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1. Introduction

Within the AdS/CFT correspondence [1], there has been steady progress in the dual grav-

ity description of strongly coupled Yang-Mills theories with matter in the fundamental

representation of the gauge group.

One of the simplest brane configurations which realizes fundamental matter is given by

the D3/D7 brane intersection. Strings stretching between the D3 and the D7-branes give

rise to fundamental N = 2 hypermultiplets (“quarks”) which couple to the N = 4 super

Yang-Mills multiplet on the D3-branes. In the probe approximation, the dual supergravity

background corresponds to probe D7-branes embedded into AdS5 × S5 [2]. Here, open

string fluctuations on the D7-branes are dual to meson operators in the N = 2 gauge

theory. This fluctuation-operator relation was used in [3] to derive the meson spectrum in

dependence of the quark mass. A similar method was applied first in [4] to study meson

spectra and chiral symmetry breaking in confining gauge theories. Further work on the

string theory computation of meson spectra in strongly coupled gauge theories can be found

in [5]–[24].

While the main focus has been on the holographic study of scalar and vector mesons,

not much attention has been paid to the spectra of operators with half-integer spin. In
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particular, baryons have been widely neglected so far, although, in principle, a brane

configuration for dynamical baryons is known [3] (see also [12] for a similar proposal): A

baryon vertex is realized in string theory by N fundamental strings attached to a D5-brane

which is wrapped on the five-sphere of AdS5 × S5 [25]. By adding a stack of D7-branes at

some finite distance in the AdS space, the N fundamental strings would end on the D7-

branes rather than on the boundary of the AdS space. This corresponds to N dynamical

quarks with a finite mass.

There are several difficulties which impede immediate progress towards such a holo-

graphic description of dynamical baryons: i) In large-N field theories baryons consist of N

quarks. It is not clear whether one can neglect the backreaction of the baryonic D5-brane

on the AdS geometry. ii) The set-up consists of several different branes and the topology

of the baryon vertex is quite complex. iii) Baryons have half-integer spin and the dual

fluctuations will be described by Dirac equations, Rarita-Schwinger equations, etc., all on

curved spacetimes.

In this paper we will not directly approach baryons. Instead, we will discuss the

spectrum of certain fermionic operators in the D3/D7 system. As the baryons, these

operators have half-integer spin, but do not require the introduction of an additional brane

in the dual string theory set-up. We may therefore develop techniques for dealing with

fermionic open string fluctuations, while avoiding technical difficulties connected with a

baryonic D5-brane.

The operators we are interested in are the supersymmetric partners of the meson-like

operators discussed by Kruczenski et al. [3]. There are two towers of spin- 1
2 operators: one

with the dimension- 5
2 operator F ∼ ψ̃q, the other with the dimension- 9

2 operator G ∼ ψ̃λψ

at the bottom of the tower. Here q, q̃ and ψ, ψ̃ denote fundamental scalars and spinors.

The operator ψ̃λψ contains an additional adjoint spinor λ.

Similarly to the case of the scalar and vector mesons, we obtain the fermionic operator

spectrum by considering D7-brane fluctuations dual to the above operators. Since the

spin of the fluctuations must be identical to that of the operators, we start from the

fermionic part of the D7-brane action as constructed in [26]. The corresponding equation

of motion effectively describes a Dirac spinor on AdS5 × S3 which couples to the self-dual

five-form flux of type IIB string theory. The Kaluza-Klein reduction on the three-sphere

S3 then provides two sets of modes Ψ±` with masses m±` (` = 0, 1, 2, . . .) satisfying the

mass-dimension relation for spin- 1
2 fields [27]:

∆` = |m±` |+ 2 , (1.1)

where ∆` denotes the conformal dimensions of the operators F ` and G`, the higher-`

relatives of F and G. Since also the quantum numbers of these operators match exactly

those of Ψ±` , this ensures the correct fluctuation-operator map between Ψ±` and F `, G`.
After recasting the equations of motion into a second order form, we find the spectrum

of F ` and G` by assuming a plane-wave behavior of the fluctuations Ψ±` . The resulting

spectrum is linear in the quark mass and agrees exactly with the spectrum expected from

supersymmetry.

– 2 –
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We finally come back to baryons in the last section of the paper in which we construct

a phenomenological supergravity model for baryonic operators in a large class of super-

symmetric gauge theories. Instead of starting from a ten-dimensional brane configuration,

we fix the background from the properties of the dual field theory. This is known as the

“bottom-up” approach to AdS/CFT [28 – 30] and has first been applied to baryons by Brod-

sky and Teramond [30]. As in [30], we assume that fluctuations dual to spin- 1
2 baryons

are effectively described by a massive Dirac equation on AdS5. The mass of the Dirac

spinor is fixed by the conformal dimension of the baryon operator. Deviating from [30], we

consider gauge theories which are superconformal in the UV, at least in some parameter

regime. The baryon spectrum will therefore be a function of the quark mass rather than

the infra-red cut-off ΛQCD. We fill find that the large-N baryon spectrum is linear in the

quark mass and scales with N as expected from field theory [31].

The paper is organized as follows. In section 2 we review both the low-energy effective

field theory of the D3/D7 intersection and the holographic computation of meson spectra.

In section 3 we adapt the holographic method to find the spectrum of operators with

half-integer spin. In section 4 we discuss large N baryons in an effective approach to the

gauge/gravity duality. In section 5 we briefly summarize our results and discuss open

problems.

