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Abstract: We analyze the cosmological implications of F -term hybrid inflation with a

subdominant Fayet–Iliopoulos D-term whose presence explicitly breaks a D-parity in the

inflaton-waterfall sector. This scenario of inflation, which is called FD-term hybrid model

for brevity, can naturally predict lepton number violation at the electroweak scale, by tying

the µ-parameter of the MSSM to an SO(3)-symmetric Majorana mass mN , via the vac-

uum expectation value of the inflaton field. We show how a negative Hubble-induced mass

term in a next-to-minimal extension of supergravity helps to accommodate the present

CMB data and considerably weaken the strict constraints on the theoretical parameters,

resulting from cosmic string effects on the power spectrum PR. The usual gravitino over-

abundance constraint may be significantly relaxed in this model, once the enormous entropy

release from the late decays of the ultraheavy waterfall gauge particles is properly consid-

ered. As the Universe enters a second thermalization phase involving a very low reheat

temperature, which might be as low as about 0.3 TeV, thermal electroweak-scale reso-

nant leptogenesis provides a viable mechanism for successful baryogenesis, while thermal

right-handed sneutrinos emerge as new possible candidates for solving the cold dark mat-

ter problem. In addition, we discuss grand unified theory realizations of FD-term hybrid

inflation devoid of cosmic strings and monopoles, based on the complete breaking of an

SU(2)X subgroup. The FD-term hybrid model offers rich particle-physics phenomenology,

which could be probed at high-energy colliders, as well as in low-energy experiments of

lepton flavour or number violation.
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1. Introduction

Standard big-bang cosmology faces severe difficulties in accounting for the observed flatness

and enormity of the causal horizon of today’s Universe. It also leaves unexplained the

origin of the nearly scale-invariant cosmic microwave background (CMB), as was found by

a number of observations over the last decade [1 – 5]. All these pressing problems can be
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successfully addressed within the field-theoretic framework of inflation [6]. As a source of

inflation, it is usually considered to be a scalar field, the inflaton, which is displaced from

its minimum and whose slow-roll dynamics leads to an accelerated expansion of the early

Universe. In this phase of accelerated expansion or inflation, the quantum fluctuations of

the inflaton field are stretched on large scales and eventually get frozen when they become

much bigger than the Hubble radius. These quantum fluctuations get imprinted in the

form of density perturbations, when the former are crossing back inside the Hubble radius

long after inflation has ended. In this way, inflation provides a causal mechanism to explain

the observed nearly-scale invariant CMB spectrum.

A complete description of the CMB spectrum involves about a dozen of cosmological

parameters, such as the power spectrum PR of curvature perturbations, the spectral index

ns, the running spectral index dns/d ln k, the ratio r of tensor-to-scalar perturbations, the

baryon-to-photon ratio of number densities ηB, the fractions of relic abundance ΩDM and

dark energy ΩΛ and a few others. Recent WMAP data [2, 4], along with other astronomical

observations [3], have improved upon the precision of almost all of the above cosmological

observables. In particular, the precise values of these cosmological observables set stringent

constraints on the model-building of successful models of inflation. To ensure the slow-roll

dynamics of the inflaton, for example, one would need a scalar potential, which is almost

flat. Moreover, one has to assure that the flatness of the inflaton potential does not get

spoiled by large quantum corrections that depend quadratically on the cut-off of the theory.

In this context, supersymmetry (SUSY), softly broken at the TeV scale, emerges almost as

a compelling ingredient not only in the model-building of inflationary scenarios, but also

for addressing technically the so-called gauge-hierarchy problem.

One of the most predictive and potentially testable scenarios of inflation is the model of

hybrid inflation [7]. An advantageous feature of this model is that the inflaton φ may start

its slow-roll from field values well below the reduced Planck mass mPl = 2.4 × 1018 GeV.

As a consequence, cosmological observables, such as PR and ns, do not generically receive

significant contributions from possible higher-dimensional non-renormalizable operators,

as these are suppressed by inverse powers of 1/mPl. Thus, the hybrid model becomes

very predictive and possibly testable, in the sense that the inflaton dynamics is mainly

governed by a few renormalizable operators which might have observable implications for

laboratory experiments. In the hybrid model, inflation terminates through the so-called

waterfall mechanism. This mechanism is triggered, when the inflaton field φ passes below

some critical value φc. In this case, another field X different from φ, which is called the

waterfall field and is held fixed at origin initially, develops a tachyonic instability and rolls

rapidly down to its true vacuum expectation value (VEV).

Hybrid inflation can be realized in supersymmetric theories in two forms. In the first

form, the hybrid potential results from the F -terms of a superpotential, where the slope

of the potential may come either from supergravity (SUGRA) corrections [8] and/or from

radiative effects [9]. The second supersymmetric realization [10] of hybrid inflation uses a

dominant Fayet–Iliopoulos (FI) D-term [11], which may originate from an anomalous local

U(1)Q symmetry within the context of string theories.

All models of inflation embedded in SUGRA have to address a serious problem. This
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is the so-called gravitino overabundance problem. If abundantly produced in the early

Universe, gravitinos may disrupt, via their late gravitationally-mediated decays, the nu-

cleosynthesis of the light elements. In order to prevent this from happening, gravitinos G̃

must have a rather low abundance today, i.e. Y eG = n eG/s <∼ 10−12–10−15, where n eG is the

number density of gravitinos and s is the entropy density. The upper bound on Y eG depends

on the properties of the gravitino and becomes tighter, if gravitinos decay appreciably to

hadronic modes. These considerations set a strict upper bound on Universe’s reheat tem-

perature Treh, generically implying that Treh
<∼ 1010–107 GeV [51, 56]. This upper limit on

Treh severely restricts the size of any renormalizable superpotential coupling of the inflaton

to particles of the Standard Model (SM). All these couplings must be rather suppressed.

Typically, they have to be smaller than about 10−5 [12].

The aforementioned gravitino constraint may be considerably relaxed, if there is a

mechanism that could cause late entropy release in the evolution of the early Universe.

Such a mechanism could then dilute the gravitinos to a level that would not upset the limits

derived from Big Bang nucleosynthesis (BBN). This possibility might arise even within the

context of F -term hybrid inflation, if a subdominant FI D-tadpole associated with the

gauge group U(1)X of the waterfall sector were added to the model. Such a scenario was

recently discussed in [13]. It has been observed that the presence of a FI D-term breaks

explicitly an exact discrete symmetry acting on the gauged waterfall sector, i.e. a kind

of D-parity, which would have remained otherwise unbroken even after the spontaneous

symmetry breaking (SSB) of U(1)X . As a consequence, the ultraheavy U(1)X -gauge-sector

bosons and fermions, which would have been otherwise stable, can now decay with rates

controlled by the size of the FI D-term. Since these particles could be abundantly produced

during the preheating epoch, their late decays could give rise to a second reheat phase in

the evolution of the early Universe. Depending on the actual size of the FI D-term, this

second reheat temperature may be as low as 0.5–1 TeV, resulting in an enormous entropy

release. This could be sufficient to render the gravitinos underabundant, which might be

copiously produced during the first reheating from the perturbative inflaton decays.

In this paper we present a detailed analysis of F -term hybrid inflation with a subdom-

inant FI D-tadpole. As mentioned above, the presence of the FI D-tadpole is essential

for explicitly breaking an exact discrete symmetry, a D-parity, which was acting on the

gauged waterfall sector. In [13], we termed this inflationary scenario, in short, FD-term

hybrid inflation. As the inflaton chiral superfield Ŝ couples to the Higgs-doublet chiral

superfields Ĥu,d, through λ ŜĤuĤd, the model generates an effective µ-parameter for the

Minimal Supersymmetric Standard Model (MSSM), through the VEV 〈S〉 [14]. The same

mechanism may also generate an effective Majorana mass matrix for the singlet neutrino

superfields N̂1,2,3 [15], through the operator 1
2 ρij ŜN̂iN̂j [16, 13]. Assuming that this

last operator is SO(3)-symmetric or very close to it, i.e. ρij ≈ ρ13, the resulting lepton-

number-violating Majorana mass, mN = ρ 〈S〉, will be closely tied to the µ-parameter of

the MSSM. If λ ∼ ρ, the FD-term hybrid model will then give rise to 3 nearly degenerate

heavy Majorana neutrinos ν1,2,3 R, as well as to 3 complex right-handed sneutrinos Ñ1,2,3,

with electroweak-scale masses. Such a mass spectrum opens up the possibility to explain

the baryon asymmetry in the Universe (BAU) ηB [17, 18] by thermal electroweak-scale
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resonant leptogenesis [19, 20, 16], almost independently of the initial baryon-number com-

position of the primordial plasma. Moreover, since the FD-term hybrid model conserves

R-parity [13], the lightest supersymmetric particle (LSP) is stable. Here, we examine the

possibility that thermal right-handed sneutrinos are responsible for solving the cold dark

matter (CDM) problem of the Universe.

In this paper we also improve an earlier approach [13], concerning the production of

the quasi-stable U(1)X gauge-sector particles during the preheating epoch. In addition, we

present a numerical analysis that properly takes into account the combined effect on the

reheat temperature Treh from the inflaton and gauge-sector particle decays and their anni-

hilations. We call this two-states’ mechanism of reheating the Universe, coupled reheating.

After solving numerically a network of Boltzmann equations (BEs) that appropriately treat

coupled reheating, we obtain estimates for the present abundance of gravitinos in the Uni-

verse. We show explicitly, how a small breaking of D-parity sourced by a subdominant FI

D-tadpole helps to relax the strict gravitino overproduction constraint.

In addition to gravitinos, one might have to worry that topologically stable cosmic

strings do not contribute significantly to the CMB power spectrum PR. Cosmic strings,

global or local, are topological defects and usually form after the SSB of some global or local

U(1) symmetry [21 – 23]. According to recent analyses [24], cosmic strings, if any, should

make up no more than about 10% of the power spectrum PR. This last requirement puts

severe limits on the allowed parameter space of models of inflation. There have already

been some suggestions [25] on how to get rid of cosmic strings, based on modified versions of

hybrid inflation. Here, we follow a different approach to solving this problem. We consider

models, for which the waterfall sector possesses an SU(2)X gauge symmetry which breaks

completely, i.e. SU(2)X → I, such that neither cosmic strings nor monopoles are produced

at the end of inflation. In this case, gauge invariance forbids the existence of an SU(2)X D-

tadpole Da. However, Planck-mass suppressed non-renormalizable operators that originate

from the superpotential or the Kähler potential can give rise to explicit breaking of D-parity.

The latter may manifest itself by the generation of effective Da-tadpole terms that arise

after the SSB of SU(2)X . In this way, all the SU(2)X gauge-sector particles can be made

unstable.

The organization of the paper is as follows: in section 2, we describe the FD-term

hybrid model and calculate the 1-loop effective potential relevant to inflation. In addition,

we discuss the possible cosmological consequences of radiative effects on the flat directions

in the MSSM. We conclude this section by outlining how the FD-term hybrid model could

generally be embedded into a grand unified theory (GUT), including possible realizations of

a GUT without cosmic strings and monopoles. Technical details concerning mechanisms of

explicit D-parity breaking in SUGRA, e.g. via an effective subdominant D-tadpole or non-

renormalizable operators in Kähler potential, are given in appendix A. Section 3 analyzes

the constraints on the theoretical parameters, which are mainly derived from considerations

of the power spectrum PR and a strongly red-tilted spectral index ns, with ns ≈ 0.95, as

observed most recently by WMAP [4, 5]. We show how a negative Hubble-induced mass

term in a next-to-minimal extension of supergravity helps to account for the present CMB

data, as well as to substantially weaken the strict constraints on the model parameters,
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originating from cosmic string effects on PR, within a U(1)X realization of the FD-term

hybrid model.

In section 4, we analyze the mass spectrum of the inflaton-waterfall sector in the post-

inflationary era and present naive estimates of the reheat temperature Treh as obtained from

perturbative inflaton decays. We then make use of an improved approach to preheating

and compute the energy density of the quasi-stable waterfall gauge particles. In section 5,

we solve numerically the BEs relevant to coupled reheating and present estimates for the

gravitino abundance in the present Universe. In section 6, we demonstrate, how thermal

electroweak-scale resonant leptogenesis can be realized within the FD-term hybrid model

and discuss the possibility of solving the CDM problem, if thermal right-handed sneutrinos

are considered to be the LSPs in the spectrum. In section 7, we present our conclusions,

including a summary of possible particle-physics implications of the FD-term hybrid model

for high-energy colliders and for low-energy experiments of lepton flavour and/or number

violation.

2. General setup

In this section we first present the general setup of the FD-term hybrid model within

the minimal SUGRA framework and compute the renormalized 1-loop effective potential

relevant to inflation. We then discuss the cosmological implications of radiative effects on

the MSSM flat directions for FD-term hybrid inflation and for SUSY inflationary models

in general. Finally, we analyze the prospects of embedding the FD-term hybrid model into

a GUT.

2.1 The model

The renormalizable superpotential of the FD-term hybrid model is given by

W = κ Ŝ
(
X̂1X̂2 − M2

)
+ λ ŜĤuĤd +

ρij

2
Ŝ N̂iN̂j + hν

ijL̂iĤuN̂j

+ W
(µ=0)
MSSM , (2.1)

where W
(µ=0)
MSSM denotes the MSSM superpotential without the µ-term:

W
(µ=0)
MSSM = hu

ij Q̂iĤuÛj + hd
ij ĤdQ̂iD̂j + hl ĤdL̂lÊl . (2.2)

The first term in (2.1) describes the inflaton-waterfall (IW) sector. Specifically, Ŝ is the

SM-singlet inflaton superfield, and X̂1,2 is a chiral multiplet pair of the waterfall fields with

opposite charges under the U(1)X gauge group, i.e. Q(X̂1) = −Q(X̂2) = 1. In addition,

the corresponding inflationary soft SUSY-breaking sector obtained from (2.1) reads:

−Lsoft = M2
SS∗S+

(
κAκ SX1X2+λAλSHuHd +

ρ

2
Aρ SÑiÑi−κaSM2S + H.c.

)
, (2.3)

where MS, Aκ,λ,ρ and aS are soft SUSY-breaking mass parameters of order MSUSY ∼ 1TeV.
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The second term in (2.1), λ ŜĤuĤd, induces an effective µ-parameter, when the scalar

component of Ŝ, S, acquires a VEV, i.e.

µ = λ 〈S〉 ≈ λ

2κ
|Aκ − aS | . (2.4)

In obtaining the last approximate equality in (2.4), we neglected the VEVs of Hu,d and

considered the fact that the VEVs of the waterfall fields X1,2 after inflation are: 〈X1,2〉 =

M [14]. For λ ∼ κ, the size of µ-parameter turns out to be of the order of the soft-

SUSY breaking scale MSUSY, as required for a successful electroweak Higgs mechanism.

By analogy, the third term in (2.1), 1
2 ρij Ŝ N̂iN̂j , gives rise to an effective lepton-number-

violating Majorana mass matrix, i.e. MS = ρij vS . Assuming that ρij is approximately

SO(3) symmetric, viz. ρij ≈ ρ 13, one obtains 3 nearly degenerate right-handed neutrinos

ν1,2,3 R, with mass

mN = ρ vS . (2.5)

If λ and ρ are comparable in magnitude, then the µ-parameter and the SO(3)-symmetric

Majorana mass mN are tied together, i.e. mN ∼ µ, thus leading to a scenario where the

singlet neutrinos ν1,2,3R can naturally have TeV or electroweak-scale masses [16, 13].

The renormalizable superpotential (2.1) of the model may be uniquely determined by

imposing the continuous R symmetry:

Ŝ → eiα Ŝ , L̂ → eiα L̂ , Q̂ → eiα Q̂ , (2.6)

with W → eiαW , whereas all other fields remain invariant under an R transformation.

Notice that the R symmetry (2.6) forbids the presence of higher-dimensional operators of

the form X̂1X̂2N̂iN̂j/mPl. This fact ensures that the electroweak-scale Majorana mass mN

does not get destabilized by Planck-scale SUGRA effects.

One may now observe that the superpotential (2.1) is symmetric under the permuta-

tion of the waterfall fields, i.e. X̂1 ↔ X̂2. This permutation symmetry persists, even after

the SSB of U(1)X , since the ground state, 〈X1〉 = 〈X2〉 = M , is invariant under the same

symmetry as well. Hence, there is an exact discrete symmetry acting on the gauged water-

fall sector, a kind of D-parity. As a consequence of D-parity conservation, the ultraheavy

particles of mass gM , which are related to the U(1)X gauge sector, are stable. Such a

possibility is not very desirable, as these particles, if abundantly produced, may overclose

the Universe at late times. In order to break this unwanted D-parity, a subdominant FI

D-term, −1
2g m2

FI D, is added to the model [13], giving rise to the D-term potential 1

VD =
g2

8

(
|X1|2 − |X2|2 − m2

FI

)2
. (2.7)

1The D-parity is an accidental discrete symmetry and it should not be confused with the U(1)
X

charge

conjugation symmetry realized by the transformations: X1 ↔ X∗
1 and X2 ↔ X∗

2 . Although both discrete

symmetries have the same effect when acting on the U(1)
X

scalar current jµ
X = i(X∗

1

↔

∂µ X1 − X∗
2

↔

∂µ X2),

i.e. jµ
X ↔ −jµ

X , they crucially differ when they are applied on the FI D-term: − g

2
m2

FI(|X1|
2 − |X2|

2). This

term is even under charge conjugation, but odd under a D-parity conjugation.

– 6 –
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The FI D-term will not affect the inflationary dynamics, as long as gmFI ¿ κM . Techni-

cally, a subdominant D-term can be generated radiatively after integrating out Planck-scale

heavy degrees of freedom. Further discussion is given in section 4.1 and in appendix A,

where we also discuss the possibility of breaking explicitly D-parity by non-renormalizable

Kähler potential terms. The post-inflationary implications of the FI D-term, mFI, for the

reheat temperature Treh and the gravitino abundance Y eG will be analyzed in section 5.

The inflationary potential Vinf may be represented by the sum

Vinf = V
(0)
inf + V

(1)
inf + VSUGRA , (2.8)

where V
(0)
inf and V

(1)
inf are the tree-level potential and the 1-loop effective potential, respec-

tively and VSUGRA contains the SUGRA contribution. Including soft-SUSY breaking terms

related to S, the tree-level contribution to the inflationary potential is

V
(0)
inf = ZS κ2M4 + M2

S S∗S −
(
κaSM2S + H.c.

