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ABSTRACT: Up to now chiral type IIA vacua have been mostly based on intersecting D6-
branes wrapping special Lagrangian 3-cycles on a CY 3 manifold. We argue that there
are additional BPS D-branes which have so far been neglected, and which seem to have
interesting model-building features. They are coisotropic D8-branes, in the sense of Ka-
pustin and Orlov. The D8-branes wrap 5-dimensional submanifolds of the CY3 which
are trivial in homology, but contain a worldvolume flux that induces D6-brane charge on
them. This induced D6-brane charge not only renders the D8-brane BPS, but also creates
D = 4 chirality when two D8-branes intersect. We discuss in detail the case of a type ITA
TS /(Zy x Zs) orientifold, where we provide explicit examples of coisotropic D8-branes. We
study the chiral spectrum, SUSY conditions, and effective field theory of different systems
of D8-branes in this orientifold, and show how the magnetic fluxes generate a superpoten-
tial for untwisted Kéhler moduli. Finally, using both D6-branes and coisotropic D8-branes
we construct new examples of MSSM-like type IIA vacua.
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1. Introduction

One of the most popular techniques to obtain D = 4 chiral string compactifications is the
construction of type ITA orientifolds with D6-branes intersecting at angles [[I} P (see [B] for
reviews on this subject). The building blocks in these constructions are BPS D6-branes,
wrapping 3-cycles corresponding to special Lagrangian submanifolds in a CY 3. In this way



one can obtain semirealistic three generation models with a low-energy spectrum quite close
to that of the MSSM. Remarkably simple and successful are the intersecting brane models
based on the T%/Zy x Zsy orientifold [[]. In particular, it was shown in [f] that a simple
local set of D6-branes leading to a MSSM-like spectrum [f|, [] can be simply embedded into
this orientifold background.

Here we would like to point out that, while the above type IIA picture is rather
compelling, it is in fact far from complete. In particular, we will show that there are other
BPS D-branes in these backgrounds, and whose model building applications have been
ignored up to now. These are nothing but BPS D8-branes, wrapping coisotropic 5-cycles
in the CY3 and with a non-trivial magnetic flux in their internal worldvolume.

Coisotropic A-branes were first introduced by Kapustin and Orlov [f in the context
of topological string theory, and seem to be required for a complete formulation of the
Homological Mirror Symmetry conjecture. Here we will be interested in the particular
case of D8’s wrapping coisotropic 5-cycles in a CY 3. That such Dp-brane exists may look
surprising at first sight, since all 5-cycles in a generic CY3 are homologically trivial and
one would not expect a stable object constructed out of them. However, as we will discuss
in detail, coisotropic D8-branes are not only stable but also BPS, and this is because the
magnetic flux on the D8-brane induces a non-trivial D6-brane charge on its worldvolume.

Coisotropic D8-branes have several interesting properties. Chirality arises in D8-D8
or D8-D6 systems due to a mixture of intersecting/magnetization chirality mechanisms.
Because of this, Yukawa couplings among chiral fields are generated by a combination of
wavefunction overlapping and open string world-sheet instantons. In addition, the BPS
conditions on the coisotropic branes give rise to constraints which in the effective field
theory may be interpreted as F and D-term cancellation. We will explicitly compute such
F and D-terms in the particular case of the T© /Zo X Zsy orientifold, where most of our
discussion will be based. Unlike in the case of D6-branes at angles we will see that the
F-term generated for D8-branes is non-trivial, and that it involves the untwisted Kéhler
moduli of the compactification.

From the model-building point of view these D8-branes also present a number of advan-
tages over analogous models with only D6-branes at angles. In particular, the D6-charge
carried by coisotropic D8-branes is not of the form (3-cycle) = (1-cycle) x (1-cycle) x (1-
cycle), but rather a sum of two of these. This adds flexibility to the model-building and
allows for possibilities not available with standard D6-branes, as we will show by means
of explicit examples. Finally, the presence of D8-brane generates a superpotential for the
Kahler moduli and some open string moduli of our compactification, without the need of
closed string NSNS or RR fluxes. Notice that the constructions here discussed are CFT’s,
unlike the compactifications in which closed string fluxes are added.

The structure of the paper is as follows. In the next section the notion of coisotropic
Dp-branes is reviewed and we argue why there should exist coisotropic D8-branes in generic
CY3’s. In section Bl we discuss in detail the cases where our compact manifold is T and its
Zo X Zo orbifold, constructing explicit examples of BPS D8-branes on both backgrounds.
We analyze the constraints coming from the BPS conditions of such D-branes and derive
the RR tadpole cancellation conditions. In section f] we discuss how chiral fermions ap-



pear at the overlap of D8-branes with some other D8 or D6-branes, and show that their
multiplicity can be computed as the intersection number of two 3-cycles. Some aspects
of the N' = 1 effective field theory of coisotropic D8-branes are examined in section [
including a discussion on the gauge kinetic function, F- and D-terms, massive U(1)’s and
Yukawa couplings. Section [ illustrates possible model-building applications of coisotropic
D8-branes. In particular we present two 3-generation MSSM-like models based on both
coisotropic D8-branes and intersecting D6-branes. Finally, in section f] we analyze the
T-duals of the present constructions, and in particular the mirror type I vacua where
coisotropic D8-branes become tilted D5-branes or D9-branes with off-diagonal magnetic
fluxes. Some final comments are left for section B, whereas in appendix [A] we briefly review
the formal definition of coisotropic branes.

2. Coisotropic D8-branes

Let us consider type ITA string theory compactified on a Calabi-Yau three-fold Mg. If
we are interested in obtaining a D = 4 semi-realistic effective theory, we need to embed
the Standard Model gauge group and matter content in our construction. This cannot be
achieved by just considering closed strings [[], but we need to include space-filling D-branes
in this setup. If, in addition, we aim to construct an N' = 1 effective field theory, we need
to consider BPS, space-filling D-branes.

In principle, type ITA theory contains three different kinds of D-branes which may be
both space-filling and BPS: D4, D6 and D8-branes. However, if our compactification man-
ifold Mg has proper SU(3) holonomy, one would never think of obtaining a BPS D-brane
out of a space-filling D4-brane. The reason is that for such manifolds by = 0, and then our
D4-brane (which is wrapping a 1-cycle of Mg) would couple to a RR-potential C5 with-
out zero modes. This implies that the Chern-Simons action for a space-filling D4-brane
vanishes, and so D4-branes wrapped on 1-cycles cannot carry any central charge. In prac-
tice, this is summarized by stating that D4-branes wrap 1-cycles which are ‘homologically
trivial’.!

The situation is quite different for D6-branes wrapping 3-cycles of Mg. Here, because
b3(Mg) # 0, the Calabi-Yau background gives rise to a plethora of central charges, which
are classified by the elements of H3(Mg,R). The BPS conditions for such D6-brane can
be expressed in terms of the holomorphic and Kéahler forms € and J [[[(], and read

Q= V\‘/G%If'dvolg
FtiJ =0

(2.1)

where the background forms 2, J and the metric G are pull-backed to the 3-cycle IIj
wrapped by the D6-brane. In the language of special holonomy manifolds, these two
conditions mean that Ils is a special Lagrangian submanifold of Mg, with a flat bundle
F = 27d/F + B. Finally, from the point of view of the D=4 gauge theory arising from the

!Such terminology is somewhat misleading, because a D4-brane could still be wrapping a torsional 1-cycle

of M.



D6-brane, these BPS conditions can be rephrased as D-flatness and F-flatness equations.
More precisely
D — flatness ImQ =0

2.2
F — flatness F+1iJ =0 (22)

One would naively say that D6-branes wrapping special Lagrangian 3-cycles exhaust
all the possibilities of space-filling BPS D-branes. Indeed, we have already seen that we
cannot construct them from D4-branes. A similar argument seems to hold for D8-branes,
which also wrap 5-cycles Il C Mg trivial in homology. However, this is not quite true
because, unlike the D4-brane, a D8-brane is allowed to carry a non-trivial gauge bundle F'
without breaking Poincaré invariance. This gauge bundle modifies the Chern-Simons action
of the D8-brane and, in particular, induces a D6-brane charge on its worldvolume [[L1] (see
also [[[J]). If such D6-brane charge corresponds to a non-trivial element of H3(Mg,R),

then we can have a non-trivial Chern-Simons action via the coupling

/ FANCr (2.3)
M4><H5

and thus our D8-brane will have a non-trivial central charge, again related to H3(Msg, R).
Hence, we should be able to find a BPS stable object.

Given our past experience with type ITA orientifold vacua it may seem quite striking
that, besides D6-branes wrapping special Lagrangians, there could also exist stable D8-
branes which are mutually BPS with the former. However, this possibility has already
arisen in the quite different context of topological string theory. Indeed, as described
in [iJ a D-brane wrapping a special Lagrangian (or rather just Lagrangian) n-cycle of
a Calabi-Yau n-fold is the prototypical example of D-brane in the topological A-model,
usually dubbed as A-brane. Naively, these are the only boundary conditions which are
allowed for open strings in the A-model but, as shown by Kapustin and Orlov in [§], this is
in fact not true. An A-brane does not necessarily wrap a Lagrangian n-cycle, but can also
wrap a coisotropic (n + 2k)-cycle, k =1,...,[n/2], if the appropriate worldvolume bundle
F is introduced.? As emphasized by the authors, this fact proves essential in order to
understand the full spectrum of D-branes in our theory and, in more theoretical grounds,
to correctly formulate the Homological Mirror Symmetry conjecture.?

All this suggests that our previous BPS D8-brane should in fact correspond to a
coisotropic D8-brane, in the sense of Kapustin and Orlov. Let us further motivate this
by analyzing the supersymmetry conditions for coisotropic D-branes, which can be ob-
tained either by a worldsheet [}, [[§] or a worldvolume approach [[[f]. In the case of a
D8-brane on a Calabi-Yau three-fold they can be written as

_ VIGHF
FAQ = \/@ dvols
(F+iJ)2 =0

2See the appendix A for a mathematical definition of coisotropic submanifold.
3See [@] for a recent perspective of this problem in terms of pure spinors.



where €2, J and G are now pull-backed over the 5-cycle II5. Notice that, when written in
this way, the BPS conditions for D6 and D8-branes look extremely similar.

The D8-brane BPS equations take a particularly suggestive form when the pull-back
of B vanishes identically, and then F = 27’ F defines a homology class of 3-cycles [I1£] via
Poincaré duality in II5. This homology class is nothing but the D6-brane charge induced
by the Chern-Simons coupling (P.3), which can now be written as

,u,g/ 271'0/F/\C7 = ,U,G/ Cy (2.5)
My x1ls MyxIIE

where p, = (27r)*po/_%, and TI{ is any representative of [II{] (the Poincaré dual of
[F/27]). Because [I1{] is the central charge carried by our D8-brane, it should match the
D8-brane tension in the BPS limit. This is indeed the case, since by integrating the first
equation in (P.4) we obtain

Tps = ,ug/ 21/ FAQ = MG/ Q (26)
Myx1ls5 MyxIIE

and so the whole tension of the D8-brane equals that of a D6-brane wrapping a special
Lagrangian in [TI{], matching the r.h.s. of eq. (R.5).

Regarding the second supersymmetry condition, it implies that F' A J = 0, and hence
that H3F cannot contain any holomorphic non-vanishing 2-cycle. This is automatic for
Lagrangian 3-cycles, which supports the idea that Hg could be seen as a special Lagrangian
3-cycle in IT5. In addition, (R.4) implies that F2 = J? on II5, and this suggests that the
D8-brane charge and the induced D4-brane charge of a coisotropic D8-brane, measured as

/Lg/ Cy and ,ug/ F2ACs (2.7)
My x1IIs5 My x1Ils

need to be equal in magnitude.
Finally, we can again rewrite our BPS conditions in terms of D = 4 D-flatness and
F-flatness conditions, namely [[[5, [7]

D — flatness Im(FAQ)=0

2.8
F — flatness (F+iJ)2 =0 (28)

While the D-flatness condition of an A-brane is exact at all orders in o', in general we
would expect to receive o/ corrections to the F-flatness condition. This is indeed the case
for special Lagrangian D6-branes, where the corrections arise from open string world-sheet
instantons [I§]. Although these corrections are less understood in the case of coisotropic
A-branes, a proposal in terms of generalized Floer homology has been given in [[9].

To summarize, we have argued that D6-branes are not the only space-filling BPS
objects in type IIA Calabi-Yau compactifications, and that BPS D8-branes can also exist
when endowed with the appropriate worldvolume flux F. We have identified such D8-
branes as coisotropic A-branes, and have used their supersymmetry conditions to further
motivate our initial intuition. Even in the coisotropic D-brane literature, the fact that



bs = 0 in most Calabi-Yau manifolds has led to believe that stable A-branes of this kind
do not exist. However, as our previous discussion shows, the fact that II5 is homologically
trivial should not be an obstruction to construct a BPS object. This can still be achieved
if the D-brane charge induced by F' is non-trivial in the homology of Mg. In the next
section, we will give further evidence of this general picture, by explicitly constructing
BPS D8-branes in Calabi-Yau manifolds with proper SU(3) holonomy.

3. Coisotropic D8-branes in type IIA orientifolds

In this section we provide explicit examples of coisotropic D8-branes. This will not only
illustrate the discussion above, but also prepare the ground to build A/ = 1 vacua based
on D8-branes. We will consider two different backgrounds, which are T and T6/Zy x Zs.
Eventually, we will also need to cancel the D8-brane charge and tension without breaking
supersymmetry. This can be achieved by introducing O6-planes in our compactification,
that is by applying the usual type IIA orientifold projection on the above backgrounds.

