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Abstract: We address, in the AdS/CFT context, the issue of the universality of the

couplings of the ρ meson to other hadrons. Exploring some models, we find that generically

the ρ-dominance prediction fρgρHH = m2
ρ does not hold, and that gρHH is not independent

of the hadron H. However, we prove that, in any model within the AdS/QCD context,

there are two limiting regimes where the gρHH , along with the couplings of all excited

vector mesons as well, become H-independent: (1) when H is created by an operator of

large dimension, and (2) when H is a highly-excited hadron. We also find a sector of a

particular model where universality for the ρ coupling is exact. Still, in none of these cases

need it be true that fρgρ = m2
ρ, although we find empirically that the relation does hold

approximately (up to a factor of order two) within the models we have studied.
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1. Introduction

The observed couplings of the octet of vector mesons (ρ(770), ω(782) , φ(1020), etc.) show

an interesting universality, one which is not an obvious consequence of any known QCD

mechanism. The ρ decay to ππ gives g2
ρππ/(4π) = 2.9, and isospin-related decays of the

φ give g2
φK+K−

/(4π) = 3.2 and g2
φKLKS

/(4π) = 3.5 [1]; this should be compared with the

unrelated process of pion-nucleon scattering, which yields gρππgρNN/(4π) = 2.8 [2].

In 1960, Sakurai proposed a now-famous conjecture [3], that the ρ meson has a universal

coupling to every isospin-carrying hadron. In particular, the “vector meson dominance”

conjecture [4 – 6] sets this universal coupling to the ρ mass-squared divided by the ρ decay

constant: gρ = m2
ρ/fρ. The suggestion is that the form factor of any isospin-carrying

hadron H is given by the ρ pole:

F (q2) ≈ fρgρHH

q2 + m2
ρ

where fρ is the ρ decay constant, mρ is its mass, and gρHH is a coupling characterizing

the interaction of a ρ with the hadron H. The H-independent normalization condition

F (0) = 1 then fixes gρ. Sakurai attempted to implement this idea by formulating the

ρ meson as a gauge boson. This approach was influential and inspired much subsequent

work.
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It seems to us that a modern viewpoint, particularly employing the techniques of

AdS/CFT [7], might shed some interesting light on this old issue. One of our motivations

in exploring this question is a recent proposal by Son and Stephanov based on dimensional

deconstruction [8], which in turn was inspired by the hidden-local symmetry mechanism of

Bando et al. [9] An interesting aspect of this model is that ρ-dominance for some hadrons

is a natural consequence of the properties of wavefunctions in the deconstructed extra di-

mension. There has been a similar observation in another model based on AdS/CFT [10].

In this theory, the form factors associated with certain conserved global symmetry cur-

rents are expressed in terms of only a finite sum of poles; these poles correspond to the

vector meson states created by the current acting on the vacuum. As in [8], the special

properties of the extra-dimensional mode functions play an essential role. Since the theory

of [8] is an ad hoc model, constructed by hand, it is useful to see that the same math-

ematics arises in an AdS/CFT context, where the whole structure of the computation,

including the extra dimension, arises naturally as the dual picture of a strongly-coupled

field theory.

In this paper, we will examine the universality of the ρ’s couplings, and those of

other excited vector mesons created by the same current.1 We find the universality and

ρ-dominance conjectures do not hold across entire models, both in that couplings are

nonuniversal and do not satisfy fρgρHH = m2
ρ . However, we do find that universal cou-

plings for all of the vector mesons emerge, model-independently, in two interesting limits.

These two examples of approximate universality hold for diagonal couplings of the vector

mesons both to hadrons whose interpolating operator has large dimension and to hadrons

which have high radial excitation. As we will show, the existence of universal couplings

in these limits is a consequence of general properties of the AdS/CFT calculation. We

also find an example of exact universality, whose origin is interesting but clearly model-

dependent, for the couplings of the ρ to the hadrons within a large sector of a particular

model. In this example the universal coupling is of the same order as, but does not equal,

m2
ρ/fρ.

The paper is organized as follows. In section 2, we discuss vector meson dominance

in the limit of large N and large ’t Hooft coupling; a proof of vector meson dominance

in this limit, due to Son, is given in appendix C. We will supplement the discussion by

examples in two different models, which are reviewed in appendix B. One is the “hard-wall”

model, which is used to capture generic features of confining gauge theories. The other

model is the D3/D7 system, which has “quarks” in the fundamental representation, and

associated strongly-coupled “quarkonium” bound states. In section 3, we briefly discuss

ρ-dominance and how it motivates the study of coupling universality. Then, we lay out

the various types of universality that we have explored, illustrating them with examples

from the hard-wall and D3/D7 models. Section 4 contains some concluding remarks. A

review of the basic methodology needed from the AdS/CFT dictionary can be found in

appendix A.

1We will generically call the lowest-mass state created by a conserved current acting on the vacuum the

“ρ”, at the risk of some confusion.
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Figure 1: Decomposition of the form factor into a sum over hadron states, as in eq. (2.1).

2. Decomposition in AdS/CFT

In the literature on hadronic physics, it is often assumed that the form factor for a hadron

associated with a conserved spin-one current can be written as a sum over vector-meson

poles. While this is not in general justified, it is believed to be true at large N . The

main goal of this section is to argue this is indeed always true in AdS/CFT contexts, when

both the number of colors N and the ’t Hooft coupling λ = g2N are large. Here g is the

Yang-Mills coupling.

In particular, we claim (and sketch a proof, due to Son [11], in appendix C) that in

confining gauge theories with a supergravity dual,2

Fab(q
2) =

∑

n

fngnab

q2 + m2
n

, (2.1)

as illustrated in Fig. 1. Here fn denotes the hadron decay constant of the n-th vector

hadron state, gnab its coupling to an incoming and outgoing hadron, and mn its mass.

Before we begin, we need to review how the form factor is computed on the gravity

side of AdS/CFT. Leaving the details to appendix A, we cover only what is needed in this

section. According to the AdS/CFT duality, a local conserved spin-one current in the gauge

theory is dual to a non-normalizable mode of a gauge field in the asymptotically-AdS5 space.

Meanwhile, the spin-one hadron state created by the current operator corresponds to a

normalizable mode of the same gauge field. Now, the form factor is computed by the overlap

integral, eq. (A.5), of a non-normalizable mode and two normalizable modes, corresponding

to the vector current, an incoming hadron, and an outgoing hadron. The three hadron

2There can be many form factors depending on whether the current is conserved, and on the spins of

the hadrons. In this paper, we only deal with conserved currents, whose matrix elements between scalar

hadrons have only one form factor. For vector hadrons, there are three form factors: electric Fe, magnetic

Fm and quadrupole FQ. As observed by Son and Stephanov [12] and discussed in [10], the large ’t Hooft

coupling limit implies Fe = Fm and FQ = 0. Therefore, our discussion focusing on only one form factor is

justified.
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coupling, in which the current is replaced by a spin-one hadron created by that current,

is obtained by the same integral except for the replacement of the non-normalizable mode

of the five-dimensional gauge field with a normalizable one, as in eq. (A.8).3 Therefore,

the decomposition (2.1), if true, must be derived simply from a relationship between the

normalizable and non-normalizable modes.

The required relationship is the following. Let’s consider a spin-J (J ≤ 2) field living

in the asymptotically AdS5 space (which we will assume is embedded in a d-dimensional

asymptotically- AdS5 × W space, with W a compact manifold of dimension d − 5.) The

mode of the field with momentum qµ may be written Cµ1···µJ
(q) = εµ1···µJ

eiq·xχ(q2, z),

where z is the five dimensional radial coordinate defined in appendix A, and µ runs from 0

to 3. The normalizable mode is φn(z) ∝ χ(−m2
n, z) at q2 = −m2

n, and the non-normalizable

mode ψ(q2, z) ≡ χ(q2, z) for arbitrary q2 can be written as

ψ(q2, z) =
∑

n

fnφn(z)

q2 + m2
n

(2.2)

fn = lim
z→0

V (z)

gd

(

R

z

)

∂zφn(z) . (2.3)

Here gd is a d-dimensional coupling constant; its precise form depends on the current and

the theory under study. Meanwhile R = λ1/4α′1/2 is the AdS5 curvature radius, and V (z)

is the volume of W at z. Substitution of eq. (2.2) into (A.5) and using (A.8) yields eq. (2.1).