)
, (2.9)

where Z1/2
S is the wave-function renormalization of the inflaton field which is needed to

renormalize the 1-loop effective potential given below in the SUSY limit of the theory. The

counter-term, δZS = ZS − 1, due to S wave-function renormalization may be obtained

from the inflaton self-energy ΠSS(p2), through the relation

δZS = − dRe ΠSS(p2)

dp2

∣∣∣∣∣
p2=0

. (2.10)

Calculating the UV part of δZS from this very last relation, we find

δZS = − 1

32π2

[
2Nκ2 ln

(
κ2M2

Q2

)
+ 4λ2 ln

(
λ2M2

Q2

)
+ 3ρ2 ln

(
ρ2M2

Q2

)]
, (2.11)

where Q2 is the renormalization scale and the inflaton field value |SR| = M is taken as a

common mass renormalization point. In addition, the parameter N in (2.11) represents

the dimensionality of the waterfall sector. For example, it is N = 1 for an U(1)X waterfall

sector, whilst it is N = N , if X̂1 (X̂2) belongs to the fundamental (anti-fundamental)

representation of an SU(N) theory. Observe, finally, that only the fermionic components

of the superfields, X̂1,2, Ĥu,d, N̂1,2,3, contribute to δZS .

Ignoring soft SUSY-breaking terms, the 1-loop effective potential relevant to inflation

is calculated to be

V
(1)
inf =

1

32π2

{
Nκ4

[
|S2 + M2|2 ln

(
κ2(|S|2 + M2)

Q2

)
+ |S2 − M2|2 ln

(
κ2(|S|2 − M2)

Q2

)]

+ 2λ4

[
|S2 + κ

λ M2|2 ln

(
λ2(|S|2 + κ

λM2)

Q2

)
+ |S2 − κ

λM2|2 ln

(
λ2(|S|2 − κ

λM2)

Q2

)]

+
3ρ4

2

[
|S2 + κ

ρ M2|2 ln

(
ρ2(|S|2 + κ

ρM2)

Q2

)
+ |S2 − κ

ρM2|2 ln

(
ρ2(|S|2 − κ

ρM2)

Q2

)]

− |S|4
[

2Nκ4 ln

(
κ2 |S|2

Q2

)
+ 4λ4 ln

(
λ2 |S|2

Q2

)
+ 3ρ4 ln

(
ρ2 |S|2

Q2

)]}
. (2.12)
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Given (2.11) and (2.12), it can be checked that the expression V
(0)
inf + V

(1)
inf is independent

of ln Q2, as it should be.

Finally, the SUGRA contribution VSUGRA to Vinf in (2.8) is highly model-dependent. In

general, one expects an infinite series of non-renormalizable operators to occur in VSUGRA,

i.e. [8, 27, 26]

VSUGRA = − c2
H H2 |S|2 + κ2M4 |S|4

2m4
Pl

+ O(|S|6) . (2.13)

where H2 = κ2M4/(3m2
Pl) is the squared Hubble rate during inflation. The first term

in (2.13) represents a Hubble-induced mass term, which is preferably defined to be negative

for observational reasons to be discussed in section 3. In a model with a minimal Kähler

potential, the parameter cH vanishes identically.2 In fact, if |cH | <∼ 10−2, its influence on

the CMB data [29] gets marginalized. In our analysis in section 3, we present results for

two representative models: (i) the scenario with a minimal Kähler potential (cH = 0);

(ii) a next-to-minimal Kähler potential scenario with cH
<∼ 0.2, where only the effect of

the term (Ŝ†Ŝ)2/m2
Pl is considered and all higher order non-renormalizable operators are

ignored in the Kähler manifold. Moreover, we neglect possible 1-loop contributions to Vinf

from Aκ,λ,ρ-terms, which are insignificant for values M >∼ 1015 GeV. We only include the

tadpole term κaSM2 S, which may become relevant for values of κ <∼ 10−4, but ignore all

other soft SUSY-breaking terms, since they are negligible during inflation [12].

The stability of the inflationary trajectory in the presence of the Higgs doublets Hu,d

and the right-handed scalar neutrinos Ñ1,2,3 provides further restrictions on the couplings

λ and ρ. In order to successfully trigger hybrid inflation, the fields at the start of inflation

should obey the following conditions:

Re Sin = |Sin| >∼ M , X in
1,2 = 0 , H in

u,d = 0 , Ñ in
1,2,3 = 0 . (2.14)

The precise start values of the inflaton ReSin are determined by the number of e-folds

Ne, which is a measure of Universe’s expansion during inflation (see also our discussion in

section 3). After inflation and the waterfall transition mechanism have been completed, it

is important to ensure that the waterfall fields acquire a high VEV, i.e. Xend
1,2 = M , while

all other fields have small electroweak-scale VEVs. This can be achieved by requiring that

the Higgs-doublet and the sneutrino mass matrices stay positive definite throughout the

inflationary trajectory up to a critical value |Sc| ≈ M . Instead, the corresponding mass

matrix of X1,2 will be the first to develop a negative eigenvalue and tachyonic instability

close to |Sc|. As a consequence, the fields X1,2 will be the first to start moving away from 0

and set in to the ‘good’ vacuum Xend
1 = Xend

2 = M , well before the other fields, e.g. H in
1,2

and Ñ in
1,2,3, go to a ‘bad’ vacuum where Xend

1,2 = 0, Hend
1,2 = κ

λ M and Ñ in
1,2,3 = κ

ρ M . To

better understand this point, let us write down the mass matrix in the weak field basis

2Strictly speaking, curvature effects related to an expanding de Sitter background will contribute to

the potential a term given by − 3

16π2 (2Nκ2 + 4λ2 + 3ρ2) H2|S|2 ln(|S|2/Q2), even in the minimal Kähler

potential case [28]. Such a term, however, turns out to be negligible to affect the inflation dynamics in the

FD-term hybrid model. Finally, this term may be partially absorbed into the RG running of c2
H(Q2).
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(Hd , H∗
u):

M2
Higgs =

(
λ2|S|2 −κλ(M2 − X1X2)

−κλ(M2 − X∗
1X∗

2 ) λ2|S|2

)
. (2.15)

Then, positive definiteness of M2
Higgs implies that

λ |S|2 ≥ κ |M2 − X1X2| . (2.16)

From (2.16), it is evident that the condition λ >∼ κ is sufficient for ending hybrid inflation to

the ‘good’ vacuum. Finally, one obtains a condition analogous to (2.16) from the sneutrino

mass matrix, which is equivalent to having ρ >∼ κ. The above two constraints on λ and ρ,

i.e. λ, ρ > κ, will be imposed in the analysis presented in section 3.

2.2 Radiative lifting of MSSM flat directions

Flat directions in supersymmetric theories, e.g. in the MSSM [30], play an important role

in cosmology [31, 32]. As we will demonstrate in this section, however, their influence on

FD-term hybrid inflation is minimal under rather realistic assumptions.

One possible consequence of flat directions could be the generation of a primordial

baryon asymmetry ηin
B through the Affleck–Dine mechanism [31]. However, if this initial

baryon asymmetry ηin
B is generated at temperatures T > mN , it will rapidly be erased by

the strong (B − L)-violating interactions mediated by electroweak-scale heavy Majorana

neutrinos at T ∼ mN . The BAU will then reach the present observed value by means of

the thermal resonant leptogenesis mechanism and will only depend on the basic theoretical

parameters of the FD-term hybrid model [20, 16]. More details are given in section 6.

In addition, one might argue that large VEVs associated with quasi-flat directions in

the MSSM would make all MSSM particles so heavy after inflation, such that all perturba-

tive decays of the inflaton would be kinematically blocked and hence the Universe would

never thermalize [33]. The system may fall into a false vacuum with a large VEV at the

start of inflation, which could, for example, be triggered by a negative Hubble-induced

squared mass term of order H2 [34], along the flat direction. In the FD-term hybrid model,

however, spontaneous SUSY breaking due to a non-zero 〈S〉 is communicated radiatively to

the MSSM sector, via the renormalizable operators λŜĤuĤd and ρŜN̂iN̂i. Consequently,

their effects on the MSSM flat directions can be large and so affect the inflaton decays which

proceed via the same renormalizable operators. In the following, we will present a careful

treatment of this radiative lifting of MSSM flat directions, and examine the conditions,

under which the directions would remain sufficiently flat so as to prohibit the Universe

from thermal equilibration, shortly after inflation.

To obtain a flat direction in supersymmetric theories, one has to impose the conditions

of D- and F -flatness on the scalar potential V , namely the vanishing of all F - and D-terms

for a specific field configuration σ. D-flatness is automatic for any flat direction associated

with a gauge-invariant operator, which is absent in the MSSM, e.g. D̂iD̂jÛk. Based on this

observation, let us therefore consider here the gauge-covariant field configuration

σ =
1√
3

(
ũ∗

R k

|ũR k|
d̃∗R i +

ũ∗
R k

|ũR k|
d̃∗R j + ũR k

)
, (2.17)
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where i 6= j. It can be straightforwardly checked that the field configuration σ, with the

constraint
ũ∗

R k

|ũR k|
d̃∗R i =

ũ∗
R k

|ũR k|
d̃∗R j = ũR k 6= 0 (2.18)

and all remaining fields being set to zero, is a flat direction, with vanishing F - and D-

terms. It is then easy to verify that the scalar potential V (σ) is truly flat, i.e. dV/dσ = 0.

Although we will consider here the case of σ = ũR k, the discussion of other squark and

slepton flat directions is completely analogous. For notational convenience, we drop all

generation indices from the fields, and denote the flat direction simply by ũR.

Because of the spontaneous SUSY breaking induced by the non-zero VEV of S, the

flatness of the potential along the ũR-direction gets lifted, once radiative corrections are

taken into account. The non-renormalization theorem related to theories of SUSY is still

applicable and entails that this radiative lifting should be UV finite and therefore calculable.

We start our calculation by considering the pertinent mass spectrum in the background

of a non-zero S and ũR. The fermionic sector consists of 2 Dirac higgsino doublets, with

squared masses m2
h̃

= λ2|S|2 +h2|ũR|2, while the mass spectrum of the bosonic sector may

be deduced by the mass matrix

M2
H =




λ2|S|2 −κλM2 hλSũ∗
R

−κλM2 λ2|S|2 + h2|ũR|2 0

hλSũR 0 h2|ũR|2


 , (2.19)

which is defined in the weak basis (Hd , H∗
u , Q̃). The coupling h in (2.19) represents a

generic up-type quark Yukawa coupling.

In the renormalization scheme of dimensional reduction with minimal subtraction

DR [35], the 1-loop effective potential V (1) related to ũR is given by

V (1)(ũR) =
2Q2

16π2
STrM2 +

2

32π2
STr

{
M4

[
ln

(
M2

Q2

)
− 3

2

]}
, (2.20)

where STr denotes the usual supertrace, e.g. STrM2 = TrM2
H −2m2

h̃
, STrM4 = TrM4

H −
2m4

h̃
etc. In the absence of soft SUSY-breaking terms, one finds that STrM2 = 0 and

STrM4 = 2κ2λ2M4. The first condition implies the absence of quadratic UV divergences

in SUSY theories, whereas the first together with the second one ensure the UV finiteness

along the ũR direction, namely the fact that dV (1)(ũR)/dũR is Q2 independent.

It would be more illuminating to compute the 1-loop effective potential in (2.20) in a

Taylor series expansion with respect to h2|ũR|2. To order h4|ũR|4, the 3 mass eigenvalues

of M2
H are approximately given by

M2
± = λ2|S|2 ± κλM2 +

κM2 ± 2λ|S|2
2(κM2 ± λ|S|2) h2|ũR|2 ± κM2(κM2 ± 3λ|S|2)

8λ(κM2 ± λ|S|2)3 h4|ũR|4 ,

M2
0 =

κ2M4

κ2M4 − λ2|S|4 h2|ũR|2 − 2κ2λ2M4|S|6
(κ2M4 − λ2|S|4)3 h4|ũR|4 . (2.21)

Notice that in the limit ũR → 0, one obtains: m2
h̃

= λ2|S|2, M2
± = λ|S|2 ± κλM2 and

M2
0 = 0, as expected. Moreover, it is not difficult to check that STrM2 = O(h6|ũR|6) and

STrM4 = 2κ2λ2M4 + O(h6|ũR|6), in accordance with our discussion given above.
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Employing the fact that |S|2 À κ
λ M2 at the start of inflation, the 1-loop effective

potential V (1)(ũR) may further be approximated as follows:

V (1)(ũR) =
κ2λ2M4

8π2

[
ln

(
λ2|S|2

Q2

)
− 3

2

]
− 1

48π2

h2κ4M8

λ2|S|6 |ũR|2 +
1

16π2

h4κ2M4

λ2|S|4 |ũR|4

+
1

16π2

(
h2κ2M4

λ2|S|4 |ũR|2
)2

ln

(
h2κ2M4

λ4|S|6 |ũR|2
)

+ O(h6|ũR|6) . (2.22)

The first term in (2.22) contributes to the 1-loop inflationary potential (2.12), while the

remaining Q2-independent terms lift the flatness of the ũR-direction. Assuming that κ2 ¿
λ2 and M ' |S| towards the end of inflation, we find the well-defined minimum

〈 ũR 〉 =
κ√
6h

M . (2.23)

We should remark here that the above minimum would remain unaltered, even if the flat

direction were a squark or slepton doublet. In this case, only the overall normalization

of the Q2-independent part of V (1)(ũR) would have changed by a factor 1/2. The loop-

induced VEV of ũR generates a squared mass M2
ũR

via the Higgs mechanism, which is given

by

M2
ũR

=
1

24π2

h2 κ4

λ2
M2 . (2.24)

This squared mass M2
ũR

should be compared with the size of possible negative Hubble-

induced squared mass terms of order H2 = κ2M4/(3m2
Pl), e.g. terms of the form −c2

ũH2 ×
|ũR|2 that may occur in V (1)(ũR) and originate from SUGRA effects. These terms may

play some role in our model, unless c2
ũ H2 < M2

ũR
. The latter condition may be translated

into the inequality

cũ <
1

2
√

2π

hκ

λ

mPl

M
. (2.25)

As a typical example, let us consider an inflationary scenario, with λ = 2κ, κ = 10−3 and

M = 1016 GeV. In this case, (2.25) implies that cũ < 0.87h. Hence, although the required

tuning of the coefficient cũ to fulfill this last inequality may not be significant for the third

generation squarks and sleptons, it becomes excessive for the first generation, unless a

minimal Kähler potential is assumed. It should be stressed here, however, that the deepest

and hence most energetically favoured minimum for all squark and slepton directions is

the one related to t̃R. In other words, given chaotic initial conditions, the fields are most

likely to settle to minima of quasi-flat directions involving large Yukawa couplings. In this

case, radiative effects play an important role in the dynamics of flat directions3.

Let us finally assume that we are in a situation where the Hubble-induced mass terms

can be neglected, i.e. cũ = 0 as is the case for a minimal Kähler potential, for example.

Suppose that the loop-induced VEV of the quasi-flat direction persists throughout the

3We should note that the evolution of flat directions during the waterfall and coherent oscillation periods

is a non-equilibrium dynamics problem. Moreover, no theoretical methods yet exist that would lead to a

practical solution to this problem, even though effective potential corrections to the flat directions as the

ones considered here are expected to be relevant during the above cosmological periods.
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coherent oscillatory regime. In this case, the VEV (2.23) gives rise to masses h〈ũR〉 =

κM/
√

6 in the Q̂Ĥu-sector, which do not depend on the Yukawa coupling h. Consequently,

the inflaton-related fields of mass
√

2κM (see table 3) will have a large decay rate to those

massive particles, thus creating a non-thermal distribution. This non-thermal distribution

will in turn induce T -dependent mass terms which can be larger than the expansion rate

H(T ) at some temperature T soon after inflation, such that 〈ũR〉 will rapidly relax to zero.

Of course, one might think of contemplating configurations where multiple flat directions

have VEVs which contribute constructively to the masses of both Hu and Hd, such that

all inflaton and waterfall particle decays would be kinematically forbidden. However, we

consider such a possibility as a bit contrived. It is therefore reasonable to assume that,

provided (2.25) is fulfilled, reheating and equilibration of all MSSM degrees of freedom will

take place in the FD-term hybrid model and in all supersymmetric models of inflation that

include an unsuppressed renormalizable operator of the form ŜĤuĤd.

2.3 Topological defects and GUT embeddings

As we mentioned in the Introduction, topological defects, such as domain walls, cosmic

strings or monopoles, may be created at the end of inflation, when a symmetry group G,

local, global or discrete, breaks down into a subgroup H, in a way such that the vacuum

manifold M = G/H is not trivial. Specifically, the topological properties of the vacuum

manifold M under its homotopy groups, πn(M), determine the nature of the topological

defects [22, 23]. Thus, one generally has the formation of domain walls for π0(M) 6= I,

cosmic strings for π1(M) 6= I, monopoles if π2(M) 6= I, or textures if πn>2(M) 6= I [22].

For example, for the SSB breaking pattern U(1)X → I in the waterfall sector, the first

homotopy group of the vacuum manifold is not trivial, i.e. π1(U(1)/I) = Z. In this case,

cosmic strings will be produced at the end of inflation. In general, the non-observation

of any cosmic string contribution to the power spectrum PR at the 10% level introduces

serious constraints on the theoretical parameters of hybrid inflation models.

A potentially interesting inflationary scenario arises if the waterfall sector possesses

an SU(2)X gauge symmetry. In this case, the SSB breaking pattern is: SU(2)X → I,

i.e. the group SU(2)X breaks completely. It is worth stressing here that this is a unique

property of the SU(2) group, since the breaking of higher SU(N) groups, with N > 2,

into the identity I is not possible. Moreover, an homotopy group analysis gives that

π0,1,2(SU(2)X/I) = I, implying the complete absence of domain walls, cosmic strings and

monopoles. The only non-trivial homotopy group is π3(SU(2)X/I) = Z, thus signifying the

formation of textures, in case the SU(2)X group is global. If the SU(2)X group is local,

however, observable textures do not occur. Since their corresponding field configurations

never leave the vacuum manifold, the would-be textures can always be compensated by

local SU(2)X gauge transformations [22]. It is therefore essential that the X-symmetry of

the waterfall sector is local in the FD-term hybrid model.

It is now interesting to explore whether generic scenarios exist, for which the waterfall

gauge groups U(1)X or SU(2)X of the FD-term hybrid model may, partially or completely,

be embedded into a GUT. As a key element for such a model-building, we identify the

maintenance of D-parity conservation in the X-gauged waterfall sector, which is discussed
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in detail in section 4.1. In order to preserve D-parity, the waterfall sector should be

somehow ‘hidden’ from the perspective of the SM gauge group GSM. This means that the

SM fields must be neutral under X and vice versa, the X-gauge and waterfall sector fields

should not be charged under GSM. Consequently, we have to require, as a GUT breaking

route, that the waterfall X-gauge group and the GUT-subgroup that contains GSM factor

out into a product of two independent groups without overlapping charges.