3.1 D8&-branes on T®

There are not many examples of coisotropic D-branes in the literature. Most of the con-
structions are based on compactifications on T* [}, BJ] and K3 [P]. Because these are
4-dimensional manifolds, the coisotropic D-brane wraps the whole manifold and hence a
non-trivial 4-cycle. The situation is more involved for a D8-brane on a Calabi-Yau three-
fold, because in general all the 5-cycles on Mg will be trivial. Two exceptions are T and
T? x K3, where coisotropic D8-branes are known to exist. Again, the known examples are
very few, so one of our goals will be to classify the set of coisotropic D8-branes in these
backgrounds. We will now proceed to analyze the case of T, while T? x K3 will arise
later on, when considering D8-branes on T¢/Zy x Zs.

Let us then consider type IIA theory compactified on a toroidal background of the
form (T?); x (T?)s x (T?)3, where each two-torus has a rectangular shape. This family of
manifolds is parameterized by six compactification radii, which can be arranged as three
Kahler and three complex structure moduli. The complex structure moduli i7; are pure
imaginary quantities, and they enter into the holomorphic 3-form as

7j

Re T\ 1/2
Q = (4n2d/)3/? H <L> dz' A d2? A d2? (3.1)
J

d) = da? +iTjdy’ (3.2)

where 27 ~ 27 +1 and 3/ ~ y/ + 1 are periodic coordinates, and Re T} is the area of the gt
T2, in units of 472c/. This Kihler modulus is complexified by including the background
B-field on (T?);, so that the combination 472a/ T; = A; + iB; enters the complexified
Kahler form J, as*
S.o A 3 A ,
J, = B+iJ = 47T20/21 ﬁ dzd NdF = i471'20/21Tj dyd A dx?. (3.3)
Jj= Jj=

“In our conventions fTG dz' Adz? Adx® Ady' Ady? Ady® =1, so that J® measures the volume of TS,



(T, (T9, (T

Figure 1: Coisotropic D8-brane on T®.

Of course, this is just a subspace of the whole T moduli space but, once the Zy x Zs and
orientifold projection are implemented, any other T® modulus will be projected out. We
will hence restrict ourselves to the above setup.

Any 5-cycle of our compactification is of the form II5 = T® = S x T4, so our D8-brane
will be wrapping two complex dimensions and a 1-cycle in the third complex dimension.

We will denote such 5-cycle as
5 = (n',m'); x (T2); x (T?)y,  i#j#k#i (3.4)

where n’,m! € Z are the D8-brane wrapping numbers along the directions z* and 3?,
respectively, and {ijk} are in cyclic permutation of {123}. We now construct a coisotropic
D8-brane by introducing a non-trivial gauge bundle F' = dA on the four-torus (T?2); x (T?)y,
such that the supersymmetry conditions (R.4) are satisfied (see figure [[]). For instance, let
us a consider a single D8-brane such that

II5 = (1,0)1 x (T?)2 x (T?)3
2 3 2 3 (3-5)
F/2r = dz* Ndz® — dy* AN dy
A simple computation gives
F? = 472 da® A dy? A da® A dy?
JNF =0 (3.6)
J?2 = — (472 )2 ToTs dx? A dy? A da3 A dy?

where all powers of J. have been pull-backed to II5. The second supersymmetry condition

in (B-4) then reads
(F+iJ)? = 2ndF+J,)2 =0 <<= Tz =1 (3.7)

On the other hand we have that

ReT;\ 2 dvoly
FAQ= @A) ] ( J) (14 7o73) 5 (3.8)
;N T VG



where again {2 and the metric G are pull-backed to II5. This quantity needs to be propor-
tional to the D8-brane DBI action, whose square is given by

ReT,ReT:
| ReThReTy

T27T3

H (1+ 7'27'3) (3.9)

det (G + F) = (4n%a’) (1 + rams)?

where in the second line we have made use of (B.7). Thus, by taking the square root
of (B.9) we recover the first supersymmetry condition in (P.4]) for any values of 71, 7 and
73. Alternatively, one can see that (B.§) is always a real quantity, and hence the D-flatness
condition in (R.§) is trivial.

How can we interpret these results? The fact that supersymmetry restricts the Kéhler
moduli is not surprising. As explained above, coisotropic D-branes are BPS because of their
non-trivial worldvolume flux F'. If we take our internal manifold to the decompactification
limit, F' will be extremely diluted and we will approach the limit F' = 0, where the D-
brane is not BPS.? Hence the supersymmetry conditions of a coisotropic D-brane should
constrain the Kéhler moduli of the compactification. As will be discussed in section ] this
can be understood in terms of a D-brane generated superpotential.

Notice that our coisotropic D8-brane (B.5) factorizes as a product of a 1-cycle on T2
and a 4-dimensional coisotropic D-brane on T*:

Iy = (T?); x (T?)3

3.10
F/2n = dz? A da® — dy? A dy? (3.10)

Actually, such example of T coisotropic D-brane was already given in [f], and analyzed
in great detail in [R0]. There is also a K3 analogue of (B.10)), dubbed in [RI] as canonical
coisotropic D-brane. An interesting fact is that the D-brane charge induced by F', given
by its Poincaré dual on T4, is

5] = [(1,0)2 x (1,0)3] +[(0,1)2 x (0, —1)3] (3.11)

This is not the homology class of any factorizable 2-cycle (n2,m?) x (n®,m3) considered

in the intersecting D-brane framework, but rather a sum of two of them. These homology
classes which are not factorizable as a product of 1-cycles arise in intersecting D-brane
models when we consider two D-branes that have been through a recombination process [p2}
R3. However, such recombined D-branes are not exact boundary states of the theory and
hence it is much harder to analyze their physics (or even to prove their existence) than in
the usual factorizable case. On the other hand, the coisotropic D-brane will naturally carry
these non-factorizable charges, while it can still be described as an exact CFT boundary
state.

"More precisely, this statement is only true for proper SU(3) holonomy manifolds like T°/Zs x Z2. This
is not the case of T®, where we have a extended bulk supersymmetry and a D8-brane on (@) with F' =0 is
always BPS. The correct statement is then that such D8-brane does not preserve the same supersymmetry
as a D6-brane at angles.



In fact, all these observations made for the example (B.5) hold in general. First, any
coisotropic D8-brane on T can be seen as a product of a 1-cycle and a coisotropic D-brane
on T%. Second, the worldvolume flux F' on this T* induces a D6-brane charge of the form

5] = [(n',m'))] ® [I5)] (3.12)

where Hij is a Lagrangian, non-factorizable 2-cycle on (T?); x (T?);. In fact, any non-
factorizable 2-cycle can be decomposed as a sum of two factorizable 2-cycles [P4], so we
finally have that

= [(nz, ml)l] ® [(néa mé)j (”Z, mg)k + (n%’ m%)] (ng’ mg)k]
where the intersection number I;F; = —(n?xm]ﬁ — n]B I gmg — ngmg) is nothing but

f(Tg)jX(TQ)k F? /472, and so it cannot vanish. Finally, such coisotropic D8-brane is made
up of a flat submanifold and a constant worldvolume flux, so it can be described by an
exact boundary state.

An advantage of this intuitive picture is that it helps producing some new examples
of coisotropic D8-branes. Indeed, we just need to choose the ten wrapping numbers above
such that, for some choice of complex structure 7;, the two factorizable 3-cycles in (B.13)
are mutually supersymmetric, or

T . 01 + 05 = 0 mod 27 (3.14)
Arg fng dz /\dzk) = Arg (fng dz’ /\dzk> = 6
2
where again {ijk} is a cyclic permutation of {123}. By taking F'/27 as the Poincaré dual
of (B.1) in 5 we would get a coisotropic D8-brane satisfying the D-flatness condition
in (£.§), and by imposing
4
Ty T = I3, (3.15)

we will also satisfy the F-flatness condition.

On the other hand, the decomposition of a non-factorizable 2-cycle is not unique, and so
the wrapping numbers in (B.13) are not all independent. In addition, the conditions (B.14))
are stronger than the D-flatness condition, and one can find examples of BPS D8-branes
that cannot be written in such form. It turns then more useful to describe a D8-brane
directly in terms of the 5-cycle (B-4) and a general constant U(1) bundle F as

I = (n',m"); x (T?); x (T?),
F/21 = n® dad A da® 4+ n® dad A dy® + n¥® dy? A dx® + n¥Y dyd A dy® (3.16)
+m® I dad A dy? + mPF dak A dy®

where all the n’s and m’s are integer numbers, and {ijk} is again a cyclic permutation of
{123}. It is easy to see that the F-flatness condition now reads

(T + im™J) - (Ty +im®™ k) = nWp¥® — pT@pyy (3.17)



and so the only effect of m*¥:J, m®¥¥ is to shift the B-field by an integer number. For this
reason we will set m® 7 = m®* = 0 from now on, and describe a coisotropic D8-brane a

in terms of the six integer numbers

D8, : (n%,mi); x (nZ*, nZ¥, n¥® n¥);, (3.18)

defined by (B.1€). Comparing with the description (B.13), we find the identifications

n = —(ndf + ) 0t = (g + mymf) (3.19)
n*y = méng + m%ng nyt = némg + némg '

In the notation (B.1§) we also have that the pull-back of F A € reduces to
FAQ = c-(n' +imym") (n™ 17y + 01 + in¥ 1y, — n¥) dvoly, (3.20)
where ¢ € R, and hence the D-flatness condition reads
min¥r; — ninxyTj —nin¥ir = mianiTka (3.21)

plus the additional condition Re FF A 2 > 0. As we will see below, in the case of the
Zo X Zso orbifold a coisotropic D8-brane can also be defined by the same set of integer
numbers (B.1§), and the chiral spectrum as well as the effective field theory quantities of a
D8-brane configuration will only depend on them.

Finally, we are interested in introducing O6-planes in our theory. For this we mod out
our toroidal compactification by the orientifold action QR(—1)Z, where Q is the usual
world-sheet parity, Fj stands for left-handed spacetime fermion number, and R is the
antiholomorphic involution

R: (24,2222 — (34,7222 (3.22)

In general, a magnetized D8-brane will not be left invariant under this orientifold action,
so we need to include its orientifold image, given by®

DS, : (—nfl,mfl)l X (=ng*,ng? i —nd) K (3.23)

Notice that in some cases like (B.5) a D8-brane is mapped by QR(—1)* to an anti-D8-
brane, so the total D8-brane charge vanishes. Nevertheless, it is easy to check that if
D8, satisfies the supersymmetry conditions (B.17) and (B.21) so will D8/, so both D-branes
are BPS objects.

3.2 D8-branes on T%/Z, x Z,

The fact that we can construct coisotropic D8-branes in T® is perhaps not surprising,
given that in this compactification manifold b5 = 6 and then D8-branes can wrap non-
trivial 5-cycles. One may then wonder how a similar construction could be carried in
general Calabi-Yau manifolds, where b5 = 0 and any 5-cycle II5 will be trivial in homology.

5The orientifold action which takes D8, to D8, may be not obvious at this stage, but is quite easy to
understand from the mirror type I picture, which will be discussed in section ﬂ
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(¢ =1) | D8 charge | D6 charge | D4 charge
o | W | m | m
o | W | mg | o
b | - || -
wha —[115] [115] — ]

Table 1: D-brane charges of a coisotropic D8-brane of the form (@), when embedded as a bulk
D-brane on the Zy x Zg orbifold. Here [I11'] is defined as the Poincaré dual of [F/27] in II5, while
[TI7*] is the Poincaré dual of [F2/4x2]. This table holds for the case where i = 1 in (B.4), while in
the cases ¢ = 2 and i = 3, the roles of 6, w and 6w are interchanged.

In order to get more intuition about this problem, we can consider manifolds close to
T% while carrying proper SU(3) holonomy. These are toroidal orbifolds of the form T/T,
where I' C SO(6) is a discrete subgroup of SU(3) but not of SU(2). A simple example is

given by the orbifold T6/Zy x Zs, with the Zy x Zo generators acting as
(1,2, 2%) o (-2, 2 &)

: (21,22,23) — (21,—22,—23)

(3.24)

0 :
w (3.25)
and where 2’ is the complex coordinate associated to (T?);. Just as in [, we will consider
the choice of discrete torsion such that each Zs x Z5 fixed point contains a collapsed 2-cycle,
and so the complete orbifold cohomology is given by (h11,ho1) = (51, 3).

Following the usual strategy for describing D-branes on orbifolds [R5], we can construct
a coisotropic D8-brane in T®/Zy x Zo by considering a D8-brane on the covering space T,
then adding its images under Zy X Zso, and finally quotienting our theory by the orbifold
action. If the D8-brane is not placed on top of any fixed point and has non-trivial Wilson
lines, all the images are different and we are dealing with a bulk D8-brane whose gauge
group is U(1). Notice that this also applies to a D6-brane at angles, although there is one
important difference. The homology class of a D6-brane [II3] = [(n!,m!) x (n?,m?) x
(n®,m3)] is invariant under the full orbifold action (B.24), (B.25), while this is not true for
a D8-brane. For instance, in our T example (B.J), the homology class [II5] is mapped into
—[II5] by the action of #, while F' is mapped to —F. On the other hand, the action of w
leaves these two quantities invariant. It is easy to see that one gets the same kind of behavior
for any coisotropic D8-brane. This can be understood by the fact that a coisotropic D8-
brane on T will carry D8, D6 and D4-brane charges, which can be described by homology
classes of 5, 3 and 1-cycles on T%. When quotienting by the Zg x Zs orbifold group the non-
trivial 5 and 1-cycles will be projected out, and so the total D8 and D4-brane charges (E)
should vanish. On the contrary, the induced D6-brane charge (.3)) will survive the orbifold
projection, as can be appreciated from table [i].

