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1. Introduction

The O’Raifeartaigh model [1] provides the simplest mechanism of spontaneous breaking

of global supersymmetry. Quantum field theory corrections in this model lead to a stable

minimum with positive energy at the origin of the moduli space. This model was studied

and developed in various directions, see e.g. [2 – 9].

On the other hand, the KKLT scenario [10] describes stabilization of closed string

theory moduli associated with no-scale supergravity. In this way the effective d=4 N=1

supergravity can be related to the superstring theory in the critical dimension d=10 where

the stabilized modulus represents a volume of the compactified space.

One of the features of KKLT construction is the uplifting of the AdS minimum to a dS

minimum, which was originally achieved by the introduction of the D3 brane. It was also

developed as a D-term uplifting [11], F-term uplifting [7, 12 – 17], Kähler/α′ uplifting [19],

etc.

Here we propose to perform the uplifting by combining the two basic models,

O’Raifeartaigh and KKLT, into one model, which we will call O’KKLT. We believe that

this simple model can serve as a prototype of the F-term uplifting with dynamical super-

symmetry breaking in the KKLT scenario. This is in agreement with the observation in [5]

that models with dynamical supersymmetry breaking near the origin of the moduli space

reduce to the O’Raifeartaigh model, which has a stable minimum at the origin. Models of

dynamical supersymmetry breaking include simple models like [20] as well as more realis-

tic particle physics models with dynamical soft terms [21]. The fields of these models in

principle may originate from the open string sector in models with intersecting branes in

string theory.

Related models of uplifting were already studied in [16, 17] where the ISS model [6]

and other models with dynamical supersymmetry breaking where combined with the su-

pergravity KKLT construction. For early attempts to do so see [18]. These models, as well

as the one we propose, are realizing the general scenario for the F-term uplifting suggested

in [13]. It was argued there that it is possible to construct a wide class of F-term uplifting
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models by adding to any sector A, strongly influenced by gravity, another sector B, which

separately breaks supersymmetry in the rigid limit. Assuming that these two sectors do

not directly mix and all dimensionful quantities in B are small comparative to the Planck

scale, it was shown in [13] that the net effect of the sector B is to provide an uplifting

potential for the sector A. With K = KA +KB and W = WA +WB, the uplifting potential

has the form Vup ≈ eKVB , where VB is the potential of the sector B. In O’KKLT model,

which we are going to develop here, the relevant uplifting term will be ∼ eKKKLT VO′ , where

VO′ is the O’Raifeartaigh potential.

We will address here the issue of the gravitino mass in the O’KKLT model. In the

simplest KKLT-based models, the gravitino mass is directly related to the height of the

barrier stabilizing the volume modulus in string theory. This relation leads to a strong

upper bound on the Hubble constant during inflation, H . m3/2, which creates some

tension between inflationary cosmology and the possibility of the low-scale SUSY breaking,

to be studied on the LHC. A possible solution of this problem was proposed in [22]; here

we will describe a generalization of this proposal for the case of the O’Raifeartaigh uplifted

KKLT scenario.

2. The basic O’KKLT model

We combine the two models as follows

W = WO′ + WKKLT , K = KO′ + KKKLT . (2.1)

Here the classic O’Raifeartaigh model mφ1φ2 +λSφ2
1 −µ2S will be used in the form where

the relatively heavy “O’Raifeartons” φ1, φ2 are integrated out. We will assume that all

masses are much smaller than the Planck mass, i.e. m,µ ¿ 1 in units MP l = 1. We will

also assume that m2 À λµ2, to make sure that the fields φ1, φ2 vanish at the minimum of

the potential. This condition also leads to a simplification of the expression for quantum

corrections. In this case, quantum corrections to the potential of the Coleman-Weinberg

type can be interpreted as quantum corrections to the Kähler potential of S field. Therefore

we take

WO′ = −µ2S, KO′ = SS̄ − (SS̄)2

Λ2
(2.2)

This form of the quantum corrected Kähler potential comes from the expansion of the

one-loop expression K1
O′ = SS̄

(

1 − cλ2

16π2 log
(

1 + λ2SS̄
m2

))

for λ2SS̄
m2 ¿ 1. Here Λ2 = 16π2m2

cλ4 ,

c = O(1), and we assume that λ2

16π2 ¿ 1 and Λ2 ¿ 1. Our “macroscopic” model presented

in eqs. (2.2) is valid for small S, when SS̄ ¿ m2

λ2 . The combination of all of the required

conditions can be written as follows:

m, µ,
λ

4π
¿ 1, m ¿ λ2

4π
, λµ2 ¿ m2, SS̄ ¿ m2

λ2
. (2.3)