A proof of (2.2) and (2.3) for spin-one currents is given in appendix C. Additional details

about our notation are given in appendix A.

It will be useful below to recall the scaling properties of the fn in models with super-

gravity duals. The decay constant fn of a spin-one hadron is defined by

〈0|J µ(x = 0)|n, p, ε〉 = fnεν ,

where |0〉 is the vacuum of the theory, and |n, p, ε〉 is the spin-one hadron state with mass

mn, momentum p and polarization εµ created by the conserved current operator J µ. The

fn and mn are constrained by the fact that the two-point correlation function of a conserved

current can be written

〈Jµ(q)Jν(−q)〉 ∼ q2 ln q2

(

ηµν − qµqν

q2

)

=
(

q2ηµν − qµqν

)

∑

n

|fn|2
m2

n(q2 + m2
n)

. (2.4)

If mn ∼ np at large n, then the log q2 behavior requires fn ∼ n2p−1/2. The supergravity

limit has p = 1, so fn ∼ n3/2 for a conserved current. Similarly, the energy momentum

tensor has fn ∼ n5/2 since its two-point function goes as q4 ln q2. We know of no similarly

useful constraints on the three-hadron couplings gnab, unless all three hadrons are highly

excited, a case we will not discuss.

3For spin-two currents, the same statements hold with all spin-one currents and hadrons replaced with

spin-two, and with the five-dimensional gauge field replaced by the five-dimensional graviton.
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Examples

We now illustrate the above formalism through a few examples. Our computation will be

mostly focused on, first, showing the decomposition (2.1) explicitly in two exactly solvable

models, and second, verifying the formula for the hadron decay constant fn (2.3). The

computed fn’s will be also useful in comparing the examples in future sections with previous

work.

The first theory we consider is the hard-wall model, which effectively models the be-

havior of a large class of confining theories in the large λ limit. On the gravity side, the

theory is simply given by an AdS5×S5 background cut off by a wall at finite radius, where

boundary condition for mode functions are imposed. We leave the detailed discussion of

this theory to the original literature [13 – 15], but the list of mode functions that we will

use can be found in appendix B.

The other model that we use is the flavor-non-singlet sector of a system of N D3-

branes and Nf D7 branes. This model has a distinctive feature; the theory has QCD-like

mesons, bound states built from matter in the fundamental representation of SU(N). The

meson spectrum has been largely worked out. We again refer to appendix B for a brief

introduction to the theory and for the mode functions; the reader may wish to consult the

original literature [16 – 18, 10] for a more detailed description of the theory.

Hard-wall model. In the hard-wall model, we recall the non-normalizable (B.3) and

normalizable mode (B.1) for a gauge field in this theory,

ψ(q, z) ≈ 1

g10
qzK1(qz) (non-normalizable mode),

φn(z) =

√
2ΛzJ1(ζ0,nΛz)

π
3

2 R3J1(ζ0,n)
(normalizable mode).

where ζν,n is the nth zero of Jν , and the approximation in the first equation is that q À Λ.

As explained in appendices A and B, the canonical normalization of the non-normalizable

mode requires division by g10 = κ/R, the effective coupling constant for a spin-one mode

in the hard-wall model. These two functions are related by a mathematical identity,

qνKν(qx) =

∫ ∞

0
dm

mν+1Jν(mx)

q2 + m2
. (2.5)

For ν = 1, this formula is of the same form as eq. (2.2), except that the sum over states

has been replaced with an integral over a continuous spectrum. The reason for this is that

in constructing the non-normalizable mode as in (B.3) we ignored the boundary condition

on the wall, which leads us to a continuous spectrum. This spectrum approximates the

true discrete result in the limit of high-mass states (n À 1) or equivalently in the limit of

small confinement scale Λ.

Comparing eq. (2.2) with (2.5), we see fn is given simply by m2
n divided by the nor-

malization coefficient of the normalizable mode.

fn =
dmn

dn
m2

n

( √
2Λ

π
3

2 R3J1(mn/Λ)

)−1
(

R

κ

)

≈ π2

2
√

2
n2J1(ζ0;n)Λ2N ≈ π

2
n3/2Λ2N . (2.6)
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The powers of N and Λ in this result are fixed on general grounds by N -counting and

dimensional analysis. The n3/2 scaling is required by ultraviolet conformal invariance, as

explained earlier.

Meanwhile eq. (2.3) applied directly to the normalizable mode φn gives

fn = lim
z→0

R

κ
· π3R6

z
· ∂z

√
2ΛzJ1(ζ0;nΛz)

π
3

2 R3J1(ζ0;n)
=

NΛ2ζ0;n√
2πJ1(ζ0;n)

≈ π

2
n3/2Λ2N.

As we noted earlier, the discrepancy between these equations arises from the fact that

eq. (2.5) is exact only in the strictly conformal limit Λ → 0; the reader is invited to

check that the discrepancy is removed when the exact form of the non-normalizable mode,

eq. (B.3), is used. As required, the two expressions match in the large n limit.

For future comparison, we also compute the ratio between m2
n and fn,

m2
n

fn
=

1

2
ζ0;nJ1(ζ0;n)

(2π)
√

2

N
. (2.7)

In particular, for the ρ (n = 0),

m2
ρ

fρ
= 0.624

(2π)
√

2

N
. (2.8)

The extension to the energy-momentum tensor is straightforward. It corresponds to

the ν = 2 case in eq. (2.5) and the decomposition is explicit. Once again, we also read off

the decay constant of a spin two hadron,

fn =
dmn

dn

(

m3
n

2

)

( √
2κΛ

π
3

2 R4J2(mn/Λ)

)−1

≈ π3

4
√

2
n3J2(nπ)Λ3N ∼ π2

4
n5/2Λ3N.

Eq. (2.3) gives

fn = lim
z→0

1

κ
· π3R6

z
∂z

√
2ΛJ2(ζ1;nz)

π
3

2 R2J2(ζ1;n)
=

ζ2
1;nΛ3N

2
√

2πJ2(ζ1;n)
≈ π2

4
n5/2Λ3N.

Again we observe coincidence in the conformal limit.

D3/D7 model. Let us now turn to the D3/D7 system. It has been shown that the

decomposition (2.1) is explicit in this case [10]. Hence, we will check only the formulas for

fn (2.3) in the following ways: first, we compute fn for the cases where the form factors

are known explicitly, and second, we compare the result with the one from Eq (2.3). We

will also read off fn from the form factors using different external hadrons; as we will see,

the fn’s are independent of the external hadrons, as they should be.

Using the metric and the mode functions given in appendix B, the coupling constant

is obtained by an overlap integral for the type I modes and the vector mode, expressed as

g`
n,n1,n2

= g8
L2

2
(2π2)

∫ 1

0

dv

v2
φII

0,n(v)φI
`,n1

(v)φI
`,n2

(v), (2.9)

– 6 –
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where g8 is the Yang-Mills coupling of the eight dimensional D7 worldvolume theory and

L is the distance between the D7 and D3 branes, which sets the quark mass mQ = L/α′.

The typical meson mass scale is set by mh = L/R2 = mQ/
√

λ. We compute a special case

of the vector (0, n) – scalar (1, n2) – scalar (1, 0) overlap integral,

g`=1
n,0,n2

= (−1)n+n2+1 (2π)√
N

√

3

2(n + 1)(n + 2)(2n + 3)(2n2 + 3)

× [n2(n2 + 2)δn,n2−1 − (2n2 + 3)δn,n2
− (n2 + 1)(n2 + 3)δn,n2+1] . (2.10)

Comparing this with the form factor computed in [10], we obtain the decay constant fn of

the vector meson:4

fn = (−1)n
m2

h

√
N

(2π)

√

8(n + 1)(n + 2)(2n + 3) ∼ m2
hn3/2

√
N, (2.11)

where we used (L2/R4)(R2/g8) = m2
h

√
2N/(2π)2. The n3/2 scaling for large n is required

by conformal invariance, while the powers of N and mh are fixed on general grounds by

N -counting and dimensional analysis.

We may now cross-check this result. The type II normalizable mode with ` = 0 is

φII
n (%) =

CII
0n/R2

(1 + %2)n+1
F (−n,−1 − n; 2;−%2)

=
CII

0n

R2

(−1)n

%2
+ O

(

1

%3

)

.