However, bulk coisotropic D8-branes are not very interesting from the model-building
point of view. The reason is that, as we will show in the next section, the chiral spectrum
Bulk
coisotropic D8-branes carry bulk D6-brane charges and, as implicit in [f], bulk D6-branes

of a coisotropic D8-brane only depends on the D6-brane charge that it carries.
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(T%), K3 = (T, x (T?), /(140

Figure 2: Fractional coisotropic D8-brane on T /Zy X Zs.

/

/

do only give rise to models with an even number of chiral families. Hence we would never
achieve a three-family model out of bulk coisotropic D8-branes.

The way out is to consider D8-branes which are fractional with respect to the Zo X Zo
orbifold action, and so they can carry fractional D6-brane charge. Recall that in this
particular choice of Zy x Zy orbifold fractional D6-branes are 3 bulk D6-branes [P, R,
and so will be the case for fractional D8-branes. Indeed, from table [[] we see that only the
action of one generator of Zo X Zso leaves a D8-brane invariant, while the other maps it to
its anti-D8-brane. Hence, a D8-brane can only be fractional with respect to a Zy subgroup
of ZQ X ZQ.

For concreteness, let us consider a D8-brane of the form (B.4) and with i = 1, so that
it is left invariant by the action of w. Generically, such D8-brane will not be on top of any
§-fixed point in (T?)y, and so locally it will not know about the action of #. It can thus be
described by a 5-cycle of the form (see figure )

Il = (n',m') x TY/Z§ c T? x T/74 ~T? x K3 (3.26)

where Z4 stands for the Zy subgroup of Zy x Zs generated by w, and so T? x K3 can be
seen as the covering space of T%/Zy x Zs before quotienting by 6. We can then describe a
coisotropic D8-brane in T6 /7o X Zo in terms of a D8-brane in T2x K3 plus its image under
0. Moreover, because the worldvolume flux F' is fully contained inside K3, this D8-brane
can be understood as a product of a 1-cycle in T? and a coisotropic D-brane on K3.

Let us now see which D6-brane charge is carried by a fractional D8-brane. The only
difference with the toroidal case is that [F/27] is now an element of H?(K3,Z), rather than
of H?(T*,Z). As a result, the D6-brane charge is again of the form (B.12), but now II,
should be seen as a Lagrangian 2-cycle of K3. As explained in [R§], the difference between
Ho(T*,7Z) and Ho(K3,7Z) amounts to including fractional D-branes in the orbifold T*/Zs.

- 12 —



More precisely, Ho(T*,Z) is a sublattice of Ho(K3,7Z) which corresponds to bulk D-branes
in T4/Zy. The elements of Hy(K3,7Z) that are not in Ho(T*, Z) contain the ‘minimal’
2-cycles of K3 and, in the orbifold limit T#/Zs, they have the form

1
5 + 3 Z €115 (3.27)

i,j€I5

where HS is a bulk 2-cycle, inherited from the 2-cycles on T? that survive the Zo action
of w. IIF stand for the 4 x 4 fixed points of T*/7Zs or, more precisely, the 16 collapsed
P'’s that arise from such singularities. In general not all the collapsed 2-cycles contribute
to (B-27), but only those which are crossed by HS. The phases €;; = £1 then correspond
to the two possible orientations with which the two-cycle can wrap around the blown-up
P! labeled by ij. Because (B.27) contains the exceptional 2-cycles I3, a D-brane wrapped
on it is stuck at the fixed points of T4/Zy, and in fact corresponds to a % fractional D-
brane of the T* /Zs orbifold. Taking all the phases €;; positive corresponds to choosing one
Chan-Paton phase, while taking them all negative corresponds to choosing the opposite
one. The intermediate choices of €;;’s are constrained by consistency conditions, and they
can be understood as discrete Wilson lines turned on. See, e.g., [B8 B9 for more detailed
discussions.

Given this description of a fractional D-brane it is now clear how to construct a
coisotropic D8-brane with fractional D6-brane charge. We first consider a fractional D8-
brane of the form (B.26) and then a pair of minimal 2-cycles (II¥)® and (IT§)? such
that (B.19)-(B.14) are satisfied. Just as in the toroidal case, our worldvolume flux F
will be given by the Poincaré dual of [(TII§)*] + [(IT§)?] in II5, which means that [F/27]
will be an element of H2(K3,Z) but not of the sublattice H2(T*,Z). That is, F' will be of
the form

1 1
Ffr = §Fb + §Ftw (3.28)

where FP is an element of H?(T*,Z) and F* is the Poincaré dual of a sum of exceptional
2-cycles Zij €;5 II;; in K3 which, in the orbifold limit T*/7Zs, can be associated to the
twisted sectors of the theory. For simplicity, we will choose all the phases ¢;; to have the
same sign, which amounts to not turning any discrete Wilson line.

The pair (II5, ) is a coisotropic D8-brane which is fractional with respect to w, but
in order to have a well-defined object we still need to add its image under #. From the
toroidal case we know how II5 and FP transform under the action of . The behavior of
F*™ is more subtle and depends on the choice of discrete torsion. Recall that in a Zo X Zo

orbifold the choice of discrete torsion amounts to specifying the action of # on the collapsed
PYs of K3 ~ T%/Z%. The two possibilities are

6 : P! — pP! (3.29)

with n = £1. In our case n = 1, i.e., the collapsed two cycles do not change orientation
under the action of 0, and so the phases €;; in (B.27) do not change when we consider the
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(¢ =1) | D8 charge | D6 charge | tw. D6 charge | D4 charge
a s | ] 5™ "]
b tw 2
0o | i | @y | omE | -
i | Ml | W | e )
fa —[115] ] LLE — (]

Table 2: D-brane charges of a fractional coisotropic D8-brane and its image under 6, given the
choice of discrete torsion 7 = 1. The upper two rows represent a Z4%-fractional D8-brane a with
a definite choice of Chan-Paton phase (say o = +1), while the two lower rows correspond to the
opposite choice (« = —1). These four D8-branes are then the constituents of a bulk coisotropic
D8-brane.

image of TIJ" under . We similarly find that the action of § on a fractional coisotropic
D8-brane is given by
0
I —[II
Hs] v > {15 (3.30)
LR+ Jp S L g

where we have chosen FP as in (B.1§). The choice 7 = 1 then implies that, while the
untwisted D6-brane charge is left invariant under the action of 8, the twisted D6-brane
charge is flipped by a minus sign, and so the total twisted D6-brane charge vanishes (see
table f). This is indeed what we would expect, since for this choice of discrete torsion the
RR twisted fields coupling to an A-brane are projected out, and hence such D-brane should
not carry any twisted charge.

We can now understand a bulk D8-brane in term of its fractional components, as shown
in table fJ. Indeed, in order to construct a bulk coisotropic D8-brane we need to consider
a fractional D8-brane a with some choice of Chan-Paton phase o and a second D8-brane a
with the opposite choice of a. We then add their images under 6 and obtain a coisotropic
D8-brane in the regular representation of the Zq X Zs orbifold group. Notice that each of the
pairs (a,fa) and (a,f0a) has vanishing D8, D4 and twisted D6-brane charge. In addition,
each pair generates a U(1) vector multiplet, and there are no gauge bosons arising from
open strings in mixed sectors like aa. Hence the total gauge group of a coisotropic D8-brane
in a regular representation is given by U(1) x U(1). In particular, this means that when a
bulk D8-brane approaches an orbifold singularity its gauge group gets enhanced as

U(l) — Uu@) xu(1) (3.31)

in contrast to the enhancement U(1) — U(2) that occurs for D6-branes [P€]. As seen above,
each of the U(1) factors in (B.3]) can be seen as an independent D8-brane whose net RR
charges are those of a fractional D6-brane. More precisely, the net RR charge of a pair
(a,0a) is given by [I1% b], which is specified by the six integer numbers (B.18) of the previous
TS case. These fractional D8-branes will be the building blocks that we will consider in
order to construct A/ =1 chiral models.

In fact, F" will be the only quantity to consider when constructing a fractional BPS
D8-brane in TG/ZQ X 2o, rather than the full F'_ This can be seen from the fact that FP is
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the only worldvolume flux present for a generic bulk D8-brane. Taking such bulk D8-brane
to an orbifold singularity and splitting it as in table | should not affect its BPSness. Thus,
if a bulk D8-brane is BPS for some choice of closed string moduli so will be its fractional
components. These fractional components inherit the same F” as the bulk D8-brane, but
now have a new contribution to F' coming from F*. By construction, the latter should
not be involved in the supersymmetry equations (P.4).

A more direct way to reach the same conclusion is to follow the standard procedure
to construct D-branes on orbifolds [R5]. According to such prescription, the BPSness of
a fractional D-brane on T®/Zy x Zj is specified by its BPSness in the covering space T,
with the only condition that the supersymmetry preserved by such D-brane on T® needs
to be compatible with the bulk supersymmetry preserved by the Zo x Zo action. Again,
if a magnetized D8-brane is BPS or not in T% only depends on II5 and in FP, and so the
precise form of F*™ will not matter when constructing a BPS D8-brane.”

To summarize, we should only concentrate on IT5 and F when applying the D-flatness
and F-flatness conditions for a fractional coisotropic D8-brane. Because both quantities are
specified by the toroidal quanta (B.18)), we will obtain similar constraints on the untwisted
Kéhler and complex structure moduli as those found for the T case. In fact we will see
that, for most purposes, we can treat a fractional D8-brane on T%/Zy x Zy as a D8-brane
on TS,

Similarly, IT5 and FP will be the only quantities to consider when checking the consis-
tency of a coisotropic D8-brane model. More precisely, in the present T®/Zs x Zy orbifold
background the zero modes of the RR Cy and Cs forms are projected out, and a coisotropic
D8-brane may only contribute to C'7 RR divergences via its induced untwisted D6-brane
charge [IT£' b]. If in addition we mod out our theory by the orientifold action QR(—1)fr
specified by (B.29), the only surviving components of C'7 will be those of the form (C7) 1,243
and (C7)$iyjy

In order to write down such conditions, let us consider a configuration made up of

k, yielding four independent RR tadpole conditions.

fractional D6 and coisotropic D8-branes, with topological data

D6; : N; (n},m}); x (n,m?)s x (n?,m?)s

D8, : N, (nk,mb); x (n¥®,nTY n¥® n%¥)ys

D8y, : Ny (n},m3)s x (nf® oyt ny" i )s (3.32)
(né,mg

)
D8, : N. (n2,m2)s x (nZ*, nZ¥ n¥* ni¥)

12

where, following the conventions in [H], the number of D-branes is normalized such that
N, is an even number yielding a U(V,/2) gauge group. Cancellation of RR tadpoles then
reads

ZN”ITL? 2 — Nongn¥ — Nyngn}¥ — Non2n¥? = 16

i,a,b,c

"In the usual orbifold language, the twisted charges F*™ do not appear as such, but are encoded in
the matrices s, Y. acting on the Chan-Paton degrees of freedom. In this paper we are using a geometric
approach which does not make use of the explicit form of v4 and ~.,, but it would be interesting to rederive
our results from this more standard procedure.
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Z Ningmimi — Nynlni® + Nyminy? + Nem2n¥® = —16

i,a,b,c
12,3 1, yx 2 xx 3.2y __
Niminym; + Nomganl® — Nyning® + Nem2nz? = —16 (3.33)
i,a,b,c
Z Nimiming + NyminZ¥ + Nympni® — Non2n® = —16
i,a,b,c

where we have also included the contribution of the O6-planes introduced by the orientifold
quotient.

In addition, in this class of orientifold backgrounds there may be extra consistency con-
ditions which are invisible to one-loop divergences in the worldsheet. Such extra constraints
take into account the cancellation of those D-brane charges which cannot be detected by
supergravity, but only by a K-theory computation or by using D-brane probes [B0]. For
the Zo X Zo orientifold at hand and for D6-branes at angles, these extra constraints were
computed in [f]. One can repeat the same D-brane probe argument to include D8-branes,
obtaining

g Nymim2m3 — Nomln® — Nymini® — Nom2n® = 0 mod 4

i,a,b,c
E Niminini — Nomin?¥ + Nyngni® + Nonin®¥ = 0 mod 4
i,a,b,c
E Ninymin} + Nongn®¥ — Nympni¥ + Nen2n?® = 0 mod 4 (3.34)
i,a,b,c
Z Nininim? + Nanin¥® + Nynpny? — Nem2nY = 0 mod 4
i,a,b,c

which imply the cancellation of K-theoretical Zo charges that both D6 and D8-branes may
carry. Finally, the CFT analysis of [BI] suggests that certain coisotropic D8-branes could
carry additional Zy charges, again invisible to supergravity. As stated in [B1], it is not clear
if such additional Zg charges could give rise to extra consistency constraints or if (B.33)
and (B-34) gather all the consistency conditions of our compactification. For simplicity,
we will consider the latter to be the case and leave the analysis of the full set of torsional
K-theory charges for future work.

4. Coisotropic branes and chirality

One interesting property of coisotropic D8-branes is that, just like intersecting D6-branes,
they give rise to chiral fermions upon compactification. Recall that, in the intersecting
D6-brane framework, chiral fermions arise at the intersection locus of the 3-cycles H3D G
and H3D % that two D6-branes wrap. These intersections are points in the internal manifold
Mg, and they naturally give rise to D = 4 fermions in the effective theory [B2. The

multiplicity of chiral fermions is given by the signed number of intersections

Iy = [117%] o [TT;] (4.1)
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which only depends on the D6-brane homological charges [H? 62] and [H?Gb].