The supergravity potential VO′ based on (2.2) is given by

VO′(S, S̄) = eKO′ (|DSWO′ |2 − 3|WO′ |2) , (2.4)
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which leads to

VO′(S, S̄) = µ4e
SS̄(Λ2

−SS̄)

Λ2

[

(

Λ2(1 + (SS̄) − 2(SS̄)2
)2

Λ4 − 4Λ2SS̄
− 3SS̄

]

. (2.5)

The potential has a de Sitter minimum at S = 0, at the origin of the moduli space. The

value of the supergravity potential at the minimum is positive and the scale is defined by

the parameter of the linear term in the superpotential. Near the minimum we find

VO′ ≈ µ4 +
4µ4

Λ2
SS̄ + . . . (2.6)

Thus, this model in the region of small S looks like a good candidate for the uplifting term

in the KKLT model.

Now we will combine it with the original KKLT model [10] with

W = W0 + Ae−aρ , K = −3 ln[(ρ + ρ) . (2.7)

The resulting O’KKLT model is given by

W = W0 + Ae−aρ − µ2S, K = −3 ln(ρ + ρ) + SS̄ − (SS̄)2

Λ2
. (2.8)

The complete potential V (σ, α, x, y) as a function of 4 scalars,

ρ = σ + iα , S = x + iy . (2.9)

is easily computable in Mathematica, using e.g. the code in [23], which was designed for the

calculation of the N=1 supergravity potential for any number of chiral fields and arbitrary

Kähler potential and superpotential. However, we will be interested only in the region of

small SS̄, which is responsible for the uplifting. In this case the total potential can be

represented in a rather compact form

VO′KKLT = VKKLT (ρ, ρ̄) +
VO′(S, S̄)

(ρ + ρ̄)3
− i(S − S̄)V3 + (S + S̄)V4 + SS̄V5 . (2.10)

Here V3(ρ, ρ̄, S, S̄), V4(ρ, ρ̄, S, S̄) and V5(ρ, ρ̄, S, S̄) depend on S, S̄ polynomially.

Note that the KKLT potential VKKLT (ρ, ρ̄), taken separately, has an AdS minimum

at the vanishing axion, α = 0, and at some (large) value of σ. Here we consider the case

when aAW0 is negative and take into account that all dependence on axion in VKKLT (ρ, ρ̄)

is in the term
aAW0e

−aσ cos(aα)

2σ2
(2.11)

The potential of the quantum corrected O’Raifeartaigh model VO′(S, S̄), taken separately,

has a minimum at S = x + iy = 0.

One could expect that the position of the minimum of the potential of the combined

model may not differ much from the position of the minimum of the two models taken

independently. We should check whether this is indeed the case, to make sure that after the
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unification the values of all fields remain within the domain of validity of our approximation,

which requires that SS̄ ¿ m2

λ2 . Our numerical examples support this expectation and show

that the values of the axion fields α and y in the minimum of the combined potential remain

equal to zero, whereas the values of σ and x are only slightly shifted, and the condition

SS̄ ¿ m2

λ2 is indeed valid for certain values of the parameters of our model.

To understand this result analytically, we note that the 3d term in (2.10) depends

on the O’Raifeartaigh axion y linearly and on the KKLT axion α via sin(aα). It has the

following structure:

−i(S − S̄)V3(ρ, ρ̄, S, S̄) = y sin(aα)
Aµ2e−aσ(1 + aσ)

4σ3
+ O(x2, y2) . (2.12)

The 4th term in (2.10) consists of 2 terms. The first one does not depend on α, whereas the

second one depends on cos(aα), but it is significantly smaller than the KKLT α-dependent

term shown in eq. (2.11). There are no other terms linear in y in the potential. All other

terms are either quadratic or higher power in y2. Therefore the linearized equation for y

and exact equation for α extremizing the potential (at fixed values of σ and x) take the

following form

∂V

∂α
= c1 sin(aα) + c2y cos(aα) ,

∂V

∂y
= c3 sin(aα) + c4y . (2.13)

This shows that the point α = y = 0 remains the extremum of the potential after the

uplifting. One can also show that it remains a minimum.

The potential at α = y = 0 is significantly simplified. One can now proceed with

evaluation of the change of its minimum with respect to σ and x. Since the KKLT potential

is uplifted at least via the second term in (2.10) we know that σ changes a bit, as in the

original KKLT model. This shift is small, exactly as in the original KKLT model where

the uplifting occurs due to the D3 brane.