Using this and eq. (2.3), we obtain

fn = (2π2/g8)ρ
3∂ρφ

II
n (ρ)|ρ→∞

= (−1)n(2π)2(L2/g8R
2)CII

0n

= (−1)n
m2

h

√
N

(2π)

√

8(n + 1)(n + 2)(2n + 3), (2.12)

which is exactly eq. (2.11). Note that (in analogy to eq. (2.7))

m2
n

fn
= (−1)n

√

2(n + 1)(n + 2)

2n + 3

(2π)√
N

(2.13)

and for the ρ (n = 0)
m2

ρ

fρ
=

2√
3

(2π)√
N

. (2.14)

For comparison, we compute the three vector hadron coupling also. It is given by

almost the same integral as (2.9), except that φI
`,ni

→ φII
`,ni

; also the metric factor changes

accordingly:

g`
n,n1,n2

= g8
R4

2
(2π2)

∫ 1

0
dv

(

1 − v

v

)

φII
0,n(v)φII

`,n1
(v)φII

`,n2
(v). (2.15)

4Note that we have used a slightly different overall normalization in this paper compared to [10]; fn and

gn both differ by a factor of 2π2, the volume of a unit 3-sphere. The change cancels in form factors where

only fngn appears.
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Now the vector (0, n) – vector (0, n2) – vector (0, 0) overlap integral is

g`=0
n,0,n2

= (−1)n+n2+1 (2π)√
N

√

3(n2 + 1)(n2 + 2)

(n + 1)(n + 2)(2n + 3)(2n2 + 3)

× [n2δn,n2−1 − (2n2 + 3)δn,n2
+ (n2 + 3)δn,n2+1] (2.16)

(which is actually symmetric under n ↔ n2, despite appearances.) Comparing eq. (2.16)

with the matrix element obtained in [10], we get the same result for the decay constant fn

as we did in eq. (2.11), as of course we should.

3. Universality

3.1 ρ dominance and universality

In the limit of large N and large λ, as shown in the previous section, vector meson dom-

inance is exact, in a sense of the decomposition (2.1). However, ρ dominance cannot be

exact, on completely general grounds, at any N or λ, in a theory in which conformal in-

variance is exact (or violated only by logarithmic running) in the ultraviolet. In particular,

dominance of form factors by the ρ pole simply cannot be true in general at large q2.

Conformal invariance in the ultraviolet requires the form factor of a spin-zero hadron |a〉
created by an operator of dimension ∆, must fall as 1/q2(∆−1). More generally

lim
q2→∞

Fab(q
2) ∼ 1

q2k
, (3.1)

where k depends on the spin and twist of the operator creating the a hadron. For example,

k = 2 for the form factor of the ρ, and for any spin-one hadron created by a conserved

current. This behavior, under the assumption that “vector meson dominance” is true,

requires a conspiracy between at least k poles.

Consequently the question of ρ dominance can only be relevant at small q2, i.e., the

issue is whether

Faa(q) ≈
fρgρaa

q2 + m2
ρ

,

to some rough approximation, for small |q2| . m2
ρ. Since F (0) = 1, this, if true, would

imply fρgρaa ≈ m2
ρ, independent of a. Strong ρ dominance implies a universal coupling,

and sets its value. But we will see this is not generally true in AdS/CFT.

However, it is logically possible to have exactly or approximately universal couplings

without ρ dominance, and in this case the universal coupling need not equal its special

value m2
ρ/fρ. We will see this happens in some sectors of AdS/CFT.

Interestingly, the most general situation seems to be that ρ couplings in AdS/CFT

contexts, though nonuniversal, tend to lie in a rather narrow range, not varying by more

than an factor of two from m2
ρ/fρ. This, combined with the structure of the spectrum,

leads to an apparent form of ρ dominance that can hold even when the ρ pole is not a

dominant contributor to the form factor at small q2. We will consider this issue in a later

paper [27].
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Let us begin the exploration of this issue with some examples that dispel any hope of

completely universal couplings.

Examples

Here we compute gn00 for some lowest-lying hadrons in the hard-wall and D3/D7 model,

comparing in each case the spin-one form factors for scalar and vector hadrons, and finding

they are not, in fact, universal. Moreover, we will also find that the ρ meson pole is

not always approximately dominant at small q2; in fact, it is possible for small n that

fngn00 ≥ f0g000. (It can even happen that fngnaa/m
2
n ≥ f0g0aa/m

2
0; we will explore this in

a later publication [27].)

D3/D7 model. In the case of the D3/D7 system, the flavor form factor is easily com-

puted for the lowest-lying mesons within the type I scalar and the type II vector sectors

in B; note the latter is the ρ itself. They are

F I
0,0(q) =

6m2
h

q2 + m2
0

+
6m2

h

q2 + m2
1

→ 12

q2
, q2 → ∞,

F II
0,0(q) =

12m2
h

q2 + m2
0

− 12m2
h

q2 + m2
1

→ 12

q4
, q2 → ∞,

where m2
n = 4m2

h(n + 1)(n + 2). Here the sums over poles actually truncate, but in the

first case the truncation occurs at n = ∆ = 2 rather than at the minimally required

n = ∆−1 = 1. From this simple example we immediately learn that dominance by the ρ is

only approximate even for ∆ = 2 scalars and vectors; in both cases the contribution of the

first excited spin-one hadron is only slightly smaller than that of the ρ, since m2
1/m

2
0 = 3.

For the scalar, the ρ contributes about 75% of F (q2 → 0); in particular f0g000 = 3
4m2

0.

Moreover, for the scalar ∆ = 2 hadron, where the ρ pole could have sufficed to satisfy the

power law F (q2) → #/q2 as q2 → ∞, it nonetheless did not; thus we see that a natural

guess, that conformal invariance might imply that fngnaa ¿ f0g0aa for n ≥ ∆, is wrong,

although it happens to be correct for the form factor of the ρ. Finally, universality of the

ρ coupling fails; since f0 is independent of the external hadron, the first terms of the two

form factors imply the corresponding ρ couplings differ by a factor of two.

Hard-wall model In the hard-wall model, the ground-state scalar hadron created by a

∆ = 2 operator has a form factor with |fngn00| peaking at n = 2, with f2g200/f0g000 ≈ 5.86.

Because m2
2 = 12.9 m2

0, the ρ and second-excited state make comparable contributions at

small q2: f2g200/m
2
2 ≈ 0.32 and f0g000/m

2
0 ≈ 0.72, while other states, including n = 1,

make much smaller contributions, of varying sign. Thus we again do not find strong ρ-

dominance, though the ρ is still the most important contribution at small q2, only slightly

less important than in the D3/D7 case. The form factor of the ρ itself, on the other hand,

has an interestingly similarity to that of the ρ of the D3/D7 model; fngn00/f0g00 is 1.00,

−1.02 and 0.02 for n = 0, 1, 2 respectively, with the remainder extremely small. (We will

comment on this similarity below.) However, the the fn and mn differ in the two models,

so the gnρρ do as well. The hard-wall model has m2
1/m

2
0 = ζ2

1;1/ζ
2
1;0 ≈ 5.26, compared to
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4 in the D3/D7 model, and f1/f0 = −3.50 in the hard-wall model and
√

7 in the D3/D7

model. The deviation of f0g000/m
2
0 from 1 is a bit smaller than in the D3/D7 model, about

24%. Finally the ratio of g000 for spin-zero hadrons of ∆ = 2 to g000 (the ρ self-coupling)

is 0.581, compared to 1/2 in the D3/D7 model.

In summary, just looking at a pair of simple states in two models, we see both ρ dominance

and coupling universality violated at order one, although not by orders of magnitude. Later

we will see cases where ρ dominance is a much worse approximation, though the ρ couplings

will still not vary over a large range.

3.2 Two examples of approximate universality

Despite the absence of ρ-coupling universality, we can show that, at large ’t Hooft coupling,

there are two limits in which coupling universality arises, on very general grounds. Indeed,

in these regimes the couplings of all of the vector mesons, and indeed the entire form

factor, becomes universal, as we observed already in [10]. Both examples stem from the

simplification of mode functions in the associated limit.