2. Spectroscopy of meson operators in AdS/CFT

In the following we briefly discuss theN = 2 world-volume theory of the D3/D7 intersection

and review the holographic computation of its meson spectrum [3]. Those who are familiar

with the meson spectroscopy in the D3/D7 theory may wish to proceed immediately to

section 3 in which we adapt the method to compute the spectrum of fermionic operators.

2.1 The D3/D7 brane intersection

The D3/D7 brane intersection in flat space consists of a stack of Nc coincident D3-branes

(along 0123) which is embedded into the world volume of Nf D7-branes (along 01234567).

This system preserves 1/4 of the total amount of supersymmetry in type IIB string theory

and has an SO(4) × SO(2) isometry in the directions transverse to the D3-branes. The

SO(4) rotates in x4, x5, x6, x7, while the SO(2) group acts on x8, x9. Note that separating

the D3-branes from the D7-branes in the 89 direction by a distance L explicitly breaks the

SO(2) group.

The world-volume theory describes a four-dimensional N = 4 super Yang-Mills mul-

tiplet which is coupled to Nf N = 2 hypermultiplets in the fundamental representation

of the U(Nc) gauge group. Under N = 1 supersymmetry the N = 4 vector multiplet

decomposes into the vector multiplet Wα and the three chiral superfields Φ1, Φ2, Φ3. The

N = 2 fundamental hypermultiplets can be written in terms of the N = 1 chiral multiplets

– 3 –
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components spin SU(2)Φ × SU(2)R U(1)R ∆ U(Nf ) U(1)B
Φ1,Φ2 X4, X5, X6, X7 0 (1

2 ,
1
2 ) 0 1 1 0

λ1, λ2
1
2 (1

2 , 0) −1 3
2 1 0

Φ3, Wα XA
V = (X8, X9) 0 (0, 0) +2 1 1 0

λ3, λ4
1
2 (0, 1

2) +1 3
2 1 0

vµ 1 (0, 0) 0 1 1 0

Q, Q̃ qm = (q, ¯̃q) 0 (0, 1
2) 0 1 Nf +1

ψi = (ψ, ψ̃†) 1
2 (0, 0) ∓1 3

2 Nf +1

Table 1: Fields of the D3/D7 low-energy effective field theory and their quantum numbers under

the global symmetries. Note that U(1)B ⊂ U(Nf ).

Qr, Q̃r (r = 1, . . . , Nf ). In N = 1 superspace notation, the Lagrangian is thus given by

L = Im

[
τ

∫
d4θ

(
tr (Φ̄Ie

V ΦIe
−V ) +Q†re

VQr + Q̃†re
−V Q̃r

)

+ τ

∫
d2θ(tr (W αWα) +W ) + c.c.

]
, (2.1)

where the superpotential W is

W = tr (εIJKΦIΦJΦK) + Q̃r(m+ Φ3)Qr . (2.2)

The SO(2) ' U(1) isometry corresponds to a U(1)R R-symmetry in the field theory

which is explicitly broken by a quark mass mq ∼ L. The field theory has also a global

SO(4) ≈ SU(2)Φ ×SU(2)R symmetry which consists of a SU(2)Φ symmetry and a N = 2

SU(2)R R-symmetry. The global symmetry SU(2)Φ rotates the scalars in the adjoint

hypermultiplet. There is also a group U(1)B which is a subgroup of the U(Nf ) flavor

group. The fundamental superfields Qr (Q̃r) are charged +1 (−1) under U(1)B , while

the adjoint fields are inert. The components of the N = 1 superfields and their quantum

numbers are summarized in the table 1 (see also [6]) which we will need for the construction

of operators.

The exact perturbative N = 2 beta function for the ’t Hooft coupling is proportional

to Nf/Nc [6, 14]. In the probe approximation, the D7-branes do not backreact on the

AdS5 × S5 near-horizon geometry of the D3-branes and the field theory is conformal cor-

responding to the strict Nf/Nc → 0 limit. Beyond the probe approximation, Nf/Nc is

finite, and the beta function is positive, implying an UV Landau pole in the field theory.

This is a pathology of the perturbative field theory and is reflected by a dilaton divergence

in the fully localized supergravity solution of the D3/D7 setup [32 – 35, 14]. Despite the

occurrence of logarithmic tadpoles, this background is still consistent as far as the embed-

ding of a nonconformal field theory is concerned, see ref. [14, 35, 36] and references therein.

Note that logarithmic tadpoles do not represent gauge anomalies, but instead provide the

correct one-loop running of the gauge coupling. The supergravity background perfectly

reflects the properties of the perturbative field theory.

– 4 –



J
H
E
P
0
9
(
2
0
0
6
)
0
5
2

2.2 Review on meson spectroscopy in the D3/D7 set-up

The N = 2 world-volume field theory of the D3/D7 brane intersection contains the scalar

meson operators

MA`
s = ψ̄iσ

A
ijX

`ψj + q̄mXA
V X

`qm (i,m = 1, 2) (2.3)

which have conformal dimensions ∆ = 3 + `. Here XA
V denotes the vector (X8, X9) and

σA = (σ1, σ2) is a doublet of Pauli matrices. Both XA
V and σA transform in the 2 of

U(1)R. The components qm and ψi of the fundamental hypermultiplets are as in table 1.

X` denotes the symmetric, traceless operator insertion X {i1 · · ·X i`} of ` adjoint scalars

Xi (i = 4, 5, 6, 7) which transform in the fundamental representation ( 1
2 ,

1
2) of SO(4) ≈

SU(2)Φ × SU(2)R. The operators MA`
s thus transform in the ( `2 ,

`
2) of SO(4) and are

charged +2 under U(1)R.