It is reasonable to assume that the GUT-subgroup is broken to GSM before or while

inflation takes place. Then, possible unwanted topological defects due to the various stages

of symmetry breaking from the GUT-subgroup down to the SM will be inflated away.

Notice that we do not have to require that the GUT-subgroup breaking scale is higher

than the respective X-symmetry breaking scale, but only that the reheat temperature Treh

is low enough such that no symmetries of the GUT-subgroup are restored during reheating.

A related discussion within the context of SO(10) may be found in [36].

Let us first investigate whether a ‘hidden’ gauge group U(1)X related to the waterfall

sector can be embedded into a GUT. Although ‘hidden’ U(1)’s naturally arise in models of

string compactification [37], our interest here is to identify possible U(1)X factors that can

be embedded into a simple GUT. Given the above criterion, the frequently discussed GUT

based on SO(10) should be excluded, since it does not contain ‘hidden’ U(1)X groups [38].

As a next candidate theory, we may consider the exceptional group E(6), with the SSB

breaking path E(6) → U(1)×SO(10). The fundamental representation of E(6) is the chiral

27F representation, which branches under U(1) × SO(10) as follows:

27F = (4,1) + (−2,10) + (1,16) . (2.26)

Although the SM particles may fit into 16, they are not neutral under the extra U(1).

Higher representations, such as (0,45) stemming from 78 of E(6), are neutral under the

U(1) factor, but they are not suitable to properly accommodate all the SM particles.

We therefore turn our attention to possible breaking patterns of maximal groups that

contain a ‘hidden’ SU(2)X factor. A promising example is E(6) ⊃ SU(2)X × SU(6), where

the fundamental representation 27F follows the branching:

27F = (2,6) + (1,15) . (2.27)

Under SU(6) ⊃ SU(5) × U(1), 15 is an antisymmetric representation of SU(6) and one of

its branching rules is

15 = (5,−4) + (10, 2) . (2.28)

However, we need a 5 of SU(5), together with 10 in (2.28), in order to appropriately describe

all SM fermions. This shortcoming may be circumvented by adding an extra 27F of E(6) to

the spectrum, where the missing 5 may be obtained from the complex conjugate branching

of (2.28). Such an extension of the particle spectrum may even be welcome to resolve the

proton stability problem, through a kind of split multiplet mechanism [39]. Within the

framework of SUSY, the quark and lepton Yukawa interactions may be generated via the

introduction of a pair of the multiplets 27H , 27H . Finally, in such an E(6) unified scenario,

the 3 right-handed neutrinos can only appear as singlets.
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Another possible GUT scenario that complies with our criterion of a hidden SU(2)X
is E(7) ⊃ SU(2)X × SO(12). The fundamental representation is 56F and branches under

SU(2)X × SO(12) as follows:

56F = (2,12) + (1,32) . (2.29)

Subsequently, SO(12) breaks spontaneously into SO(10) × U(1), where 32 = (16, 1) +

(16,−1) is a vector-like representation. However, one may well envisage a string-theoretic

framework, in which orbifold compactification projects out the undesirable anti-chiral

states. Then, all SM particles, including right-handed neutrinos, will be contained in one

of the 16’s of 32. Related discussion of missing or incomplete multiplets due to orbifold

compactification may be found in [40].

Building a realistic GUT model from the blocks stated above lies beyond the scope

of this paper. We have demonstrated here, however, that the embedding of an SU(2)X
gauge group into a GUT, which is hidden but nevertheless takes part in the gauge coupling

unification, appears feasible within E(6) and E(7) unified theories.

We conclude this section by observing that the presence of the singlet inflaton field S of-

fers alternative options, for suppressing the heavy Majorana neutrino masses within SUSY

GUTs. As an example, we mention the breaking scenario, where SO(10) → SU(5) via the

VEV of a 126H Higgs representation and the usual superpotential term 16F 〈126H〉16F

induces heavy Majorana masses of the GUT scale MGUT. Given that the above renormal-

izable operator is forbidden by some R-symmetry, the presence of an R-charged inflaton S

may give rise to a drastic suppression of the GUT-scale Majorana mass, through a superpo-

tential term of the form Ŝ 16F 〈126H〉16F /mPl. Since S receives a VEV of order MSUSY/κ

in general F -term hybrid models [cf. (2.4)], one naturally obtains heavy Majorana neutrino

masses of order MSUSY, if κ ∼ 〈126H〉 /mPl ∼ 10−3. Such values of κ do satisfy the current

inflationary constraints which we discuss in the next section.

3. Inflation

Here, we first briefly review in section 3.1 the basic formalism of inflation, including the

constraints from the non-observation of cosmic strings in the power spectrum PR of the

CMB data. Then, in section 3.2, we present our numerical results for two scenarios: (i) the

minimal SUGRA (mSUGRA) scenario and (ii) the next-to-minimal SUGRA (nmSUGRA)

scenario. In particular, we exhibit numerical predictions for the spectral index ns and

discuss its possible reduction in the nmSUGRA scenario. Finally, we analyze the combined

constraints on the fundamental theoretical parameters κ, λ, ρ, and M , which result from

the recent CMB observations and inflation.

3.1 Basic formalism

According to the inflationary paradigm [6], the horizon and flatness problems of the stan-

dard Big-Bang Cosmology can be technically addressed, if our observable Universe has

undergone an accelerated expansion of a number 50–60 of e-folds during inflation. In the
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slow-roll approximation, the number of e-folds, Ne, is related to the inflationary potential

through:

Ne =
1

m2
Pl

∫ φexit

φend

dφ
Vinf

V ′
inf

' 55 . (3.1)

Hereafter, a prime on Vinf will denote differentiation with respect to the inflaton field

φ =
√

2Re S. In addition, φexit is the value of φ, when our present horizon scale crossed

outside inflation’s horizon and φend is the value of φ at the end of inflation. In the slow-roll

approximation, the field value φend is determined from the condition:

max{ε(φend), |η(φend)|} = 1 , (3.2)

where

ε =
m2

Pl

2

(
V ′

inf

Vinf

)2

, η = m2
Pl

V ′′
inf

Vinf
. (3.3)

We have checked that the slow-roll condition (3.2) is well satisfied up to the critical point

φend =
√

2M , beyond which the waterfall mechanism takes place. We also find that the

slow-roll condition remains valid, even within the nmSUGRA scenario with cH 6= 0 and

with appreciable non-renormalizable SUGRA effects. Finally, we note that the assumed

value of Ne ' 55 in (3.1) is slightly higher than the one computed consistently from (5.17),

which is about 50 for our low-reheat cosmological scenario. However, our numerical results

concerning PR and ns do not depend on such a 10% variation of Ne in any essential way.

The power spectrum PR is a cosmological observable of the curvature perturbations,

which sensitively depends on the theoretical parameters of the inflationary potential. The

square root of the power spectrum, P
1/2
R , may be conveniently written down as

P
1/2
R =

1

2
√

3 πm3
Pl

V
3/2
inf (φexit)

|V ′
inf(φexit)|

. (3.4)

The recent WMAP [2, 4] results, which are compatible with the ones suggested for the

COBE normalization [1], require that

P
1/2
R ' 4.86 × 10−5 . (3.5)

In addition to scalar curvature perturbations, tensor gravity waves and cosmic string

effects may also contribute to PR. In the FD-term hybrid model with an Abelian U(1)X
waterfall sector, cosmic strings arise after the SSB of the gauge symmetry (see also our

discussion in section 2.3). In this case, additional constraints are obtained from the non-

observation of cosmic string effects on PR [41, 42]. The evaluation of such effects in-

volves a certain degree of uncertainty in the numerical simulations of string networks [43].

Nevertheless, the common approach taken to cosmic string effects [44, 29] is to require

that their contribution (PR)cs to the power spectrum PR does not exceed the 10% level,

i.e. (PR)cs/PR <∼ 0.1. In detail, we require that

(P
1/2
R )cs ≤ 1.54 × 10−5 . (3.6)
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The cosmic string contribution (PR)cs to the power spectrum may be computed by

(P
1/2
R )cs =

√
15

4π

µcs

m2
Pl

ycs , (3.7)

where the tension of the cosmic strings, µcs, is calculated using the formulae:

µcs = 2πM2εcs(β) , εcs(β) '
{

1.04 β0.195 , for β > 10−2,

2.4 / ln(2/β), for β ≤ 10−2 .
(3.8)

In (3.8) the argument β is given by β = κ2/(2g2), while the U(1)X gauge coupling constant

g is considered to assume the value g ' 0.7 as is the case in GUT models. The central value

of the parameter ycs is 8.9 and its error margin lies in the interval [6.7,11.6], according to

the analysis in [42].

The recently announced three-years results of WMAP [4] improved upon the precision

of a number of other cosmological observables. The merits of an inflationary model can be

judged by comparing its predictions for the scalar spectral index, ns, the tensor to scalar

ratio, r, and the running of ns, dns/d ln κ, with the CMB data. In the FD-term hybrid

model, r = 16ε(φexit) is much lower than the WMAP bound, i.e. well below 10−2, and

dns/d ln κ is always smaller than 10−3 and so unobservable. In addition, the spectral index

ns in our model may well be approximated as follows: [6]

ns = 1 − 6ε(φexit) + 2η(φexit) ' 1 + 2η(φexit), (3.9)

since ε is negligible. The predicted value needs to be compared with the recent WMAP

results [4]:

ns = 0.951+0.015
−0.019 . (3.10)

The latter is translated into the double inequality,

0.913 . ns . 0.981 , (3.11)

at the 95% confidence level (CL).

The result (3.11) brings under considerable stress minimal F -term hybrid inflation

models [9]. This is due to the fact that these models predict ns extremely close to unity

without much running. To be precise, when the radiative corrections dominate the slope

of the potential, we obtain

ns ' 1 − 1/Ne ' 0.98 , (3.12)

for Ne = 55. On the other hand, if the non-renormalizable operator |S|4 in VSUGRA of (2.13)

dominates the slope of the potential of a mSUGRA model with cH = 0 [12], we obtain a

blue-tilted spectrum, with

ns ' 1 +
6M2

m2
Pl − 2M2Ne

>∼ 1 . (3.13)

A possible Hubble-induced positive term +c2
HH2|S|2 in VSUGRA [27, 29] implies an even

more pronounced blue spectrum and is therefore excluded by the current WMAP data.
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As noticed earlier in [45] and elaborated further in ref. [46], agreement of theory’s

prediction for ns with observation strongly suggests the presence of a negative Hubble-

induced mass term −c2
HH2|S|2 in VSUGRA, thereby clearly disfavouring the minimal Kähler

potential. In our analysis, we therefore consider the following next-to-minimal form for the

Kähler manifold [27]:

KS = |S|2 + kS
|S|4

4m2
Pl

, (3.14)

where the constant kS can be either positive or negative. Substituting (3.14) into the

general formula for the F -term type contributions to the SUGRA potential (see, e.g. [8]),

VF = eKS/m2
Pl

[
F i(K−1

S )jiFj − 3
|W |2
m2

Pl

]
, (3.15)

we arrive at the result (2.13) with c2
H = 3kS , after neglecting higher-order terms that are

small for |cH | <∼ 0.2. In (3.15), F i are the SUGRA-generalized F -terms and (K−1
S )ji is the

so-called inverse metric of the Kähler manifold, where a superscript (subscript) index i or

j on KS denotes differentiation with respect to S (S∗).

The aforementioned nmSUGRA inflationary potential, with a negative Hubble-induced

mass term, reaches a local minimum and maximum at the points φmin and φmax, respec-

tively. These points can be estimated by

φmax ' mPl

4πcH

(
6κ2N + 12λ2 + 9ρ2

)1/2
, φmin '

√
2

3
cHmPl . (3.16)

For relevant parameter values, for which φmax < φmin, and under convenient initial condi-

tions, the so-called hilltop inflation [45] can take place, where φ rolls from φmax down to

smaller values, such that φexit < φmax. In this nmSUGRA scenario, the value of ns can be

significantly lowered and can be approximately given by

ns ' 1 − 1

Ne
− c2

H . (3.17)

As we will show more explicitly in the next section, the spectral index ns can be easily

driven into the range of (3.11), for values of cH ∼ 0.1. The presence of the second next-to-

minimal term proportional to kS in (3.14) modifies the analytic expressions of (3.1), (3.3)

and (3.5) [46]. However, these modifications turn out to be numerically insignificant for

the predicted values of Ne and PR, if cH is not very large, e.g. cH
<∼ 0.2.

3.2 Numerical results

In our numerical estimates, we use the full expression for the inflationary potential Vinf

given in (2.8), which consists of the tree-level, 1-loop and SUGRA contributions, given

in (2.9), (2.12) and (2.13), respectively. We will ignore all soft SUSY-breaking terms, but

the tadpole term aS . To facilitate our numerical analysis, we introduce the real tadpole

parameter aS, which is defined, in terms of the Lagrangian parameter aS, by the relation:

aS = − 2|aS | cos (arg aS + arg S) . (3.18)
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Figure 1: The values of the inflationary scale M allowed by (3.1) and (3.5) (a) and the predicted

values of the spectral index ns (b) as a function of κ for N = 1 and ρ = λ = κ (light grey

lines) or ρ = λ = 4κ (grey lines), including the one-loop radiative corrections (dashed lines) or the

mSUGRA (cH = 0) contributions with aS = 1 TeV (solid lines). The upper bound of (3.6) for

ycs = 6.7, 8.9, 11.6 (from top to bottom) [cf. (3.10)] is also shown by thin lines (a) [(b)].

For any given value of κ, λ, ρ, aS and cH , we determine φexit and M , by imposing the

conditions (3.1) and (3.5) for the number Ne of e-folds and the power spectrum P
1/2
R ,

respectively. In addition, we compute ns by means of (3.9). Our results are presented in
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Figure 2: The allowed values of λ/κ versus ρ/κ for the mSUGRA scenario with M = 2×1016 GeV

and κ = 0.005 (dark grey line), κ = 0.001 (grey line) or κ = 0.0005 (light grey line).

figure 1 for the mSUGRA scenario and in figure 3 for the nmSUGRA scenario. They will

be analyzed in more detail in the following two subsections.

3.2.1 The minimal SUGRA scenario

Here, we present numerical results for the mSUGRA scenario. The values of the inflationary

scale M allowed by (3.1) and (3.5) and the predicted values of ns, as functions of κ, for ρ =

λ = κ (light grey lines) and ρ = λ = 4κ (grey lines), are displayed in figure 1(a) and 1(b),

respectively. Dashed lines indicate results obtained, when only the 1-loop contribution

to Vinf is considered and aS is set to zero, whilst solid lines represent numerical values

obtained, if the remaining contributions are included, namely those coming from (2.9)

with aS = 1 TeV and (2.13) with cH = 0. In figure 1, we observe that as the common

value for ρ, λ and κ increases, M and ns increase as well. In particular, M gets closer to

the GUT-scale value 2× 1016 GeV for κ ∼ 10−3, unlike the case λ = ρ = 0, where M takes

on much smaller values at this point [9, 12, 29].

It is now not difficult to identify in figure 1 the regimes, in which the different contri-

butions to Vinf dominate. More explicitly, for κ & 4×10−3 and ρ = λ = κ or κ & 10−3 and

ρ = λ = 4κ, the non-renormalizable SUGRA term of (2.13) dominates and drives ns to val-

ues close to or larger than 1 [cf. figure 1(b)]. On the other hand, for 4×10−4 . κ . 4×10−3

and ρ = λ = κ or 4 × 10−4 . κ . 10−3 and ρ = λ = 4κ, the 1-loop corrections (2.12)

dominate, in which case the spectral index ns takes on the predicted value ∼ 0.98 given

in (3.12). Finally, for κ . 4 × 10−3 and ρ = λ = κ or ρ = λ = 4κ, the tadpole term
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Figure 2 Figure 5

M = 2 × 1016 GeV κ = 0.005, M = 1016 GeV

κ φexit ns cH φmin φmax φexit ns

0.005 6.28 1.017 0.07 8.4 − 5.1 0.978

0.001 2.14 0.99 0.14 16.5 10.5 8.1 0.955

0.0005 1.51 0.99 0.18 21.7 12.8 11.2 0.941

Table 1: The values of φexit (in units
√

2M) and ns for several κ’s along the curves in figure 2 and

the values of φmin, φmax, φexit (in units
√

2M) and ns for several cH ’s along the curves in figure 5.

in (2.9) starts playing an important role. As M increases, the non-renormalizable SUGRA

term of (2.13) becomes again important [12, 29]. In this case, the prediction for P
1/2
R and

ns is almost independent of ρ and λ, as expected. For lower values of aS , the solid lines

in the latter regime would eventually approach the dashed lines [29]. In figure 1(b), we

also indicate with a thin line the 95% CL upper limit on ns stated in (3.11). Clearly, a

mSUGRA version of the FD-term hybrid model appears to be disfavoured by the most

recent WMAP results.

In addition, we show in figure 1(a) upper limits due to cosmic string effects based

on (3.6), for ycs = 6.7, 8.9, 11.6 (from top to bottom). Such constraints are only relevant

for an Abelian realization of the waterfall-gauge sector. We observe that the presence of

cosmic strings severely restrict the available parameter space of the U(1)X FD-term hybrid

model. As we discussed in section 2.3, however, these constraints do no longer apply, if

the waterfall-gauge sector realizes an SU(2)X gauge symmetry. Since the dimensionality of

the representation is N = 2 in this case, the allowed range of M as a function of κ slightly

changes. In fact, the allowed values of M become marginally larger than the ones already

shown in figure 1(a) by up to 12%, for ρ = λ = κ, while they stay at the 1% level, for

ρ = λ = 4κ. Likewise, the predicted values of ns remain almost unaffected at the 2% level,

from those presented in figure 1(b). Obviously, as ρ and λ gets larger than κ, the difference

between the N = 1 and N = 2 cases becomes practically unobservable.

Finally, in figure 2 we plot the allowed values of λ/κ versus ρ/κ, subject to the con-

straints (3.1) and (3.5), for M = 2 × 1016 GeV (close to the GUT scale) and for different

values of κ: κ = 0.005 (dark grey line), κ = 0.001 (grey line) or κ = 0.0005 (light grey line).

Along these contour lines, φexit and ns remain constant and equal to the values presented

in table 1. We observe that as κ increases, φexit and ns increase as well.