If we now consider two D8-branes D8, and D8, they may also intersect, but they would
do so in a 4-cycle §; and there is a priori no reason to expect D = 4 chirality to arise from
such intersection. However, because coisotropic D8-branes carry a worldvolume flux F,
there will be a relative flux F,, = F, — F, coupling to the open strings in the D8,D§,
sector. This flux will modify the internal Dirac index of the D = 8 theory compactified
on 84 and, in particular, it will be a source of D = 4 chirality via the coupling |, S F a2b'
The same story will apply to a D6,-D8;, system. Now the intersection locus is given by a
2-cycle 8o, and a natural source of D = 4 chirality will be given by the quantity | s, Fab-

We thus see that, when including D8-branes into the picture, the source of chirality
in type IIA compactifications is not only given by the intersection of D-branes, but rather
by a combination of intersection and magnetization mechanism. This reminds of the case
of type IIB theory, where such combination also arises from compactification with D5 or
D7-branes. From the type IIB literature we know that computing the chiral spectrum in
those cases may be quite involved, and that it requires describing our D-branes as coherent
sheaves and computing the so-called ‘Ext’ groups among them [B3]. In principle we could
apply a similar procedure to compute the matter content of our D8,-D8; and D6,-D§;
system. However, we will see below that for coisotropic D8-branes on T¢/Zy x Zy the
number of chiral fermions can be expressed in a rather simple way. Indeed, let [H3DS]
be the D6-brane charge induced on a coisotropic D8-brane. Then the net chirality on a
D8,-D8; and D6,-D8;, system is given by

Iy = 7% o ™) and I = [I3%] o [T1;™] (4.2)

respectively. In fact, we would expect such expressions to be valid for general Calabi-Yau
manifold Mg. Notice that when [[1£®] is trivial in the homology of Mg then any of these
intersection numbers will vanish, but then our D8-brane could never be a BPS object.
Hence the source of stability for a coisotropic D8-brane (i.e., the worldvolume flux F')
turns out to be also the source of D = 4 chirality.

4.1 D6-D6 chirality

Let us first review the case where chirality arises from two intersecting D6-branes. The
simplest case is that of T® = T2 x T2 x T? and two D6-branes at angles
D6, : Ng (ntll’mtll)l X (ngamg)Q X (ngamg)fi

4.3
D6y = Ny (nl,mb)s x (n2,m2)s x (nd,m?)s (4.3)

yielding a gauge group U(N,) X U(Np). The number of chiral fermions in the bifundamental
representation (N, Np) is given by the intersection number ([.1]), which is computed by
taking the Poincaré dual 3-forms

we = —(nidy! —mlda') A (n2dy? — m2da?) A (n3dy® — m3da?) (4.4)
wp = —(nidy' —mida') A (nldy* — mida?) A (njdy® — m3da?) '
and integrating them over T° to yield
T = [ wa N = (ol = nfmd) - (n2md = wdwe2) - (b, — ) (49
T
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(T2>1 K3 = (TZ)Z X (Tz)g/{ 1+ (JO}

ga |-

Figure 3: Chirality from a D6-D6 system on T6/Zy x Z,.

When considering the orbifold T®/Zy x Z the situation is more involved but, as shown
in [] by means of CFT arguments, the number of chiral fermions is again given by ({£5),
and the only difference is that the gauge group is now U(N,/2) X U(Ny/2). Let us rederive
this result by the more geometric approach followed in [P§. Since N, is an even number, we
can separate a stack of N, /2 D6,-branes away from the fixed points on (T?)1, the remaining
N, /2 D6,-branes being their images under . We can repeat the same procedure with Ny/2
D6,-branes, without changing the gauge group or chiral spectrum of our configuration [B4]
(see figure ). Just like the fractional D8-brane discussed above, these D6-branes see the
geometry (T?); x T*/7Z, so they wrap a 3-cycle of the form

D6+ No/2 (nd, mb)y x (4105, + 413,
D66a : Na/Q (n}l’m}%)l X (%Hg,a - %Hg:va) (4.6)

Hg,a = (ni,ma)g X (ng’mg)fi

where a = a,b and we have decomposed a minimal 2-cycle of T*/Zs as in ([§:27). Again,
the relative sign in H‘;fa follows from the specific choice of discrete torsion n = 1 in (B.29).
In order to compute the chiral spectrum we sum over the intersections of D6,D6; and
D6,D6gy, the other two sectors being mapped to these by the action of #. We then find
Iy = [T7%] o [TI5"%] + [T15%] o [T17"%]
= (I(ndsm)] o2 [(nd,m3)]) - (3I18,4] oxcs [115,]) (4.7)
= (—(n}lmé — ném}l)) . (—(ngmg —nim?2) - (n3m3 — ng’mg))

where we have used the fact that [H'2°7 oJox3 (157, ] = 0 and that the embedding of H (T4, 7)
into Ho(K3,7Z) involves a factor of two [R§.® Finally, one can check that both summands
in the first line of (J.7) have the same sign, and so there is no vector-like pairs arising from
the D6-D6 system.

4.2 D6-D8 chirality

Let us now consider a D6,-D8; system on T. In particular, let us take the case where the

8Recall that in our conventions f(TZ)i dy' A dx' =1 (see footnote E), and so there is a relative sign with

respect to the usual intersection product used for T2.
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Figure 4: Chirality from a D6-D8 system on T®.

direction not filled by the D8-brane is on (T?);, so that we have

—

9 X (n3 m3)s

7nb 7nb )]k

D6, : Ny (nl,ml)y x (n2,m?2
D8y : Ny (ny, mp); % (ng®,ny,

\_/

(4.8)

‘d

as illustrated in figure fl, with i = 1. Both D-branes intersect |n my — nbm | times on
(T?);, and each intersection is a T? of the form I1}% = {(na,mfl)] x (n¥, mk)}. Thus,
each intersection can be seen as a D = 6 theory compactified on T2, with a D = 6 chiral
fermion arising from the D6,D8; sector. Such D = 6 theory is deformed by the presence of
a relative flux F,;, which is nothing but the pull-back of FP® on Hé) 6o The multiplicity
of chiral fermions associated to the Landau levels of this toron system is given by the index

/ F :/ Qo N Fy = [T156e
26 T4

where @, is the Poincaré dual of Hé) ba on T4. If we multiply this spectrum by the number

ops %] = 1T (4.9)

of intersections on (T?); we arrive to the total multiplicity
T2), T4). "
Lp = 15 157 = P o ] (4.10)
as advanced in ({.9). In terms of the integer numbers ([L.§) we have a total of
Tus = (ko — ) - (b + b + mdnbad” + ) (411)

chiral multiplets transforming in the bifundamental representation (Ng, Np).

In order to compute the chiral spectrum of the D6,-D8;, system in the T®/Zy x Zy
orbifold we can follow the same strategy used for intersecting D6-branes. We separate both
D6 and D8-branes away from the Zy x Zs fixed points on one of the two-tori, say (T2),
and then we describe them as fractional branes on T? x T*4/Zy. The main difference with
the computation of 1Y b is that now Hé) ba and F), have each a component from the twisted
sectors of K3. However, the twisted contributions to ICIL? will cancel once that we have
summed over the sectors D8y, and D8y, and so we will recover () The only difference
with T6 will be that now the gauge group is given by U(N,/2) x U(Ny/2), and so (f.11))
indicates the number of chiral multiplets in the representation (N, /2, Np/2).
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Figure 5: Chirality from a D8-DS8 system on T®.

4.3 D8-D8 chirality

Finally, let us consider a D8,-D8; system. On T our coisotropic D8-branes are described
by
D8, : N, (nz,mZ )i X (ngx,ngy,ngﬁ,ngy)jk

4 Ty yx

aa (4.12)
D8y : Ny (ng,,myp )y % (ng*,ny”, ny ,ni’y)j/k/

where {ijk} and {i'j'k’} are both even permutations of {123}. Although D8, and D8, will
always intersect on a T*, we can distinguish between two different cases:

o i =1 [figure[d, )]

In this case D8, and D8, intersect |n’m} — nim/| on (T?);, and they overlap on
(T?); x (T?);. On each intersection we have a D = 8 gauge theory compactified on
T4, with a relative flux F,, = Fj, — F, acting on the D8,D8; sector. The multiplicity
associated to the Landau levels of this compactification is now given by

1 r T x T
_5 /(TQ) (T2) (Fb - Fa)2 = (n};cw — ngx)(ni’y _ ngy) — (nby _ nay)(nil _ ng ) (413)
ix k

and so the total number of chiral fermions is

—(ngmi — njmy) - (05" — ng®)(ng” —ni¥) — (¥ —ng¥)(ny" —nf™))  (4.14)

o i £4 [figure [, ii)]
In this case both D8-branes intersect just once and the T* where they overlap is of
the form (T%)u = (nk,mb) x (n} ,m} ) x (T?)y, with i # k # . The multiplicity of
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(T9), K3 = (T%), x (T?), / 1+

a
ya .
fa
p

Figure 6: Chirality from a D8-D8 system on T®/Zy x Zs.

the D8,D8;, is now given by the integral

1 2 _
= Jernya 2F = Fa)* = Jous miyx it i yx(12),, Fa A
— fT6 (ntdy® — mbdz') N Fy A (n@ldy’, — mgdxll) ANE, (4.15)
= Jpowa Awy = [IF%] o [II7™]

where [w,] is the Poincaré dual of [[15*]. In terms of the D8-brane quanta (1)
we have, for i’ = j,

— it (WYY, T YT, YT i i’ (0 TT ), YY zy  TY
Tap = ngmy, (na’ng™ —na ny) = mgny (ng"ny” —na’ny”)

% T, YT Y xx vyy,,TY yr Yy

. S0 4.16
—ngny (nEny" = ng"n®) — mimy (nny? — ngng) (416)

and for i/ = k we just need to interchange (i + i') and (a « b) in (f.16)) in order to
compute — 1.

Notice that ([.16) can be put in the form ([.2]), but that this is not the case for ([.14).

This is because T® contains non-trivial 5 and 1-cycles, and so there are non-trivial RR
charges associated to both D8 and D4-branes wrapped on such cycles. One would expect
such charges to play a role when computing the chiral spectrum of a compactification, in
the same sense that a D4-D8 system gives rise to D = 4 chirality when both D-branes
have a non-trivial intersection. In Calabi-Yau manifolds with b; = 0 the only conserved
charges should be related to 3-cycles II3 and then we should be able to compute the chiral
spectrum of a D8-D8 system by means of ({.2)).

This is indeed the case of T6/Zy x Zs, which we now analyze. We again describe

our fractional D8-branes in terms of the covering space T? x T#/Zs, as shown in figure [
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Recall that now F, and Fj are 2-forms in K3 and that they are mapped to (B.30) by the
action of #, so that we have

D8, : No/2 (nf,mi); x K3, FI = iFP+4 1F™
D8po : Na/2 (—nb,—mb); x K3, Fff = Fb+ TN (4.17)

FP = n® dgd A da® 4 ng? dod A dy® +nd" dy? A dab +nY dy? A dy”

Adding up the contributions from the D8,-D8; and D8y,-D8;, sectors of figure |j we arrive
to a chiral spectrum given by

lop = (némé - n};m (fK3 2 1: P;fr ffK3% - Fy)?)
= —(n{mj —nim?) fK3 Ffr A (Fir — Fgfl)D . (4.18)
T T 5.
= —(nim} —nimb) - % [ica Fb AFP = [T17%] o [T15°]

which can indeed be expressed as the intersection product of two 3-cycles. As usual, this
quantity only depends on the bulk wrapping and magnetic numbers (§£.12), in terms of
which it reads

Iy = (némz — nimé) . (nﬁxngy + nl¥ng"t — xyn?;:v nymn;fy) (4.19)

Finally, the same procedure can be applied to the D8-D8 system of figure [J, i¢) in order
to compute its chiral spectrum when embedded in T®/Zs x Zs. In this case the computation
parallels those of the D6-D6 and D6-D8 systems, in the sense that the contributions coming
from twisted sectors cancel each other and we end up with the intersection number [,; again

given by ({.14).
4.4 Summary

Let us summarize the above results on the chiral spectrum arising from D6-branes at angles
and coisotropic D8-branes. Although now there are several possibilities in order to produce
chirality from a pair of D-branes, finding the chiral spectrum of a compactification always
boils down to compute the intersection number [, between two homology classes of 3-
cycles [14] and [I1§]. As advanced in (f.d]) and (f.2), such 3-cycles may correspond to
those wrapped by a D6-brane [H3D 6] or to the D6-brane charge which is dissolved into a
coisotropic D8-brane [T1%].

Because of the choice of discrete torsion taken on the T%/Zy x Zsy background, neither
the D6-branes nor the D8-branes carry any twisted charge, and so the homological charges
[T1P6] and [I1£®] can be understood in terms of (a subsector of) the T® cohomology. This
implies that the intersection numbers I, can be expressed in terms of the wrapping and
magnetic numbers (B.32) that define a D6-brane at angles or a coisotropic D8-brane in
T? x T? x T?. In particular, they take the expressions ([5), (E11), (EI6) or (EI9)

depending on which particular pair of D-branes we are considering.