The spectrum of these operators (and that of the vector mesons) was found in [3] by

evaluating the Dirac-Born-Infeld (DBI) action for a probe D7-brane. The D7-brane wraps

an AdS5 × S3 submanifold inside the AdS5 × S5 near-horizon geometry of the D3-branes.

In static gauge, where the world volume coordinates of the D7 brane are identified with

the spacetime coordinates by ξa ∼ t, x1, . . . , x7, the DBI action is given by [3]

SbD7 = −T7

∫
d8ξ
√
−det gPBab

= −T7

∫
d8ξ ε3 ρ

3

√
1 +

gab

ρ2 + x2
8 + x2

9

(∂ax8∂bx8 + ∂ax9∂bx9) , (2.4)

where gPBab is the pullback of the AdS5×S5 metric on the D7 world-volume. Moreover, gab
denotes the induced metric on the D7 brane and ε3 is the determinant factor from the three

sphere. x8 and x9 are the coordinates transverse to the D7-brane, while ρ2 = x2
4 + . . .+x2

7.

One easily verifies [3] that e.g. x8 = 0, x9 = L is a solution to the corresponding

Euler-Lagrange equations. The constant L is the distance between the D3- and the D7-

branes and is proportional to the mass of the fundamental hypermultiplets (“quarks”).

The spectrum of the operators M`
s can then be found by considering fluctuations of the

plane-wave type around this ground state solution. More precisely, one makes the ansatz

x8 = 0 , x9 = L+ f`(ρ)eik·xY`(S3) , (2.5)

where M 2 = −k2 is interpreted as the meson mass. The functions Y `(S3) are the scalar

spherical harmonics on S3 which have eigenvalues −`(`+ 2) and transform in the ( `2 ,
`
2) of

SO(4). Substituting the ansatz into the Euler-Lagrange equations obtained from the DBI

action (2.4) expanded to quadratic order in the fields, one obtains the following equation

for the fluctuations f`(ρ):

∂2
ρf`(ρ) +

3

ρ
∂ρf`(ρ) +

(
M2

(ρ2 + L2)2
− `(`+ 2)

ρ2

)
f`(ρ) = 0 . (2.6)

This equation is solved in terms of the hypergeometric function by [3]

f`(ρ) =
ρ`

(ρ2 + L2)n+`+1
F (−(n+ `+ 1),−n; `+ 2;−ρ2/L2) , (2.7)

– 5 –
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where the excitation number n is related to the scalar meson mass by

M2
s =

4L2

R4
(n+ `+ 1)(n+ `+ 2) (n, ` > 0) . (2.8)

The discreteness of the spectrum follows from the normalizability of the states. Note

that the spectrum is a linear function of the quark mass mq ∼ L. This is a particular

feature of the superconformal field theory. It has been shown in [4] (see also [5]) that

in a nonsupersymmetric deformation of the D3/D7 world-volume theory, the meson mass

satisfies the Gell-Mann-Oakes-Renner-relation for small quark masses.

3. Spectroscopy of fermionic operators

3.1 Spectroscopy of spin- 1
2 operators

We now use the holographic method to derive the spectrum of certain fermionic operators

in the D3/D7 theory. More specifically, the operators we are interested in are the super-

symmetric partners of the meson-like operators studied in [3]. There are two classes of

spin-1
2 operators:

F `α ∼ q̄X`ψ̃†α + ψ̃αX
`q , (3.1)

G`α ∼ ψ̄iσBijλαCX`ψj + q̄mXB
V λαCX

`qm , (A,B,C = 1, 2) (3.2)

which have the conformal dimensions ∆ = 5
2 + ` and ∆ = 9

2 + ` (` > 0), respectively. Both

types of operators have fundamental fields at their ends: scalars qm = (q, ¯̃q)T and spinors

ψi = (ψ, ψ̃†)T . As in eq. (2.3), the operator insertion X ` generates operators with higher

angular momentum `. The spinors λαA (A = 1, 2) belong to the adjoint hypermultiplets

(Φ1,Φ2). The quantum numbers of these fields are listed in table 1.

The operators F `α and G`α have the following quantum numbers under the global sym-

metries of the theory: Since qm, ψi and X` have the SO(4) quantum numbers (0, 1
2 ), (0, 0)

and ( `2 ,
`
2), respectively, F `α transforms in the ( `2 ,

`+1
2 ) of SO(4) ≈ SU(2)Φ × SU(2)R. The

U(1)R charge of F `α is +1. Similar operators can be found in the world-volume theory of

intersecting D3/D5 branes [37]. The operators G `α are obtained by inserting a doublet of

adjoint spinors λαA (A = 1, 2) into the operators M`
s. Since λαA has the SO(4) quantum

numbers ( 1
2 , 0), the operators G`α transform in the ( `+1

2 , `2 ) representations of SO(4). The

U(1)R charge of G`α (+1) is the same as for the operators F `α.

Let us consider the properties of the bulk modes Ψ+
` and Ψ−` dual to G`α and F `α. The

spin of Ψ±` must be identical to that of the boundary states, i.e. their spin must be 1
2 . For

spin-1
2 modes, the relation between the conformal dimension of the field theory operator

and the mass of the dual mode in AdS5 is given by eq. (1.1). The AdS5 modes Ψ±` should

therefore have the masses

|m+
` | =

5

2
+ ` , |m−` | =

1

2
+ ` . (3.3)

Moreover, F `α and G`α have fundamental fields at their ends, for which reason the dual bulk

modes Ψ±` must descend from open string fluctuations. Recall that, since the D7-brane

– 6 –
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does not backreact on the geometry, closed strings are only dual to pure adjoint operators.