3.2.2 The next-to-minimal SUGRA scenario

We now turn our attention to the nmSUGRA scenario. Although we take the tadpole term

to be aS = 1 TeV, its impact on our results turns out to be insignificant for the whole range

of parameters we have scanned. The values of the inflationary scale M allowed by (3.1)

and (3.5) and the predicted ns as a function of κ are presented in figure 3(a) and 3(b),

respectively, for ρ = λ = κ (light grey lines) and ρ = λ = 4κ (grey lines). We consider

the two cases: cH = 0.07 (dashed lines) and cH = 0.14 (solid lines). As in the case of
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Figure 3: The values of the inflationary scale M allowed by (3.1) and (3.5) (a) and the predicted

values of the spectral index ns (b) as a function of κ for N = 1 and ρ = λ = κ (light grey

lines) or ρ = λ = 4κ (grey lines), for the nmSUGRA scenario with cH = 0.07 (dashed lines) or

cH = 0.14 (solid lines). In both cases we take aS = 1 TeV. The upper bound given in (3.6) (for

ycs = 6.7, 8.9, 11.6 from top to bottom) [cf. (3.10)] is also depicted by thin lines (a) [(b)].

mSUGRA, M and ns increase, with increasing ρ, λ and κ. Moreover, as κ decreases, the

non-renormalizable SUGRA contribution in (2.13) becomes subdominant and ns decreases.

Such a reduction becomes even more drastic with increasing cH , as can be easily inferred
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from figure 3(a), where the 95% CL upper bound on ns [cf. (3.11)] is indicated with a

thin horizontal line on the same plot. In stark contrast to the mSUGRA scenario, we

observe that our model can become perfectly consistent with the recent WMAP result for

0.04 . cH . 0.22. Note that the various lines terminate at large values of κ, for which the

two restrictions (3.1) and (3.5) cannot be simultaneously met.

It is interesting to further investigate the inflationary dynamics described by Vinf in

the presence of a negative Hubble-induced mass term. To this end, we exhibit in table 2

the values of cH , φmin, φmax, φexit (in units
√

2M) and the inflationary scale M (in units

of 1016 GeV) which are obtained for different values of κ, assuming that λ = ρ = κ or

λ = ρ = 4κ, and for fixed values of ns, i.e. ns = 0.913, 0.951, 0.981, compatible with the

95% CL limits given in (3.11). In addition, we present values for the parameter ∆exit =

(φmax − φexit)/φexit, which somehow quantifies the degree of tuning required in the initial

conditions of inflation. The entries without a value assigned (in tables 1 and 2) mean that

the respective inflationary potential Vinf has no distinguishable nearby local maximum

φmax. We notice from table 2, that as ns decreases with fixed values of κ, cH increases

while M and ∆exit decrease. Moreover, for fixed values of ns and decreasing κ, cH and

M decrease and φexit approaches φmax. On the contrary, with increasing κ, λ and ρ, the

inflationary scale M increases and the parameter ∆exit becomes larger. We have checked

that the inequality φmax > φexit is fulfilled along the lines presented in figure 3. In this

respect, we also note that φmin is in general much larger than φmax especially for low values

of ns.

It is important to observe from table 2 that there is a degree of tuning required for

the values φexit with respect to φmax. For values of κ >∼ 10−3, we find that the degree of

tuning required is not very serious, i.e. ∆exit
>∼ 10%. However, the situation becomes rather

delicate as κ gets smaller than 10−3, for ns
<∼ 0.97. In this case, we find that φmax ≈ φexit,

leading to a substantial tuning at the few per cent level in the initial conditions of inflation.

As in the mSUGRA case, we also show in figure 3(a) the upper bounds resulting from

cosmic-string effects [cf. (3.6)], for ycs = 6.7, 8.9, 11.6 (from top to bottom). As men-

tioned above, these constraints are only relevant for an Abelian waterfall-gauge sector with

dimensionality N = 1. However, unlike in the mSUGRA case, these restrictions appear

less harmful, since the inflationary scale M assumes smaller values (see also table 2) and

the tadpole term becomes unimportant. Thus, larger values of κ up to order 10−2 can be

tolerated in this case. For the non-Abelian SU(2)X FD-term hybrid model, the restrictions

from considerations of cosmic-string effects are totally lifted and the lines depicted in fig-

ure 3 only vary within the few per cent level. Such a variation becomes even smaller if

ρ > κ and/or λ > κ.

In figure 4, we present the parameter space (κ, cH) which is allowed by the condi-

tions (3.1), (3.5) and (3.10) in the nmSUGRA scenario. The light grey (grey) hatched area

indicates the allowed region for ρ = λ = 4κ (ρ = λ = κ). The lower (upper) boundaries

of the allowed regions correspond to the upper (lower) bound on ns, cf. (3.11), while the

solid lines correspond to the central value of ns, cf. (3.10). We find that values of cH ∼ 0.2

and κ ∼ 0.05 are still possible in a nmSUGRA extension of the FD-term hybrid model.
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Figure 4: The parameter values (κ, cH) allowed by (3.1), (3.5) and (3.10) in the nmSUGRA

scenario, for ρ = λ = κ (light grey hatched area) and ρ = λ = 4κ (grey hatched area). The grey

(light grey) line has been obtained by fixing ns to its central value given in (3.10), for ρ = λ = 4κ
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Figure 5: The allowed values of ρ/κ versus λ/κ for the nmSUGRA scenario with κ = 0.005, M =

1016 GeV and cH = 0.18 (dark grey line), cH = 0.14 (grey line) or cH = 0.07 (light grey line).
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κ cH M φmin φmax φexit ∆exit cH M φmin φmax φexit ∆exit cH M φmin φmax φexit ∆exit

ns = 0.913 ns = 0.951 ns = 0.981

λ = ρ = κ

0.01 0.179 0.34 73.6 11.9 11.3 0.050 0.130 0.53 32.0 10.8 8.75 0.19 0.065 0.78 16.7 − 7.50 −
0.005 0.176 0.34 73.1 6.0 5.7 0.053 0.120 0.53 32.2 6.2 4.48 0.18 0.040 0.78 8.20 − 3.90 −
0.001 0.173 0.25 95.6 1.64 1.6 0.028 0.120 0.38 45.0 1.55 1.42 0.09 0.060 0.58 19.0 2.10 1.36 0.34

0.0005 0.165 0.19 121 1.23 1.21 0.014 0.116 0.28 58.8 1.19 1.15 0.04 0.060 0.43 20.0 1.37 1.13 0.17

λ = ρ = 4κ

0.01 0.216 0.56 49 23.0 22.0 0.046 0.190 0.83 23.0 21.9 17.0 0.22 0.169 1.12 26.0 − 14.3 −
0.005 0.188 0.61 41 11.4 10.8 0.050 0.146 0.96 26.0 9.1 8.30 0.19 0.103 1.36 8.6 − 7.05 −
0.001 0.177 0.57 43 2.48 2.38 0.043 0.125 0.89 24.6 2.28 1.96 0.14 0.058 1.30 4.7 − 1.82 −
0.0005 0.178 0.46 54 1.53 1.49 0.028 0.129 0.68 26 1.45 1.33 0.08 0.070 1.00 9.6 1.83 1.30 0.29

Table 2: The values of cH , M (in units 1016 GeV) φmin, φmax, φexit (in units
√

2M) and ∆exit = (φmax − φexit)/φmax, for selected values of κ, λ

and ρ, and for fixed values of the spectral index ns.
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Finally, we plot in figure 5 the allowed values of λ/κ versus ρ/κ, on account of the

inflationary constraints (3.1) and (3.5), for κ = 0.005, M = 1016 GeV, and for cH = 0.18

(dark grey line), cH = 0.14 (grey line) and cH = 0.07 (light grey line). We have selected

a slightly lower value for M , because no viable nmSUGRA scenarios seem to exist with

acceptable values for ns, if M = 2 × 1016 GeV and cH ≥ 0.07. Along the contour lines

in figure 5, φmin, φmax, φexit and ns remain constant and equal to the values presented in

table 1. We observe that as cH increases, φexit approaches φmax, φmin increases, while ns

decreases. This kinematic behaviour is in agreement with our discussion related to (3.16)

and (3.17).

4. Preheating

As stated in the Introduction, gravitinos, if thermally produced during the early stages

of the evolution of the Universe, will spoil the successful predictions of BBN [47]. Their

disastrous consequences may be avoided, if the reheat temperature Treh of the Universe is

not very high. In fact, depending on the decay properties of the gravitino, it should be

Treh
<∼ 107–1010 GeV [51, 56]. This fact leads to a tension between the allowed range of Treh

and the natural scale of hybrid inflation M , which is of order ∼ 1016 GeV. The traditional

way taken to get around this problem is to consider scenarios where the decay rate of the

inflaton to SM particles is extremely suppressed, e.g. by suppressing all possible couplings

of the inflaton to the SM fields.

In this and next sections, we present in detail an alternative solution to the above

gravitino overabundance problem [13]. Our solution relies on the huge entropy release

caused from the late out-of-equilibrium decays of the supermassive waterfall particles. The

entropy produced through this mechanism is sufficient to reduce the gravitino abundance

Y eG to levels compatible with BBN limits discussed in detail in section 5. Figure 6 gives

a schematic representation of the post-inflationary dynamics of the early Universe, as is

predicted by the FD-term hybrid model. Shortly after inflation ends, the energy density

ρκ of the Universe is predominantly stored to coherently oscillating inflaton condensates

which scale as a−3, where a is the usual cosmological scale factor describing the expansion of

the Universe. The coherent oscillations of the inflaton-related condensates also give rise to

another non-perturbative mechanism called preheating. During preheating, waterfall gauge

particles of energy density ρg are produced almost instantaneously, which are absolutely

stable if a D-parity, an analogue of the usual R-parity in the MSSM, is conserved. Then, the

following scenario visualized in figure 6 emerges. First, ρg/ρκ remains constant during the

epoch of coherent oscillations, since both ρg and ρκ behave as matter energy densities and

scale as a−3 during this period. The constancy of ρg/ρκ ceases to hold, when the coherently

oscillating inflaton condensates decay and their energy density ρκ gets distributed among

light relativistic degrees of freedom. As a consequence of the latter, ρκ will be ∝ a−4,

whilst ρg will still be ∝ a−3. If the initial value of ρg/ρκ is not very suppressed, e.g. it is of

order 10−4–10−5, the waterfall gauge particles will eventually dominate the energy density

of the Universe, leading to a second matter dominated epoch which will last until these

particles decay via D-parity violating couplings. This is expected to produce an enormous
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Figure 6: Schematic representation of the thermal history of the Universe in the FD-term hybrid

model.

entropy release and so reduce the gravitino-to-entropy ratio Y eG
to values compatible with

BBN constraints.

The discussion in this section is organized as follows: in section 4.1, we pay special

attention to D-parity and derive the particle spectrum of the combined inflaton-waterfall

sector in the supersymmetric limit of the theory. In addition, we compute the decay rates of

all inflaton-related and waterfall gauge particles. Finally, in section 4.2, we discuss how the

waterfall gauge particles are instantaneously produced through preheating and calculate

the resulting energy density ρg carried by these particles.

4.1 D-Parities and the inflaton-waterfall sector

Let us first consider a model with a U(1)X gauge-symmetric waterfall sector. The case of

a waterfall sector realizing a non-Abelian SU(2)X gauge symmetry is analogous and will

be discussed later. In terms of superfields, the minimal gauge-kinetic Lagrangian of the

U(1)X model reads:

Lkin =

∫
d4θ

(
1

2
W αWα δ(2)(θ̄) +

1

2
W α̇W

α̇
δ(2)(θ) + X̂†

1e
2g bVX X̂1 + X̂†

2e
−2g bVX X̂2

)
,

(4.1)

where V̂X is the U(1)X vector superfield and Wα (W α̇) are their respective chiral (anti-

chiral) field strengths. The latter are given by

Wα = − 1

8g
D̄2 (e−2g bVX Dα e2g bVX ) , W α̇ =

1

8g
D2 (e2g bVX D̄α̇ e−2g bVX ) , (4.2)
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where Dα and D̄α̇ are the usual SUSY-covariant derivatives which are irrelevant for our

discussion here. The minimal gauge-kinetic Lagrangian (4.1) possesses the discrete sym-

metry

D : X̂1 ↔ X̂2 , V̂X → − V̂X , (4.3)

whereas all other superfields do not transform. It is not difficult to verify that the complete

FD-term hybrid model, including the superpotential (2.1) and its associated soft SUSY-

breaking sector, is invariant under the discrete symmetry (4.3) in the unbroken phase of the

theory. After the SSB of U(1)X , the waterfall fields receive the VEVs: 〈X1〉 = 〈X2〉 = M .

Thus, the above discrete symmetry survives even in the spontaneously broken phase of the

theory. Since the discrete symmetry acts on a gauged waterfall sector, it manifests itself

as a kind of parity, which we call D-parity.

It therefore proves convenient to choose a weak basis where the fields are eigenstates of

D-parity. To this end, we define the linear combinations in terms of the waterfall superfields

X̂± =
1√
2

(
X̂1 ± X̂2

)
. (4.4)

Evidently, the superfield X̂+ (X̂−) has even (odd) D-parity; its D-parity quantum number

is +1 (−1). The vector superfield V̂X , which is already a D-parity eigenstate, has odd

D-parity. All remaining fields, including the inflaton superfield Ŝ and the other MSSM

superfields, have positive D-parity.

As a consequence of D-parity conservation, all D-odd particles will be stable, in as

much the same way as the usual R-parity guarantees that the LSP of the MSSM is stable.

As we explicitly mentioned in section 2.1, the simplest way to break D-parity is to add a

FI D-term to the model, e.g.

LFI = − g

2
m2

FI

∫
d4θ V̂X = − g

2
m2

FI D , (4.5)

where D is the auxiliary component of the vector superfield V̂X . It is obvious that LFI flips

sign under the discrete symmetry (4.3). Other mechanisms of explicitly breaking D-parity

are discussed in appendix A.

We now calculate the particle spectrum of the inflaton-waterfall sector in the presence

of a subdominant FI D-term mFI and in the supersymmetric limit of the theory. With this

aim, we expand the scalar D-parity eigenstates X± about their VEVs:

X± = 〈X±〉 +
1√
2

(
R± + iI±

)
. (4.6)

The VEVs 〈X±〉 are determined from the minimization conditions of the combined F - and

D-term scalar potential

VFD = F ∗
SFS +

1

2
D2 , (4.7)

where

FS =
κ

2

(
X2

+ − X2
− − 2M2

)
, D =

g

2

(
X∗

+X− + X∗
−X+ − m2

FI

)
. (4.8)

– 27 –



J
H
E
P
1
2
(
2
0
0
6
)
0
3
8

Sector Boson Fermion Mass

Inflaton

(κ-sector)

D-parity: +1

S ,

R+ − v
2M R− ,

I+ − v
2M I−

ψκ =

(
ψX+

− v
2M ψX−

ψ†
S

)
√

2κM

U(1)X
Waterfall Gauge

(g-sector)

D-parity: −1

Vµ [I− + v
2M I+] ,

R− + v
2M R+

ψg =

(
ψX−

+ v
2M ψX+

−iλ†

)
gM

Table 3: Particle spectrum of the inflaton and the U(1)X waterfall-gauge sectors after inflation,

where the approximate D-parity for each sector is displayed. The field Vµ denotes the U(1)X gauge

boson and λ its associate gaugino. The would-be Goldstone boson related to the longitudinal degree

of Vµ appears in the square brackets.

Since SUSY is preserved after the SSB of U(1)X , the scalar potential VFD will vanish at

its ground state, i.e. 〈VFD〉 = 0. Consequently, to leading order in mFI/M , the VEVs of

the scalar inflaton-waterfall fields are

〈S〉 = 0 , 〈X+〉 =
√

2M , 〈X−〉 =
v√
2

, (4.9)

where v = m2
FI/(2M). Notice that the VEVs of the F - and D-terms vanish through order

mFI/M considered, i.e. 〈D〉 = 0 and 〈FS〉 = O(m4
FI/M

2).

To derive the mass spectrum, we expand the potential about its ground state up

to terms quadratic in all the fields involved. We first consider the F -terms. To order

v/M (= m2
FI/M

2), we find the approximate mass eigenstates:

S =
1√
2

(
φ + ia

)
, R+ − v

2M
R− , I+ − v

2M
I− . (4.10)

All the above fields, consisting of 4 bosonic degrees of freedom in total, share the common

mass

mκ =
√

2κM . (4.11)

As a consequence of SUSY, the corresponding 4 fermionic degrees of freedom form a Dirac

spinor ψκ, which also has the same mass (4.11). We refer to these particles as inflaton-

related or κ-sector particles.

The remaining scalar fields receive their masses from the D-term of the scalar potential

VFD in (4.7). Performing an analogous calculation as outlined above, we obtain to order

v/M the scalar mass eigenstates:

I− +
v

2M
I+ , R− +

v

2M
R+ . (4.12)

The first field is absorbed by the longitudinal component of the U(1)X gauge field Vµ,

via the Higgs mechanism. In the supersymmetric limit, all these fields, which mediate 4

bosonic degrees of freedom, are degenerate and characterized by the common mass

mg = g M . (4.13)
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Like in the κ-sector case, the respective 4 fermionic degrees of freedom will make up a 4-

component Dirac spinor of mass mg. We refer to this group of particles as waterfall gauge

or g-sector particles. In table 3, we present a summary of all the inflaton-related (κ-sector)

and waterfall-gauge (g-sector) particles. As can also been seen from the same table 3, κ-

sector particles are predominantly D-even, whereas the g-sector ones have approximately

D-odd parity.

It is now interesting to calculate the decay rates of the κ- and g-sector particles and

analyze their implications for the reheat temperature of the Universe. Starting with the

singlet field S, it decays predominantly into pairs of charged and neutral higgsinos, h̃±
u,d,

h̃0
u,d,

˜̄h
0

u,d, and into pairs of right-handed Majorana neutrinos ν1,2,3 R. On the other hand,

the scalars R+ and I+ decay into the SUSY-conjugate partners of the aforementioned fields

at the same rate. In fact, we find a common decay rate for each of the κ-sector particles:

Γκ =
1

32π

(
4λ2 + 3ρ2

)
mκ . (4.14)

The reheat temperature Tκ resulting from these perturbative decays of the κ-sector particles

may be estimated using the relation Γκ = H(Tκ), where the Hubble parameter H(T ) is

given in the radiation dominated era of the Universe. In this way, we obtain

Tκ =

(
90

π2 g∗

)1/4 √
Γκ mPl , (4.15)

where g∗ = 240 is the number of the relativistic degrees of freedom in the FD-term hybrid

model. Substituting (4.14) and (4.11) into (4.15), we arrive at the expression:

Tκ = 8.1 · 1015 GeV ×
[
κ(4λ2 + 3ρ2)

]1/2
(

M

1016GeV

)1/2

. (4.16)

Assuming that no relevant amount of entropy is released during the subsequent thermal

history of the Universe, the gravitino constraint on the reheat temperature Tκ
<∼ 109 GeV

requires that each individual coupling κ, λ and ρ must be smaller than about 10−5, if

M ∼ 1016 GeV. Further details are given in section 5.