The first case concerns hadrons created by an operator with large conformal dimension.

Under AdS/CFT duality, an operator with conformal dimension ∆ corresponds to a five-

dimensional field whose mass is m ≈ ∆/R, so large ∆ corresponds to a heavy particle in

five dimensions. Gravity tends to pull particles down to the minimal possible AdS radius,

or more precisely, to the minimum of some effective potential due to gravity and other

effects. As always, a light particle will have a rather diffuse wave function spread out

around the minimum of this potential, while a heavy particle will have a wave function

highly concentrated at the potential’s minimum. For example, in the duals of confining

theories, as captured in part by the hard-wall model, the normalizable mode corresponding

to a hadron created by an operator with ∆ À 1 generically is localized near the wall, where

g00 is minimized. (This fact was used in obtaining a string theory for high-∆ hadrons in

string backgrounds dual to a confining gauge theories [19].) In the D3/D7 system, the

normalizable modes of the flavor-charged meson-like states localize at % = 1, where %,

which runs from 0 to infinity, is the radial coordinate on the D7 branes introduced in

appendix B. Therefore, if we take the limit that ∆ À 1 for the hadrons a and b, the

coupling of a vector hadron |n〉 to these hadrons will only depend on the wave function φn

of the vector hadron, evaluated at the minimum of the potential for the field associated to

hadrons a and b. The effective potential does not depend on the particle’s mass, ∆, so the

position of its minimum is ∆-independent as well as a-independent. The resulting overlap

integral is then easily approximated and depends only on n. Consequently, because of

the decomposition (2.1), the entire form factor F (q2) becomes independent of a and ∆ as

∆ → ∞. In general, however, the convergence to the universal form factor and couplings

may be very slow.

The second case of universal couplings appears when a = b and the hadron a is a

very highly excited state. In this case, its mode function oscillates rapidly with radius.

If the oscillation wavelength is sufficiently short, while the mode function for the vector
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hadron |n〉 is slowly varying, then we can approximate the latter as constant in any region

of integration, replacing the product |φa|2 by its average, i.e., half its maximum. More

precisely and more generally, using the notations in appendix A, we want to compute

gnaa = gd

∫ zmax

0
dz µφnφ2

a (3.2)

where µ = R5−2(S+J)V (z)e(5−2S−2J)A(z)/z5−2(S+J) is the metric factor and gd is the d-

dimensional coupling. (Recall S = 1 is the spin of the hadron |n〉 and J is the spin of the

hadron |a〉.) In the limit that φa(z) oscillates rapidly, we can use the WKB approximation,

φa(z) ≈ ReNa(z)eiϕa(z). (3.3)

and can average the oscillations to obtain

gnaa = gd

∫ zmax

0
dz µφnφ2

a ≈ gd

2

∫ zmax

0
dz φn(z)µ|Na(z)|2.

We will now show that µN2
a has no leading dependence on a, J , or the conformal dimension

∆ of the interpolating operator when the excitation number a gets large. Consequently, in

this limit, gnaa is universal.

Let’s first consider the case where |a〉 has spin zero. The mode function φa(z) satis-

fies the Klein-Gordon equation in the asymptotically AdS5 × W space, which is given in

appendix A,

− 1√
g
(gzz√gφa(z)′)′ − m2

ag
00φa(z) + m̃2φa(z) = 0, (3.4)

where g = (ReA(z)z−1)5V (z), and m̃ is the five dimensional mass which corresponds to the

conformal dimension ∆ ≈ m̃R. Eq. (3.4) can be transformed to a Schrödinger equation.

When ψa(z) = (gzz√g)1/2φa(z), we have

−ψ′′
a + U(z)ψa = m2

aψa,

U(z) =
15

4z2
+

m̃2R2e2A(z)

z2
− 3

16

[

2V ′

V
− (e2A(z)z−2)′

e2A(z)z−2

]2

+
(V 2)′′

4V 2
+

3(e2A(z)z−2
⊥ )′′

4e2A(z)z−2
(3.5)

The approximate solution is given by

ψa(z) ≈ const.

[m2
a − U(z)]1/4

exp

[

i

∫ z

dy
√

m2
a − U(y)

]

with the quantization condition

∫ zmax

0
dz

√

m2
a − U(z) =

(

a +
1

2

)

π (a = 0, 1, 2, . . .). (3.6)

While U(z) is fixed by the metric and m̃, the mass ma can be arbitrarily large as we

increase a. Thus, we can take the limit that ma is so large that U(z) is negligible except

at small values of z (where the contribution to the gnaa integral is small.) In this limit,
√

m2
a − U(z) ≈ ma, and we obtain ma ≈ πa/zmax from the quantization (3.6). Also, in
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this limit, ψa(z) can be further approximated as

ψa(z) ≈ Ñ exp(imaz),

where Ñ is a constant which can be determined by the normalization condition (A.2).

Therefore, Na(z) and ϕa(z) in eq. (3.3) are completely fixed: Na(z) ≈ Ñ(gzz√g)−1/2,

which is independent of a and ∆, and ϕa(z) ≈ maz. From this it follows that gnaa is

independent of a and ∆.

The approximation
√

m2
a − U(z) ≈ ma breaks down when U(z) becomes of order

ma, which generally occurs in the small-z region. Here the term in U(z) depending on

the conformal dimension in Eq. (3.5), 15/4z2 + m̃2R2e2A(z)/z2 ≈ (4∆2e2A(z) + 15)/4z2,

diverges. Since the space is nearly AdS5 ×W in the region, this term can be neglected for

∆2 + 15
4

z2
¿ m2

a ⇔ z À

√

∆2 + 15
4

a
zmax.

In other words, the region where our approximation is not valid will expand as ∆ gets large

with a fixed, and this calculation is valid only for ∆ ¿ a. But in the small z region, the

wave function matches on to a known z−∆ power law, and so the contribution of the small

z region to any calculation is generally small, especially at large ∆.

Our discussion so far can be easily generalized to the case where |a〉 has spin J . In the

WKB approximation (3.3), ϕa ≈ maz and

Na(z) ≈ (z/R)(3−2J)/2 e(J−3/2)A(z)

√

zmaxV (z)
. (3.7)

and consequently

µNa(z)2 ≈ (ReA(z)/z)2(1−S)

Thus the integrand in (3.2) is independent of a, ∆ and J for a À ∆. Consequently, as

before, g∆
naa depends only on n in this limit, and so all hadrons of any J with a À ∆ have

a universal form factor.

Examples

Large dimension. First we consider the case of ∆ À a, or in the notation that we have

used for the examples, ∆ À n1, n2. In the hard-wall model, as we mentioned earlier, a

normalizable mode associated to a hadron |n1〉 localizes at the wall, z = zmax = 1/Λ.

Thus, for n ¿ n1, n2 ¿ ∆, the first kind of universal vector hadron coupling is given by

the value of the normalizable mode φn(zmax):

g∆
n,n1,n2

−→
∆→∞

δn1,n2

(2π)
√

2

N
, (3.8)

where we denoted the conformal dimension of the operator creating the other two hadrons

by ∆. Note g∆
n,n1,n2

∼ 1/N is consistent with N -counting analysis. That this is ∆– and

n1–independent is as we expected. That it is n-independent appears to be an accident of
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Figure 2: In the hard-wall model, as a function of ∆, the ratio of the coupling g∆
0,n1,n1

for scalar

hadrons (showing curves for n1 = 0, 1, 2, 3) and its universal value guniv, given in eq. (3.8).

the hard-wall model, in particular, a special property of the Bessel equation; we do not

expect this to hold in general models. On the other hand, the fact that g∞0,n1,n1
is nonzero

is generically the case, since Neumann boundary conditions are required for a conserved

current, making φ0(zmax) = 0 unlikely and indeed unnatural. Note, however, that the limit

in which eq. (3.8) applies is attained only very slowly as ∆ → ∞.