In other words, the modes must again correspond to open string fluctuations on the D7-

brane. However, since the operators have half-integer spin, the D7 fluctuations must be

fermionic. We now show that the D3/D7 brane configuration indeed contains spin- 1
2 open

string modes with these properties.

For this, we consider the fermionic part of the D7-brane action which to quadratic

order in the fermions is given by [26]

SfD7 =
τD7

2

∫
d8ξ
√
−det g ˆ̄ΨP−ΓÂ(DÂ +

1

8

i

2 · 5!
FN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂ)Ψ̂ . (3.4)

Here ξÂ are the world-volume coordinates (Â = 0, . . . , 7) which, in static gauge, will be

identified with the spacetime coordinates t, x1, . . . , x7. The field Ψ̂ is the 10d positive

chirality Majorana-Weyl spinor of type IIB string theory and ΓÂ is the pullback of the 10d

gamma matrix ΓM̂ (M̂ , N̂ , . . . = 0, . . . , 9), ΓÂ = ΓM̂∂Âx
M̂ . The integration goes over the

world-volume of the D7-brane which wraps an AdS5 × S3 submanifold of AdS5 × S5. The

spinor Ψ̂ = Ψ̂(xM , θm) depends on the coordinates xM of AdS5 and the three angles θm =

(θ1, θ2, θ3) of the three-sphere S3. The D7-brane is located at θ4 = θ5 = 0 corresponding to

massless quarks in the field theory. The operator P− is a κ-symmetry projector ensuring κ-

symmetry invariance of the action. The action is therefore invariant under supersymmetries

corresponding to any bulk Killing spinor.

We now decompose every ten-dimensional field or gamma matrix into parts associated

with AdS5 and S5, respectively. Choosing a local Lorentz frame, the 10d gamma matrices

ΓM̂ decompose as

ΓM = σy ⊗ 14 ⊗ γM , (M = 0, 1, 2, 3, 4) ,

Γm = σx ⊗ γm ⊗ 14 , (m = 5, 6, 7, 8, 9) , (3.5)

where 14 is the 4d unit matrix and σx, σy, σz are the Pauli matrices. The five-dimensional

Minkowski and Euclidean gamma matrices, γA and γa, satisfy the relations

{γM , γN} = 2ηMN , {γm, γn} = 2δmn . (3.6)

From this, one obtains

Γ11 = σz ⊗ 14 ⊗ 14 , Γ01234 = iσy ⊗ 14 ⊗ 14 , Γ56789 = σx ⊗ 14 ⊗ 14 . (3.7)

The 10d spinor Ψ̂ has positive chirality, Γ11Ψ̂ = Ψ̂, and can be decomposed as

Ψ̂ = ↑ ⊗χ⊗Ψ , (3.8)

where ↑ denotes the two-component spinor (1, 0)T , and χ and Ψ are four-component spinors

of SO(5) and SO(1, 4), respectively. These groups act on the tangent spaces of S 5 and

AdS5, respectively. The spinor χ = χ|| ⊗ χ⊥ splits into a 3d spinor χ|| associated with S3

and a 2d spinor χ⊥ acting transverse to the S3.

– 7 –
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The action (3.4) leads to the Dirac equation

D/ Ψ̂ +
1

8

i

2 · 5!
ΓÂFN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂΨ̂ = 0 , (3.9)

where D/ is the Dirac-operator on AdS5 × S3. The second term describes the coupling of

Ψ̂ to the self-dual five-form field strength FN̂P̂ Q̂R̂Ŝ . We parametrize the five-form as

FNPQRS =
4

R
εNPQRS , (N,P, . . . = 0, 1, 2, 3, 4) ,

Fnpqrs =
4

R
εnpqrs , (n, p, . . . = 5, 6, 7, 8, 9) , (3.10)

where R is the AdS radius.

Using the decompositions (3.5), (3.8) and (3.10), we find

1

8

i

2 · 5!
ΓÂFN̂P̂ Q̂R̂ŜΓN̂P̂ Q̂R̂ŜΓÂΨ̂ =

i

16R
ΓÂ ((σx + iσy)⊗ 14 ⊗ 14) ΓÂΨ̂ =

−i
R

(↓ ⊗χ⊗Ψ)

(3.11)

and (A = 0, . . . , 4, a = 5, 6, 7)

D/ Ψ̂ = ΓÂDÂΨ̂ = ΓADAΨ̂ + ΓaDaΨ̂

= (σy ⊗ 14 ⊗ γADA + σx ⊗ γaDa ⊗ 14)(↑ ⊗χ⊗Ψ)

=
(
i(12 ⊗ 14 ⊗ γADA) + (12 ⊗ γaDa ⊗ 14)

)
(↓ ⊗χ⊗Ψ)

≡ (iD/AdS5 +D/ S3)(↓ ⊗χ⊗Ψ) , (3.12)

where D/AdS5 and D/ S3 are the Dirac operators on AdS5 and S3, respectively.

The Dirac operator D/ Sn on a n-sphere Sn of radius R and its eigenvalues λ are well-

known, see e.g. [38]. The spinor spherical harmonics χ±` satisfy

D/Snχ
±
` = ∓iλ`χ±` = ∓ i

R(`+ n
2 )χ±` . (` > 0) (3.13)

For n = 3, λ` = i
R (` + 3

2) and the spinors χ±||` transform in the ( `+1
2 , `2) and ( `2 ,

`+1
2 ) of

SO(4) which rotates the S3. Recall that χ|| is that part of the spinor χ = χ|| ⊗ χ⊥ which

is parallel to the S3.