The above unnatural tuning of all inflaton couplings to SM fields may be avoided, if the

large entropy release from the late decays of the g-sector particles is properly considered.

An extensive discussion of this issue is given in section 5. Here, we simply compute the

decay rates of the g-sector particles which are induced by a non-vanishing FI term mFI.

In fact, the relevant interaction Lagrangian is given by

Lint =
g2m2

FI

8M
R− (R2

+ + I2
+) . (4.17)

As mentioned above, this induces a decay width for the D-odd particle R−, which is easily

calculated to be

Γg =
g3

128π

m4
FI

M3
. (4.18)

In close analogy with the κ-sector, each g-sector particle decay rate is equal to Γg.
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Let us now consider a model with a waterfall sector based on the SU(2)X gauge group.

As was mentioned in section 2.1, the waterfall superfields X̂1 and X̂2 are chosen to be-

long in this case to the 2-component fundamental and anti-fundamental representations of

SU(2)X , respectively. Although the two representations are equivalent for the SU(2) case,

we nevertheless use this convention, such that its generalization to SU(N) theories, with

N > 2, is straightforward. The superpotential is almost identical to the one given in (2.1),

with the obvious substitution: X̂1X̂2 → X̂T
1 X̂2. Extending (4.1) to the SU(2)X case, the

minimal gauge-kinetic Lagrangian is written down

Lkin =

∫
d4θ

[
1

2
Tr (W αWα) δ(2)(θ̄) +

1

2
Tr (W α̇W

α̇
) δ(2)(θ)

+ X̂†
1e

2g bVX X̂1 + X̂†
2e

−2g bV T
X X̂2

]
. (4.19)

In the above, V̂X = V̂ a
X T a is the SU(2)X vector superfield and Wα = W a

α T a (W α̇ = W
a
α̇ T a)

are the corresponding non-Abelian chiral (anti-chiral) field strengths in the so-called Wess–

Zumino (WZ) gauge. The superscript ‘T ’ on V̂X , i.e. V̂ T
X , indicates transposition that acts

on the generators T a = 1
2τa of the SU(2) group, where τ1,2,3 are the usual Pauli matrices.

Finally, the trace in (4.19) is understood to be taken over the group space.

The minimal SU(2)X gauge-kinetic Lagrangian is invariant under the discrete trans-

formations

D1 : X̂1 ↔ X̂2 , V̂X → −V̂ T
X . (4.20)

Notice that under the action of D1 in (4.20), the field strengths transform as: Wα →
−(Wα)T and W α̇ → −(W α̇)T in any SUSY gauge, including the WZ gauge. If all other

superfields do not transform, the complete Lagrangian of the non-Abelian FD-term hybrid

model will be invariant under the discrete transformation (4.20) in the unbroken phase of

the theory.

Our discussion so far has made no reference to the specific properties of SU(2)X and so

applies equally well to any SU(N > 2) theory. However, in the SU(2)X case, the FD-term

hybrid model exhibits an additional Abelian or diagonal discrete symmetry. This may be

defined by

D2 : X̂1 → τ3X̂1 , X̂2 → τ3X̂2 , V̂X → τ3 V̂X τ3 , (4.21)

whereas all other superfields do not transform. It is then easy to see that (4.21) implies:

Wα → τ3 Wα τ3 in any SUSY gauge and likewise for W α̇. Since τ3 = (τ3)T and (τ3)2 = 12,

the invariance of the Lagrangian (4.19) and of the whole model under the action of D2 is

evident.4

4In general, for a waterfall-gauge sector based on an SU(N > 2) group, there are N distinct discrete

symmetries. The first is given by (4.20), while the remaining N − 1 symmetries result from replacing τ 3

with Dn = diag (1, 1, . . . , 1,−1, 1, . . . , 1). The entry −1 occurs at the n position of the N-dimensional

diagonal matrix Dn, with the restriction 1 < n ≤ N . Obviously, it is Dn = DT
n and D2

n = 1N . These

discrete symmetries are non-Abelian in the adjoint group space, in the sense that the eigenvalue matrix cab,

determined by means of the relation DnT aDn = cabT b, is not diagonal.
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We now proceed to compute the particle spectrum of the non-Abelian FD-term hybrid

model after the SSB of SU(2)X . For this purpose, it is useful to introduce the notation

Z =

(
+Z
−Z

)
, (4.22)

where Z is a generic SU(2)X -doublet or anti-doublet (conjugate) field. The left super-

scripts ± on Z denote the eigenvalues of the discrete symmetry transformation operator

D2 = τ3 defined in (4.21), and they should not be confused with the corresponding eigen-

values of the isospin operator T 3 of the SU(2)X group. In the unitary gauge, the minimum

of the scalar potential occurs for the field values

+X1 = +X2 = M , −X1 = −X2 = 0 . (4.23)

Consequently, the discrete symmetries D1 and D2 given in (4.20) and (4.21) remain intact

after the SSB of the SU(2)X gauge group. Since they act on a gauged waterfall sector, they

are actually parities. We refer to them as D1- and D2-parities, or collectively as D-parities.

Analogously to the U(1)X case, we express the SU(2)X doublets X1,2 in terms of

eigenstates of the D1,2-parities [cf. (4.4)]. In terms of their components, these fields may

be conveniently expressed as follows:

±X± = 〈X±〉 +
1√
2

(
±R± + i±I±

)
, (4.24)

with 〈X+〉 =
√

2M and 〈X−〉 = 0 in the absence of any D-parity violating coupling in the

theory. Moreover, the SU(2)X D-terms are given by

Da =
g

2

(
X†

1τ
aX1 − XT

2 τaX∗
2

)
. (4.25)

In the D-parity eigenbasis (4.4), they take on the form

Da =
g

2
×

{
X†

+τaX− + X†
−τaX+ , for τa symmetric (a = 1, 3)

X†
+τaX+ + X†

−τaX− , for τa antisymmetric (a = 2)
. (4.26)

Exactly as in the U(1)X case, we find that there are two groups of mass-degenerate fields,

κ- and g-sector, with masses mκ and mg given in (4.11) and (4.13), respectively. The

complete inflaton-waterfall spectrum, along with their D1 and D2 parities, is exhibited in

table 4.

The conservation of both D1,2-parities enforces the stability of all g-sector particles.

Instead, if only the D1-parity, but not D2, is conserved, then only the D1-odd particles from

table 4 will be stable, and vice versa. Obviously, both D1- and D2-parities need be broken

to make all g-sector particles unstable. In appendix A, we discuss possible mechanisms of

explicit D-parity breaking for an SU(2)X waterfall-gauge sector. In general, there are two

mechanisms for breaking D-parity. The first one consists of including higher-order non-

renormalizable operators in the Kähler potential whose presence explicitly breaks D-parity,

whilst the second one is very analogous to the U(1)X case. Although a bare FI D-term is
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Sector Boson Fermion Mass D1-parity D2-parity

Inflaton

(κ-sector)
S , +R+, +I+ ψκ =

(
ψ+X+

ψ†
S

)
√

2κM + +

V 1
µ [−I−] ,

−R− ;
ψ1

g =

(
ψ−X−

−iλ1†

)
gM − −

SU(2)X
Waterfall Gauge

(g-sector)

V 2
µ [−R+] ,

−I+ ;
ψ2

g =

(
iψ−X+

−iλ2†

)
gM + −

V 3
µ [+I−] ,

+R−
ψ3

g =

(
ψ+X−

−iλ3†

)
gM − +

Table 4: Particle spectrum of the inflaton and an SU(2)X -gauged waterfall sectors after inflation.

The would-be Goldstone bosons of the respective SU(2)X gauge fields are given in the square

brackets

not possible in non-Abelian theories, effective Da-tadpole terms may appear after the SSB

of SU(2)X . The effective Da-tadpole terms do not break SUSY. They get generated either

from a non-renormalizable Kähler potential or are induced radiatively, after integrating out

Planck-scale degrees of freedom. Thus, without excessive tuning, the effective Da-tadpole

terms can in general be small of the size required to obtain a second reheat phase in the

evolution of the Universe.

Independently of the mechanism which is invoked to break D-parity, we may in general

parameterize the g-sector particle decay rates through the D-parity-violating mass mFI,

which enters the relation (4.18). In the next section, we will discuss how these relatively

long-lived g-sector particles are produced via preheating.

4.2 Preheating and thermalization

After the inflaton field φ passes below a certain critical value φc ≈ M , the so-called waterfall

mechanism gets triggered. In this case, the inflaton φ and all other κ-sector fields (see

tables 3 and 4) oscillate about their true supersymmetric minima: 〈S〉 = 0 and 〈X+〉 =√
2 M . In this waterfall epoch, most of the energy density of the Universe is stored to these

coherently oscillating κ-sector field condensates and is given initially by ρκ = κ2M4. During

the waterfall regime, however, there is an additional mechanism for particle production

called preheating.

In general, there are two phenomena associated with the notion of preheating:

• The first effect of preheating arises from the negative curvature of the potential with

respect to the κ-sector fields. Such a negative curvature corresponds to a nega-

tive tachyonic mass term in the potential. As a consequence, the particle number

within infrared modes of momentum less than this tachyonic mass grows exponen-

tially. This phenomenon is known as the negative coupling instability or tachyonic

preheating [48]. Numerical simulations have shown that the field amplitudes suffer

– 32 –



J
H
E
P
1
2
(
2
0
0
6
)
0
3
8

strong damping during the first oscillation, due to the energy transfer to the infrared

modes. In the FD-term hybrid model, only κ-sector particles are produced by tachy-

onic preheating. A full study of this process, including thermal equilibration of the

κ-sector particles, is a highly nontrivial matter and has so far only been achieved for

very particular models of preheating. Since the fraction of the energy density trans-

ferred instantaneously to κ-sector particles through tachyonic preheating is rather

small, compared to their initial energy density ρκ, these model-dependent details for-

tunately have no dramatic impact on the expansion and the thermal history of the

Universe. Therefore, we do not consider the phenomenon of tachyonic preheating in

the FD-term hybrid model.

• Particle production may also occur during the coherent oscillation regime, because

both the κ- and g-sector particles have masses that can vary very strongly with time.

This effect is called preheating via a time-varying mass or simply preheating [49, 50].

As we will show below, a small but significant fraction of the total energy density of

the Universe ρκ can be transferred, almost instantaneously, to the g-sector particles,

e.g. ρg ∼ 10−4ρκ, for κ ∼ 10−2. As we illustrated in the beginning of this section

and will show more explicitly in section 5, this small fraction of the g-sector energy

density is sufficient to alter dramatically the thermal history of the Universe.

Our interest lies therefore in computing the production energy density ρg of the g-sector

particles via preheating. A key element in such a computation is the profile of the time-

varying mass of the g-sector particles, mg(t) = g X+(t)/
√

2. The exact time dependence of

mg(t) depends crucially on the dynamics of tachyonic preheating. Comparative numerical

studies strongly suggest that a sufficiently accurate description of the time evolution of the

g-sector mass is obtained by [50]5

mg(t) =
gM

2

[
tanh(κMt) + 1

]
. (4.27)

Notice that the time-dependent function mg(t) properly interpolates between the values

mg(t → −∞) = 0 and mg(t → ∞) = gM that occur in the beginning and the end of the

waterfall epoch, respectively.

Given the time-dependent mass (4.27), we may compute the occupation number of the

fermionic g-sector modes by solving the Dirac equation
[
i γ0 ∂t − γ · k − mg(t)

]
uh(t) = 0 . (4.28)

The solution to the above equation may be expressed by the time-dependent Dirac spinor

uh(t) in the chiral representation:

uh(t) =

(
Lh(t)

Rh(t)

)
⊗ ξh , (4.29)

5To be specific, the mass-term time-variation studied in [50] was for a model with a single field rolling

from the top of a local maximum of a quartic potential. It was found that a tanh-functional dependence

accurately captures the evolution of the time-varying mass. Even though the model considered [50] is still

different from our hybrid inflationary potential, the derived tanh-functional profile for the time-varying

mass should be regarded as a substantial improvement over the one assumed in [13].
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where ξh is the helicity two-component eigenspinor for helicity h = ±. The occupation

number of Dirac fermions produced via preheating in the true supersymmetric vacuum at

t → ∞ is given by

nF
h(k) =

1

2ω(k)

[
hk(|Rh|2 − |Lh|2) − mg(LhR∗

h + L∗
hRh)

]
+

1

2
, (4.30)

where k = |k| is the modulus of the 3-momentum. With the help of (4.30), the k-mode

energy density is calculated by ρ(k) =
∑

h ω(k)nF
h(k), where ω(k) =

√
k2 + m2

g(t → ∞).

To obtain a unique solution to the linear differential equation (4.28), we impose initial

conditions that correspond to a zero occupation number, i.e. nF
h(k) = 0. These are given

at t → −∞ by

Lh =

√
ω(k) + hk

2ω
, Rh =

√
ω(k) − hk

2ω
. (4.31)

By analogy, the occupation number of the bosonic g-sector modes are determined by

solving the Klein–Gordon equation of motion
[
∂2

t + k2 + m2
g(t)

]
ϕ(t) = 0 , (4.32)

and imposing the initial conditions at t → −∞,

ϕ =
1

2
√

ω(k)
,

∂ϕ

∂t
= − i

√
ω

2
. (4.33)

As in the Dirac case, these initial conditions correspond to vanishing occupation numbers.

The occupation number of the bosonic modes at t → ∞ is given by

nB(k) =
1

2
ω(k) |ϕ|2 +

1

2ω(k)

∣∣∣∣
dϕ

dt

∣∣∣∣
2

− 1

2
. (4.34)

Using the time-dependent mass-term (4.27), along with the initial conditions (4.31)

and (4.34), one may obtain analytical expressions in terms of hypergeometric functions [50],

for the particle production between t → −∞ and t → ∞. For κ ¿ g and k ¿ gM , these

analytical expressions reduce to

n(k) =
2

exp
(

πk
κM

)
± 1

, (4.35)

where the sign + applies for n(k) = nF
h(k) and the sign − for n(k) = nB(k). Recalling that

there are 2 helicity states for a g-sector fermion and 4 real degrees of freedom for a g-sector

boson, we may calculate the occupation number of all g-sector modes as follows:

ng(k) = Nb

(
∑

h=±
nF

h(k) + 4nB(k)

)
, (4.36)

where Nb is the number of broken generators of the waterfall gauge symmetry. In particular,

it is Nb = 1 for U(1)X and Nb = 3 for SU(2)X [cf. tables 3 and 4]. Since the produced
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particles are non-relativistic, i.e. k ¿ gM , their occupation number distribution ng(k) can

easily be integrated to give the total energy density carried by the g-sector fields, i.e.

ρg

ρκ
≈ gM

ρκ 2π2

∞∫

0

k2dk ng(k) ≈ 2.1 × 10−2 Nb κg . (4.37)

Here ρκ = κ2M4 is the energy density of the κ-sector particles shortly before the waterfall

transition. Equation (4.37) will be a valuable input for the next section to compute the

true reheat temperature Treh of the Universe, which arises from the combined effect of the

κ- and g-sector particle decays.

5. Coupled reheating and gravitino abundance

In the previous section, we have seen that the g-sector particles, e.g. ψg, R− and Vµ, can

be abundantly produced during the preheating epoch. Assuming that they dominate the

Universe at some later time, their decays induced by the small D-parity violating couplings

will give rise to a second reheat temperature, which we denote here by Tg. As we will show

in this section, the large entropy, which is released by the late decays of the g-sector

particles, will be sufficient to dilute the gravitinos to levels compatible with BBN limits.

More explicitly, we present a detailed numerical analysis of the gravitino abundance Y eG,

where the combined effect of the κ- and g-sector particle decays is carefully taken into

account. As we mentioned in the Introduction, we call such a two-states’ mechanism

of reheating the Universe coupled reheating. In section 5.1, we set the BEs relevant to

coupled reheating and give numerical estimates of the gravitino abundance Y eG and the

energy densities ρκ, ρg and ρrad related to the κ- and g-sector particles and their radiation,

respectively. In section 5.2, we present a semi-analytic approach to BEs, where useful

approximate expressions for Y eG
are obtained. Finally, in section 5.3 we derive gravitino

abundance constraints on the theoretical parameters.

5.1 Boltzmann equations

The number density nG̃ of gravitinos, the energy density ρκ (ρg) of the κ (g)-sector particles

and the energy density ρrad of the radiation produced by their decays satisfy the following

system of BEs [53]:

ṅ eG + 3Hn eG = C eG T 6 ,

ρ̇κ + 3Hρκ = −Γκ ρκ ,

ρ̇g + 3Hρg = −Γg ρg ,

ρ̇rad + 4Hρrad = Γκ ρκ + Γg ρg , (5.1)

where a dot on n eG, ρκ,g and ρrad indicates differentiation with respect to the cosmic time

t. The quantity C eG(T ) is a collision term for gravitino production calculated in [52, 51]

and the Hubble parameter H is given by

H =
1√

3 mPl

(
m eG

n eG
+ ρκ + ρg + ρrad

)1/2

, (5.2)
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where m eG is the mass of the gravitino G̃. In addition, the temperature T and the entropy

density s may be determined through the relations:

ρrad =
π2

30
g∗ T 4 , s =

2π2

45
g∗ T 3, (5.3)

where g∗(T ) is the effective number of degrees of freedom at temperature T . Since the

initial temperature is Tin ¿ κM , it is g∗ = 240 for all T > MSUSY.

Here we should note that in BEs (5.1) we have neglected the collision terms related

to the self-annihilation of g-sector particles. Their thermally averaged cross section times

velocity, 〈σannv〉, is estimated to be

〈σann v〉 <∼ 10−35 GeV−2 , (5.4)

which is numerically negligible.

The numerical analysis of the BEs (5.1) gets simplified by absorbing the Hubble ex-

pansion terms into new variables. To this end, we define the following dimensionless quan-

tities [54]:

f eG
= n eG

a3 , fκ = ρκa3 , fg = ρga
3 , frad = ρrada4. (5.5)

where a is the usual expansion scale factor of the Universe. We also convert the time

derivatives to derivatives with respect to the logarithmic time ln (a/aI) [55], where aI is

some initial or reference value for the scale factor a. With the above substitutions, the

BEs (5.1) may be re-written as

Hf ′
eG

= C eG
T 6a3 ,

Hf ′
κ = −Γκfκ ,

Hf ′
g = −Γg fg ,

Hf ′
rad = Γφfφa + Γgfga , (5.6)

where the prime now denotes differentiation with respect to ln (a/aI). Correspondingly,

the Hubble parameter H and temperature T may now be expressed in terms of the newly

introduced variables (5.5) as follows:

H =
1√

3 a3/2 mPl

(
m eGf eG + fκ + fg + a−1frad

)1/2

, T =

(
30 frad

π2g∗a4

)1/4

. (5.7)

The transformed system of BEs (5.6) can be numerically solved by imposing the following

initial conditions:

fκ,I a
3
I = κ2M4 , fg,I a3

I = 2.1 × 10−2gκ3 M4 , f eG,I = 0 , frad,I = 0 , (5.8)

where the subscript I refers to quantities defined at ln (a/aI) = 0. Notice that the initial

value fg,I a
3
I is equal to the energy density ρg,I of the g-sector particles produced during

preheating and is given in (4.37) .