In the D3/D7 system, the vector meson coupling to two other mesons of any kind has

a universal limit,

g∆
n,n1,n2

−→
∆→∞

δn1,n2

(2π)

2
√

N
CII

0,nP (1,1)
n (0) = δn1,n2

(2π)√
2N

√

(2n + 3)(n + 2)

n + 1
P (1,1)

n (0). (3.9)

Again, g∆
n,n1,n2

∼ 1/
√

N is consistent with N -counting. In this case, we can compare this

value with other explicit computations. In [10], gn,0,0’s were computed for some specific

cases; it can be checked that they have the same limit in the large conformal dimension,

which, as we have just argued, is no coincidence. Indeed, using

P (1,1)
n (0) =

(n + 1)

2n
F (−n,−n − 1; 2;−1) =

2 cos nπ
2√

π

Γ
(

n
2 + 3

2

)

Γ
(

n
2 + 2

)

we see that eq. (3.9) exactly matches with the limit of eq. (5.7) in [10]. Note that
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lim∆→∞ g∆
n,n1,n2

vanishes when n is odd. When n = 2j is even,

lim
∆→∞

g∆
n,n1,n2

−→
n→∞

δn1,n2
(−1)j

(2π)√
N

2
√

2√
π

, (3.10)

whose magnitude is n-independent, and differs by only ten percent from

lim
∆→∞

g∆
0,n1,n2

= δn1,n2

(2π)√
N

√
3, (3.11)

We have mentioned that the form factors satisfy the power law eq. (3.1) due to the

conformal invariance of the field theory in the ultraviolet. In the large conformal dimension

case, the power k in eq. (3.1) diverges, so we would expect that in our present approximation

this would appear as exponential fall-off at large q2. In the hard-wall case, it is not

immediately obvious. Given the universal couplings that we have just observed, it would

seem that expansion of the form factor as a sum of poles, eq. (2.1), diverges: the coefficient

fng∞n ∼ O(n3/2), where g∞n ≡ lim∆→∞ g∆
naa is the universal coupling. It is possible to

compute the sum by regularizing it carefully, or redefining it by one or more subtractions,

but instead we can easily evade the problem altogether. Recalling that the form factor is

obtained by the same overlap integral as the tri-meson coupling, eq. (A.5), but with the

normalizable mode of the mediating vector meson replaced by a non-normalizable mode,

we can apply the same approximation to the integral as we did for g∆
naa. In particular,

the large-∆ hadrons of the hard-wall model will have a universal form factor given by

the value of the non-normalizable mode at the wall. From eq. (B.3), we use the identity

Kn(x)In+1(x) + Kn+1(x)In(x) = 1/x at x = qzmax = q/Λ to obtain

Fab(q) = δab
1

I0(q/Λ)
. (3.12)

Indeed it vanishes exponentially at large spacelike q2, as we expected.

Similarly, in the D3/D7 case, the universal form factor of the flavor current is given by

Fab(q̄) = − 2π3/2

sin(πα)Γ
(

−α
2

)

Γ
(

1+α
2

) (3.13)

where q̄ = q/mh and α = (−1 +
√

1 − q̄2)/2. This too falls off exponentially at spacelike

q2.

Highly excited hadrons. Now let’s turn to the universality for highly excited hadrons,

a À ∆. In the hard-wall model, any spin-J normalizable modes, such as Eqs. (B.1)

and (B.4), can be approximated as

φ(∆)
p;n (z) ∼ z2−JJp(ζp−1;nΛz) ≈

√

2

π
z3/2−J sin(ζp−1;nΛz),

for large ζp−1;nΛz, where p is a constant depending on ∆ and J , and ζp−1;n is the n-th zero

of the Bessel function Jp−1(x). The three hadron coupling for a vector hadron |n〉 and a

spin-J hadron |n1〉 is

g∆
n,n1,n1

=

√
2κΛ

R4
R8−2Jπ3

∫ 1/Λ

0

dz

z3−2J

zJ1(ζ0;nΛz)

π
3

2 J1(ζ0;n)
|φp,n1

(z)|2
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Since for small z the mode functions are all power-law suppressed, the integral can be

approximated using the sine-wave form for the external hadrons, giving the approximately

universal coupling

g∆
n,n1,n1

=
(2π)2

3

2

N

∫ 1

0
dẑ

ẑJ1(ζ0;nẑ)

J1(ζ0;n)
| sin(mp;n1

ẑ/Λ)|2

≈ (2π)
√

2

N

∫ 1

0
dẑ

ẑJ1(ζ0;nẑ)

J1(ζ0;n)

=
(2π)

√
2

N
· π

2ζ0;n
H0(ζ0;n),

where Hγ is the Struve-H function. In particular,

g∆
0,n1,n1

≈ 0.490
(2π)

√
2

N
. (3.14)

It is interesting to compare this last result with eq. (3.8). The large-∆ and large-

n1 limits do not have the same ρ couplings, and thus the two limits do not commute.

However, the couplings in these limits differ only by a factor of about two. Moreover,

g∆=2
0,0,0 = 0.447 (2π)

√
2

N for spin-zero hadrons, also quite close to both limits. Indeed, we seem

to find that, over the whole domain of ∆ and ni, the couplings of the ρ vary within a rather

narrow range. There is no exact universality in this model, but we see no drastic violation

of it either.

In the D3/D7 system, we use a similar approximation

P (α,β)
n (2v − 1) =

cos
{

[2n + (α + β + 1)] cos−1 v1/2 −
(

1
2α + 1

4π
)}

√
πn(1 − v)α/2+1/4vβ/2+1/4

+ O(n−3/2). (3.15)

This leads to a similar approximation of the overlap integral,

g`
n,n1,n1

≈ g8
2

π

∫ π

0
dθ φn(θ)| cos n1θ|2 ≈

√
2(2π)√

N
R2

∫ π

0
dθ φn(θ) (3.16)

where cos θ = 2v− 1. We can check that eq. (3.16) matches with the form factor computa-

tion (5.8) in [10], though this is rather trivial since both results are derived from the same

approximation (3.15). The result is

g`
n,n1,n1

≈ (2π)
√

2√
N

√

(2n + 3)(n + 2)

π(n + 1)

×(−1)n
(n − 1

2)!

n!
3F2

(

3

2
,−n,−n − 1; 2,

1

2
− n; 1

)

. (3.17)

This expression grows as
√

n for 1 ¿ n ¿ n1. For the ρ, the n = 0 case, we have

g`
0,n1,n1

≈ (2π)√
N

√
3 . (3.18)

Note that Eqs. (3.10) and (3.17) differ, although for the ρ meson, interestingly, the

large-∆ and large-n1 limits give the same result, Eqs. (3.11) and (3.18). We will see this

can be viewed as resulting from the exact universality that we discuss in the next section.
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Figure 3: In the hard-wall model, as a function of n1, the ratio of the coupling g∆
0,n1,n1

for scalar

hadrons and its universal value guniv, given in eq. (3.14).

Also, (3.18) is of the same order as the couplings of the ρ to the lowest-lying mesons in the

theory. In particular, g`=1
000 for external scalar hadrons is given in eq. (2.10), g`=1

000 = (2π)√
N

√
3

2 ,

while g`=0
000 for external vector hadrons, from eq. (2.16), is again g`=0

000 = (2π)√
N

√
3.

As was the case for large ∆, the universal form of the couplings implies a universal form

factor. Applying our approximation strategy for high excitation modes to the form factor

calculation, we find a universal form factor for highly excited hadrons in the hard-wall

model,

lim
n1→∞

Fn1,n1
(q) =

π

2
L0(q/Λ)

[

K1(q/Λ) +
K0(q/Λ)

I0(q/Λ)
I1(q/Λ)

]

(3.19)

where Lγ is the Struve-L function. Similarly, highly excited hadrons in the D3/D7 model

have the universal form factor

lim
n1→∞

Fn1,n1
(q) =

4

q̄2
− π

cos
(

π
2

√

1 − q̄2
) (3.20)

where α = (−1 +
√

1 − q̄2)/2.

Additional comments. In some of the above examples, the gnaa seem to exhibit n-

independence, or even growth with n, for large n. This behavior must break down, be-

cause of the power law (3.1). From (2.1), the power law can only hold if the moments
∑

fngnabm
2j
n , for all j < k (where k is the power in eq. (3.1)), vanish. Truly universal

– 16 –



J
H
E
P
0
4
(
2
0
0
6
)
0
0
3

a-independent and/or ∆-independent couplings g∆
naa, for high but fixed a,∆ and for all

n, would endanger this power law. Consequently, any universality with respect to n must

break down eventually. If n, a and b are all very large, the computation of gnab involves the

overlap integration of a product of three rapidly oscillating functions, and for sufficiently

large n this will begin to decrease. Similarly, when n À ∆ the spin-one mode φn oscil-

lates so quickly that one cannot treat the external hadron as localized on the scale of the

oscillations.

