalization group analysis to check whether one may obtain consis-

tency with the gauge couplings measured at low-energies. Let us emphasize however that

one expects that moving in moduli space many of these vector-like states will gain masses

and also the values of the different gauge couplings will also generically vary.

Since the value of the Type II dilaton is a free parameter at this level, one can get the

appropriate (intermediate) mass scale for the right-handed neutrino Majorana masses by

choosing an appropriate value for the dilaton. In this context, it is satisfactory to verify

that the instanton couplings are unrelated to the gauge couplings, as expected since they

do not correspond to gauge instantons [3], and are in fact less suppressed than the latter.

Note that the 8 instantons fall into two distinct classes (evidently not related by any

discrete symmetry, since the conformal weight on the boundary orbit is distinct, and the

coupling is different as well). Within each class, the orbits of the four instanton boundaries

19Note that the Type II dilaton in this compactifications is an arbitrary parameter which can always be

chosen so that we consistently work at weak coupling. It is the relative value of gauge couplings which we

are comparing here.
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Lbl. Orbit/Deg. Reps Weight Dim. coupling

414 [8064,0] (0, {1, 1, 0}, 0, {22,−22, 0}, {20, 16, 0}) 5/2 1 0.0016993

417 [8076,30] (0, {1,−1, 0}, 0, {22, 22, 0}, {20,−16, 0}) 5/2 1 0.0016993

456 [8316,0] (0, {1, 1, 0}, 0, {20, 16, 0}, {22,−22, 0}) 5/2 1 0.0016993

459 [8328,30] (0, {1,−1, 0}, 0, {20,−16, 0}, {22, 22, 0}) 5/2 1 0.0016993

418 [8088,0] (0, {1, 1, 0}, 0, {22,−22, 0}, {18, 16, 0}) 5/3 1 0.0027033

420 [8100,0] (0, {1,−1, 0}, 0, {22, 22, 0}, {18,−16, 0}) 5/3 1 0.0027033

502 [8592,0] (0, {1, 1, 0}, 0, {18, 16, 0}, {22,−22, 0}) 5/3 1 0.0027033

505 [8604,30] (0, {1,−1, 0}, 0, {18,−16, 0}, {22, 22, 0}) 5/3 1 0.0027033

Table 9: Instantons for all 32 configurations

appear to be related by the Z2 symmetries of interchange of the last two tensor factors, and

simultaneous inversion of the charge q of the minimal model. However, one has to be very

careful in reading off symmetries directly from the labels in columns 3 of tables (6) and (9)

for a number of reasons. First of all the entries in column 3 are representatives of boundary

orbits, and these representatives themselves are merely representatives of extension orbits.

Secondly the action of any discrete symmetry on the degeneracy labels can be non-trivial.

In appendix B we discuss these symmetries in more detail.

6.4 Other examples

The Sp(2) instanton examples just discussed are the ones which get closer to the required

minimal set of fermion zero modes. Under slightly weaker conditions, we find many more

solutions. In all these cases some additional mechanism beyond exact RCFT will be needed

to lift some undesirable zero modes.

The simplest such case is the following. The tensor product is (2, 8, 8, 18), MIPF

nr. 14, orientifold 2 (the precise spectra may be found using this information in the

database www.nikhef.nl/∼t58/filtersols.php). There are three distinct brane configura-

tions for which almost perfect instantons exist, namely (a,b, c,d) = (64, 562, 389, 67) and

(64, 577, 389, 67) and (65, 560, 189, 66). Each has six instantons, three of type S2+ and

three of type S2−. As in the foregoing example, the six instantons are identical for the

three standard model configurations. In this example, they have three different dilaton

coupling strengths: .00254, .00665 and .0108 (each value occurs once for S2+ and once for

S2−). By comparison, the U(3)-brane dilaton coupling strength is 0.0119338, so that the

instanton brane coupling is quite a bit stronger than the QCD coupling. This is again an

interesting point if we want that νR masses are not too much suppressed. Furthermore

in this example there are three distinct instanton couplings, so that one may expect three

non-zero eigenvalues (with a hierarchy) in the mass matrix. As in the previous examples

there is not gauge coupling unification, one rather has α3/α2 = .4813 and sin2(θw) = .183

at the string scale. Again a full renormalization group analysis should be performed in

order to check consistency with the measured low-energy gauge coupling values.