In figure 7(a), we present numerical estimates of the cosmological evolution of energy

densities ρκ,g,rad as functions of the temperature T in a double x-y logarithmic plot, where
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ρκ is represented by a dark grey line, ρg by a grey line and ρrad by a light grey line. As an

example, we use M = 0.7 × 1016 GeV, ρ = λ = κ = 10−3 and mFI/M = 4.3 × 10−7 (bold

lines) and mFI/M = 10−3 (thin lines). Since ρrad is affected very little for the larger value

of mFI/M , it has not been added to the plot. The intersection point of the T -dependent

functions ρκ and ρrad signals the completion of the κ-sector particle decays. For the specific

example, this point occurs at Tκ = 3.2 × 1011 GeV. For mFI/M = 4.3 × 10−7 GeV, we

obtain two more intersections: one for T = Teq ' 3.9× 106 GeV where ρg(Teq) = ρrad(Teq)

and another one for T = Tg ' 200 GeV, where the g-sector particles have practically

decayed away and ρg(Tg) = ρrad(Tg). Thanks to the huge entropy release in this case,

the gravitino abundance Y eG = n eG/s gets sharply decreased from about 2.2 × 10−11 to

2.4 × 10−15. This dramatic reduction of Y eG is shown in figure 7(b). On the contrary, if

mFI/M = 10−3, no intersection of ρg with ρrad takes place and, in consequence, no phase

of second reheating occurs. This is also illustrated in figure 7(a), where the dependence of

ρg is displayed by a thin line. As can be seen from figure 7(b), the gravitino abundance

Y eG remains unsuppressed in this case, i.e. Y eG ∼ 10−10. As we will see below in section 5.3,

such large values of Y eG are in gross conflict with BBN constraints.

5.2 Semi-analytic approach

We now present a more intuitive and rather accurate approach to the dynamics of coupled

reheating, and find approximate analytical expressions that describe the evolution of the

energy densities ρκ,g,rad. In addition, we derive the conditions that ensure the existence of

a second reheat phase in the evolution of the Universe. Finally, we estimate the gravitino

abundance Y eG
due to coupled reheating.

Shortly after inflation ends, the energy of our observable Universe is dominated by the

inflaton S and the other κ-sector particles, with an initial energy density ρκ,I = κ2M4.

As we schematically illustrated in section 4.2, the κ-sector particles decay into relativistic

degrees of freedom, producing an energy density ρrad. The energy density ρg of the g-sector

particles is subdominant at these early stages after the first reheating due to the κ-sector

particle decays. In fact, for temperatures T > Teq, where Teq is the first intersection point

of the T -dependent functions ρrad and ρg [see (5.10)], the evolution of all relevant energy

densities may be approximately described as follows:

ρκ = ρκ,I (a/aI)
−3 , ρg = ρg,I (a/aI)

−3 , ρrad = ρrad(Tκ) (T/Tκ)4 . (5.9)

As mentioned above, the T -dependent function ρrad may first cross the corresponding ρg

at T = Teq, where

ρrad(Teq) = ρg(Teq) . (5.10)

Using the fact that ρrad(Tκ) = ρκ(Tκ) and assuming that the Universe expands isentropi-

cally with a ∝ T−1 when Teq ≤ T ≤ Tκ, we obtain from (5.10) the approximate relation

Teq ' Tκ
ρg,I

ρκ,I
. (5.11)

In deriving (5.11), we have also made use of (5.9).
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Figure 7: The evolution as a function of log T of the quantities: (a) log ρi with i = κ (dark

grey line), i = g (grey line), i = rad (light grey line) (b) G̃ yield, Y eG
. In both cases, we take

M = 0.7 × 1016 GeV, ρ = λ = κ = 0.001 and mFI/M = 4.3 × 10−7 GeV (bold lines) and

mFI/M = 1 × 10−3 (thin lines).

A second reheat phase in the evolution of the Universe takes place, only if Tg < Teq,

where Tg is the naive reheat temperature due to the g-sector particles decays [see (5.20)
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below]. To better explore the consequences of this last condition, we use the abbreviation

g-DAD (g-DBD) to indicate whether the g-sector particles Decay After (Before) the Dom-

ination of their energy density. With the aid of (5.11), the following two conditions for

g-DAD and g-DBD may be deduced:

Tg

Tκ
<

ρg,I

ρκ,I
(g-DAD),

Tg

Tκ
≥ ρg,I

ρκ,I
(g-DBD) . (5.12)

These two possible scenarios are illustrated in figure 7 for mFI/M = 4.3× 10−7 (mFI/M =

10−3), where the bold (thin) lines correspond to g-DAD (g-DBD).

The gravitino abundance Y eG can be calculated by simply integrating f ′
eG

that occurs

in the first BE of (5.6) and using the fact that Y eG = f eG/sa3. It turns out that the main

contribution to Y eG
comes from the integration after the commencement of the radiation

dominated era, i.e. for T ≤ Tκ. The so-derived formula reproduces rather accurately the

one presented in [51] in the massless gluino limit, where

Y κ
eG

= 1.6 × 10−12

(
Tκ

1010 GeV

)
. (5.13)

Note that (5.13) is only valid for the g-DBD case.

The situation is different for the g-DAD case, where a drastic reduction of the gravitino

abundance, caused by the huge entropy release from the g-sector particle decays, takes

place. In this case, the gravitino abundance Y g
eG

may be estimated in the following way.

We first notice that

Y g
eG

= Y κ
eG

s(Teq) a3(Teq)

s(Tg) a3(Tg)
. (5.14)

Then, with the help of (5.3) and (5.9), we may obtain the relation

s(Teq) a3(Teq)

s(Tg) a3(Tg)
=

(
Teq

Tg

)3 (
ρg(Teq)

ρg(Tg)

)−1

=
Tg

Teq
. (5.15)

Substituting the respective expressions of (5.15), (5.13) and (5.11) into (5.14) yields

Y g
eG

= 1.6 × 10−12

(
Tg

1010 GeV

)
ρκ,I

ρg,I
' 7.6 × 10−11

κg

(
Tg

1010 GeV

)
, (5.16)

where we have used (4.37) to derive the last approximate equality. We have checked that

the semi-analytic formula (5.16) is in remarkable agreement with numerical estimates in

the g-DAD regime.

Finally, we should comment on the fact that the number of e-folds, Ne gets modified

in the g-DAD case, because of the occurrence of a g-sector-matter dominated era. Making

use of standard methods [8, 6], we are able to determine Ne at the WMAP pivotal point

k0 = 0.002 Mpc−1 by the following relation:

Ne = 22.6 +
1

6
ln(κ2M4) +

1

3
ln Tg +

1

3
ln

ρκ,I

ρg,I
. (5.17)

This result, however, does not crucially alter the value of Ne, which remains close to 55−60

in the g-DAD case as well. Interestingly enough, Y g
eG

and Ne do not directly depend on
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Tκ given in (4.15). In fact, in the g-DAD case, Y g
eG

and Ne are fully independent of the

superpotential couplings λ and ρ, and only have a mild linear and logarithmic dependence

on κ, respectively. As we will discuss below, it is this last property that leads to a significant

relaxation of the strict gravitino constraints on these couplings, when compared to the g-

DBD case.

5.3 Gravitino abundance constraints

In order to avoid destroying the apparent success between the standard theory for BBN

and observation, gravitinos must have an abundance Y eG
below certain upper limits, which

crucially depend on their decay properties [56, 51]. Some representative upper bounds

on Y eG, obtained in a very recent analysis [51], are

Y eG
<∼





10−15, for m eG ' 360 GeV,

10−14, for m eG ' 600 GeV,

10−13, for m eG
' 9 TeV,

10−12, for m eG
' 13.5 TeV .

(5.18)

The above bounds pertain to the less restrictive case of a gravitino that decays with a small

branching ratio Bh = 0.001 into hadronic modes. For the g-DBD case discussed above, the

upper limits (5.18) imply the corresponding stringent bounds on Treh:

Treh
<∼





7 × 106 GeV, for m eG ' 360 GeV ,

7 × 107 GeV, for m eG
' 600 GeV ,

7 × 108 GeV, for m eG
' 9 TeV ,

7 × 109 GeV, for m eG ' 13.5 TeV .

(5.19)

The aforementioned upper limits lead to serious constraints on the basic couplings κ,

λ and ρ, usually forcing them to acquire very small values, i.e. κ. λ, ρ <∼ 10−5. For the

standard F -term hybrid model within mSUGRA and with a soft SUSY-breaking tadpole

parameter aS = 1TeV, the requirement of accounting for the observed power spectrum PR,

with a number of e-folds Ne = 50–60, implies that κ > 10−4 and Tκ = Treh
>∼ 9× 109 GeV.

Such a high lower bound on Treh invalidates all the limits presented in (5.19), thereby ruling

out the above F -term hybrid model.

The above situation, however, changes drastically in the FD-term hybrid model with

small D-parity violation, e.g. due to the presence of a subdominant FI D-term. This

corresponds to the g-DAD case described in the previous subsection, where the upper

bounds (5.18) translate, by means of (5.16), into upper bounds on mFI/M for κ > 8×10−5.

The required size of the D-parity violating parameter mFI may naively be estimated using

a relation very analogous to (4.15), viz.

Tg =

(
90

π2 g∗

)1/4 √
Γg mPl , (5.20)

where Γg is the decay width of a g-sector particle and is given in (4.18). If we solve (5.20)

for the ratio mFI/M , we obtain

mFI

M
≈ 8.4 · 10−4 ×

(
0.5

g

)3/4 (
Tg

109 GeV

)1/2 (
1016 GeV

M

)1/4

. (5.21)
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Figure 8: The dependence of log Y eG
on mFI/M , for κ = 10−2 (dark grey line), κ = 10−3 (grey

line) and κ = 10−4 (light grey line).

For second reheat temperatures Tg of cosmological interest, i.e. 0.2 TeV <∼ Tg
<∼ 109 GeV,

the following double inequality for M = 1016 GeV may be derived:

4 × 10−7 <∼
mFI

M
<∼ 10−3 . (5.22)

The lower bounds on Tg and mFI/M result from the requirement that thermal electroweak-

scale resonant leptogenesis be successfully realized. More details are given in section 6.

A numerical analysis of the gravitino abundance predictions and constraints related

to the g-DAD scenario has been performed in figures 8 and 9, respectively. Our nu-

merical results apply equally well to both mSUGRA and nmSUGRA scenarios. In de-

tail, figure 8 shows log Y eG as a function of mFI/M and Tg, for the different values of

κ = 10−4, 10−3 , 10−2, while M is fixed by the usual inflationary constraints on Ne and PR,

for κ = λ = ρ and cH = 0. The different lines in figure 8 terminate at high values of mFI/M ,

since the inequality Tg < Tκ does no longer hold. The lowest value of mFI/M is determined

by the condition Tg > 200 GeV, which results from the aforementioned requirement that

thermal electroweak-scale resonant leptogenesis is successfully realized [19, 20, 16].

In figure 8, we also observe the two regimes: g-DBD and g-DAD. In the g-DBD regime,

log Y eG remains constant for given κ up to some value mFI/M . For example, for κ = 10−3,

log Y eG is constant for mFI/M >∼ 10−4. This result is consistent with (5.13). For smaller

values of mFI/M , one enters the g-DAD regime. In this case, log Y eG decreases rapidly,

as mFI/M , or equivalently Tg, decreases. This behaviour of Y eG
is expected on account
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Figure 9: The allowed region on the (mFI/M, κ) plane for Y eG
< 10−15 (black area), Y eG

< 10−14

(light grey area), Y eG
< 10−13 (grey area) and Y eG

< 10−12 (dark grey area).

of (5.16). Also, in agreement with (5.16), the reduction of Y eG becomes more drastic for

larger values of κ.

In figure 9 we delineate the allowed regions on the (κ,mFI/M) plane for the discrete

values of Y eG
= 10−15, 10−14, 10−13, 10−12, for κ ≥ 8 × 10−5. The upper boundaries of the

various areas are obtained using (5.16). For κ < 8×10−5, we are in the g-DBD region, where

we obtain 10−13 < Y eG < 10−12, almost independently of mFI/M [cf. (5.13)]. Therefore,

we only display values for mFI/M , for which g-DAD becomes relevant. We observe that

the most stringent limit on Y eG
can still be fulfilled for κ >∼ 10−2 and mFI/M <∼ 10−6. Such

large values of κ would have been excluded from naive estimates of the κ-sector reheat

temperature Tκ due to the κ-sector particle decays. According to our analysis in this

section, however, these large values of κ, λ and ρ of order 10−2–10−1 are allowed within the

FD-term hybrid inflationary model. As we will see in the next section, this is a distinctive

feature of the FD-term hybrid model that opens up novel possibilities in solving the CDM

problem.

At the end of this section, we wish to comment on a possible FD-term hybrid scenario,

where the κ-sector particles can decay directly into the g-sector ones. This can happen, for

example, if mκ > 2mg or equivalently when κ >
√

2g. Since the gauge coupling g of the

waterfall sector must be smaller than 0.1 in this case, it would be difficult to embed such

a FD-term hybrid scenario into a GUT. The energy density transferred from the κ-sector
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particles into the g-sector ones may be calculated by

ρg

ρκ
=

g√
2 κ

Bκ→g . (5.23)

Here Bκ→g denotes the branching ratio of the decays of the κ- to g-sector particles. Assum-

ing conservatively that Bκ→g ∼ 10−2 and κ = 2g, we obtain an estimate for the gravitino

abundance Y eG
∼ 10−18 for mFI/M <∼ 10−6, thereby rendering gravitinos quite harmless.

6. Baryon asymmetry and cold dark matter

In this section we briefly discuss further cosmological implications of the FD-term hybrid

model for the BAU and the CDM.

6.1 Resonant flavour-leptogenesis at the electroweak scale

Earlier studies of the BAU in supersymmetric models of hybrid inflation have mainly been

focused on scenarios of non-thermal leptogenesis [57], with an hierarchical heavy Majorana

neutrino spectrum, e.g. mN1
< mN2

¿ mN3
. The simplest model of this type is obtained

by identifying the waterfall gauge group with U(1)B−L, which allows the presence of the

operator γij X̂2X̂2N̂iN̂j/mPl in the superpotential. Notice that such a term is forbidden

in the FD-term hybrid model by virtue of the R symmetry (2.6). In the non-thermal

leptogenesis model, the reheat temperature consistent with the observed BAU ηB = 6.1 ×
10−10 and low-energy neutrino data is estimated to be [12]

Treh
>∼ 2.5 · 107 GeV ×

(
1016 GeV

M

)1/2 (
κ

10−5

)3/4

, (6.1)

where the superpotential couplings λ, ρ are set to zero. If λ = κ, the lower bound (6.1) gets

larger roughly by a factor 20. It is obvious that in this generic non-thermal leptogenesis

scenario, the gravitino constraint on Treh favours rather small values of κ and λ, e.g. κ, λ <∼
10−5 for Treh

<∼ 108 GeV. As was discussed in section 3.2, however, such small values of κ

introduce strong tuning at a less than 1% level to the horizon exit values of the inflaton

field φexit in a nmSUGRA scenario that accounts for the recently observed value of the

spectral index ns given by (3.10). Moreover, the success of this scenario relies heavily on

the assumption that there is no other source of baryogenesis, e.g. through the Affleck–

Dine mechanism, nor of entropy release, e.g. from possible late decays of moduli or flaton

fields [58], between the energy scales mN1
(À Treh) and the electroweak phase transition.

In the FD-term hybrid model, non-thermal leptogenesis is not possible for one of the

reasons mentioned above. The late decays of the g-sector (D-odd) particles generally lead

to an enormous entropy release, so that not only gravitinos, but also any initial lepton-

number excess will be diluted to unobservable values. However, as has already been dis-

cussed in [13], the FD-term model can realize electroweak-scale resonant leptogenesis [16],

if the coupling of the inflaton superfield Ŝ to the respective right-handed neutrinos N̂i is

very close to an SO(3)-symmetric form, i.e. ρij ≈ ρ13. This will give rise to 3 nearly heavy
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Figure 10: Numerical estimates of the BAU for a scenario with mN = 250GeV and for different

initial lepton- and baryon-number abundances, ηin
Ll

and ηin
B , assuming an initial thermal distribution

for the heavy Majorana neutrinos, i.e. ηin
N1,2,3

= 1. The horizontal grey line shows the BAU needed

to agree with today’s observed value.

Majorana neutrinos of mass mN and so would enable a successful realization of the reso-

nant leptogenesis mechanism at the electroweak scale. The required SO(3)-breaking may,

for example, originate from renormalization-group (RG) [59] or possible GUT threshold

effects [16, 60].

An order of magnitude estimate of the final BAU ηB , including single lepton flavour

effects, may be obtained as [20, 16]

ηB ∼ − 10−2 × r(Tg/mN )
3∑

l=1

∑

Ni

δl
Ni

K l
Ni

Kl KNi

, (6.2)

where

K l
Ni

=
Γ(Ni → LlΦ) + Γ(Ni → LC

l Φ†)

H(T = mN )
(6.3)

is a lepton-flavour dependent wash-out factor, which quantifies in a way the degree of in-

or out-of-equilibrium of the decay rates of the heavy Majorana neutrino mass eigenstates

Ni (i = 1, 2, 3) into the SM-like Higgs doublet Φ and the lepton doublet Ll (l = e, µ, τ).
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The remaining K-factors in (6.2) are defined with the help of K l
Ni

as follows:

KNi
=

3∑

l=1

K l
Ni

, Kl =
∑

Ni

K l
Ni

. (6.4)

The parameters δl
Ni

denote the different lepton-flavour asymmetries related to the decays

Ni → LlΦ and are defined by

δl
Ni

=
Γ(Ni → LlΦ) − Γ(Ni → LC

l Φ†)

Γ(Ni → LlΦ) + Γ(Ni → LC
l Φ†)

. (6.5)

Finally, the prefactor r(Tg/mN ) in (6.2) takes care of a possible dilution effect on the BAU

that might be caused by the entropy release of late g-sector particle decays. This dilution

effect is only relevant, if the second reheat temperature Tg is smaller than the leptogenesis

scale mN . Employing standard arguments of thermodynamics, one may estimate that

r(Tg/mN ) ∼
(

Tg

mN

)5

. (6.6)

Instead, if Tg À mN , the dilution factor r(Tg/mN ) approaches 1 and can therefore be

omitted.