The situation with the field x, the real part of S, is the following. One can expand

the potential in powers of x. The coefficients in such expansion are complicated functions

of σ. However, in the first approximation, we can calculate the values of the linear and

quadratic terms in x at σ = σ0 where σ0 is the value of σ at the AdS minimum before the

uplifting. At this point we find that

V ≈ c0(σ0) + c1(σ0)x − c2(σ0)

2
x2 + . . . (2.14)

According to (2.6), (2.10), the O’Raifeartaigh model uplifts the AdS minimum with the

depth |VAdS | ≈ 3m2
3/2 [22] by µ4

(2σ0)3
, so that µ4

(2σ0)3
+ VAdS = c0(σ0) ∼ 10−120 ≈ 0. This

implies that

m2
3/2 ≈ µ4

3(2σ0)3
. (2.15)

The value of the field x in the uplifted minimum is determined by the condition V ′ = 0,

which gives

x0 ≈ c1(σ0)

c2(σ0)
=

√
3Λ2

6 − Λ2
≈

√
3

6
Λ2 . (2.16)
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In the derivation of this formula we used the total expression for the combined potential

from Mathematica and the values of the σ0 from [10] in the form aAe−aσ0 = m3/2

√
18σ0.

This result has an interesting and instructive interpretation in terms of a simpler model

recently studied by Kitano [8]. He studied the supergravity model with

WK = −µ2S + C, KK = SS̄ − (SS̄)2

Λ2
. (2.17)

The difference with what we call quantum corrected O’Raifeartaigh model is the presence of

the constant term C in the superpotential. Without the term (SS̄)2

Λ2 in the Kähler potential

this would be the supergravity Polonyi model [24], which is known to have a Minkowski

vacuum at the fine-tuned Planckian value of the field S. Thus, the model (2.17) is a hybrid

of the Polonyi model and the quantum corrected O’Raifeartaigh model. It was shown by

Kitano that one can fine-tune the constant C to get the Minkowski vacuum, as in the

Polonyi model. However, in this hybrid case the minimum of the potential appears at not

at S = O(1), as in the Polonyi model, but at S ≈
√

3
6 Λ2 ¿ 1 [8]. The total potential based

on (2.17) at small x and small Λ2 can be represented, using [23], in a compact form:

VK ≈ µ4

[

(1 − 3C2) − 4Cx + 2

(

2

Λ2
− C2

)

x2 + . . . (2.18)

The field x is stabilized at x0 ≈ CΛ2

2−C2Λ2 . If C2 is tuned to Minkowski vacuum, C2 = 1/3,

one finds for small Λ2 that x0 ≈
√

3
6−Λ2 Λ2 ≈

√
3

6 Λ2, precisely as in the O’KKLT model.

This result is pretty general; in particular, it is valid for the generalized KKLT models

to be discussed in the next section. The meaning of this result is that the KKLT model

supplies the superpotential of the quantum corrected O’Raifeartaigh model by the constant

term (at fixed σ = σ0). In terms of eqs. (2.17), WKKLT (σ0) = C serves for adjusting the

height of the minimum and making it the (nearly) Minkowski one. In other words, fine

tuning of WKKLT (σ0) = C in the O’KKLT model allows us to achieve the cancellation

between the negative energy density in the AdS minimum of the KKLT and the positive

energy density in the dS minimum of the quantum corrected O’Raifeartaigh model.

Our result x0 ≈
√

3
6 Λ2 implies that the consistency condition SS̄ = x2 ¿ m2

λ2 is satisfied

for

m . 10−2λ3 . (2.19)

The only parameters which are required for the calculations of the potential on the

O’Raifeartaigh side are µ and Λ, whereas m = Λ
√

c
4π λ2, and λ is a free parameter, which

can be varied in order to satisfy the consistency conditions. One can easily find many sets

of parameters which satisfy all required conditions. In particular, one may find the theory

with the gravitino mass in the TeV range if one takes µ ∼ 10−6, Λ ∼ 10−3, m = 10−6,

λ ∼ 10−1, see figure 1.

Thus the O’KKLT model can provide a consistent model of the F-term uplifting with

the gravitino mass in the TeV range. On the other hand, if one attempts to describe

superheavy gravitino, then it becomes difficult to satisfy all the consistency conditions,

which require that some of the mass scales must be sufficiently small. In order to describe

superheavy gravitino in such a model one may need to go beyond the simple approximations

used to calculate the scalar potential and the Kähler potential in our scenario.
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Figure 1: The slice of the O’KKLT potential at vanishing axions y and α, multiplied by 1031,

for the values of the parameters A = 1, a = 0.25, W0 = −10−12, µ2 = 1.66 × 10−12, L = 10−3.