Substituting everything back into (3.9), we obtain the Dirac equation

(D/AdS5 ∓ 1
R(`+ 3

2 )− 1
R )Ψ±` =

{
(D/AdS5 − 1

R (`+ 5
2))Ψ+

`

(D/AdS5 + 1
R (`+ 1

2))Ψ−`

}
= 0 . (3.14)

We note that the effect of the RR five-form field is to shift the Kaluza-Klein mass by

one unit. The same shift has been observed in the dilatino spectrum on AdS5 × S5 [39].

eq. (3.14) is basically a Dirac equation on AdS5 which describes the fluctuation modes Ψ+
`

and Ψ−` with masses

m+
` = 5

2 + ` , m−` = −(1
2 + `) , (3.15)

respectively. These masses are exactly the ones expected from the field theory for fermionic

bulk fields dual to the operators G`α and F `α, cf. eq. (3.3). Moreover, the SO(4) and U(1)R
quantum numbers of Ψ+

` and Ψ−` , ( `+1
2 , `2)1 and ( `2 ,

`+1
2 )1, agree with those of G`α and F `α.

This completes the dictionary between the fermionic operators G `α and F `α and their dual

fluctuation modes Ψ±` .
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3.2 Dirac equation in AdSd+1 spaces

For the computation of the spectrum of these operators, it turns out to be convenient to

transform the Dirac equation (3.14) into a second order differential equation. For this, we

briefly review Dirac equations on d+ 1-dimensional AdS spaces.

Consider a d+ 1-dimensional AdS geometry with metric given by

ds2 =
R2

z2
(ηµνdx

µdxν − dz2) , (3.16)

where R is the AdS radius. The Dirac equation for a massive spin- 1
2 mode Ψ(xµ, z) on

AdSd+1 is then given by

(D/AdS −m)Ψ(xµ, z) = 0 , (3.17)

where D/AdS = eMA γ
ADM is the Dirac operator and γA are the Dirac matrices of d + 1-

dimensional Minkowski space, {γA, γB} = 2ηAB . The curved-space covariant derivative

DM = ∂M +
1

4
ωMBC [γB , γC ] (3.18)

is determined by the spin connection ωMBC which in turn is given in terms of the d+ 1-

bein eAM [40]. For an AdSd+1 space, eAM = R
z and the Dirac operator simplifies to

D/ = z
Rγ

A∂A − d
2Rγ

z [27]. The matrix γz is the higher-dimensional analog of the chiral-

ity operator γ5 in d = 4 dimensions. Multiplying the Dirac equation with (D/ AdS +m), one

obtains the following second order differential equation [41]:

(z2∂M∂M − dz∂z −m2R2 +
d2

4
+
d

2
+mRγz)Ψ(xµ, z) = 0 . (3.19)

Similarly to the case of mesons, we are interested in spin- 1
2 fluctuations which are plane

waves along the four-momentum Pµ. As before, M 2 = P µPµ is interpreted as the mass of

the dual spin- 1
2 operator. Using the ansatz Ψ̃(x, z) = eiP

µxµf(z), we find

(z2∂2
z − dz∂z + z2M2 −m2R2 +

d2

4
+
d

2
+mRγz)f(z) = 0 . (3.20)

The solution of this equation [41] is given by

f(z) = z
d+1

2

(
Jm− 1

2
(zM) a+ + Jm+ 1

2
(zM) a−

)
, (3.21)

where the spinors satisfy γza± = ±a± and a− =
γµPµ
P a+. For small z, the Bessel function

Jm− 1
2

behaves as Jm− 1
2
(z) ≈ zm− 1

2 , and f(z) scales like z∆.

Eq. (3.20) is all what we will need to compute the fluctuation spectrum in the next

section. It may, however, be interesting to extend the analysis to backgrounds which are

only asymptotically AdS. The Dirac equation on asymptotic AdS spaces is studied in ap-

pendix A. Such an equation could become important for nonsupersymmetric supergravity

backgrounds.
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3.3 Spectrum of spin- 1
2 fluctuations in AdS5

We now move on to compute the spectrum of the spin- 1
2 modes Ψ±` . As shown in sec-

tion 3.1, these modes are described by a Dirac equation on AdS5, eq. (3.14), which follows

from the fermionic part of the D7-brane action. In section 3.2, this equation has been

transformed into a second order differential equation, eq. (3.19). The assumption of plane-

wave fluctuations, Ψ`(x, r) = eiPµx
µ
f`(r), led then to the differential equation (3.20) which

we recast into the form (d = 4)

(
∂2
r +

6

r
∂r +

1

r2
(−|m`|2R2 + 6 + |m`|Rγr) +

M2R4

r4

)
f`(r) = 0 , (3.22)

where r = R2/z and the masses m` = m±` as in eq. (3.15). Without loss of generality, we

work with the absolute value of m`, since γr = ±1.

The above equation of motion has been derived for overlapping D3 and D7-branes

corresponding to massless quarks. We have not found a completely satisfying way to

introduce a quark mass mq 6= 0 right from the beginning. Nevertheless, it is possible to

compute the mass spectrum in dependence of the quark mass by making the following

assumption: Note that the equation for the fermionic operators, eq. (3.22), has a similar

structure as the equation for the scalar mesons, eq. (2.6). We may therefore assume that

massive quarks can be introduced by replacing

M2

r4
→ M2

(r2 + L2)2
(3.23)

in (3.22), where L is proportional to the quark mass mq, mq ∼ L. This assumption will be

justified below.