In figure 10, we display numerical estimates of the BAU for a resonant leptogenesis

scenario with mN = 250 GeV and an inverted hierarchical light-neutrino spectrum. For

a detailed discussion of the heavy and light neutrino spectra of this model, the reader

is referred to [16]. As can be seen from figure 10, one advantageous feature of resonant

leptogenesis is that the final baryon asymmetry ηB does not sensitively depend on any pre-

existing lepton- or baryon-number abundance, ηin
Ll

or ηin
B . For instance, assuming an initial

thermal distribution for the heavy Majorana neutrinos, i.e. ηin
N1,2,3

= 1, and primordial

baryon asymmetries ηin
B

<∼ 10−2, we observe that the final ηB is practically independent

of the initial conditions, once the relevant particle-physics model parameters, such as the

heavy Majorana masses and their respective Yukawa couplings, are fixed.

It is important to comment here on the fact that the above property of the inde-

pendence of the BAU on the initial conditions does not necessarily get spoiled, if the

second reheat temperature Tg happens to be smaller than the resonant leptogenesis scale

mN . In this case, one only needs to make sure that the entropy dilution suppression

factor ∼ (Tg/mN )5 does not lead to a significant reduction of the BAU. Therefore, we

have rather conservatively assumed throughout our numerical analysis in section 5 that

Tg
>∼ mN ∼ 250 GeV, even though Tg could still be somewhat smaller than the resonant

leptogenesis scale mN .

Another point that deserves to be clarified here is the physical significance of lepton-

flavour effects on the BAU. In general, there are two sources of lepton flavour: (i) the

charged lepton Yukawa couplings hl and (ii) the neutrino Yukawa couplings hν
ij . The

former has been extensively discussed in the literature [61] and may affect the predictions

for the BAU by up to one order of magnitude, depending on the scale of leptogenesis.
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For our electroweak-scale leptogenesis scenario, these effects are not significant, since all

charged lepton Yukawa couplings mediate interactions that are in thermal equilibrium.

The second source of flavour effects is due to neutrino-Yukawa couplings hν
ij and has been

studied only very recently in [20, 16, 62]. The effect on the BAU is most relevant when

the heavy Majorana neutrinos get closer in mass. In models of resonant leptogenesis,

neutrino-Yukawa coupling effects can have a dramatic impact on the predictions for the

BAU, enhancing its value by many orders of magnitude [20, 16].

This last fact opens up new vistas in the model-building of scenarios that can be

phenomenologically more accessible to laboratory experiments. For instance, if a certain

hierarchy among the Yukawa-neutrino couplings hν
ij is assumed, e.g. hν

i2 = ihν
i3 ∼ 10−2 ∼ hτ

and hν
i1 = 10−6–10−7 ∼ he, resulting from the approximate breaking of some global U(1)l

symmetry, the required BAU can still be generated successfully from an individual lepton

number asymmetry, namely Lτ in this case. For this particular model of resonant τ -

leptogenesis, the values of the K-factors defined in (6.3) are:

Kτ
N1,2,3

∼ 10 , Ke,µ
N3

∼ 30 , Ke,µ
N1,2

∼ 1010 . (6.7)

Given that the leptonic asymmetry is δτ
N3

∼ 10−6, one can estimate from (6.2) that the

right amount of baryon asymmetry is produced, with ηB ∼ 10−9. This is also shown in

figure 10. Instead, older approaches to BEs that do not appropriately treat lepton flavour

effects via the neutrino Yukawa couplings hν
ij would have predicted a value that would have

been short of a huge factor ∼ 10−6 [20, 16].

As can be seen from the above example, the lepton-flavour directions Le,µ orthogonal

to Lτ can involve large neutrino Yukawa couplings of order 10−2. Such couplings can

give rise to distinctive signatures in the production and decay of electroweak-scale heavy

Majorana neutrinos at high-energy colliders, such as the LHC [63], the International Linear

e+e− Collider (ILC) [64] and other future colliders [65]. Moreover, electroweak-scale heavy

Majorana neutrinos can give rise to phenomena of lepton flavour and/or number violation,

such as the neutrinoless double-beta decay (0νββ), the decays µ → eγ [66], µ → eee,

µ → e conversion in nuclei etc [67, 69, 68, 70]. A detailed discussion of the low-energy

phenomenology of resonant leptogenesis models may be found in [16].

6.2 Thermal right-handed sneutrinos as CDM

An interesting feature of the FD-term hybrid model is that R-parity is conserved, even

though the lepton number L, as well as B − L, are explicitly broken by the Majorana

operator 1
2 ρ ŜN̂iN̂i. In fact, in our model, all superpotential couplings either conserve the

B − L number or break it by even number of units. For example, the coupling ρ breaks

explicitly L, along with B − L, by 2 units. Since the R-parity of each superpotential

operator is determined to be R = (−1)3(B−L) = +1, the FD-term hybrid model conserves

R-parity. As a consequence, the LSP of the spectrum is stable and so becomes a viable

candidate to address the CDM problem of the Universe.

In addition to the standard CDM candidates of the MSSM, e.g. a stable neutralino,

it would be interesting to explore whether thermal right-handed sneutrinos as LSPs could
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solve the CDM problem. Before we estimate their relic abundance, we first observe that

light right-handed sneutrinos may easily appear in the spectrum. Ignoring the small

neutrino-Yukawa coupling terms, the right-handed sneutrino mass matrix M2
eN

is written

down in the weak basis (Ñ1,2,3, Ñ
∗
1,2,3):

M2
eN

=
1

2

(
ρ2v2

S + M2
eN

ρAρvS + ρλvuvd

ρA∗
ρvS + ρλvuvd ρ2v2

S + M2
eN

)
, (6.8)

where vS = 〈S〉, vu,d = 〈Hu,d〉 and M2
eN

is the soft SUSY-breaking mass parameters associ-

ated with the sneutrino fields. The sneutrino spectrum will then consist of 3 heavy (light)

right-handed sneutrinos of mass

ρ2v2
S + M2

eN
+ (−)

(
ρAρvS + ρλvuvd

)
.

Hence, the 3 light sneutrinos can act as LSPs, which we collectively denote them by ÑLSP.

Recently, the possibility that right-handed sneutrinos are the CDM was considered

in [71]. This recent analysis showed that thermal right-handed sneutrinos have rather

high relic abundances and will generally overclose the Universe in a supersymmetric exten-

sion of the MSSM with right-handed neutrino superfields N̂i and bare Majorana masses

(mM )ijN̂iN̂j. The underlying reason is that because of the small Yukawa-neutrino cou-

plings hν
ij , the self- and co-annihilation interactions of the sneutrino LSP with itself and

other MSSM particles are rather weak. These weak processes do not allow the sneu-

trino LSP to stay long enough in thermal equilibrium before its freeze-out temperature,

such that its number density gets reduced to a level compatible with the CMB data,

i.e. ΩDMh2 ≈ 0.15. Instead, the predicted values turn out to be many orders of magnitude

larger than 1.

In the FD-term hybrid model, however, there is a new interaction that can make the

right-handed sneutrinos annihilate more efficiently. This is the quartic coupling 6

LLSP
int =

1

2
λρ Ñ∗

i Ñ∗
i HuHd + H.c. (6.9)

It results from the F -term of the inflaton field: FS ∼ 1
2 ρN̂iN̂i + λĤuĤd. To assess

the significance of the interaction (6.9), we estimate the relic density of ÑLSP in different

kinematic regions.

We first consider the self-annihilation off-resonant process ÑLSPÑLSP → 〈Hu〉Hd →
W+W−, which occurs when m eNLSP

> MW . A simple estimate yields

ΩDM h2 ∼
(

10−4

ρ2λ2

) (
tan β MH

gw MW

)2

. (6.10)

6The implications of a generic quartic coupling of the same form for the CDM abundance and detection

was studied earlier in [72, 73] within the context of a simple non-SUSY model. These studies will not be

directly applicable to our more elaborate case of a supersymmetric scenario with right-handed sneutrinos.

However, we have used their results to check our qualitative estimates for the CDM abundance.
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To obtain an acceptable relic density, we need relatively large ρ and λ couplings, i.e. ρ, λ >∼
0.17. Such values go in opposite direction with those obtained by requiring successful

inflation with a red-tilted spectrum. Therefore, as far as inflation is concerned, they signify

the necessity of going well beyond the minimal Kähler potential.

The above situation may slightly improve for m eNLSP
< MW , in large tan β scenarios

with light Higgs bosons that couple appreciably to b-quarks [74]. In particular, in the

kinematic region MHd
≈ 2m eNLSP

, the self-annihilation process ÑLSPÑLSP → 〈Hu〉Hd → bb̄

becomes resonant, and the above estimate modifies to

ΩDM h2 ∼ 10−4 × B−1(Hd → ÑLSPÑLSP) ×
(

MH

100 GeV

)2

. (6.11)

Consequently, if the couplings λ, ρ are not too small, e.g. λ, ρ >∼ 10−2, the LSP right-handed

sneutrinos ÑLSP can efficiently annihilate via a Higgs resonance Hd into pairs of b-quarks

in this kinematic region, thus obtaining a relic density compatible with the CMB data.

A detailed study of the thermal right-handed sneutrino as CDM could be given elsewhere.

7. Conclusions

We have analyzed the cosmological implications of a novel F -term hybrid inflationary

model, in which the inflaton and the gauged waterfall sectors respect an approximate

discrete symmetry which we called here D-parity. The approximate breaking of D-parity

occurs explicitly either through the presence of a subdominant FI D-term or through non-

renormalizable operators in the Kähler potential. For brevity, this scenario of inflation was

termed FD-term hybrid inflation. One of the most interesting features of the model is that

the VEV of the inflaton field closely relates the µ-parameter of the MSSM to an SO(3)

symmetric Majorana mass mN . If λ ∼ ρ, this implies that µ ∼ mN , so the FD-term hybrid

model may naturally predict lepton-number violation at the electroweak scale.

Before summarizing the cosmological and particle-physics implications of the FD-term

hybrid model, it might be interesting to list our basic assumptions pertinent to inflation

and to the model itself:

(i) The standard assumption for successful hybrid inflation is that the inflaton field φ

should be displaced from its true minimum at the start of inflation, whereas all other

scalar fields in the spectrum must have zero VEVs [c.f. (2.14)]. In a nmSUGRA

scenario of hybrid inflation, however, additional tuning is required beyond the above

standard assumption. The horizon exit values of the inflaton field φexit have to

be close to the value φmax, at which the inflationary potential has a maximum.

Nevertheless, such a tuning is not so strong, i.e. (φmax − φexit)/φexit
>∼ 10%, as long

as κ >∼ 10−3.

7An upper bound on the product ρλ, although somewhat model-dependent, can be derived from exper-

imental limits on the flux of energetic upward muons that occur in the possible detection of CDM using

neutrino telescopes [73]. Our initial estimates indicate that it should be ρλ . 0.03 for m eNLSP
∼ 50 GeV,

which is not a very rectrictive bound.
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(ii) Although there may exist several ways of breaking D-parity explicitly, we have con-

sidered here two possibilities to motivate the required small amount of D-parity

violation. As discussed in appendix A, we first considered the case where D-parity is

broken by a subdominant FI D-term, which is induced radiatively after heavy degrees

of freedom have been integrated out. Another minimal way would be to introduce

non-renormalizable operators in the Kähler potential that break D-parity explicitly.

(iii) In order to be able to realize thermal resonant leptogenesis at a low scale, the coupling

matrix ρij is assumed to be close to SO(3) symmetric, i.e. ρij ≈ ρ13.

The FD-term hybrid model has several cosmological implications that may be summa-

rized as follows:

• The model can accommodate the currently favoured strong red-tilted spectrum with

ns−1 ≈ −0.05 [4, 5], if the radiative corrections dominate the slope of the inflationary

potential and a next-to-minimal Kähler potential is assumed, where the parameter cH

is in the range 0.05–0.2. The radiative corrections dominate the slope of the potential,

if the superpotential couplings, κ, λ, ρ, lie in a certain interval: 10−4 <∼ κ, λ, ρ <∼
10−2. In addition, the actual value of the power spectrum PR and the required

number of e-folds, Ne ≈ 55, provide further constraints on these couplings and the

SSB scale M of the waterfall gauge symmetry. For example, for M ≈ 1016 GeV,

one finds the allowed parameter space: κ <∼ λ, ρ <∼ 4κ, for κ ∼ 10−3–10−2 and

0.05 <∼ cH
<∼ 0.1.

• For FD-term hybrid models with spontaneously broken U(1)X gauge symmetry, the

non-observation of a cosmic string contribution to the power spectrum at the 10%

level implies an upper bound on the superpotential coupling κ, i.e. κ <∼ 10−3. This

strict upper bound on κ can be weakened by one order of magnitude in a nmSUGRA

model of FD-term hybrid inflation, with κ = λ = ρ and cH = 0.14. On the other

hand, this upper limit can be completely evaded, if the watefall sector of the FD-

term hybrid model realizes an SU(2)X local symmetry that breaks completely to

the identity I, i.e. SU(2)X → I. In this case, not only cosmic strings but any other

topological defects can be avoided, such as monopoles and textures. As we outlined in

section 2, GUTs, such as those based on the exceptional groups E(6) and E(7), have

breaking patterns that contain SU(2)X subgroups uncharged under the SM gauge

group and so are able to realize FD-term hybrid inflation devoid of monopoles and

cosmic strings.

• To avoid overproduction of gravitinos, one needs to impose a strict upper limit on the

reheat temperature Treh obtained from the perturbative inflaton decays, i.e. Treh
<∼

1010–107 GeV. This upper bound depends on the decay properties of the gravitino

and gives rise to tight constraints on the basic theoretical parameters κ, λ and ρ,

i.e. κ, λ, ρ <∼ 10−5. However, these tight limits may be significantly relaxed by

considering the late decays of the so-called g-sector particles which are induced by

small D-parity violating couplings that may result from either a subdominant FI
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D-term or non-renormalizable Kähler potential terms. These g-sector particles are

produced during the preheating epoch, and if they are abundant, they will lead to a

second reheating phase in the evolution of the early Universe, giving rise to a rather

low reheat temperature, even as low as 0.3 TeV. In this case, the enormous entropy

release from the g-sector particles may reduce the gravitino abundance Y eG below the

BBN limits discussed in section 5.

• After the inflaton S receives a VEV, one ends up with 3 nearly degenerate heavy

Majorana neutrinos with masses at the electroweak scale. As we discussed in sec-

tion 6, this opens up the possibility to successfully address the BAU within the

thermal electroweak-scale resonant leptogenesis framework, in a way independent of

any pre-existing lepton- or baryon-number abundance.

• The FD-term hybrid model conserves R-parity, in spite of the fact that the lepton

number is explicitly broken by the Majorana operator 1
2 ρ ŜN̂iN̂i. This is so, because

all superpotential couplings either conserve the B − L number or break it by even

number of units. The aforementioned Majorana operator breaks explicitly L, as well

as B−L, by 2 units. Consequently, the LSP of the spectrum is stable and so qualifies

as candidate to address the CDM problem. The new aspect of the FD-term hybrid

model is that thermal right-handed sneutrinos emerge as new candidates to solve

this problem, by virtue of the quartic coupling: 1
2 λρ Ñ∗

i Ñ∗
i HuHd + H.c.. This new

quartic coupling results in the Higgs potential from the F -terms of the inflaton field,

and it is not present in the more often-discussed extension of the MSSM, where right-

handed neutrino superfields have bare Majorana masses. Provided that the couplings

λ and ρ are not too small, e.g. λ, ρ >∼ 10−2, the LSP right-handed sneutrinos ÑLSP can

efficiently annihilate via a Higgs resonance Hd into pairs of b-quarks, in the kinematic

region MHd
≈ 2m eNLSP

, and so drastically reduce its relic density to values compatible

with the CMB data.

In addition to the above cosmological implications, the FD-term hybrid model has a

rich particle-physics phenomenology. The main phenomenological characteristics of the

model are:

(a) It is straightforward to embed the FD-term hybrid model into minimal or next-to-

minimal SUGRA, where the soft SUSY-breaking parameters are constrained at the

gauge coupling unification point MX . Instead, electroweak baryogenesis is not viable

in a minimal SUGRA scenario of the MSSM. It requires an unconventionally large

hierarchy between the left-handed and right-handed top squarks [75], which is difficult

to obtain within the framework of minimal SUGRA. In addition, the CP-odd soft

phases required for successful electroweak baryogenesis face severe constraints from

the absence of observable 2-loop contributions to the electron and neutron electric

dipole moments [76].

(b) As has been discussed in section 6, if one assumes that the neutrino-Yukawa cou-

plings hν
ij have a certain hierarchical structure controlled by the approximate break-
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ing of global flavour symmetries, the model can have further testable implications for

low-energy observables of lepton flavour and/or number violation, e.g. 0νββ decay,

µ → eγ, µ → eee, µ → e conversion in nuclei etc. In addition, electroweak-scale

heavy Majorana neutrinos may be copiously produced at high-energy colliders, such

as the LHC, the ILC and e−γ colliders, whose decays give rise to distinctive signa-

tures of lepton-number violation which are usually manifested by like-sign dileptons

accompanied by hadron jets.

(c) Since successful inflation requires small couplings, i.e. κ, λ, ρ <∼ 10−2, the inflaton

field decouples effectively from the low-energy spectrum and the Higgs-sector of the

model becomes identical to the one of the MSSM. In spite of the aforementioned

decoupling of the inflaton, however, the FD-term hybrid model could still point to-

wards particular benchmark scenarios of the MSSM. For example, if λ À κ, the

FD-term hybrid model may explain the origin of a possible large value of the µ-

parameter. Specifically, if λ = 2κ, Aκ = −aS = 2MSUSY, one gets from (2.4) the

hierarchy µ ≈ 4MSUSY, where MSUSY is a common soft SUSY-breaking scale of all

scalar fermion fields in the model. If one additionally requires At = Ab = 2MSUSY,

the low-energy limit of the FD-term hybrid model becomes identical to the so-called

CPX benchmark scenario [77] describing maximal CP violation in the MSSM Higgs

sector at low and moderate values of tan β. In the CPX scenario, the lightest neutral

Higgs boson weighing less than 60 GeV might have escaped detection at LEP. There

have been several strategies to unravel the existence of such a light CP-violating

Higgs boson [78].

(d) The possible CDM scenario with the right-handed sneutrinos as LSPs requires large λ

and ρ couplings that could make Higgs bosons decay invisibly, e.g. H → ÑLSP ÑLSP.

Also, right-handed sneutrinos could be present in the cascade decays of the heavier

supersymmetric particles. The collider phenomenology of such a CDM scenario lies

beyond the scope of the present article.