An interesting pattern which appears in both models concerns the couplings of the ρ.

Along with all the other vector meson couplings, g∆
ρaa has a universal value at large ∆,

and a second universal value at large a. These differ, but are of the same order, in the

hard-wall model; in the D3/D7 model the two limits commute, for reasons that we will see

in the next section. In all cases the coupling in these limits differ from the ρ-dominance

prediction m2
ρ/fρ, given in Eqs. (2.8) and (2.14), but only by a factor of order two. Finally,

neither differs much from the (non-universal) couplings of the ρ to the lowest-lying mesons

in the theory, including its own self-coupling. In short, we do not find that the conjecture

of universal couplings is true, but neither do we find it badly violated. This deserves an

explanation, which none of the arguments presented in this paper directly provides. We

will address this issue further in a future publication [27].

3.3 Exact universality

Amusingly, we have found one example of exact universality for the couplings of the ρ to a

certain class of hadrons. As hinted already by some of our earlier calculations, this arises in

a subsector of the D3/D7 system. The universality can be derived from a certain symmetry

satisfied by the relevant mode functions, but we have not found that this mathematical

property of the modes has any deeper physical significance. A similar sector in the hard-

wall model does not show exact universality. At this level, then, the example we now

present appears special to this model, and in this sense, accidental.

We begin with the type II modes, of which the ρ is one, which lie within the subsector

exhibiting universality. The coupling of three type II modes is computed using (2.15). One

portion of the integrand involves two mode functions and a metric factor
(

1 − v

v

)

φII
`,n1

φII
`,n2

= R−4ĈII
`n1

ĈII
`n2

v`+1(1 − v)`+1P (`+1,`+1)
n1

(2v − 1)P (`+1,`+1)
n2

(2v − 1) .

(3.21)

This is invariant under the transformation v → 1 − v, up to the sign (−1)n1+n2. The

remaining factor of the integrand is the wave function φII
0,n, which transforms non-trivially

under v → 1 − v, or equivalently % → 1/%. We can decompose this function into the sum

of odd and even parts. The higher is n, the more complicated is each part, but for the ρ

meson, the lowest mode n = 0, the wave function is very simple:

φII
0,0 = R−2ĈII

0,0v = R−2ĈII
0,0

[

1

2
+

(

v − 1

2

)]

.

If n1−n2 is even, then the odd part of this function can be dropped; the even part is constant

and the computation reduces to the normalization integral of the modes. Therefore, we
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find that within this sector the ρ has a universal diagonal coupling

g`
ρ,n1,n1

=
(2π)√

N

√
3. (3.22)

This result extends beyond the type II modes, due to an accidental symmetry relating

the type II mode to others. It has been found that the D7 brane worldvolume theory has

extra degeneracy among the scalar, type II and type III modes. This degeneracy is not

required by any obvious symmetry, but its presence has been interpreted as a sign of an

extension to SO(5) of the explicit SO(4) present in the classical field theory [18]. We will

refer to the degenerate modes as the “SO(5) multiplet.” Note that the SO(5) symmetry

relates states with different spin. For example, it relates the pion-like scalar mesons created

by ψQ
†Φ`ψQ, and the ρ-like spin-one mesons. All the modes in the SO(5) multiplet are

eigenvectors of the transformation v → 1− v, which as we have just seen above leads them

to have the universal coupling (3.22) to the ρ, and indeed, to all of the ground states related

to the ρ by SO(5).

It is easy to check that the scalar and the type III modes have the same behavior and

universal coupling as those of type II. For the scalar mode, the product of the wavefunctions

and the metric factor gives exactly eq. (3.21), just as for type II, so the same universality

is trivially obtained. The type III modes are different in appearance, as they involve gauge

fields polarized both in the compact S3 directions and the fifth dimension, but in the end

the integral is the also the same as for type II.

From (3.22), it follows that the large dimension limit ` → ∞ and the large excitation

limit n1 → ∞ lead to the same limiting ρ coupling in these particular sectors. But the

coupling arising in each limit is the same in all sectors. Therefore, in all sectors, the

ρ coupling must approach (3.22) both at large dimension and at large excitation. This

explains why Eqs. (3.11) and (3.18) agree with each other and with (3.22).

As we noted, the key fact leading to universal couplings is that the integrands in

Eqs. (A.2) and (A.8) are identical except for the mode function φn of the spin-one vector

meson. One might ask if there are other natural contexts where symmetries might constrain

φn, or in particular the ρ mode function φ0, such that the overlap computation would

reduce to the normalization integral (A.2), giving a universal value for the ρ’s coupling to

all hadron states. In the D3/D7 case above, the “parity” v → 1 − v (really an inversion

symmetry % → 1/%) played such a role. It would be interesting to build this feature into a

model to obtain the universality seen in QCD, something along the phenomenological lines

of [8]. We leave this question for future study.

Examples

We already have computed in section 2 one example of a tri-meson coupling in the type II

sector, eq. (2.16). Letting n = n2, and using the cyclic symmetry of the coupling (2.15),

g`
0,n,n = gn,0,n, we see that g0

0,0,0 is indeed the exactly universal coupling (2π)√
N

√
3. Note

however that m2
ρ/fρ, eq. (2.14), is smaller by a factor of 3

2 .
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4. Conclusions and discussion

We have examined the universality of the ρ meson’s couplings, and those of excited vector

mesons, in the AdS/CFT context. We did not find that the ρ typically has precisely

universal couplings. We did find two regimes of approximate coupling-universality, which

become exact in certain limits. These are especially interesting because they are generic,

arising for fundamental reasons which apply in any theory at large ’t Hooft coupling. The

first case is the ρ’s couplings (and those of other vector mesons) to hadrons created by

interpolating operators of very large conformal dimension; in this case, universality stems

from the localization of the associated mode functions at the minimum of an appropriate

effective potential. The second case involves hadrons which are highly excited states; the

wave functions oscillate rapidly, and these fluctuations average out in the calculation of

the couplings to vector mesons. Note that in general the two different universalities do not

commute with each other, indicating that they represent two distinct regimes. Moreover,

as we saw examining two models, the ρ’s couplings do not match the conjectured value

m2
ρ/fρ in either regime, though they do not differ from it by more than a factor of two in

either model.

We also saw that a large sector of one model (the D3/D7 system) exhibits exact

coupling-universality for the ρ. As a consequence, the two above-mentioned limits commute

in this model. This feature requires special properties which constrain the mode function

of the ρ relative to the other modes. We expect this behavior is highly model-dependent

and does not generically arise elsewhere.

For further study, then, there are two main questions that we should ask. First,

why are the ρ couplings often roughly universal, and over what range can they vary in

generic models? Clearly there is a connection with the fact that the ρ is created by a

conserved current, which has the special property that its non-normalizable mode at q2 = 0

is always a constant in the radial direction, with a fixed normalization, in order to ensure

F (q2 → 0) → 1. Second, why does fρgρaa tend to be of order m2
ρ even when many other

vector mesons are large contributors to a form factor? This, too, is presumably tied to the

particular shape of the ρ meson’s mode function, which, being generally positive definite

and structureless, is significantly constrained. We leave these questions for further study

[27].

There are several other interesting problems which were not dealt with in this paper.

One is the computation of corrections beyond supergravity. There have been many inter-

esting approaches to this problem [15, 20 – 23]. In particular, it has been noted that the

string theory can be highly simplified for large conformal dimension ∆ ∼
√

N [22], where

one of our examples of universality arises. Aided by these simplifications, this limit may

serve as a nice testing ground to discover more interesting relationships between string

theory and QCD.

The conjecture of universal couplings includes nucleons as well. We did not consider

baryons here, as at large N they are very different objects from mesons. Indeed, at large

’t Hooft coupling they are described by D-branes rather than of supergravity modes. At

present there is no suitable tool for the relevant computations; the baryons’ charges can
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be calculated using geometry, but the formalism for computing dynamic quantities such

as a form factor is still undeveloped. Still, the baryons are localized at small radius in

much the same way as ∆ À 1 mesons, and for much the same reason. We might therefore

expect that they share the same universal form factor as large-∆ mesons, but this remains

to be confirmed. For five-dimensional states with extremely large mass (corresponding

to field-theoretic operators of dimension much larger than N) back-reaction on the met-

ric eventually becomes important. This back-reaction would be relevant, for instance,

for nuclei with large numbers of baryons. Although these objects, too, tend to localize

due to their heavy mass, their backreaction on the metric is likely to alter their form

factors.