These models all have a hidden sector consisting of a single Sp(2) factor. They have
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respectively 3, 1 and 3 susy Higgs pairs, and a spectrum of bi-fundamentals that is closer

to that of the standard model than the previously discussed Sp(2) examples: quarks and

leptons do not have vector-like copies (there are only some vector-like leptoquarks), and

even one of the three models have the minimal set of Higgs fields of the MSSM. The rest

of the spectrum is purely vector-like, and contains a number of rank-2 tensors, including

eight or six adjoints of U(3). Furthermore there is vector-like observable-hidden matter.

The only undesirable instanton zero-mode is a single bi-fundamental between the hidden

sector Sp(2) brane and the instanton brane. Still, these SM brane configurations without

the hidden sector, provide interesting and very simple local models of D-brane sectors

admitting instantons generating neutrino masses (with the additional ingredients required

to eliminate the extra universal triplets of fermion zero modes).

6.5 R-parity violation

We now turn to the generation of other possible superpotentials violating B − L. An

instanton violates R-parity if the amount of B − L violation,

IMa − IMa′ − IMd + IMd′ (6.4)

is odd. Examples of instantons with that property were found in the following

tensor product/MIPF/orientifold combinations: [(1, 16, 16, 16), 12, 0], [(2, 4, 16, 34), 49, 0],

[(2, 4, 12, 82), 19, 0] [(2, 4, 22, 22), 49, 0] and [(2, 4, 16, 34), 18, 0]. Note that all cases for which

O2 or U2 instantons were found necessarily have R-parity violating instantons as well: the

corresponding O1 and U1 instantons have IMd or IMd′ equal to ±1, whereas the intersec-

tion with the a is non-chiral. In principle, there are many more ways to obtain R-parity

violating instantons (either due to non-vanishing contributions to IMa − IMa′ or higher

values of IMd − IMd′), and indeed, many such instantons turn out to exist. But the num-

ber of tensor product/MIPF/orientifold combinations where they occur hardly increases:

only in the case [(1, 16, 16, 16), 12, 0] we found R-parity violating instantons, but no U1 or

O1 instantons. This suggests that in the other cases R-parity is a true symmetry of the

model. Unfortunately we have no way of rigorously ruling out any other non-perturbative

effects, but at least the set we can examine respects R-parity. This includes in particular

the models without hidden sector (found for [(2, 4, 22, 22), 13, 3] ) discussed above.

The following table list the total number of instantons with the chiral intersections

listed in table 2. The total number of instantons (boundaries violating the sum rule, as

defined in (6.1)) is 29680, for all standard model configurations combined. The last four

columns indicate how many unitary instantons satisfy the sum rule exactly as listed in

table (6.1), how many satisfy it with IMx ↔ −IMx′ (the column U’), and how many

O-type and S-type instantons there are. Here ‘S’ refers to boundaries with a symplectic

Chan-Paton group if the boundary is used as an instanton brane. All intersection numbers

for type S have been multiplied by 2 before comparing with table 2. For real branes, the

relevant quantities used in the comparison are IMa−IMa′ , IMc−IMc′ and IMd−IMd′ , while

IMb = 0. There are fewer unitary instantons possibly generating Majorana masses then

the numbers mentioned above because the conditions we use here are stricter: we require
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D = 4 Operator U U’ S O

νRνR 1 2 627 3

LH̄LH̄ 0 5 550 3

LH̄ 3 3 0 4

QDL 8 4 0 4

UDD 0 0 0 4

LLE 8 4 0 4

QQQL 0 4 0 3892

UUDE 4 0 0 3880

Table 10: Number of instantons in our search which may induce neutrino masses (first 2 rows),

R-parity violation (next 4 rows) or proton decay operators (last 2 rows).

here that IMx and IMx′ match exactly, not just their difference. Note however that this

still allows additional vector-like zero-modes. If we only wish to consider cases without any

spurious zero-modes, we may limit ourselves to the O-type instantons in the last column.

There are very few to inspect, and all of them turn out to have a few non-universal zero

modes.

The last two cases are B−L preserving dimension five operators, and obviously do not

come from the set of 29680 B −L violating instantons. They were searched for separately,

but the search was limited to the same 391 models we used in the rest of the paper.

Obviously, one could equally well look for such instantons in the full database, since their

existence does not require a massive B − L.