The FD-term hybrid model studied in this paper should be regarded as a first attempt

towards the formulation of a minimal Particle-Physics and Cosmology Standard Model,

which does not involve excessive fine-tuning in the fundamental parameters of the theory.

As we outlined above, it might be possible to test the validity of our model by a number

of laboratory experiments and further substantiate it by future astronomical observations.

The FD-term hybrid model is not plagued with the usual gauge-hierarchy problem of non-

supersymmetric theories and can, in principle, be embedded within an E(6) or E(7) GUT,

within the framework of SUGRA where SUSY is softly broken at the TeV scale. In the

same vein, we note that a possible natural solution to the famous cosmological constant

problem will shed valuable light on the model-building aspects of cosmologically viable

models. It will also open up new avenues in quantitatively addressing the major energy-

density component of today’s Universe, the so-called Dark Energy. We hope that all these

insights, along with new observational and experimental data, will help us to improve
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further our present bottom-up approach to formulating a more complete minimal model of

particle physics and cosmology.
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A. Mechanisms of explicit D-parity breaking

Here we will present mechanisms for explicitly breaking D-parity within the SUGRA frame-

work, pointing out their possible implications for the decay rates of the g-sector particles.

We separately discuss the breaking of D-parity for an Abelian U(1)X and an non-Abelian

SU(2)X waterfall-gauge sector.

A.1 D-Parity breaking in the U(1)X waterfall-gauge sector

As already discussed in section 4.1, the simplest way of breaking D-parity is to add a

subdominant bare FI D-term LFI to the Lagrangian [cf. (4.5)]. As was shown in [13],

however, even if such a term were absent from the tree-level Lagrangian, it could still

be generated by quantum-mechanical effects in an effective manner, after integrating out

Planck-scale degrees of freedom. It should be stressed here that the radiative generation

of an effective FI D-term occurs only after the SSB of the U(1)X gauge symmetry.

To elucidate this point, let us consider a simple extension of the FD-term hybrid

model, which includes a pair of superfields X̂1,2 of opposite U(1)X charge, i.e. Q(X̂2) =

−Q(X̂1) = Q(X̂1) = −Q(X̂2) = 1. In this case, the superpotential WIW pertinent to the

inflaton-waterfall sector may be extended as follows:

WIW = κ Ŝ
(
X̂1X̂2 − M2

)
+ ξ mPl X̂1 X̂2 + ξ1

(X̂1X̂1)
2

2mPl
+ ξ′1

(X̂2X̂2)
2

2mPl
. . . (A.1)

where the dots stand for subleading terms that multiply the leading operators by extra

powers of (X̂1X̂2)
n/m2n

Pl , with n ≥ 1. These subleading operators are irrelevant for our

discussion here and can be ignored, within a perturbative framework of SUGRA. The

leading operator form of the superpotential (A.1) may be reinforced by the R symmetry:

Ŝ → eiα Ŝ , X̂1,2 → eiα/2 X̂1,2 , (L̂, Q̂) → eiα (L̂, Q̂) , (A.2)

with W → eiαW . As before, all remaining fields do not transform under the R symmetry.8

8Observe that the R-symmetry (A.2) allows for the subleading operator κ′S( bX1
bX2)

2/m2
Pl. This super-

potential term can break the U(1)X gauge symmetry along the inflationary trajectory, thereby inflating

away unwanted topological defects [25]. This scenario is known as shifted hybrid inflation.
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D

X̃+, X̃−

Figure 11: Radiative generation of an effective FI D-term, − g
2

m2
FI D.

We will now show that a FI D-term, −1
2gm2

FID, will be generated if the ultraheavy

Planck-scale superfields X̂1,2 are integrated out. As a starting point, we consider the U(1)X
D-term Lagrangian

LD =
1

2
D2 +

g

2
D

(
X∗

1X1 − X∗
2X2 − X

∗
1X1 + X

∗
2X2

)
. (A.3)

In order to integrate out the fields X1,2, we need their mass spectrum in the post-inflationa-

ry era, where 〈X1,2〉 = M and 〈X1,2〉 = 〈S〉 = 0. In the weak basis X± = 1√
2

(X1 ± X2),

this is approximately given by the Lagrangian

− LX±

mass ≈ (X
∗
+, X

∗
−)




ξ2m2
Pl + ξ (ξ1 + ξ′1)M2 (ξ2

1 − ξ′21 ) M4

2m2
Pl

(ξ2
1 − ξ′21 ) M4

2m2
Pl

ξ2m2
Pl − ξ (ξ1 + ξ′1)M2




(
X+

X−

)
.

(A.4)

The approximate mass eigenstates derived from (A.4) are

X̃+ = X+ + sθ X− , X̃− = X− − sθ X+ , (A.5)

where sθ ≈ (ξ1 − ξ′1)M
2/(4ξm2

Pl) is a mixing angle which is typically much smaller than 1.

In terms of the mass-eigenstates X̃±, the part of the Lagrangian (A.3) linear in the D-terms

associated with the Planck-scale degrees of freedom reads:

LX±

D = − g

2
D

(
X

∗
+X− + X

∗
−X+

)

= − g

2
D

[
X̃

∗
+ X̃− + X̃

∗
− X̃+ + 2sθ

(
X̃

∗
+ X̃+ − X̃

∗
− X̃−

)
+ O(s2

θ)
]

. (A.6)

A FI D-tadpole can only be generated from terms linear in sθ in the Lagrangian (A.6).

This result should be expected on symmetry grounds, since terms linear in sθ explicitly

break the D-symmetry. The D-tadpole m2
FI, calculated from the one-loop graph of Fig, 11,

is found to be

m2
FI ≈ ξ2

1 − ξ′21
8π2

M4

m2
Pl

ln
(mPl

M

)
. (A.7)

Typically, one gets mFI/M <∼ 10−6, for M = 1016 GeV and ξ1, ξ′1
<∼ 10−3.
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D

X1 (X2)X1 (X2)

F

Figure 12: Diagram pertinent to a short-cut derivation of the effective FI D-term.

For later use, it is interesting to outline a short-cut derivation of the result (A.7), using

the original weak basis of the fields, i.e. X1,2 and X1,2. We notice that, after the SSB of

U(1)X , the F -terms of X1,2 give rise to the D-odd operator,

F = (ξ2
1 − ξ′21 )

M4

2m2
Pl

(
X

∗
1X1 − X

∗
2X2

)
, (A.8)

in the scalar potential of the extended FD-term hybrid model. This operator induces, via

the diagram shown in figure 12, an effective FI D-tadpole. Since the scalar fields X1,2 are

degenerate in mass to leading order, i.e. MX1,2
≈ ξmPl, the graph in figure 12 is easily

calculated using standard field-theoretic methods. It is logarithmically divergent, and in

an effective cut-off theory it is given by (A.7). We will use this short-cut approach below to

calculate effective D-tadpoles in more elaborate extensions of the inflation-waterfall sector.

The size of the FI D-term may be further suppressed, if the Planck-mass chiral su-

perfields X̂1,2 possess higher U(1)X charges. In general, one may assume that the U(1)X

charges of X̂1,2 are: Q(X̂2) = −Q(X̂1) = n, where n ≥ 1. In this case, the leading operator

form of the inflaton-waterfall superpotential reads:

WIW = κ Ŝ
(
X̂1X̂2 − M2

)
+ ξ mPl X̂1 X̂2 + ξn

(X̂1)
2 (X̂1)

n+1

2mn
Pl

+ ξ′n
(X̂2)

2 (X̂2)
n+1

2mn
Pl

.

(A.9)

Employing the short-cut method outlined above, it is straightforward to compute the loop-

induced D-term, which is given by

m2
FI ≈ ξ2

n − ξ′2n
8π2

M2(n+1)

m2n
Pl

ln
(mPl

M

)
. (A.10)

To obtain a small ratio mFI/M ∼ 10−6 with ξn, ξ′n ∼ 1, one would simply need n = 5, 6.

Finally, we should remark that the loop-induced D-term does not lead to spontaneous

breakdown of global supersymmetry.

A.2 D-Parity breaking in the SU(2)X waterfall-gauge sector

Here we outline two possible mechanisms for explicitly breaking the D-parities, D1 and D2

defined in (4.20) and (4.21), which govern the minimal inflaton-waterfall sector based on

an SU(2)X gauge group.
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The first mechanism utilizes a non-minimal Kähler waterfall-gauge sector, where the

two D-parities are broken by non-renormalizable operators. To be specific, a minimal

D1,2-parity violating Kähler potential of the waterfall-gauge sector may be cast into the

form:

KWF =

∫
d4θ

(
X̂†

1 e2g bVX X̂1 + X̂T
2 e−2g bVX X̂∗

2 + κ1
(X̂†

1 e2g bVX X̂1)
2

2m2
Pl

+ κ2
(X̂T

2 e−2g bVX X̂∗
2 )2

2m2
Pl

+
κ′

1(X̂
†
1e

2g bVX iτ2X̂2)(X̂
†
1e

2g bVX X̂1) + H.c.

2m2
Pl

+
κ′

2(X̂
†
1e

2g bVX iτ2X̂2)(X̂
T
2 e−2g bVX X̂∗

2 ) + H.c.

2m2
Pl

+ . . .

)
, (A.11)

where the ellipses denote possible higher-order non-renormalizable operators. The cou-

plings κ1,2 are real, whereas κ′
1,2 can in general be complex. Moreover, the difference

κ− = κ1 −κ2 signifies D1-parity violation, whilst κ′
− = κ′

1 −κ′
2 is a parameter of D2-parity

violation. Hence, non-zero values of the parameters κ− and κ′
− will give rise to D1- and

D2-parity violation in the waterfall-gauge Kähler potential KWF. Notice that, as far as

D1-parity violation is concerned, the present mechanism applies to the Abelian case as

well.

There are several sources of D-parity violation contained in KWF. More explicitly,

D-parity violation will first originate from the terms linear in Da, where Da are the aux-

iliary SU(2)X components of the gauge-vector superfield V̂X . In fact, these are the lowest

dimensional D1,2-odd operators that emerge after the SSB of the SU(2)X and are given by

the effective Lagrangian

LDa−tad
eff =

g

2

M4

m2
Pl

(
Reκ′

− D1 − Imκ′
− D2 + κ− D3

)
. (A.12)

These effective FI D-terms can be included in the Lagrangian by adding the constants
g
2 (ma

FI)
2 to the on-shell constrained Da terms, according to the scheme: Da → Da +

g
2 (ma

FI)
2, where

(m1
FI)

2 =
M4

m2
Pl

Reκ′
− , (m2

FI)
2 = − M4

m2
Pl

Imκ′
− , (m3

FI)
2 =

M4

m2
Pl

κ− . (A.13)

One may obtain a fair estimate of the g-sector particle decay rates, using the formula (4.18)

and identifying mFI with ma
FI. In this way, we obtain

Γ[−R− , −I+ , +R−] ∼ [κ2
− , Re2(κ′

−) , Im2(κ′
−) ]

g3

128π

M5

m4
Pl

. (A.14)

In addition to the effective D-tadpoles, higher-dimensional operators will also break the

D-parities and so render the g-sector particles unstable. For example, after expanding

the superfields X̂1,2 about their VEVs in the Kähler potential (A.11), we find the non-

renormalizable D-parity violating interactions described by the Lagrangian

Lnon−ren = − M

2m2
Pl

κ−
+R− |∂µ

+X+|2 +
M

4
√

2m2
Pl

(
κ′
−

−X− + H.c.
)
|∂µ

+X+|2 . (A.15)
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With the aid of (A.15), an order of magnitude estimate of the g-sector particle decay rates

gives: Γg ∼ (κ2
−, |κ′

−|2) g3M5/m4
P l. These are of comparable order to the ones obtained

earlier in (A.14). For a typical inflationary scale, M = 1016 GeV (with g ∼ 1), we find the

decay width Γg ∼ (κ2
−, |κ′

−|2) 107 GeV. The latter should be compared with the bounds:

3.8× 10−13 GeV <∼ Γg
<∼ 4.3 GeV, corresponding to an upper and lower limit on the second

reheat temperature Tg of cosmological interest: 0.3 TeV <∼ Tg
<∼ 109 GeV. Consequently,

values ranging from 10−9 to 10−2 for the couplings κ− and/or κ′
− are required for suc-

cessful coupled reheating. The lower end values of order 10−9 may possibly be seen as a

strong tuning of the parameters. One way to explain the smallness of these parameters

is to contemplate Kähler manifolds that break the D-parities by even higher-order non-

renormalizable operators, e.g. of order ∼ 1/m4
Pl. In this case, the couplings κ− and κ′

− will

be multiplied by extra factors of M2/m2
Pl ∼ 10−4, so these couplings can have values of

order 1 and still predict a second reheat temperature Tg ∼ 0.3 TeV.

We now describe a second mechanism of D-parity violation which might be useful

to obtain small D-parity violating interactions. Let us therefore assume that the Kähler

potential respects the D-parities. In this case, we may invoke a mechanism very analogous

to the Abelian case. We extend the field content of the inflaton-waterfall sector by adding a

pair of Planck-mass chiral superfields X̂1 and X̂2, which belong to the anti-fundamental and

fundamental representations of SU(2)X , respectively. As in the U(1)X case, the superheavy

superfields X̂1,2 are charged under the continuous R-symmetry given in (A.2). With this

restriction, the leading operator form of the inflaton-waterfall superpotential is given by

WIW = κ Ŝ
(
X̂1

T X̂2 − M2
)

+ ξ mPl X̂1
T X̂2 + θ1

(X̂1
T X̂1) (X̂2

T X̂2)

mPl

+ θ2
(X̂1

T iτ2X̂2) (X̂2
T iτ2X̂1)

mPl
+ ζ1

(X̂1
T iτ2X̂2) (X̂2

T X̂2)

mPl

+ ζ2
(X̂1

T X̂1) (X̂2
T iτ2X̂1)

mPl
+ . . . , (A.16)

where the dots stand for additional operators that turn out to be irrelevant for the genera-

tion of effective Da-tadpoles, and especially for those related to the D1- and D2-terms. The

presence of these operators is only important to lift an accidental global U(1)X symmetry

that governs this restricted part of the superpotential WIW under consideration. Here,

all non-renormalizable couplings θ1,2 and ζ1,2 can in general be complex. Extending the

notion of D1,2 parities to the Planck-mass superfields X̂1,2, we observe that the operators

related to the couplings κ, ξ and θ1,2 are even under D1 and D2, whereas those related to

the couplings ζ1,2 are D2-odd. Moreover, the superpotential operators proportional to the

couplings ζ+(−) = ζ1 + (−) ζ2 are D1-even (D1-odd).

To calculate the effective D1,2,3-tadpoles after the SSB of the SU(2)X gauge group, we

use the short-cut approach described above in section A.1. Thus, the F -terms of X̂1,2 give

rise to the following D-odd contributions to the scalar potential:

F1
(−,−) = θ∗1 ζ−

M2

2m2
Pl

[(
X

†
1〈X∗

1 〉
)(

X
T
1 iτ2〈X2〉

)
− (1 ↔ 2)

]
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D1
(−,−)

X1 (2)X1 (2)

F1
(−,−)

D2
(+,−)

X1 (2)X1 (2)

F2
(+,−)

D3
(−,+)

X1 (2)X1 (2)

F3
(−,+)

Figure 13: Diagrams responsible for the generation of effective D1,2,3-tadpoles for the SU(2)X case,

in the single insertion approximation of the D-odd operators F1,2,3. The subscripts in parentheses

label the (D1, D2) parities of the respective operator.

− θ∗2 ζ−
M2

2m2
Pl

[(
X

†
1 iτ2〈X∗

2 〉
) (

X
T
1 〈X1〉

)
− (1 ↔ 2)

]
+ H.c. , (A.17)

F2
(+,−) = θ∗1 ζ+

M2

2m2
Pl

[(
X

†
1〈X∗

1 〉
)(

X
T
1 iτ2〈X2〉

)
+ (1 ↔ 2)

]

+ θ∗2 ζ+
M2

2m2
Pl

[(
X

†
1 iτ2〈X∗

2 〉
) (

X
T
1 〈X1〉

)
+ (1 ↔ 2)

]
+ H.c. , (A.18)

F3
(−,+) = −Re (ζ+ζ∗−)

M2

2m2
Pl

[(
X

†
1 iτ2〈X∗

2 〉
)(

〈XT
2 〉 iτ2X1

)
+

(
X

†
1〈X∗

1 〉
) (

〈XT
1 〉X1

)

− (1 ↔ 2)

]
, (A.19)

where the subscripts in parentheses indicate the (D1,D2) parities of the above operators.

Note that possible D-odd operators proportional to ξθ1,2 and ξζ± have not been displayed,

since they do not contribute to the generation of effective Da-tadpoles. To be specific, the

effective D-tadpoles are induced radiatively via the graphs shown in figure 13, once the

operators F1,2,3 are individually contracted with the D-term operator D1,2,3

X
related to the

X1,2 fields:

Da
X

= − g

2

(
X

T
1 τa X

∗
1 − X

†
2 τa X2

)
. (A.20)

These loop-induced effective FI D-terms can be included in the effective Lagrangian by

shifting the on-shell constrained Da terms by constants, according to the above described

scheme: Da → Da + g
2(ma

FI)
2. In this scheme, the mass parameters (ma

FI)
2 are found to be

(m1
FI)

2 = − Re (θ∗−ζ−)

4π2

M4

m2
Pl

ln
(mPl

M

)
,

(m2
FI)

2 =
Im (θ∗−ζ+)

4π2

M4

m2
Pl

ln
(mPl

M

)
, (A.21)

(m3
FI)

2 = − Re (ζ+ζ∗−)

4π2

M4

m2
Pl

ln
(mPl

M

)
,
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where θ± = θ1 ± θ2. It can be estimated from (A.21) that for values θ± , ζ± ∼ 10−4, one

gets m1,2,3
FI /M <∼ 10−6, leading to a low second reheat temperature Tg, below 1TeV. In this

context, one should notice that the size of the effective D-tadpoles is very sensitive to the

cut-off scale, which we have chosen here to be the reduced Planck mass mPl. For instance,

if a cut-off larger by one order of magnitude were adopted, then values of order 10−2 for the

non-renormalizable superpotential couplings would be sufficient to generate the effective

Da-tadpoles at the required size.

The violation of D-parities will also affect the particle spectrum of the SU(2)X inflaton-

waterfall sector. This will depend on the particular choice of the non-renormalizable part

of the superpotential and Kähler potential. Our intention is not to pursue this issue any

further here, by putting forward a specific non-minimal SUGRA scenario. Instead, our

goal has been to explicitly demonstrate the existence of at least two mechanisms, which

utilize the non-renormalizable part of the Kähler potential or superpotential to break the

D-parities at the required order of magnitude.
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