One may consider the experimental implications of these findings, but a little thought

reveals the situation is not encouraging for any direct application. It is very difficult to

measure tri-vector-meson couplings, even gρρρ, or form factors of unstable particles, even

the ρ. As we have discussed and have seen in the examples, there is no reason to believe

that gρρρ is approximately equal to, for example, gρππ, at least in the large λ limit. Indeed

our examples suggest that gρρρ can differ from gρππ by a factor of 2 or so. An attempt could

be made to measure gρρρ in the process π+p → π+ρ+n, but to extract gρρρ in a fully model-

independent way would not be possible in this experiment; one would have to assume ρ

dominance in the intermediate states. Meanwhile, the approximate universalities that we

found for certain states in the AdS/CFT models are completely out of experimental reach.

Perhaps there are more subtle ways to apply our results to QCD, but we will have to seek

them in the future.

Still, it is interesting to observe that although most of our results are, in a sense,

negative, in that we do not confirm the classic conjectures, we still have the unexplained

fact that the ρ couplings to most objects in the theory appears to be of the same order. The

structure of the calculation in AdS/CFT seems to suggest that this arises from profound

properties of mesons created by conserved currents. In this sense, Sakurai’s original idea

of treating the ρ as a gauge boson seems not entirely misguided. We will return to this

issue in [27].
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A. Review of methodology

The methodology we use in this paper is established originally in the hard wall model [13 –

15] and applied to the the D3/D7 system [10].
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We first assume that our confining model is given by the asymptotically d-dimensional

AdS5×W space (W a compact manifold of dimension d−5) which has the following metric

ds2 =
R2e2A(z)

z2
(ηµνdxµdxν + dz2) + ĝ⊥ijdẑidẑj , (A.1)

where e2A(z) → 1 as z → 0. xµ is tangential to the four dimensions, z the AdS radius, and

ẑi’s are the coordinates on W . ĝ⊥ij is the metric of W . We assume that the square of the

warp factor e2A(z)/z2 has a minimum at z = zmax. This is one of the sufficient conditions

that this background is dual to a confining gauge theory [26]. Also, in the light-cone gauge,

the warp factor squared has a natural interpretation as the potential for a classical long

string [14] in the string action. Therefore, zmax can be interpreted as “the wall at the end

of space” [26], beyond which a string cannot go.

Each hadron state is dual to a normalizable mode in five dimensions. When a spin-J

(J ≤ 2) field is given by Cµ1µ2...µJ
= εµ1µ2...µJ

eik·xφ(z)Y`(W ), then the normalizable mode

φn(z) with k2 = −m2
n satisfies the normalization condition

R3−2J

∫ zmax

0

dz

z3−2J
e(3−2J)A(z)V (z)φn1

φn2
= δn1n2

, (A.2)

where V (z) is a normalization coefficient in W direction

V (z) =

∫

dd−5ẑ
√

g⊥

∣

∣

∣
Y`(W )

∣

∣

∣

2
. (A.3)

In principle, we might encounter hadron states dual to bulk vector or rank-two tensor fields

which are partially or entirely polarized in the ẑi directions. In such cases, we would have

to include suitable ĝij factors in the integrand of eq. (A.2). However, we can absorb such

factors into the wavefunctions, and treat such fields as five dimensional scalar or vector

fields satisfying eq. (A.2). Also note that V (z) depends on the normalization of Y`(W ) on

W , which can be arbitrarily chosen. In this paper, we use the convention that the norm

of Y`(W ) is equal to the volume of W . In particular, this sets the lowest constant mode

Y0(W ) = 1, and V (z) is the volume of W at z.

To compute the matrix element of a current, we need the non-normalizable mode dual

to that current. Then we find the trilinear interaction between the three modes corre-

sponding to the initial state, the final state and the current operator. Such an interaction

can be derived either from bulk supergravity or the Born-Infeld action on D7 branes if

present. The matrix element for the spin-S current and the spin-J hadrons is given by

〈b|J µ1µ2...µS |a〉 = (charge) × (kinematic factor) × Fab(q
2), (A.4)

where the form factor Fab(q
2) is5

Fab(q
2) = gdR

5−2(S+J)

∫

dz

z5−2(S+J)
e(5−2(S+J))A(z)V (z)ψ(q, z)φaφb. (A.5)

5Here we again ignore that we need multiple form factors depending on J and whether J is conserved

as discussed in 2.
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We denoted the non-normalizable mode for the current operator by ψ, the normalizable

modes by φa,b and the suitable five-dimensional coupling constant by gd.

The form factor must satisfy a constraint Fab(q
2 = 0) = δab. In our context, this is

related to the proper normalization of the non-normalizable mode ψ. When the gauge

theory is conformal, so that the five-dimensional spacetime is AdS5, the usual choice of

normalization in the AdS/CFT context is

lim
q2→0

(z/R)2(S−1)ψ(q2, z) = lim
z→0

(z/R)2(S−1)ψ(q2, z) = 1. (A.6)

For this reason, we present the non-normalizable modes in this paper with the similar

normalization,

lim
q2→0

(z/R)2(S−1)e−2(S−1)A(z)ψ(q2, z) = 1, (A.7)

which reduces to eq. (A.6) in the “conformal limit” z → 0. However, whenever we use these

modes in the computation of form factors, we need to make them “canonically normalized.”

This is accomplished by scaling ψ → ψ/gd, which ensures that eq. (A.5) reduces to eq. (A.2)

in the q2 → 0 limit, and that Fab(q
2 = 0) = 1.

We can compute another quantity, which corresponds to a hadron coupling constant

among three hadron states. It is the three hadron overlap, obtained in the following way.

When the hadron states are labeled by n, a and b, the three hadron coupling is given by

gnab = gdR
5−2(S+J)

∫

dz

z5−2(S+J)
e(5−2(S+J))A(z)V (z)ϕnφaφb. (A.8)

B. Review of the hard-wall and the D3/D7 model

Here we add a brief explanation of the models that we used for examples and list the mode

functions.

As explained earlier, the hard-wall model is given by the AdS5 × S5 space with a wall

at a finite radius. This wall puts the boundary condition the mode functions and we choose

the Neumann condition. The metric is just given by the AdS5 × S5 metric, A(z) = 0 in

Eq (A.1), up to the location of the wall, z = zmax = 1/Λ. Then the spin one normalizable

mode corresponding to the current operator is given by

Aµ(mn) = εµφn(z)Y0(S5), Y0(S5) = 1,

φn(z) =

√
2z/zmaxJ1(ζ0;nz/zmax)

π
3

2 R3J1(ζ0;n)
, (B.1)

where ζk;n denotes the n-th zero of the Bessel function Jk(x). We also expressed the mode

in terms of the v coordinate that we introduce below for the D3/D7 system. The mass is

mn = ζ0;nΛ −→
nÀ1

(

n − 1

4

)

πΛ . (B.2)

The corresponding non-normalizable mode is

Âµ(mn) = εµψ(q, z),

ψ(q, z) = qz

{

K1(qz) +
K0(q/Λ)

I0(q/Λ)
I1(qz)

}

≈
Λ→0

qzK1(qz). (B.3)
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Canonical normalization for this mode requires dividing by gd = g10 = κ/R, where κ2 =

(2π)7α′4g2
s/2 and R4 = 4πgsNα′2; thus g10 = 2π5/2R3/N . The volume of the internal

manifold is that of a 5-sphere of constant radius R: V (z) = π3R5.