It is interesting to note that in the classes of MSSM-like models discussed earlier in

this section with the closest to minimal zero mode structure, there are no instantons al

all generating either R-parity violating or the B − L dim=5 operators in the table. This

makes them particularly attractive.

Note that all numbers in table 10 refer to the occurrence of instantons in the set of 391

tadpole-free models with massive B-L, but without checking the presence of zero-modes

between the hidden sector and the instanton. It makes little sense to use the hidden sector

in the database for such a check, since this is just one sample from a (usually) large number

of possibilities. A meaningful question would be: can one find a hidden sector that has

no zero-modes with the instanton. We have done such a search for the B − L violating

instantons (see the exclamation marks in the last column of table (5)), but not for the

B − L preserving instantons.

7. Conclusions and outlook

In this paper we have presented a systematic search for MSSM-like Type II Gepner orien-

tifold models allowing for boundary states associated to instantons giving rise to neutrino

Majorana masses. This search is very well motivated since neutrino masses are not easily

accommodated in the semi-realistic compactifications constructed up to now. String in-
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stanton induced Majorana masses provides a novel and promising way to understand the

origin of neutrino masses in the string theory context.

The string instantons under discussion are not gauge instantons. Thus, for exam-

ple, they not only break B + L symmetry (like ’t Hooft instantons do) but also B − L,

allowing for Majorana neutrino mass generation. The obtained mass terms are of order

Ms exp(−V/g2) but this suppression is unrelated to the exponential suppression of e.g.

electroweak instantons and may be mild. In fact we find in our most interesting examples

that the instanton action is typically substantially smaller than that of QCD or electroweak

instantons, and hence these effects are much less suppressed than those coming from gauge

theory instantons.

To perform our instanton search we have analyzed the structure of the zero modes that

these instantons must have in order to induce the required superpotential. This analysis

goes beyond the particular context of Gepner orientifolds and has general validity for Type

II CY orientifolds. We have found that instantons with O(1) CP symmetry have the

required universal sector of just two fermionic zero modes for the superpotential to be

generated. Instantons with Sp(2) and U(1) CP symmetries have extra unwanted universal

fermionic zero modes, which however may be lifted in a variety of ways in more general

setups, as we discuss in the text. In fact we find in our search that around 98 % of the

instantons with the correct structure of charged zero modes have Sp(2) CP symmetry.

Indeed, from a number of viewpoints the Sp(2) instantons are specially interesting. The

instantons we find with the simplest structure of fermionic zero modes are Sp(2) instan-

tons which are also the ones which are present more frequently in the MSSM-like class

of Gepner constructions considered. They have also some interesting features from the

phenomenological point of view. Indeed, due to the non-Abelian structure of the CP sym-

metry, the structure in flavor space of the neutrino Majorana masses factorizes. This makes

that, irrespective of what particular compactification is considered, Sp(2) instantons may

easily lead to a hierarchical structure of neutrino masses. It would be important to further

study the possible phenomenological applications of the present neutrino mass generating

mechanism.

String instanton effects can also give rise to other B- or L-violating operators. Of

particular interest is the dimension 5 Weinberg operator giving direct Majorana masses to

the left-handed neutrinos. We find that in the most interesting cases, different instantons

giving rise to the Weinberg operator and to νR Majorana masses are both simultaneously

present. Which effect is the dominant one in the generation of the physical light neutrino

masses depends on the values of the instanton actions and amplitudes as well as on the

value of the string scale. Instantons may also generate dim< 5 operators violating R-parity.

We find however that instantons inducing such operators are extremely rare, and in fact

are completely absent in the Gepner models with the simplest Sp(2) instantons inducing

neutrino masses.

There are many avenues yet to be explored. It would be important to understand

better the possible sources (moving in moduli space, addition of RR/NS backgrounds etc.)

of uplifting for the extra uncharged fermionic zero modes in the most favoured Sp(2)

instantons. A second important question is that we have concentrated on checking the
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existence of instanton zero modes appropriate to generate neutrino masses; one should

further check that the required couplings among the fermionic zero modes and the relevant

4d superfields (i.e. νR or LH̄) are indeed present in each particular case. This is in principle

possible in models with a known CFT description but could be difficult in practice for the

Gepner models here described.