Once these intersection numbers have been computed, everything works as in the case
of D6-branes at angles discussed in [f]. In particular, because we are performing the same
orientifold projection that introduces O6-planes in our theory, we need to consider the D6’s
and D8’s orientifold images. In the case of the D8-branes, this means that we need to add
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Sector Representation
aa U(N,/2) vector multiplet
ab + ba I, (Oy,0p) chiral multiplets
abl +Va I,y (Og,0p) chiral multiplets
aa’ +d'a %(Iaa/ —41,0) O chiral multiplets
%(Lw/ +41,0) H chiral multiplets

Table 3: Gauge groups and chiral spectrum spectrum for A/ = 1 intersecting D6-branes and
coisotropic D8-branes in the T®/(Zs x Zs) orientifold considered in this paper.

the images (B.2J) in our compactification and that we must also compute the intersection
numbers I,s. Finally, the D6,-D6,, and D8,-D8,/ sectors may give rise to symmetric
and/or antisymmetric chiral matter, and this part of the spectrum also depends on the
intersection number 1,0 between [I12%], [ITY¥] and the O6-plane homology class, given by

[I5°] = [(1,0) (1,0) (1,0)] + [(1,0) (0,1) (0,~1)]
[(0,1) (1,0) (0,—1)] + [(0,1) (0,—1) (1,0)]. (4.20)

+

Such chiral spectrum is then summarized by table [

5. Effective field theory

Having constructed BPS coisotropic D8-branes in T® and in the T®/Zy x Zy orientifold,
we would now like to understand what is the effective field theory associated to them. In
particular, we would like to derive the expressions for the F and D-terms that appear when
the supersymmetry conditions (B.§) are no longer met. As usual, these quantities can be
extracted from the scalar potential generated in the D = 4 effective theory and, more
precisely, from the contribution of the D8-brane DBI action to such scalar potential.

We have already encountered an effective field theory quantity in the previous section,
namely the spectrum of D = 4 chiral fermions arising from a D8-brane when intersecting
others. In that case we found that everything depends on the D6-brane induced charge on
the D8-brane, so one may wonder if this also true for any other quantity. We will see that
this is indeed the case for some elements of the effective field theory, like the gauge kinetic
functions, Fayet-Iliopoulos terms and massive U(1)’s of a D8-brane and that, in these cases,
everything works like for a D6-brane wrapping a non-factorizable 3-cycle. On the other
hand, there will be important differences when analyzing the D = 4 superpotential. In
particular, we will see that a open-closed superpotential will couple the D8-brane moduli
to the Kéhler moduli of the compactification, and that the generation of Yukawa couplings
may or may not involve world-sheet instantons.

Because our coisotropic D8-branes do not carry any RR twisted charge and we are
working in the orbifold limit, all the effective theory quantities will depend on the toroidal
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D8-branes charges (B.1§) and on the closed untwisted moduli of the compactification. Re-
call that in the ITA orientifold that we are considering there are three untwisted Kéhler
moduli 7}, defined in terms of the complexified Kihler form J. as shown in (B.3).° The
remaining moduli are the dilaton S and the three complex structure moduli U;, which can
be encoded in the complexified 3-form [BH]

(47%0/)*? Q. = C3 + iRe (CQ) (5.1)

where in our conventions C' = e~?. The RR 3-form Cj3 is to be expanded in a basis of
3-forms invariant under the orientifold action. In our case,

Qe = iSdx' Ada® Ada® —i Y Upda' Ady’ A dy (5.2)
ik
It then follows that

ReS =e¢ ®RiRyRs ; RelU;=e¢ °RRRyriTy ,i#j#k. (5.3)

For future purposes we introduce the four-dimensional dilaton given by

4¢ el? —1
et = i (ReSReU; ReUsReUs) (5.4)

where V = R?R3R3m 1973 is the volume of the internal T in string units.
The effective action for a Dp-brane is the sum of two terms. The first is the Dirac-
Born-Infeld action given by

Spp1 = —up/ d"t¢ e ? Tr \/det(G + B + 21a/F) | (5.5)
Tp+1

where ¥,11 is the D-brane worldvolume. As usual, G and B are the pullbacks of the
corresponding D=10 tensors, whereas F' is the worldvolume field strength. The second

term is the Chern-Simons action
Scs = —,up/ Chne” R (5.6)
pt1

where C is a formal sum of RR forms.

As usual, these quantities simplify for D-branes on tori or toroidal orbifolds. For
instance, if we consider a D8,-brane with data given by (B.1§), we can derive the useful
result,

det (G + F)|y, = (4n?a/ )’ RERSRE ((ng)? + (mgmi)?) [(nl? — ng®rjme)® + (ngVm; + nim,)*
1

+ J—
R

Ty Ty — ngnly® + ngtni|*] (5.7)

In this section we will express the real part of these Kahler moduli as ReT; = R?7;, where R; is the
compactification radius in the z* direction (in units of 27v/a/) and 7; has been defined in (E)
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where |11, stands for the pull-back on the 5-cycle that the D8-brane is wrapping. Observe
that using the F and D-flatness conditions (B.17) and (B.21]) leads to

/ Vdet (G+ F) = FAReQ = 27ad’ | FAReQ (5.8)
115

115 115

where we have used that the B-field is a (1,1)-form and hence BAQ = 0. As we will shortly
explain, moving away from these supersymmetry conditions allows instead to deduce F and
D-terms in the scalar potential.

5.1 Gauge coupling constants

Let us consider a type II compactification, and a gauge theory arising from a Dp-brane
wrapping a (p — 3)-cycle II,_3 on the internal manifold. One basic question is which is
the gauge coupling constant of such theory. As it is well known, this follows from reducing
the Dirac-Born-Infeld action (F.5) over the compact II,_3, and reading the gauge coupling
from the resulting D=4 action. In this way we obtain the general result [Bq]

2—7; = (27r)37po/3_7p e~ ?\/det(G + F) (5.9)
9p Hp-3
In an A'=1 supersymmetric theory it must be that 1/ gg is given by the real part of the
holomorphic gauge kinetic function f,. Furthermore, the imaginary part of f, determines
the axionic couplings. These couplings can be derived from reducing the Chern-Simons
action (f.6) over II,_3 and so, eventually, Im f,, can be also deduced. For instance, for a
D6-brane, Im fg ~ st Cs, whereas for a coisotropic D8-brane,

Im fg = —i(47r2o/)*3/2 C3 A £ (5.10)
27 I 27

Clearly, Im fg depends linearly on the imaginary part of the complex structure moduli
that come from the RR 3-form. On the other hand, Re fg seems to have a complicated
dependence on the NSNS piece of the moduli. However, once the supersymmetric conditions
are used we can easily reconstruct the holomorphic gauge function.

Indeed, substituting eq. (5.§) in the gauge coupling constant gives

11 F
Re fg = pa (47T2o/)—3/2/n — ARe(e %9Q). (5.11)
8

2 . 2T
so combining with the imaginary part yields
i F i

- — ANQe = —— Qe 12
27 i, 27‘('/\ 27 1) (5.12)

fs =

where [II3] is the Poincaré dual of [F/2x] in II5. It is thus clear that the gauge kinetic
function only depends on the D6-brane charge induced on the coisotropic D8-brane.

In particular, in our toroidal compactification we can use (f.2) to express €2, in terms
of the moduli, so that for the D8,-brane (B.1§) we obtain

fsa = —ni,(nYVS — nZUL) — mi (WU + nEVU) (5.13)
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which explicitly shows that fs, is a holomorphic function of the dilaton and the complex
structure moduli. In addition, using the dictionary (B.19) one can check that this expression
matches the one obtained in [B7] for intersecting D6-branes.

5.2 Scalar potential

Basically, the contribution of a Dp-brane to the scalar potential of an effective theory can
be computed from its tension, as derived from the Dirac-Born-Infeld action. For example,
for a coisotropic D8-brane we have

Vps = Mg/ e*P1e=?\/det(G + F) . (5.14)
1I5

where the factor e*®* appears because the action term is actually i d*x\/G Vis, Juw being
the 4-dimensional metric in Einstein frame. In the toroidal compactification the four-
dimensional dilaton is given by (f.4).

To proceed further, we consider a D8, brane for which the Dirac-Born-Infeld determi-
nant is computed in (5.7). As in [[[7], it is convenient to define D-term and F-term densities

as
e Re (FAQ) |n, = (4r2a/)*? 0, dvoly, ,
e Im (FAQ) |n, = (4n2a/)*/2 D, dvolyy, (5.15)
(F+iJ)?|pa = (4n%a))? Q, dvolra .

These quantities have been basically computed in (B.17) and (B.20). Explicitly,

O, = [—né(nZyReS —n%ReU;) — m,(n¥"Re U; +nZYRe Ur)] ,

vy Ty TT @0y LY yr
2¢4D _ m aoNa mgng NngNa TL aNa - D 5.16
¢ T ReU; © ReS | Rel; | Relj @ (5.16)

Qu = [TjTh — ng?ng® + ng"ng’]

where we have also used (f.3) and (5.4). Notice that ©, = Re fsq.
The next step is to identify the terms in (p.7) to arrive at

Vos, = ps(dn®a)? ¢4, /02 + D2 + ¢ 20]14,]12( Q2. (5.17)
where ||(;||* = 472/ R? ((n})? 4+ (m%7;)?). Expanding the square root readily gives

— 1 4 D?L 672¢H£Z'H2‘Qa’2
VDSG—WG {‘@a’+2‘6a‘ + 2’@(1’ + -

(5.18)

This expansion supports the interpretation of the supersymmetry constraints Im (FAQ) =
0 and (F +iJ)? = 0 as D-flatness and F-flatness conditions. On the other hand, imposing
the supersymmetry conditions leaves only the first term in (F.1§). In fact, in a supersym-
metric configuration this term will cancel against the contribution of the orientifold planes
given by

Vori = —16€2%1e7%|00y]] . (5.19)
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In the TS /7o X Zso orientifold that we are considering
||€ori|| = R1R2R3(1 + ToT3 + 7371 —|—7’1’7’2) . (520)

and so it is easy to check that the RR tadpole cancellation conditions (B.33) imply the
vanishing of the full potential of a supersymmetric brane setup. This is the usual statement
that, by supersymmetry, NSNS tadpoles will also cancel in this compactification.

In the scalar potential (p.1§) we clearly identify a D-term appearing in the standard
supergravity form Vp = %DaD“, where D, = €>*9D, up to normalization, and the index
a is raised with the gauge metric (Re fso)~!. In the case of D6-branes, the analogous D-
term corresponds to Fayet-Iliopoulos terms associated to the D-branes U(1) factors [BY, B7
(see also [, BY). It is clear that the similar result should hold here, since we could
obtain (p.16) by replacing the magnetized D8-brane by a non-factorizable D6-brane whose
wrapping numbers are given by (B.19).

On the other hand, the scalar potential also includes an F-term contribution, namely

1 e®)6l?1Qa

Vi = 5.21
F716m3a2  V2Re fsa (5:21)
In the following we will argue that this F-term is due to a superpotential
V2
W = W X9, (5.22)

where Q, depends on closed Kéhler moduli as shown in (f.16]), whereas X is an open string
modulus of the coisotropic D8,-brane. The task is to show that Vp is of the standard form

2

e XX ‘8—W , (5.23)

0X

where K is the Kahler potential of the closed and open moduli and, as usual, K AB 5 the
inverse of K j5 = 050K
First, the Kéhler potential has the general structure

K=K+KygXX+--, (5.24)

with K and K yx depending only on the closed moduli. For K we have the well-known
tree-level result

3 3
K =—-log(S+8) = log(U; + U;) — > log(T; + T;) (5.25)
i=1 i=1
and so, to first order in X,
K et
— e 2
1285 © (5.26)

Second, we need to determine K v x, and our strategy will be to compute the kinetic energy
of the open string modulus, i.e. IN(X)g@ﬂX(?“X, from the Dirac-Born-Infeld action.
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Let us first identify the open string modulus X. To simplify the discussion we will
consider a fractional D8,-brane wrapping the 5-cycle (1,0); x ((T2)y x (T?)3)/Z2 (see
section 3.2). Then, the obvious moduli of our D8-brane in the D8,D8, sector are the
position y! of (1,0); in (T?);, and the Wilson line A; along the unique 1-cycle (1,0);.
These two real moduli can be arranged into a complex field as

X = Riny' +iA (5.27)

where the factor of Re 7} in Re X is necessary in order to obtain a canonical kinetic energy.
In fact, upon reducing the Dirac-Born-Infeld action the terms quadratic in space-time
derivatives of y' and A, in Einstein frame, turn out to be

1 e2 B
T 5 VIRe fsa (RiT70,y' 0"y + Ry 0, 410" Ay) (5.28)

where the factor of Re fs, basically comes from the integral over the 5-cycle that can be
performed using (5.7) plus the supersymmetry constraints.
Then, from the kinetic terms we obtain

~ 1 e2¢

= — % _Refs . 5.29
XX dnad V|42 e /s ( )

since, in the case at hand, ||¢;||> = R?. This is enough to check that the scalar potential
Vg has the expected form (5.23). Indeed, collecting previous results we find

Kexx _ T 26|

xx _ 5.30
¢ 32 V2Re fo, | (5.30)

to first order in X. Finally, the proposed superpotential obviously verifies %—?{/ ~ Q.

To summarize, we find that for a coisotropic D8-brane (B.1§) the worldvolume flux
F induces a superpotential linear in its open string modulus X; which, as in the case
of D6-branes, is a combination of transverse position and Wilson line in (T?);. Such
superpotential also involves the Kahler moduli of the compactification, and has the general

form

where n comes from integrating F? over (T?); x (T?);. Such type of superpotentials have
also been obtained in the case of magnetized D7-branes [0, [1].