The resulting equation of motion

(
∂2
r +

6

r
∂r +

1

r2
(−|m`|2R2 + 6 + |m`|Rγr) +

M2R4

(r2 + L2)2

)
f`(r) = 0 , (3.24)

can then be solved in terms of the hypergeometric function 2F 1(a, b; c;− r2

L2 ), where a, b,

and c are constants. More precisely, we find the solutions

f`(r) = r|m`|−3(L2 + r2)
1
2
−|m`|−n+

2F 1

(
1
2 − |m`| − n+,−n+; |m`|+ 1

2 ;− r2

L2

)
a+

+ r|m`|−2(L2 + r2)−
1
2
−|m`|−n−

2F 1

(
−1

2 − |m`| − n−,−n−; |m`|+ 3
2 ;− r2

L2

)
a− ,

(3.25)

where, as in eq. (3.21), the spinors a± satisfy γra± = ±a±. Here we defined the excita-

tion numbers n± = 0, 1, 2, . . . as functions of the mass M by imposing the quantization

conditions

−n+ = |m`| − 1
2

√
1 +M2/L2 , (3.26)

−n− = |m`|+ 1− 1
2

√
1 +M2/L2 . (3.27)
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These conditions ensure that the hypergeometric functions behave like (r2)n± at r →∞,

and thus asymptotically f`(r) ∼ r−∆. Since the fluctuations Ψ±` are canonically normalized,

this is the expected asymptotic behavior for normalizable modes.

The quantization conditions (3.26) and (3.27) determine the mass spectra of the oper-

ators G`α and F `α. The function f` is a superposition of two solutions which are proportional

to a+ and a−. For m` = m+
` > 0, the dominant solution at r →∞ is that proportional to

a+. Solving the definition of n+ for M and substituting m+
` = 5

2 + `, we obtain

M2
G =

4L2

R4
(|m+

` |+ n+ − 1
2)(|m+

` |+ n+ + 1
2)

=
4L2

R4
(n+ + `+ 2)(n+ + `+ 3) (n+ > 0, ` > 0) . (3.28)

This is the mass spectrum of the operators G`α which have the same SO(4) quantum

numbers as χ+, ( `+1
2 , `2).

For m` = m−` < 0, the two solutions interchange their roles. Inverting now the defini-

tion of n− and substituting |m−` | = 1
2 + `, we obtain the mass spectrum of F `α:

M2
F =

4L2

R4
(|m−` |+ n− + 1

2)(|m−` |+ n− + 3
2)

=
4L2

R4
(n− + `+ 1)(n− + `+ 2) (n− > 0, ` > 0) . (3.29)

The mass spectrum transforms as χ− in the ( `2 ,
`+1

2 ) of SO(4).

3.4 Fluctuation-operator matching

In the following we summarize all fluctuations of the D7-brane and assign the corresponding

operators to them. As was found in [3], the complete set of open string fluctuations fits into

a series of massive supermultiplets of the N = 2 supersymmetry algebra. These multiplets

have the masses

M2 =
4L2

R4
(n+ `+ 1)(n+ `+ 2) (n, ` > 0) (3.30)

and are labeled by the quantum number `. Since the supercharges commute with the

generators of the global group SU(2)Φ, the SU(2)Φ quantum number, `
2 is the same for all

fluctuations in a supermultiplet.

The bosonic fluctuations of a multiplet are listed in the upper part of table 2. The

notation of the fluctuations and their mass spectra is the same as in [3]. The numbers

(j1, j2)q label a representation of SO(4) ≈ SU(2)Φ × SU(2)R, and q is the U(1)R charge.

The last column shows the conformal dimension of the lowest operator in a series.

Let us consider the bosonic components in more detail. First, there is a scalar in the

( `2 , `
2 + 1)0 which corresponds to the chiral primaries [3]

CI` = q̄mσImnX
`qn , (3.31)

where the Pauli matrices σImn (I = 1, 2, 3) transform in triplet representation of SU(2)R.

Then, there are 2 scalars in the ( `2 , `
2)2 which we identified in section 2.2 as the scalar
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meson operators MA`
s (A = 1, 2). Moreover, there is 1 scalar and 1 vector1 in the ( `2 , `

2)0

which we identify as the operators

J µ`B = ψ̄αi γ
µ
αβX

`ψβi + iq̄mX`Dµqm + iD̄µq̄mX`qm (µ = 0, 1, 2, 3) , (3.32)

with X` as in eq. (2.3). The operator J µ0
B at the bottom of the tower is associated with

the global U(1)B current. Finally, there is a scalar in the ( `2 , `
2 + 1)0 (` ≥ 2) which is a

higher descendant of CI`.
There are analogous operators in the defect conformal field theories located on the

T-dual D3/D5 and D3/D3 brane intersections [37, 42]. For instance, the operator MA`
s

(A = 1, 2) corresponds to the scalar mesons EA` (A = 1, 2, 3) [37] and Cµ` (µ = 1, 2, 3, 4) [42]

in the D3/D5 and D3/D3 theories, respectively. Also, the U(1)B current operator J µ0
B is

part of the lowest multiplet in each of the D3/Dp (p = 3, 5, 7) theories.