Instantons can also generate other superpotentials with interesting physical applica-

tions. One important example is the generation of a Higgs bilinear (i.e. a µ-term) in

MSSM-like models [4, 3]. Thus, e.g., one could perform a systematic search for instantons

(boundary states) generating a µ-term in the class of CFT Gepner orientifolds considered

in the present article. Other possible application is the search for instantons inducing su-

perpotential couplings involving only closed string moduli. The latter may be useful for

the moduli-fixing problem, or for non-perturbative corrections to perturbatively allowed

couplings [56].

Finally, it would be important to search for analogous instanton effects inducing neu-

trino masses in other string constructions (heterotic, M-theory etc.). A necessary condition

is that the anomaly free U(1)B−L gauge boson should become massive due to a Stückelberg

term.

The importance of neutrino masses in physics beyond the Standard Model is unques-

tionable. We have shown that string theory instantons provide an elegant and simple

mechanism to implement them in semi-realistic MSSM-like string vacua, and a powerful

constraint in model building. In our opinion, the conditions of the existence of appropriate

instantons to generate neutrino masses should be an important guide in a search for a

string description of the Standard Model.
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research by L.E. Ibáñez and A.M. Uranga has been supported by the European Commission

under RTN European Programs MRTN-CT-2004-503369, MRTN-CT-2004-005105, by the

CICYT (Spain), and the Comunidad de Madrid under project HEPHACOS P-ESP-00346.

A. CFT notation

Here we summarize the labelling conventions for various CFT quantities. Further details

and explanations can be found in [43].

It is important to keep in mind that there are four steps in the construction, each

involving choices of some quantities. The steps are

• A CFT tensor product
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• An extension of the chiral algebra of this tensor product

• The choice of a MIPF

• The choice of an orientifold

The second and third step are easily confused. A MIPF can itself be of extension

type (although it can also be of automorphism or mixed type), meaning that it implies

an extension of the chiral algebra. The crucial difference between step two and three in

that case is that in step 2 all fields that are non-local with respect to the extension are

projected out, and the symmetry of the extension is imposed on all states of the CFT, i.e in

particular on all boundary states. The extension in step three acts as a bulk invariant, but

the boundary states are not required to respect the symmetry implied by the extension.

Primary fields of N = 2 minimal models are labeled in the usual way by three integers

(l, q, s). In addition to these minimal models, one building block of our CFT’s is of course

a set of NSR fermions in four dimensions. They can be represented by the four conjugacy

classes (0), (v), (s), (c) analogous to those of a root lattice of type D.

Primary fields in a tensor product of M factors are therefore labelled as

I = ((x), (l1, q1, s1), . . . , (lM , qM , sM )) (A.1)

where x = 0, v, s or c.

This tensor product is extended by the alignment currents and the spin-1 field corre-

sponding to the space-time supersymmetry generator. This organizes the tensor product

fields into orbits, which can be labelled by one of the elements of the orbit. We always

choose the field of minimal conformal weight (or one of them, in case there are more) as

the orbit representative labelling the orbit. The supersymmetry generator may have fixed

points, leading to orbits appearing more than once as primary fields of the extended theory.

In those cases we need an additional degeneracy label to distinguish them. It is convenient

to choose for this label a character of the discrete group that is causing the degeneracy,

the “untwisted stabilizer”, which depends on I. Denoting this character as ΨI we get then

the following set of labels for the primaries of the extended CFT

i = [I,ΨI ] (A.2)

where I has the form (A.1). If there are no degeneracies we will leave out the square

brackets and the ΨI .

In boundary CFT’s two new labels appear: the labels of Ishibashi-states that propagate

in the transverse channel of the annulus, and the boundary labels. In the simplest, “Cardy”

case both sets of labels are in one-to-one correspondence with the extended CFT labels i.

But if we consider non-trivial MIPFs Zij both sets of labels are different. The Ishibashi

states are in one-to-one correspondence with the fields i with Ziic 6= 0. Degeneracies

can occur here if Ziic 6> 0. This requires the introduction of a degeneracy label. Such

degeneracies may occur if the stabilizer of i (the set of simple currents that fix i) is non-

trivial. It is convenient to use elements J of the stabilizer as degeneracy labels, so that the
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Ishibashi labels get the following form

m = (i, J) , (A.3)

where i is an extended CFT label, as defined above (to be precise, in some cases a non-trivial

degeneracy label is introduced even if Ziic = 1. The details will not matter here).