In general, the existence of a open-closed string superpotential is quite an interesting
feature of a D-brane model and, in principle, it may provide new sources of moduli stabi-
lization. Naively, one would say that in the presence of a superpotential of the form (f.31))
the Kéhler moduli should be fixed as T;T}, = n, which is precisely the F-flatness condition
for our D8-brane. One should be however careful, because there could be extra superpo-
tential terms involving X; and then this naive picture could be complicated. For instance,
we have analyzed the open string modulus X;, which exists for any fractional D8,-brane
on (nf,m); x ((T%); x (T%)x)/Zy. However, there could be extra open string moduli, say
X; and X}, coupling as

Wx = X;X; X}, (5.32)
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as is the case for D6-branes [R6, ff]. Then the F-flatness condition for X; would read

8(W + Wx)

5e = (Tka + XX — n) =0 (5.33)
i

and hence the deviation of the Kéahler moduli from the BPS condition could be compensated
by giving a vev to open string moduli. Notice that this phenomenon is quite analogous
to the case of D-terms for D6-branes, where the scalar potential does not fix the complex
structure moduli of the compactification, but only a combination of closed and open string
moduli. In this sense, the fact that X; X} take a vev could be interpreted as some kind of
D8-brane recombination.

Notice also that, as a byproduct of our analysis, we have determined the Kahler metric
of the open string field X. This metric has a very simple expression as function of the closed
moduli. For instance, for a D8,-brane wrapping (1,0); x (T?) x (T?)3 we find

Ryg=— 0t nat N (5.34)
XX 7 4ra/ReTy \ReS RelU;) '
If the 5-cycle is instead (0,1); x (T?)3 x (T?)3 the metric is given by
~ 1 ne? nJ*
Kyg=-— . 5.35
XX dra’Re Ty (Re U,y * ReUs ( )

In general, we just need to apply eq. (p.29). For magnetized D7-branes the open moduli
metric has been discussed in [[[2-[4] (7, 1.

5.3 Massive U(1)’s

The axionic coupling (p.10)) not only enters in the gauge kinetic function of the effective
theory, but it is also an important ingredient in the cancellation of U(1) anomalies through
a generalized Green-Schwarz mechanism [[iJ. One can see that the imaginary parts of
the dilaton (S = Up) and the complex structure moduli couple to the D = 4 gauge field

strengths as
3

> d$ImULTr (Fy A Fy) - (5.36)
L=0
For instance, if F, arises from the coisotropic D8,, with data given in () and 7 =1, we
find the coefficients

dé = (—nln¥, —nln®* mln¥® mln®v) . (5.37)

In order to cancel U(1) anomalies we also need B A Tr F}, couplings, which can also
be obtained from the Chern-Simons action. Indeed, from (f.6) we obtain couplings of the

form
3

TrFuA | FACs=> BLATCF, . (5.38)
115 L=0
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Figure 7: Yukawa couplings in intersecting D6-branes involve a sum over triangle shaped instan-
tons.

where the By, are 2-forms dual to the O-forms Im Uy,. In the example above (i = 1) the
coefficients ¢} are given by
4 = (=Nymln*® —Nymln% Nynln® N,nln¥®). (5.39)

Obviously, these couplings exist only for Abelian U(1) factors.
The couplings (5.36) and (f.3§) give a contribution

> crd (5.40)
L

to mixed and cubic U(1), anomalies. Once the RR tadpole conditions (B.33) have been
imposed, this piece will cancel the remaining triangle anomalies due to the charged massless
fermions in the spectrum. In fact, the U(1)-SU(N)? anomaly cancellation works exactly
like in the case of D6-branes, so we refer the reader to the original references [}, 6] for a
detailed computation.

As usual, when the terms B A Tr F}, do not vanish, there will be combinations of U(1)
factors that acquire a mass. A generic U(1) generator Q = ) . &Q;, where @Q); arises from
the i*" stack, will remain massless provided that

D c&=0 ; VL (5.41)

(2

which guarantees that the corresponding U(1) does not couple to any RR 2-forms By,

5.4 Yukawa couplings

Other effective field theory quantities of obvious interest are the Yukawa couplings among
chiral fields. In the case of intersecting D6-branes, the flavor-dependent contribution to
the Yukawa couplings is given by a sum over worldsheet instantons [P (see figure [f)). The
couplings among three chiral fields labeled «, 3,~, have the qualitative form

Aapy (ki)

Yogy o< [T D e 2 (5.42)

) ki€Z
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Figure 8: Yukawa couplings involving two D6-branes and one D8 contain contributions both from
instantons (first torus in the figure) and integrals over overlapping wave functions.

where 7 = 1,2, 3, labels the three tori and A,gy(k;) is the area of the triangular instantons
on each of them. This sum was shown in [ff] to be equal to a product of Jacobi theta-
functions in the toroidal/orbifold case. The type I mirror of these orientifolds consists of
D5-branes and magnetized D9-branes, and the Yukawa couplings come from a pure field-
theoretical calculation. They are given by the overlap integral over the 6 extra dimensions

of the three wave functions of the zero modes «, 3,7, i.e.,
Yor, [ &y Waly)al) ¥ (1) (5.49
(T2)1x(T?)2x(T?)3

where some of the wavefunctions are delta functions when D5-branes are involved in the
Yukawa coupling. As checked in [[[7], this computation yields the expected T-dual of the
computation in terms of intersecting D6-branes.

In the presence of coisotropic D8-branes we find three new different classes of brane
configurations giving rise to Yukawa couplings among chiral fields. In these cases, the
origin of Yukawa couplings turns out to be a combination of the above two mechanisms.
The three new classes are as follows:

(a) Yukawa couplings involving two D6’s and one D8. This is depicted in figure f§ for the
case of a D8-brane with the 1-cycle in the first torus. The Yukawa coupling will have
two factors, one contribution coming from a sum over triangle instantons in the first
torus (see the figure) and the other from the overlap integral of wave functions over
the second and third torus. One thus has a structure for the couplings of the form

_Aaﬂ—y(kl)
N D e Y| Py VU)W (y)  (544)
k1 (T2)2x(T?)3

where the wavefunctions have only support in the D-brane intersections. In par-
ticular, the wavefunction arising from the D6D6 sector will be a delta function on

(T?) x (T?)3.
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Figure 9: The two general classes of Yukawa couplings in configurations with two D8’s and one
D6. In the first one there are contributions from a sum over instantons and overlap integrals. In
the second case there is no sum over instantons.

(b) Yukawa couplings involving two D8’s and one D6. This is depicted in figure f| As
shown in the figure, there are two classes of configurations of this type. In the first the
I-cycle of both D8-branes are in the same torus, i.e. (T2);. In this case the structure
of the Yukawa couplings is similar to the previous case and the Yukawa coupling has
the general form in eq. (f.44). In the second case in the figure there is no sum over
instantons and the structure is rather as in eq. (5.43).

(¢) Yukawa couplings involving three D8’s. In this case there are three possible configu-
rations of the D8’s, as shown in figure [0} In the first configuration again we have a
sum over instantons in one of the tori ((T?); in the figure) and the Yukawa coupling
will be given by an expression as in eq. (p.44). In the other two cases we will have

an expression as in eq. (5.43).

It would be interesting to see which kind of textures yield these new classes of Yukawa
couplings. However, a detailed computation of these Yukawa couplings goes beyond the
scope of this paper, and is left for future work.

6. Coisotropic model building

The coisotropic D8-branes discussed in the previous sections turn out to be interesting
from the model building point of view. One of the reasons is that coisotropic D8-branes
have induced D6-brane charges corresponding to non-factorizable 3-cycles. This allows for
new ways to cancel RR tadpoles in constructions giving rise to a MSSM-like spectrum.
In addition the presence of an appropriate set of coisotropic D8-branes give rise to super-
potential couplings involving the Kéhler moduli and may be useful in order to fix them.

,32,



i)

Figure 10: The three general classes of Yukawa couplings involving three D8’s.

We postpone for future work a systematic analysis of the model-building possibilities of
this new tool, but we will present here two examples of Zo X Zs orientifold models with
both D8- and D6-branes and a chiral spectrum close to that of a 3-generation MSSM-like
model. In the first example the MSSM fields will reside on a set of intersecting D6-branes
and the addition of a stack of coisotropic D8-branes will ensure RR tadpole cancellations.
In the second example the MSSM fields will reside at the intersection of both D8- and D6-
branes and extra coisotropic D8-branes will be added both to cancel tadpoles and provide
superpotential couplings for the untwisted Kéahler moduli.

6.1 An MSSM-like model

The first model will be based on one of the ‘triangle quiver’ toroidal models discussed in
section 4.4 of ref. [RJ], concretely, that with 32 = 1 (see that reference for details). In
this model the third torus is not a square but a ‘tilted’ torus. The extension of this set
of D6-branes to the Zo X Zs orientifold case is simply done by doubling the number of
D6-branes as in [f[]. We thus have D6-branes with wrapping numbers as in table [}

One can easily check that the set of D6-branes in this model are not enough to cancel
RR-tadpoles. In particular, their contribution to each of the 4 tadpoles is respectively
(76, —4, —2, —4) whereas that of the orientifold planes is (—16,8,8,16).1° In order to cancel
tadpoles we need branes contributing charges as (—60, —4, —6,—12). A very economical
possibility is to add a stack of 4 coisotropic D8-branes M (and their corresponding images

Note that the second and third orientifold charges are halved due to the tilting of the third torus.
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N, Dp, D8, : (n%,mb); x (nZ%, ng?, n&" n&)
D6y, 1 (ng,my)1(ng, m2)2(nd, my)s
N, =6 D6, (1,0)1(3,1)2(3,—1/2)3
N, = 4 D6, (1,1)1(1,0)2(1,-1/2)3
N, =2 D6, (0,1)1(0,—1)2(2,0)3
Ng =2 D6y (1,0)1(3,1)2(3,-1/2)3
Nu =4 D8y (=1, -3, -2, ~5)12 x (—3,1/2)s3

Table 4: Set of D6 and coisotropic D8-branes giving rise to the MSSM-like model in the text.

under the orientifold operation) as shown in the table. One can easily check that indeed
this simple addition cancels all tadpoles. All D-branes in the model preserve the same N'=1
SUSY for appropriate choices of the complex structure moduli. In particular the D-term
conditions are

211 =219 =713 ; T1ToT3 = 187 + 1275 + 573 (6.1)

which are obeyed for 71 = 79 = 73/2 = v/20. A superpotential of the form
Wps = X3(1 —T1T5) (6.2)

is created due to the presence of the D8-brane. In absence of the superpotential (p.32)
or for fixed extra D8-brane moduli, this would constrain the T o Kéhler moduli to satisfy
VT, =1.

The gauge group is initially U(3).x U(2) x U(1)p—1 X U(1) g X U(2)5s. However, three
out of the 5 U(1)’s are anomalous and only the hypercharge and an additional U(1) (the
one characteristic of left-right symmetric models) survives the B A F' couplings described
in the last section, remaining as massless U(1)’s. The chiral spectrum is shown in table fj
and consists of the content of the MSSM plus some additional SM doublets and singlets.
Further antisymmetric and symmetric U(2)as chiral fields uncharged under the SM exist
which we do not display.

This model, which is of phenomenological interest by itself, exemplifies how coisotropic
D8-branes may be a useful tool for model-building purposes. In this example the role of
the D8 was auxiliary, in the sense that it helped in cancelling RR tadpoles and restricting
Kahler moduli but the MSSM fields reside on D6-branes. Models analogous to this in
which MSSM fields live on D8-branes can also be constructed. This is illustrated in the next
example in which also additional D8-branes are appended in order to provide superpotential
couplings for the untwisted Kahler moduli.

6.2 A left-right symmetric MSSM-like model

In our second example the brane structure is reminiscent of the MSSM-like D6-brane con-
figuration introduced in [, [i] and first included in a tadpole free global Zy x Zy orientifold
compactification in [[j]. Consider a D8-D6 brane configuration as listed in table f
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Intersection | Matter fields Qo | Qp| Qc| Qa| Qm | Qv
ab Q1 32 |[1]-1]o0]o| 0|16
ab/ qr, 2(3,2) 1 1 0 0 0 1/6
ac Un 33,1) |-1|0 |10/ 0 |-2/3
ac Dp 3(3,1) -1 0 | -1 0 0 1/3
bd L 1,2) 0 -1 0 1 0 -1/2
b l 21,2) | o[ 1] 0| 1| 0 [-1/2
cd Nr 31,1) | oo 1|10 | o0
cd' En 31,1) |o|o|-1|-1| o0 |1
be H 1,2) 0 -1 1 0 0 -1/2
be! H 1,2) 0 |-1|-1]0 0 | 1/2
bM F 3(1,2;2p7) | O | -1 0 0 1 0

bM* F 21,22x) | 0 | 1o o | 1] o
M G s, L2) | 0l o |10 1|12
cM* G 5(1,1;27) | O | O | 1 | O | 1 |-1/2

Table 5: Chiral spectrum of the MSSM-like model discussed in the text. The hypercharge generator

is defined as Qy = $Qa — 3Qc — 3Qu-
N, Dpg D8, : (n%,mb); x (nZ%,na?, n&" n&)x
D6 : (14, mé)1(ng, mZ)2(ng. m3,)s

N, =6+2D8§, (1, ) x (1,3, —10)23

Ny =2 D6y, 1D)1(1, )2(0 —1)

N, =2 D6, ( 1)1(0, =1)2(1,0)3
Ny =4 D6y (=2,1)1(—3,1)2(—=3,1)3

Nx =2 D8x (1,0)2 x (1,0,0,—2)3;

Ny =2 D8y (1,0)3 x (1,0,0, —2)12

Table 6: Set of D6 and coisotropic D8-branes giving rise to the left-right symmetric MSSM-like
model in the text.