The fermionic content of the multiplets is shown in the lower part of table 2. This part

of the multiplet matches precisely the spectra of the fermionic operators:2

MG(n, `− 1) = MF (n, `) (` > 1) . (3.33)

The lowest multiplet with ` = 0 contains only the operator F 0
α. The operator G`α appears

first for ` = 1. We have already discussed the structure of the operators F `α and G`α in

section 3.1.

fluctuation d.o.f. (j1, j2)q spectrum op. ∆

bosons 1 scalar 1 ( `2 , `
2 + 1)0 MI,−(n, `+ 1) (` ≥ 0) CI` 2

2 scalars 2 ( `2 , `
2)2 Ms(n, `) (` ≥ 0) MA`

s 3

1 scalar 1 ( `2 , `
2)0 MIII(n, `) (` ≥ 1) J µ`B 3

1 vector 3 ( `2 , `
2)0 MII(n, `) (` ≥ 0)

1 scalar 1 ( `2 , `
2 − 1)0 MI,+(n, `− 1) (` ≥ 2) – 4

fermions 1 Dirac 4 ( `2 , `+1
2 )1 MF (n, `) (` ≥ 0) F `α 5

2

1 Dirac 4 ( `2 , `−1
2 )1 MG(n, `− 1) (` ≥ 1) G`α 9

2

Table 2: Field content of supermultiplets in the D3/D7 theory.

As required by supersymmetry, the number of bosonic components in a multiplet,

1(2( `2 + 1) + 1) + (2 + 1 + 3)(2 `2 + 1) + 1(2( `2 − 1) + 1) = 8(`+ 1) , (3.34)

agrees with the number of fermionic components,

4(2 `+1
2 + 1) + 4(2 `−1

2 + 1) = 8(`+ 1) . (3.35)

The masses of the fermionic fluctuations matches exactly the spectrum expected from

supersymmetry. With hindsight, this justifies the introduction of the quark mass into the

equations of motion via the replacement (3.23).

1These fields fit into a 5d vector field of AdS5.
2The mass spectra M2

G and M2
F are identical to the spectra M2

F2 and M2
F1 found in [3], respectively.
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4. Baryon spectroscopy in the “bottom-up” approach

So far we have discussed the spectrum of bosonic and fermionic operators with two funda-

mental fields at the ends. In contrast, a baryon in large N SU(N) (super) Yang-Mills theory

is a color singlet bound state of N fundamental quarks. As discussed in the introduction,

the construction of a brane configuration for dynamical baryons is remarkably difficult.

Nevertheless, it is possible to derive the baryon spectrum in the so-called “bottom-up” ap-

proach to the AdS/CFT correspondence. Starting from a phenomenological supergravity

model, we will study the baryon spectrum of a broad class of supersymmetric field theories.

4.1 Mass spectra in the D3/D7 theory in the effective approach

Let us first demonstrate this technique by computing once again the scalar meson spectrum

in the N = 2 theory of the D3/D7 configuration. Assume we had no knowledge about the

dual gravity theory apart from its existence. We may then construct the supergravity

background from the properties of the field theory. According to the standard prescription

of AdS/CFT, the conformal invariance of the field theory requires the dual supergravity

background to be AdS5. The SO(4, 2) isometry of AdS5 corresponds to the conformal

group of the field theory.

Next, in order to compute the spectrum of the operatorsM`
s as defined in eq. (2.3), we

introduce scalar modes φ` in this AdS5 space which are dual to the operators M`
s. These

scalars are described by the equation of motion

∂M
√
ggMN∂Nφ` −m2

`φ` = 0 , (4.1)

where gMN is the AdS5 metric in the parametrization (3.16), and m` is fixed by the mass-

dimension relation

m2
` = ∆(∆− 4) = −3 + `(`+ 2) . (4.2)

Using again the plane-wave ansatz φ` = e−ik·xf` with M2 = −k2, this leads to

(z2∂2
z − 3z∂z + z2M2 −m2

`R
2)f`(z) = 0 , (4.3)

or, equivalently (r = R2/z),

∂2
rf`(r) +

3

r
∂rf`(r) +

(
M2

r4
− `(`+ 2)

r2

)
f`(r) = 0 , (4.4)

where we redefined f` → f`/r. After the replacement (3.23), this differential equation

becomes identical to eq. (2.6) which we obtained from the DBI action of the D7-branes.

The result for the meson spectrum is therefore the same as in the full ten-dimensional

string approach.

Several remarks are in order here: First, the DBI computation in section 2 has shown

that the eigenvalues of the spherical harmonics on S5 lead to the dependence of the scalar

mass m` on the angular momentum `. In the phenomenological approach, the internal space

S5 may be ignored in the effective approach. The dependence on ` enters the mass via the
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conformal dimension of the higher-` operators, see eq. (4.2). Second, it is not obvious how

a nonvanishing quark mass can be introduced in this approach. The introduction of the

appropriate dual field in the background of the induced metric on the D7-brane does not

lead to the desired result. Inspection of the DBI action shows that the metric elements

transverse to the D7-brane are relevant for nonvanishing quark mass. These metric elements

do not appear in an effective computation. We therefore use the replacement (3.23) for the

introduction of a quark mass. Third, we may also compute the spectrum of the fermionic

operators F `α and G`α in the “bottom-up” approach. In this case we would introduce a

Dirac spinor Ψ in AdS5. Fixing the masses as in eq. (3.3), we immediately get eq. (3.14)

from which we obtain the spectrum for F `α and G`α.

4.2 Baryons in superconformal field theories

We now turn to baryon operators in a broad class of large N SU(N) super Yang-Mills

theories with Nf flavors. The only further assumption we make is that the theory is

conformal invariant, at least in some parameter regime, and that baryons do exist in the

theory. An example of such a theory would be super QCD in the conformal window

(3/2 ≤ Nf/Nc ≤ 3) or asymptotic free theories at high energies. Conformal invariance

ensures that the dual supergravity background has the structure of an AdS5 space.