Boundary states correspond to orbits of the simple current group H that defines a

MIPF. To label such orbits we choose a representative. There is no obvious canonical

representative (one could use one of minimal conformal weight, but the conformal weight

of orbit members of a boundary state does not play any rôle in the formalism, unlike the

conformal weight of a primary). So in this case we just make an arbitrary choice. Once

again there can be degeneracies. In this case they are due to a subgroup of the stabilizer

called the “Central Stabilizer”. It is convenient to label the boundary states by an orbit

representative i and a character ψi of the central stabilizer. If we expand the boundary

state label in all of its components we get

a = [i, ψi] = [[I,ΨI ], ψi] = [((x), (l1, q1, s1), . . . , (lM , qM , sM )),ΨI ], ψi] . (A.4)

Note that i is just a representative of a boundary orbit, and that I is just a representative

of an orbit of the extension of the CFT.

B. Instanton boundary symmetries

In the hidden-sector free example discussed in some detail in section 6 we have encountered

Sp(2)-type instantons, the most common kind in our scan. This particular model is the

one that comes closest to the required zero mode count, although the only superfluous zero

modes are rather awkward. Let us assume that the effect of these superfluous universal

zero-modes instantons can be avoided. Then there is still another problem we have to

face, namely that the two zero modes αi and γi are related by an Sp(2) transformation

of the label i. Then we we need at least three independent instantons (with unrelated

couplings) to generate three non-zero neutrino masses, as discussed in section 3.3. Since

the technology to compute the couplings is not yet available, we cannot be completely sure

that the relevant couplings are distinct, or indeed that they are non-vanishing, but at least

we can inspect if there are obvious symmetries relating them.

The unextended tensor product (2, 4, 22, 22) has 64 discrete symmetries: five separate

charge conjugations of the factors (including the NSR space-time factor) and the inter-

change of the two identical k = 22 minimal models. To get space-time supersymmetry

this tensor product is extended with the product of the simple current Ramond ground

states of each factor. These Ramond ground states are not invariant under charge conju-

gation. Therefore this extension breaks the discrete symmetries to Z2 × Z2, the combined

charge conjugation of all five factors and the permutation of the two identical factors. The

combined charge conjugation also acts non-trivially on the Ramond ground states in each

factor, but the result is the charge conjugate of the space-time supersymmetry generator,

which is in the chiral algebra. The combined conjugation is in fact the charge conjugation
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symmetry of the extended CFT. It turns out that only a Z2 subgroup of Z2 × Z2 acts

non-trivially on the simple currents of the extended CFT: the permutation of the k = 22

factors acts in the same way as charge conjugation. The action of these symmetries on the

complete set of primary fields is more complicated. It is easy to see that the permutation

acts differently than charge conjugation. In general the primary fields of the extended CFT

are labelled as i = [((x), (i1), . . . , (i4)),Ψ] (see appendix A). The action of the permutation

is to interchange i3 and i4, but in cases with a non-trivial degeneracy it is not a priori clear

which of the degenerate states is the image of the map. This can be resolved by examining

the fusion rules, which should be invariant under the permutation:

Nijk = Nπ(i)π(j)π(k) , (B.1)

where N is a fusion coefficient and π a permutation or other automorphism. In general

there may be more than one way to resolve these ambiguities, resulting in additional

automorphism of the CFT. The standard example of this situation is the extension of

the affine algebra A1 level 4 by the simple current. The resulting CFT has an outer

automorphism, non-trivial charge conjugation, that has no counterpart in A1 level 4.

As mentioned above, the Z2 permutation symmetry is respected by the MIPF and the

orientifold, and since charge conjugation acts in the same way on the simple currents as

the permutation, charge conjugation is respected as well.

In this way we end up with (at least) a surviving Z2 × Z2 discrete symmetry acting

on the boundary labels, or a larger discrete symmetry if that symmetry is extended by

the action on the degeneracy labels of the extension. The foregoing story repeats itself for

the action on the boundary labels. The boundary labels are given in terms of the CFT

labels plus a second degeneracy label, the one indicated by the second entry in the square

brackets in column 2 of tables (6) and (9). Once again one has to determine not only how

a symmetry acts on the first entry (this is just the action of the symmetry in the extended

CFT, respecting its fusion rules), but also how it acts on the degeneracy labels. In this

case the precise action can be determined from the invariance of the annulus coefficients

Ai
ab = A

π(i)
π̂(a)π̂(b) , (B.2)

where π is the action on the primaries of the extended CFT (as determined above) and π̂

is the action on the boundary labels induced by π.