The stacks of branes a, b, ¢, contain the SM gauge group and particles whereas the
stacks M, X, and Y are auxiliary branes whose mission is helping in cancelling tadpoles.
In addition the D8’s X and Y also contribute to the fixing of the three untwisted Kéhler
moduli 7;. Note that the coisotropic D8-branes involved in the model have induced D6-
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Intersection | Matter fields Qa | Qa | Qum
ab QL 3(3,2,1) 1 0 0
ac Qr 3(3,1,2) -1 0 0
bd L 3(1,2,1) 0 | -1 0
cd R 3(1,1,2) 0 1 0
be H (1,2,2) 0 0 0
bM F 6(1,2,1;2p) | O 0 -1
cM G 6(1,1,2;2p7) | O 0 -1

Table 7: Chiral spectrum of the MSSM-like left-right symmetric model discussed in the text.

charge given by a sum of two factorized cycles:

D8, : (1,0)1 x (1,3,—3,—10)23 = (1,0)1 x [(3,1)(3,—1) + (1,0)(1,0)]
D8x : (1,0)2 x (1,0,0,—2)3; = (1,0)9 x [(0,1)(0, —1) + (2,0)(1,0)]
D8y : (1,0)3 x (1,0,0,—2)15 = (1,0)3 x [(0,1)(0, —1) + (2,0)(1,0)]

One can easily check that all RR-tadpoles cancel and that, for appropriate choices
of closed string moduli, all these branes preserve the same N'=1 SUSY as the orientifold
background. The D8-branes a and d give rise to a group SU(3). x U(1)p—r x U(1)B+1L,
where the latter U(1) is anomalous and becomes massive as usual through the D = 4 Green-
Schwarz mechanism. The D6-branes b and ¢ sit on top of the horizontal orientifold plane
and carry symplectic groups, in the case at hand one has USp(2) 1, x USp(2) r corresponding
to a left-right symmetric gauge group SU(2); x SU(2)g. Finally, the D8-brane M gives
rise to an extra non-Abelian factor U(2)as

It is easy to compute the chiral spectrum in this model and find that the chiral spectrum
with respect to the gauge group SU(3).xSU(2), x SU(2) g x U(1) p—r, has quantum numbers
as shown in table [, i.e. three generations of quarks and leptons. They correspond to open
strings in between the branes a, d and b, c. In addition there are exotic leptons/Higgsses
6(2ar,21,) + 6(2as,2R) corresponding to open strings in between the brane M and b, c.
However, such exotic matter can be higgsed away by giving a vev to the symmetric or to
the antisymmetric fields charged under U(2),s, and which arise from open strings stretched
between M and its orientifold image M’. From the field theory point of view, these vevs
trigger the gauge symmetry breaking U(2)y — SO(2)y and U(2)ar — SU(2) s, respec-
tively, after which 6(257,21) + 6(257,2r) can acquire a mass. From a geometric point of
view, such process corresponds to a D-brane recombination M + M’ — M, and one can
see that the intersection product of M with the branes b and ¢ vanishes. Finally, such
D-brane recombination occurs spontaneously in a large region of the complex structure
moduli space, as can be deduced from the FI-terms of this model.
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Notice that a, b, ¢, d brane structure is analogous to the MSSM-like model constructed
in [, i, f]. Similar to the latter, the MSSM Higgs sector arises from the open strings
stretched between the D-branes b and ¢, which overlap in the first complex dimension and
hence give rise to a non-chiral sector of the spectrum. In addition to the above chiral fields,
there are further SM singlets which we do not display.

The D-term conditions give in the present example

Ty =73 ; Ti1TeT3 = 971 + 672 + 673. (6.3)

Recall that one cannot conclude that the complex structure moduli are fixed to obey these
constraints, since a deviation from these equations give rise to a FI-terms whose contribu-
tion to the vacuum energy will be cancelled by vevs of chiral matter at the intersections. In
this case gauge symmetry breaking will take place corresponding to brane recombination,
but only some linear combinations of complex structure moduli and matter scalars are in
fact fixed. On the other hand the presence of the a, X and Y D8-branes give rise to a
superpotential of the form

Wps = X{(1-ToT3) + X5 (2 - T1T3) + X3 (2 - T1'T») (6.4)

where X' XY are the geometric + Wilson line open string moduli. Note that for fixed
open string moduli this would fix the three untwisted Kahler moduli to the values

ReT1: 2 N RGTQZRengl N ImTi:O. (6.5)

One can play around with the magnetic fluxes to get other models with larger Kéahler
moduli but recall that, unlike the case of moduli fixing through closed string fluxes, the
present models correspond to CFT’s and hence we do not need to work in the large volume
limit approximation.

7. Coisotropic branes and mirror symmetry

As emphasized at the introduction, coisotropic branes were first introduced in order to
correctly formulate Kontsevich’s Homological Mirror Symmetry conjecture. Although we
have not made use of this fact anywhere along our discussion, a natural question is how
these new type IIA vacua look upon applying mirror symmetry. In particular, if coisotropic
D8-branes in CY3’s have not been considered before and they are mapped to type IIB Dp-
branes by the mirror map, one may wonder if we have been missing any kind of D-brane
in type IIB constructions. This question is particularly meaningful in the case of simple
T6 /7o x 7o orientifolds, where the mirror map is well understood and chiral D-brane vacua
have been constructed in both type ITA and type IIB sides.

In the following, we will answer this question for the type ITA T%/Zy x Zy orientifold
considered in this paper, originally introduced in terms of its type I mirror [fI§]. We will
see that the type I duals of a coisotropic D8-branes can either be a tilted D5-brane or a
magnetized D9-brane, the magnetic flux involved in the latter being rather exotic. Finally,
we will make use of the web of T-dualities to show that coisotropic D8-branes are also
related to a new class of special Lagrangian D6-branes in T®/Zy x Zs, which have so far
not been considered in the construction of A/ =1 chiral type ITA vacua.
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Figure 11: Mirror symmetry for the coisotropic D8-brane (J7.1)).

7.1 Mirror symmetry to type I

We will first illustrate how mirror symmetry works by looking at a rather simple example,
so let us consider type ITA compactified on T® and the BPS, coisotropic D8-brane given
by
H5 = (1,0)1 X (T2)2 X (T2)3 (7 1)

F/2n = dz? Adx® — dy? A dy? '
also considered at the beginning of section . If we orientifold this theory by OR(-1)*r,
with R given by (B.22), we will introduce an O6-plane on the directions {21 2%, 23}. Hence,
in order to map this setup to type I theory compactified on T, we need to perform three
T-dualities on the directions {y!, 32, v3}.

How the D8-brane transforms under these three T-dualities is illustrated in figure
A T-duality along y' is trivial and only maps the D8-brane to a D9-brane with the same
worldvolume flux F'. In order to perform the second T-duality we conveniently relabel the
coordinates as in the figure, in order not to have components of F which mix different
T? factors. The T-duality along y? is then simply deduced from the usual map between
torons and branes at angles [BJ], obtaining a D8-brane tilted in the {y2,>} plane. Finally,
applying the same kind of map we recover a D9-brane with worldvolume flux

F/2rn = dz® Ada® 4 dy® A dy®. (7.2)

,38,



One of the advantages of this type I picture is that it is easy to work out the orientifold
image of such D-brane. Type I theory can be simply seen as type IIB modded out by the
world-sheet parity €2, which acts in the D9-brane worldvolume flux as Q2 : F' — —F. Taking
the image of ([.4) and undoing the previous three T-dualities we arrive to the coisotropic
D8-brane

5 = (—1,0); x (T?)s x (T?)3

7.3
F/2n = —dx® A da3 + dy? A dy? (7.3)

in agreement with (B.23). In addition, one can understand the BPS conditions (B.7) from
this mirror picture. Indeed, in the case of type IIB compactified in a Calabi-Yau and in

the presence of O9-planes and/or O5-planes, the supersymmetry conditions for a D9-brane

read [[[{]

D — flatness %.7—"3 = %J2/\.7-"

( 4
F — flatness F2) — 9 (7.4)

While the D-flatness condition is trivial for ([.2), the F-flatness condition requires F to be
a (1,1)-form on the D9-brane worldvolume. It is easy to see that, if we parameterize our
complex structure moduli as dz/ = da? + itjdy’ (where t; is now a complex number), this
implies that ty - t3 = 1, which is the mirror condition to (B.7).

Type I compactifications on magnetized tori have been considered long ago [i]. More
recently, magnetic fluxes of the form ([.2) have appeared in the context of type I theory
compactified on T® [50, FI]. Now, if we want to describe the mirror of our type ITA
vacua on T®/Zs x Zy we need to consider type I theory compactified on the T®/Zy x Zo
orbifold with opposite choice of discrete torsion, and embed our magnetized D9-brane in
such background. While it may seem that this still is a close relative of the constructions
in 50, BJ], there is actually an important difference. Namely, the 2-form flux ([-2) is
cohomologically non-trivial in the case of T, but it becomes trivial for T®/Zy x Zy. In
particular, the orbifold group generator (B.24) acts as 6 : F — —F when applied to ([.9),
so F is not even well-defined as a 2-form in T%/Zy x Zy. Of course, this is not a problem
for our orbifold construction, because F' needs to be well-defined in terms of the D9-branes,
and not in terms of the closed string background.'! On the other hand, F? can be seen as

a well-defined, non-trivial representative of a T®/Zs x Zo cohomology class.

One can get a better intuition of what these facts mean by looking at the induced D-
brane charges of our magnetized D9-brane and, in particular, by going back to the original
type IIA mirror construction. For instance, the fact that F' is trivial in cohomology will
imply that the induced charge of D7-brane will vanish, and this statement is mirror to
the fact that our coisotropic D8-brane is wrapping a 5-cycle II5 trivial in homology. More

"' More precisely, for each D9-brane with worldvolume flux F we will need to add a 6-image D9-brane
with worldvolume flux —F', so that we can quotient our theory by Z2 X Zs.
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precisely,

type 11B type TTA
[F] trivial [H52] trivial
[IF°]  trivial 75)

[IIg] non — trivial
[F?] non — trivial

} «—— [IIf] Non — trivial

where Ilg is the 6-cycle wrapped by the D9-brane plus its orientifold images. To sum up,
there is a conceptual difference between embedding the worldvolume flux ([.2)) in T'®/Zqx Zs
with respect to T®. Such difference is the same than constructing a coisotropic D8-brane
in a homologically trivial 5-cycle of a proper CY 3 rather than in T or in T? x K3, where
coisotropic branes were already known to exist.

For our purposes, however, the really interesting property of T®/Zy x Zo with respect
to TO or K3 is that we can construct D=4, N'=1 type I string vacua. Those vacua will
contain D=4 chiral fermions if we introduce non-trivial worldvolume fluxes in our D9-
branes, even in the case of the more exotic bundles of the form ([.2). That this is the case
was proved in section f] by means of the mirror type ITA picture, but it can also be done
directly in type I by generalizing the techniques of [f2] to toroidal orbifolds. We will not
attempt to give such general description here, but rather illustrate how to construct new
D=4, N'=1 chiral models in type I by describing the mirror of one of the models of the
previous section.

In particular, let us consider the MSSM-like model constructed in table | If we first
consider the Pati-Salam sector of the theory, i.e., branes a, b and ¢ we see that only the
D-brane stack a changes with respect to the local model in [f]. In the type I picture, such
D8-brane becomes a stack of 10 D9-branes with worldvolume flux

1
F,/2r = <1—0(dx2 Adz® + dy? A dy®) + 1—30(dm2 A dy* — da® A dy3)> 110 (7.6)

This flux will break the initial U(10) gauge group down to U(1), via non-Abelian Wilson
lines (see, e.g., ), so in fact we will need 4 times this D9-brane content to generate the
desired U(3) x U(1) gauge symmetry and, when embedding our model in T®/Zy x Zs, a
total of 80 D9-branes will be needed. Incidentally, notice that in the case of ([.6]) 8 does
not map F, to —F,, but only some components get ‘projected out’. On the other hand,
F2 = —dx® Ady? Adx® Ady?, is well-defined and implies that a D5;-brane charge is induced
on the D9-brane.!? Finally, one can check that both supersymmetry conditions in (F.4)
will be satisfied once that we pick tz - t3 = 1 and Area(T?)s = Area(T?)s.

The SU(2)1, x SU(2) g symmetry of the model arises from the D-branes b and ¢ which,
in the type I picture, correspond to a D5y and a D53, respectively. Triplication of families
can then be understood from the fact that

/ trF, = —/ trF, = 3 (7.7)
D52 D53

2Here we are using the usual model building notation, by which D5; stands for a D5-brane wrapped on

the i*® complex dimension, and D7; stands for a D7-brane transverse to the same complex dimension.

,40,



and the Higgs sector of the theory will arise from open strings stretching between D5 and
D5, just like in [47].