The potential has a dS minimum at σ ≈ 123, x ∼ 3 · 10−7. The gravitino mass in this example is

m3/2 ∼ 600GeV.

3. Light gravitino, vacuum stability and the KL model

For many years, we wanted to have models with m3/2 in the TeV range, and the O’KKLT

model is well suited for this purpose. This fact is quite interesting, especially if one com-

pares our model with the models with the D-term uplifting, where it is very difficult to

obtain a light gravitino [11]. In the O’KKLT model one can obtain a light gravitino, but

it may be difficult to obtain a very heavy one.

This property of our model may be desirable from the point of view of the phe-

nomenological supergravity, but in the KKLT context it may lead to some cosmological

problems [22]. Indeed, the depth of the AdS vacuum in the KKLT scenario is given by

VAdS = −3eK |W |2 = −3m2
3/2. Here VAdS is the depth of the AdS minimum prior to the

uplifting, and m3/2 is the gravitino mass after the uplifting. Uplifting creates the barrier

separating the KKLT minimum from the 10D Minkowski Dine-Seiberg minimum. The

height of the barrier is somewhat smaller than the depth of the original AdS minimum

prior to the uplifting:

Vbarrier ∼ |VAdS | ≈ 3m2
3/2 . (3.1)

Inflation requires the existence of an additional contribution Vinfl to the scalar potential,

but all such contributions in the effective 4D theory have the following general structure:

Vinfl = V (φ)
(ρ+ρ)3

, where φ is the inflaton field; see, for example, the second term in (2.10).

Such terms destabilize the potential for Vinfl À Vbarrier ∼ m2
3/2, see figure 2. Since during

– 6 –
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Figure 2: The lowest curve with dS minimum is the one from the uplifted KKLT model. The

second one describes the inflationary potential with the term Vinfl = V (φ)
σ3 added to the KKLT

potential. The top curve shows that when the inflationary potential becomes too large, the barrier

disappears, and the internal space decompactifies. This explains the constraint H . m3/2.

inflation one has Vinfl = H2/3, one finds the constraint on the Hubble constant during the

last stage of inflation [22]

H . m3/2 . (3.2)

If gravitino is heavy, m3/2 ∼ 1011 − 1016 GeV, the scale of inflation can be very high, and

there is no destabilization of the volume modulus during inflation. However, if the mass of

gravitino is light, e.g. m3/2 ≤ 1 TeV, one would need to consider non-standard low-scale

inflationary models. Such models do exist, but still the constraint H . m3/2 is quite

restrictive and undesirable.

This problem was addressed in our paper [22], which we will call the KL model, to

distinguish it from the simplest KKLT scenario. We used the same Kähler potential as

in the KKLT model, but instead of the superpotential with one exponent we used the

racetrack-type superpotential with two exponents:

K = −3 ln[(ρ + ρ)] , W = W0 + Ae−aρ + Be−bρ . (3.3)

The potential of this model can describe either one or two AdS vacua, or, with extra fine

tuning, one Minkowski vacuum and one AdS vacuum, both at a finite distance in the

moduli space [22]. Here we will be interested in the case of two AdS vacua, such that

|VAdS1 | ¿ |VAdS2 |.
Indeed, with one exponent in the superpotential as in model (2.7) one cannot simulta-

neously solve both equations DρW = 0 and W = 0, which is necessary to get a Minkowski

minimum.1 However, with two exponents, as in model (3.3), this is possible. The solution

1There is a no go theorem proposed in [25, 13, 14], which states that it is impossible to have a

dS/Minkowski minimum in the theory with the Kähler potential K = −3 ln[ρ + ρ], for any choice of

the superpotential. The proof of this theorem is correct for the supersymmetry breaking Minkowski vacua

with DρW 6= 0, W 6= 0 [13], but it does not apply to the KL model, where DρW = 0, W = 0 in the

Minkowski minimum with unbroken supersymmetry [22]. It may be useful to remind here that the use of

the supergravity function G = K + ln |W |2 in studies of vacua with W = 0 should be avoided, as explained

in [26], and such vacua should be studied separately.
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Figure 3: The KL potential multiplied by 1014, with the parameters A = 1, B = −1.03, a =

2π/100, b = 2π/99, W0 = −2 × 10−4. The first minimum, corresponding to the supersymmetric

Minkowski vacuum, stabilizes the volume at σ ≈ 62. If one slightly changes the parameters (e.g.

takes B = 1.032), this minimum shifts down, and becomes a very shallow AdS minimum, see the

thin black line in figure 4.

requires the following relation between the parameters of the superpotential:

−W0 = A

∣

∣

∣

∣

aA

bB

∣

∣

∣

∣

a
b−a

+ A

∣

∣

∣

∣

aA

bB

∣

∣

∣

∣

a
b−a

. (3.4)

The Minkowski minimum occurs at σ = 1
a−b ln

∣

∣

aA
bB

∣

∣; see figure 3.