Since the orientifold choice is non-trivial, boundary charge conjugation does not co-

incide with CFT charge conjugation. Indeed, the eight instanton boundary states are

invariant under boundary charge conjugation (which they must be in order to produce a

“real” Sp(2)-type instanton). However, just as permutations, CFT charge conjugation may

induce a non-trivial discrete symmetry on the boundary states.

In addition to these “outer automorphisms” there is the notion of boundary simple

currents, introduced in the appendix of [6]. These may be thought of as remnants of the

original simple currents, and imply relations between annulus amplitudes of the form

Ai
ab′ = Ai

Ja(Jb)′ (B.3)
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All of the aforementioned symmetries might relate instanton couplings, and hence

threaten their numerical independence. However, in order to do that they have to be

symmetries of the full standard model/instanton configuration, not just relate some of the

eight instantons to each other. It is easy to see that the permutation of the k = 22 factors

changes the standard model brane configuration. Consider brane c: it turns out that under

permutation boundary state 629 it is mapped to boundary state 544 or 545 (depending

on the action on the degeneracy label), which in any case is distinct. Hence even if the

instanton boundaries 414 and 456 resp. 418 and 502 are mapped to each other by boundary

permutation, at the same time the standard model configuration is mapped to a distinct

one.

This means that we may expect at least four distinct couplings, which should be

sufficient. It is of course possible to work out the discrete symmetries exactly, but in view

of this argument this would not yield any additional insight.

We do know the exact boundary orbits. The orbit of instanton label 414 is

(414, 415, 416, 417), so that instantons 414 and 417 are related. But the orbit of brane

c under the same action is (629, 628, 626, 627). Hence the action that relates 414 and 417

maps 629 to 627. In fact all four standard model boundaries a,b,c,d are mapped to dif-

ferent ones. This implies that instantons 414 and 417 may produce different couplings as

well, so that all eight instantons may contribute in a different way.

These distinctions concern the disk correlators d
(r)
a in (3.12). The factors exp(−Re Ur)

will be related by discrete symmetries, and it seems reasonable to expect them to be

identical for instantons 414, 417, 456 and 459, which is indeed correct. However there is no

reason to expect the other four instantons to have the same suppression factor, and indeed

they do not.

Note that these symmetries imply the existence of a much larger set of standard model

configurations than the 32 discussed here. However, as mentioned before, the 32 models

considered here display all possible distinct spectra.
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[5] L.E. Ibáñez, F. Marchesano and R. Rabadán, Getting just the standard model at intersecting

branes, JHEP 11 (2001) 002 [hep-th/0105155].

[6] T.P.T. Dijkstra, L.R. Huiszoon and A.N. Schellekens, Supersymmetric standard model spectra

from RCFT orientifolds, Nucl. Phys. B 710 (2005) 3 [hep-th/0411129].

[7] P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds,

hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83

[hep-th/0605226].
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[23] R. Blumenhagen, M. Cvetič and T. Weigand, Spacetime instanton corrections in 4D string

vacua - the seesaw mechanism for D-brane models, Nucl. Phys. B 771 (2007) 113

[hep-th/0609191].
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[34] N. Akerblom, R. Blumenhagen, D. Lüst, E. Plauschinn and M. Schmidt-Sommerfeld,

Non-perturbative SQCD superpotentials from string instantons, JHEP 04 (2007) 076

[hep-th/0612132].

[35] C. Angelantonj, M. Bianchi, G. Pradisi, A. Sagnotti and Y.S. Stanev, Comments on Gepner

models and type-I vacua in string theory, Phys. Lett. B 387 (1996) 743 [hep-th/9607229].

[36] R. Blumenhagen and A. Wisskirchen, Spectra of 4D, N = 1 type-I string vacua on

non-toroidal CY threefolds, Phys. Lett. B 438 (1998) 52 [hep-th/9806131].

[37] G. Aldazabal, E.C. Andres, M. Leston and C. Núñez, Type IIB orientifolds on Gepner points,
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