In this class of theories, we are interested in the spectrum of the totally antisymmetric

baryon operator

B0 =
1√
N !

εi1i2...iNψi1 . . . ψiN (4.5)

which has conformal dimension ∆ = 3
2N and spins 1

2 ,. . . ,N2 (N odd). For simplicity, we

only consider the state with spin 1
2 . We can also construct operators B` of higher orbital

excitation by the insertion of ` derivatives Dik into B0. Such operators would have the

conformal dimensions

∆ =
3

2
N + ` . (4.6)

Let us now specify the characteristics of supergravity fields Ψ` dual to the operators B`.
Again, the spin of Ψ` must be identical to that of the boundary states which we have chosen

to be 1
2 . Moreover, the conformal dimensions of the operators B` as given by eq. (4.6)

determine the masses of the fields Ψ`. Using eq. (1.1), we find the masses

m` = 3
2N − 2 + ` . (4.7)

In the phenomenological approach the spin- 1
2 component of the baryons B` are quite

similar to the fermionic operators G`α (F `α). The dual fields Ψ` are described by a Dirac

equation on AdS5,

(D/ −m`)Ψ`(x, z) = 0 , (4.8)
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but now the masses m` are given by eq. (4.7). Proceeding as in section 3, we obtain the

baryon masses

M2
B =

4L2

R4
(m` + n− 1

2)(m` + n+ 1
2) (n, ` > 0) , (4.9)

cf. eq. (3.28). Substituting the masses m` as given by eq. (4.7), we find the baryon spectrum

M2
B =

4L2

R4
(n+ `+ 3

2(N − 1))(n+ `+ 3
2(N − 1)− 1) . (4.10)

For large N , and constant n and `, the baryon masses MB scale with N , as expected from

field theory [31].

5. Conclusions and open problems

We have derived the mass spectra of certain fermionic operators in the N = 2 field theory

located on the world-volume of intersecting D3 and D7-branes. This supplements the

analysis of [3] in which the spectrum of scalar and vector meson operators was found in

the same theory. We showed that both the bosonic as well as the fermionic operators fit

into N = 2 supermultiplets and constructed explicit expressions for these operators. We

finally made a prediction for the mass of baryon operators in a class of supersymmetric

field theories using an effective approach to the AdS/CFT correspondence.

In the derivation of the fermionic operator spectrum we made the assumption that

massive quarks can be introduced via the replacement (3.23). The procedure led exactly

to the operator spectrum expected from supersymmetry, which justifies the replacement

with hindsight. Certainly, it would be more desirable to include a nonvanishing quark mass

already on the level of the brane set-up. Another goal would be to extend the analysis to

nonsupersymmetric and nonconformal backgrounds. In this case the masses of the bosonic

fluctuations would differ from that of the fermionic ones.

Finally, one purpose of this paper was to develop techniques which will also be relevant

for the holographic discussion of dynamical baryons. We mainly focused on open string

fluctuations dual to operators with half-integer spin. As outlined in the introduction, it

would be interesting to find a 10d baryon configuration and compute the corresponding

operator spectrum. If the brane configuration turns out to be of the form of an AdS space,

at least in some parameter regime, the baryon spectrum should agree with that found in

the effective approach. It would be nice, if the spectrum (4.10) could be verified from the

full 10d string theory point of view.
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A. Dirac equation in asymptotic AdSd+1 spaces

In this section we study the Dirac equation on asymptotic AdSd+1 spaces. The general

class of backgrounds we wish to consider is given by the metric and dilaton

ds2 =
R2

z2
e2A(z)(ηµνdx

µdxν − dz2) , Φ = Φ(z) , (A.1)

where A(z),Φ(z) → 0 as z = R2/r → 0, and R is the AdS radius.

The Dirac action for a spinor Ψ(xµ, z) in this background is given by

S =

∫
ddxdz e−Φ

√
−det g

[
Ψ̄eMA γ

A(DM −
1

2
∂MΦ)Ψ−mΨ̄Ψ

]
, (A.2)

where xM = (xµ, z). The resulting Dirac equation is

(D/ − 1

2
eMA γ

A∂MΦ−m)Ψ(xµ, z) = 0 , (A.3)

again with D/ = eMA γ
ADM . The dependence on the dilaton can be separated by the ansatz

Ψ(xµ, z) = e
1
2

Φ(z)Ψ̃(xµ, z) , (A.4)

and we just have to solve (D/ −m)Ψ̃ = 0. If Φ(z) is a regular function, i.e. e
1
2

Φ(z) > 0 for

all z, then Ψ has the same zeros as Ψ̃.

For the background (A.1), the d + 1-bein is eAM = δAMa(z) with a(z) ≡ R
z e

A(z). The

only non-vanishing component of ωMAB is ωµaz = ηµa
∂za(z)
a(z) [43] and the Dirac operator

becomes

D/ = a(z)−1

[
γA∂A +

d

2
b(z)γz

]
, b(z) ≡ ∂z ln a(z) . (A.5)

It is then straight-forward to get

(∂2
z + d b(z) ∂z +M2 − a(z)2m2 +

d2

4
b(z)2 +

d

2
∂zb(z)− ∂za(z)γzm)f(z) = 0 . (A.6)

This equation reduces to eq. (3.20) for a(z) = R
z (A(z) = 0). It can be used for the

computation of the spectrum of spin- 1
2 fluctuations in confining backgrounds with non-

trivial warp factor. We do not pursue this issue any further here.
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