It has been observed in [27] that it is very easy (for example, by changing slightly the

parameter B in the superpotential) to get models with extremely light gravitino and the

AdS minimum replacing the exact Minkowski one with very small value of |VAdS | but large

barrier separating this AdS from the next one and from the Minkowski vacuum at infinity.

To make this model viable we need to uplift it to dS minimum by one of the available

mechanisms. The D3-brane uplifting is possible. The D-term uplifting in a model with

two exponents was not performed so far. It may require some effort to make it consistent

with the gauge invariance of the superpotential. However, the O’Raifeartaigh uplifting

works well for this model.

The supergravity potential is based on

W = W0 + Ae−aρ + Be−bρ − µ2S, K = −3 ln(ρ + ρ) + SS̄ − (SS̄)2

Λ2
. (3.5)

The complete potential V (σ, α, x, y) as a function of 4 scalars, ρ = σ + iα and S = x + iy,

is again easily computable in Mathematica, using [23], and, as before, we are interested

only in the region of small SS̄. Investigation of this regime for the KL model practically

coincides with the investigation for the O’KKLT model performed in the previous section.

The axion fields vanish before and after the unification of the O’Raifeartaigh model with

the KL model. The field S after the uplifting takes exactly the same value as in the KKLT

scenario: |S| =
√

3
6 Λ2.

The influence of the O’Raifeartaigh uplifting of a shallow AdS minimum on the position

of this minimum in this scenario is even smaller than the corresponding influence in the

– 8 –
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Figure 4: The thin black line shows the potential in the KL model, multiplied by 1014, for the

values of the parameters A = 1, B = −1.032, a = 2π/100, b = 2π/99, W0 = −2 × 10−4. The

shallow AdS minimum (almost Minkowski) stabilizes the volume at σ ≈ 67. The thick blue line

shows the potential after the O’Raifeartaigh uplifting with µ2 = 0.66 × 10−4, L = 10−3. The AdS

minimum after the uplifting becomes a (nearly Minkowski) dS minimum.

O’KKLT model. Indeed, since the required magnitude of the uplifting in this scenario is

much smaller than the height of the barrier, all parameters of the O’Raifeartaigh model

can be taken many orders of magnitude smaller than the parameters of the KL model.

An example of the KL potential before and after the uplifting (thin and thick lines) is

shown in figure 4. The depth of the shallow AdS minimum prior to the uplifting (thin line)

corresponds to 3m2
3/2. This depth, and the required magnitude of uplifting, controlled by

the parameter µ2, can be made arbitrarily small by a slight change of the parameter B,

which practically does not affect the height of the barrier. Therefore in this scenario the

barrier can be many orders higher than m2
3/2. In this figure we have made a relatively

large modification of B, which leads to the large gravitino mass, but we did it only for the

purpose of making the modification of the potential visible.

The main new feature of the KL model as compared with the O’KKLT model is that

one can fine-tune the gravitino mass squared to be extremely small as compared to the

height of the barrier. This allows inflation with H À m3/2 [22].

4. Discussion

The existence of a tiny positive cosmological constant makes it quite important to stabilize

all moduli in a dS state with a positive vacuum energy. In this note we proposed to

combine two simple models to achieve this purpose. The KKLT model originating from

string theory brings in the idea of ∼ 10500 various vacua, mostly supersymmetric AdS

vacua with negative energy. Stabilization of closed string theory moduli is due to non-

perturbative effects, like gaugino condensation or string instantons. The second ingredient

of the proposed unified model is a generic model of dynamical supersymmetry breaking

where non-perturbative corrections play an important role in stabilization of moduli (these

moduli in string theory may come from the open string sector). A typical representative of
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such models is the O’Raifeartaigh model with the Coleman-Weinberg quantum corrections.

Moduli stabilization in this model occurs near the origin of the moduli space and results

in the existence of a dS vacuum with positive energy. When these two models are unified,

they affect each other in a minor way in all respects but one: the negative AdS energy of

the KKLT model is nearly compensated by the positive dS energy of the O’Raifeartaigh

model, which leads to a nearly Minkowski space which we observe.

In the paper we present the detailed description of the unification of KKLT model

with quantum corrected O’Raifeartaigh model, which we called O’KKLT. The effect which

each of these two models has on the other one is computable. In particular, one can find

a class of the O’KKLT models with light gravitinos, and achieve vacuum stability during

the cosmological evolution.
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