The rest of the model goes as follows. The D-brane M corresponds to 4 x 18 anti-D9-
branes, which are nevertheless BPS because of the worldvolume flux

1 1 1
Fy/2m = <§dm1 A dyt + gde A dy? + gdacfS A dy3)> ‘118 (7.8)

and a certain choice of Kéhler moduli. The D-branes X and Y both correspond to 2 x 2
D9-branes of the form

A 1. :
Fxy/2n = <dwz Adx? + §dyl A dy]> <19 (7.9)

Finally, we need to add the images of all these D-branes under ).
Let us also stress that coisotropic D8-branes are not always taken to magnetized D9-
branes under the mirror map. Let us consider the D8-brane

H5 = (0, 1)1 X (T2)2 X (T2)3

7.10
F/2rn = —dx® A dy? + da® A dy? (7.10)

and again apply three T-dualities on the directions {y',y?,43}. Following the same kind
of argument than in figure [LI], we obtain a D5-brane wrapping the 2-cycle

(17—1)(x2,y3) X (1,1)($3’y2) (711)

and with vanishing worldvolume flux F'. For the particular choice of complex structure
moduli tp = t3 = 1 this becomes a holomorphic two-cycle, given by 22 = iz3, and which
is the required condition for F-flatness [[(]. Unlike in the case of a D5;-brane, the holo-
morphicity of the tilted D5-brane ([.11]) is non-trivial, and this eventually generates a
superpotential for the complex structure moduli. In general, one can see that ([{.11]) is
holomorphic whenever t, - t3 = 1, as we would expect from the mirror BPS conditions.

7.2 Back to type ITA

An interesting property of the T%/Zy x Zy orientifold considered in this paper is that by
performing four T-dualities of the form {z* y* 27,3’} we recover the same closed string
background. This means that if we construct a BPS D-brane in T®/Zs x Zy and we apply
these four T-dualities, we will obtain a new BPS D-brane in the same orientifold, although
the values of the closed string moduli may now be different.

We would like to apply this observation to the coisotropic D8-branes constructed in this
paper, in order to see if new BPS D-branes can be constructed. Let us then again consider
the BPS D8-brane ([.10) and apply four T-dualities in the coordinates {x!,y*, 22, y?}. A
similar reasoning than the one carried in figure takes us to a D6-brane wrapping the
3-cycle!?

Hg = (1,0)(11@1) X (1, 1)(x2,y3) X (1, 1)(x3,y2) (7.12)

13See [@] for a detailed discussion on similar T-duality computations.
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which, despite being a BPS D6-brane, is not one of the usual D6-branes at angles considered
in the literature. Indeed, by appropriately choosing the closed string moduli of T%/Zy x
Zs, ([(.12)) will be related to the O6-planes by means of a SU(3) rotation. Away from this
point ([.13) will no longer be a special Lagrangian, but not because it is not calibrated by
Re 2, but instead because it is no longer a Lagrangian 3-cycle. That is, just like coisotropic
D8-branes, the D6-branes of the form ([.12) develop non-trivial F-terms via the failure of
the BPS conditions (B.3). Given the complexified Kéhler form (B-J) it is easy to see that
the F-flatness condition is satisfied whenever the untwisted Kéahler moduli satisfy Ty = T3.
Notice that, unlike the case of coisotropic D8-branes, this is compatible with the limit
where all Kahler moduli are arbitrarily large.

Notice that (f.12) by itself is not well-defined in T%/Zs x Zo, but that we need to
include its image under € in order to have an invariant object under the orbifold group.
The image 3-cycle is given by

H(Hg) = (1,0)(3314/1) X (1, —1)(12@3) X (1, —1)(13,3/2) (7.13)

which will be a special Lagrangian if ([.12) is. Of course, when embedded in T%/Zs x
Zo, ([.13) and (.13) should be thought of 3-cycles on the covering space T? x K3. In any
case, one can see that the homology class of the union of both 3-cycles is given by

(113 U O(113)]

[(1,0)1] ® [(1,0)2(1,0)3 + (0,1)3(0, 1)2]
= [(170)1] & [(170>2(170)3 + (07 1)2(07 _1)3] (7'14)

which is exactly the D6-brane charge carried by the coisotropic D8-brane (f.1]). Notice that
both D-branes ([.1]) and ([.12) are mutually BPS only for the particular choice of Kihler
moduli T, =715 = 1.

To sum up, by applying four T-dualities on a coisotropic D8-brane we have found a
new class of special Lagrangian D6-branes, whose ‘special’ condition is always satisfied but
its Lagrangian condition is not. This is quite remarkable, given the fact that we usually
encounter the opposite behavior for D6-branes intersecting at angles. Just like in the case
of coisotropic D8-branes, this exotic D6-brane carries a D6-brane charge which is a sum
of two factorizable 3-cycles (i.e., those of the form (n!,m'); x (n?,m?)s x (n3,m?)3) while
nevertheless being an exact CFT boundary state. It is clear that one can construct many
more D6-branes of this kind, so it would be interesting to see which new model building

possibilities are opened up by the existence of these less conventional D6-branes.

8. Conclusions and outlook

Type ITA D=4 chiral vacua constructed up to now have been mostly based on intersecting
D6-branes wrapping special Lagrangian 3-cycles. In this paper we have argued that in
type ITA Calabi-Yau orientifolds there are other BPS objects, namely D8-branes wrapping
coisotropic 5-cycles, which have so far been neglected and which seem to have interesting
model-building features. These branes wrap 5-cycles in the CY 3 which are trivial in homol-
ogy, but still are stable BPS objects due to the D6-brane charge induced by magnetic fluxes
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on their worldvolume. At the intersection of a D8 with another D8 or a D6 chiral fermions
appear, chirality being generated by a combination of intersecting/magnetized brane mech-
anisms. Obviously, this new way of creating D=4 chirality makes coisotropic D8-branes
an interesting tool for constructing new phenomenologically relevant string vacua.

We have analyzed in detail the case where our CY3 is given by a Zo x Zgy type ITA
orientifold. We have worked out the chiral spectrum and effective action (gauge kinetic
function, scalar potential, FI-terms, U(1) anomaly cancellation) for sets of coisotropic
D8-branes and additional D6-branes in this background, and we have also studied the
general form of Yukawa couplings among chiral fields. These couplings are generated by
a combination of wave-function overlapping (a la Kaluza-Klein) and world-sheet instanton
contributions, which might furnish new possibilities for the flavor dependence of Yukawa
couplings in realistic compactifications. Thus, it would clearly be interesting to make a
general exploration of patterns of Yukawa couplings in realistic models including coisotropic
D8-branes. Another interesting feature of the D8-branes in this orientifold is that they
carry a D6-brane charge which is not of the factorized form (3-cycle) = (1-cycle) x (1-cycle)
x (1-cycle) in the underlying T2 x T? x T?. This opens new model-building possibilities
not available to standard factorized D6-branes in this orientifold.

The presence of coisotropic D8-branes leads to superpotential couplings linear in open
string moduli X; and bilinear in untwisted Kéhler moduli of the general form X;(7;T}, —
n). These couplings could be useful in order to fix Kéhler moduli in specific models.
In fact in the above orientifold model one could think that adding an appropriate set
of coisotropic D8-branes one can actually fix all untwisted Kéhler moduli. One must be
careful, though, since in general there may be additional couplings of X; to other open string
moduli and the minimum of the potential could only fix a linear combination of Kahler
and open string moduli, rather than just fixing the Kéhler moduli. This is reminiscent
of what happens with D-terms from D6-branes (and also D8-branes) which do not fix
the complex structure moduli but rather a linear combination of those and charged chiral
scalars. On the other hand it is clear that in the presence of other sources of moduli
superpotentials (like e.g. closed string RR and/or NS fluxes) the existence of these D8-
brane-induced superpotentials could be quite useful in the general moduli stabilization
program. In this connection it would be interesting to study the effect of RR fluxes,
which are known to lead to additional Kéhler-moduli dependent superpotentials, in models
with coisotropic D8-branes. In a more speculative mode, other possible use of these D8-
branes could be to help in supersymmetry breaking and the up-lifting of the AdS vacua.
Indeed, the Kahler moduli-dependent superpotential induced by D8-branes are reminiscent
of O’Rafertaigh superpotentials. An appropriate combination of D8-branes could thus help
in the generation of a (possibly metastable) SUSY-breaking vacuum. This possibility should
be worth studying.

We have also found that the coisotropic D8-branes that we construct in the Zg X Zo
orientifold have well defined type I T-duals. They correspond either to certain tilted D5-
branes or D9-branes with off-diagonal fluxes. One could also T-dualize to the case of type
IIB with O3/O7-planes. This could be interesting in order to make contact with the kind
of models with closed string RR and NS fluxes which have been considered in order to
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fix all moduli in IIB orientifolds. On the other hand we have found that four T-dualities
convert certain coisotropic D8-branes into a new class of BPS D6-branes not previously
considered in the model-building literature. Interestingly enough, unlike the standard
factorized D6-branes considered up to now, these D6-branes give rise to non-trivial F-term
conditions of the type T; = T} in these orientifolds and have also non-factorized RR D6-
charge. Consideration of this new class of D6-branes could also be interesting from the
model-building point of view and is at present under study.

As an illustration of the model-building properties of coisotropic D8-branes we have
presented two examples with a chiral spectrum very close to that of the MSSM, which are
phenomenologically interesting in their own right. In the first model the MSSM branes
are made of D6-branes and a stack of D8-branes helps in cancelling all RR tadpoles in a
more efficient way that D6-branes would do. The second example provided is a D8-brane
relative of the left-right symmetric D6-brane model constructed in [f, [l f]. A general
statistical analysis of how easy it is to find consistent models of this second type and
how many have an MSSM-like spectrum in the present Zo X Zo orientifold constructions
was performed in [f4], and more recently in [p5. It is clear that if we take into account
the freedom of adding coisotropic D8-branes in these constructions new possibilities (like
the two MSSM-like examples discussed in this paper) will appear. Thus, presumably the
landscape of MSSM-like models within the T /Zs X Zgy orientifold will be wider than we
previously thought.

Acknowledgments

We would like to thank R. Blumenhagen, P.G. Camara, R. Emparan, S. Theisen, and
specially A. Uranga for useful discussions. L. E. I. and F. M. would also like to thank
CERN PH-TH division for hospitality during the completion of the paper. This work has
been partially supported by the European Commission under the RTN European Program
MRTN-CT-2004-503369, the Comunidad Auténoma de Madrid (proyecto HEPHACOS; P-
ESP-00346) and the CICYT. The work of F.M. is supported by the European Network
“Constituents, Fundamental Forces and Symmetries of the Universe”, under the contract
MRTN-CT-2004-005104.

A. Formal definition of coisotropic branes

For completeness, in this appendix we state the formal definition of coisotropic A-brane,
as originally described by Kapustin and Orlov. Our intention is not to give a full report
on this subject, but rather to provide the basic definitions that connect our results with
the topological A-brane literature. For a more detailed discussion we refer the reader to
the original reference [§] and related literature [56], [9, B, [5].

Let us consider a symplectic manifold M, so that it contains a globally well-defined,
non-degenerate, closed two-form J. Given a vector field X on M we can map it to a 1-form
&x by the usual contraction of indices

Ex = uxJ (A1)
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and, because of the properties of J, this map is an isomorphism. This means that we can
define an inverse, J !, which maps 1-forms to vectors and, in general, covariant indices to
contravariant indices.

Let us now consider a submanifold N' C M and define
AnnTyn = {£ €Ty | £,XP =0,VX € Ty} (A.2)
where T is the tangent bundle of /. We then have the following definitions:
e If J takes T)s inside Ann T)s = N is an isotropic submanifold
e If J~! takes Ann T) inside T = N is a coisotropic submanifold
e If both conditions are satisfied = A is a Lagrangian submanifold

One can easily apply these conditions to the examples of coisotropic submanifolds given
in the main text. If, for instance, we consider the D8-brane (B.H) then one has

II; = (1,0); x (T?)3 x (T?)3
T, = (X', X2, Y% X3, Y3) (A.3)
Ann Ty, = {(dy')

and so, because J is given by (B.3), J(AnnTy,) = (X!) C Tj, and so the manifold is
coisotropic. Notice that embedding IT5 in T /7o x Zy does not change this conclusion.

While the definitions above are rather simple, in order to describe a coisotropic A-brane
it is more convenient to use an alternative, equivalent definition of coisotropic submanifold.
Let us first define the symplectic orthogonal bundle of N as

(Tn)! = {Y €Tp | YP T, X7 =0, VX € Ty} (A.4)

7 C Ty. Because J is non-

and then define a coisotropic submanifold whenever (Txr)
degenerate, this inclusion can only be an equality when N is middle-dimensional with
respect to M, and in that case we are dealing with a Lagrangian submanifold. For the
same reason, we can define the quotient bundle Th/(Tx)”. In our example above, it is
easy to see that (Th)? = (X!), and hence T)/(T)’ = T2y % (T2)5-

While the first supersymmetry condition for an A-brane is that it wraps a coisotropic
submanifold, the other two involve the worldvolume flux F and they read:

e F has no components on (T)”7, so it can be defined as a 2-form living in Tr/(Tpr)”
e J7LF defines a complex structure on T/ (Tyr)’

Finally, from these conditions one can show that T /(Tx)” has even complex dimension,
and that if dim (M) = 2n, then dim (M) =n + 2k, k € N.
Let us check that those conditions are also satisfied for our canonical example (B.5]). It

is clear that F = B, + 27/ F has no components on (771, )7, so it only remains to check
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that J~!F is a complex structure in Th/(Ty)” = T(12),x (1), Applying the definitions

above we have that

_ImTy 1
ReT> 0 O ReT>
0 _ImTQ _ 1 0
—1 _ ReT: ReT:
JOF = 0 _ T ImTh 0 (A.5)
Re T3 ReT3
1 0 0 _ImT3
ReT3 ReT3s

and so it is easy to see that (J~'F)? = —14 if and only if Im 7373 = 0 and Re TpT3 = 1,
which is precisely the F-flatness condition in (B.6).
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