The spin-two case is similar. The normalizable and non-normalizable modes are

hµν = εµν

√
2J2(ζ1,nz/zmax)

π
3

2 zmaxR2J2(ζ1;n)
Y0(S5), (B.4)

ĥµν = εµν
R2q2

2

{

K2(qz) +
K1(q/Λ)

I1(q/Λ)
I2(qz)

}

Y0(S5). (B.5)

For a scalar hadron created by an operator with conformal dimension ∆, we use the

following mode

φ(∆)
n (z) =

√
2z2J∆−2(ζ∆−3;nz/zmax)

π
3

2 R4zmaxJ∆−2(ζ∆−3;n)
, (B.6)

which satisfies the boundary condition

∂z

[

z∆−4φ(∆)
n (z)

]
∣

∣

∣

z=zmax

= 0,

which is analogous to Neumann condition for the vector and rank two tensor modes.

The D3/D7 model is described in detail in [16 – 18, 10]. Here we summarize only what

is needed in the computations.The theory is composed of two sectors, N = 4 SU(N) Yang-

Mills theory and Nf of N = 2 hypermultiplets which are in fundamental representation

of SU(N). It has the global symmetry SO(4) ≈ SU(2) × SU(2) symmetry, consisting

of an SU(2)Φ symmetry rotating Φ1 and Φ2 and an SU(2)R N = 2 R-symmetry. The

superpotential is

W =
√

2 tr
(

[Φ1,Φ2]Φ3

)

+

Nf
∑

r=1

QrΦ3Q̃r + mrQ
rQ̃r

where mr is the mass of hypermultiplet r and the trace is over color indices. If all the

masses mr are equal, as we will assume throughout, there is additional flavor symmetry

SU(Nf ).

For large g2N , and in the “quenched limit” Nf ¿ N , the theory is dual to IIB

supergravity in AdS5 × S5 with Nf probe D7 branes [16]. The induced metric on the D7

brane is given by

ds2 =
r2

R2
ηµνdxµdxν +

7
∑

c=4

R2

r2
(dxc)2

=
L2

R2
(%2 + 1)ηµνdxµdxν + R2 1

%2 + 1
d%2 + R2 %2

%2 + 1
dΩ2

3 , (B.7)

where %2 = r2

L2 − 1, and the S3 involves the angular coordinates in the four-dimensional

space spanned by x4, x5, x6, x7.

All of the Born-Infeld modes on the D7 brane were exactly calculated in [18], where the

modes were classified as scalar, I±, II and III. There are extra degeneracies, not explained
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by the explicit global symmetries, among the scalar, II and III modes. This signifies the

existence of an extended SO(5) accidental symmetry, containing the original SO(4) inside.

In [10], a set of coordinates was introduced such that the expressions for the mode

functions become more convenient for form factor computation than those presented in [18].

These the coordinates are

v = (L/r)2 , w = 1 − v ; %2 = v−1 − 1 =
w

1 − w
. (B.8)

Among the various quarkonium modes in the theory, we only present the mode I- and

II, which we mainly used in this paper. The detailed discussion on other modes can be

found in [18].

Type I-: the I- modes correspond to the D7 brane worldvolume Yang-Mills field polarized

in the S3 directions. Using the global charges and the conformal dimension, they can be

uniquely identified as dual to the operators

(Q̃Φ`−1Q)θ,θ̄=0 = Q̃Φ`−1Q + · · · (B.9)

The masses of the normalizable mode are

M2
I− = 4m2

h(n + `)(n + ` + 1) .

The wavefunctions are

Aµ = 0, Aρ = 0, Aα = φI−(ρ)e ik·xY`,−
α (S3) (B.10)

φI−
`,n = (CI

`n/L)%`+1(1 + %2)−1−n−`F (−n, 1 − n − `; ` + 2;−%2)

= (ĈI
`n/L)v(`+1)/2(1 − v)(`+1)/2P (`+1,`−1)

n (2v − 1)

where n ≥ 0, ` ≥ 1, and

CI
`n =

1

π

√

(2n + 2` + 1)

(

n + 2`

` + 1

)(

n + ` + 1

` + 1

)

=

(

n + ` + 1

` + 1

)

ĈI
`n .

Type II: these modes correspond to the worldvolume gauge field polarized in 0123 di-

rections, and are dual to the flavor current operator and its generalizations,

(Q†Φ`Q − Q̃Φ`Q̃†)θθ̄ = Q†Φ`∂µQ + ψ†
QΦ`σµψQ − Q̃Φ`∂µQ̃† + · · · (B.11)

where Φ` stands for any product of Φ1 and Φ2 which is a symmetric and traceless repre-

sentation under SO(4). The masses of the normalizable mode are

M2
II = 4m2

h(n + ` + 1)(n + ` + 2) ,

The wavefunctions are

Aρ = 0 , Aα = 0 , Aµ = ζµφII(ρ)eik·xY`(S3) , k · ζ = 0 (B.12)
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φII
`,n = (CII

`n/R2)%`(1 + %2)−1−n−`F (−n,−1 − n − `; ` + 2;−%2)

= (ĈII
`n/R2)v(`+2)/2(1 − v)`/2P (`+1,`+1)

n (2v − 1) ,

where n ≥ 0, ` ≥ 0,

CII
`n =

1

π

√

(2n + 2` + 3)

(

n + 2` + 2

` + 1

)(

n + ` + 1

` + 1

)

=

(

n + ` + 1

` + 1

)

ĈII
`n ,

and P
(α,β)
n (x) denotes a Jacobi polynomial. In addition to the normalizable mode, the

non-normalizable mode of type II is dual to the flavor current operator. It is

ψII(q) =
πα(α + 1)

sinπα
2F1(−α,α + 1, 2, 1 − v) (B.13)

where α = (−1 +
√

1 − (q/mh)2)/2. Again, canonical normalization requires dividing by

gd = g8, the Yang-Mills coupling in eight dimensions: g8 = (2π)5/2g
1/2
s α′ = 2

√
2π2R2/

√
N .

The volume of the 3-sphere is V (w) = 2π2R3w3/2 = 2π2R3(1 − v)3/2.

C. Proof of decomposition formula

Assume that the spacetime is asymptotically AdS5 ×W , with metric is given as eq. (A.1).

We consider a five-dimensional gauge field Cµ = εµeiq·xχ(q2, z), where z is the five di-

mensional radial coordinate defined in appendix A. The normalizable mode is φn(z) ∝
χ(−m2

n, z) at q2 = −m2
n, and the non-normalizable mode is ψ(q2, z) ≡ χ(q2, z) for arbi-

trary q2. With gauge Cz = 0, q · C = 0, the action for ψ(q2, z) is

S =

∫ zmax

0
dz

(

R eA(z)

z

)

V (z)
[

(∂zψ)2 + q2ψ2
]

,

which gives us the equation of motion

Lψ − q2ψ = 0, L =
e−A(z)z

R V (z)
∂z

(

R eA(z)

z
V (z) ∂z

)

.

Now the problem effectively reduces to that of a field in a one-dimensional cavity. The

linearity of the equation allows us easily to obtain Green’s theorem:

∫ zmax

0
dz

(

R eA(z)

z

)

V (z)
[

ψ(L − q2)χ − χ(L − q2)ψ
]

= − lim
z′→0

[

ψ(z′)Dz′χ(z′) − χ(z′)Dz′ψ(z′)
]

, (C.1)

where

Dz′ =
R eA(z′)

z′
V (z′) ∂z′ .

We assumed here that there is no additional source at z = zmax, which is automatically

guaranteed by a Neumann boundary condition for the gauge field at z = zmax. This implies

that our solution ψ(q2, z), with Neumann boundary conditions at z = 0, can be obtained
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as

ψ(q2, z) = ψ(q2, 0) lim
z′→0

R

z′
V (z′)∂z′G(z, z′; q2) (C.2)

where we used eA(z) → 1 as z → 0 in the asymptotically AdS space. G(z, z′; q2) is the

Green’s function satisfying the equation

(

R eA(z)

z

)

V (z)(L − q2)G(z, z′; q2) = −δ(z − z′), (C.3)

with Dirichlet boundary conditions. Since the normalizable modes form a complete basis,

we can construct the Green’s function as

G(z, z′; q2) =
∑

n

φn(z)φn(z′)

q2 + m2
n

. (C.4)

It can be easily checked that eq. (C.4) satisfies (C.3) by using the completeness relation,

(

R eA(z)

z

)

V (z)
∑

n

φn(z)φn(z′) = δ(z − z′).

Hence, with “canonical normalization”6 ψ(q2, z = 0) = 1/gd, we obtain eq. (2.2) with (2.3)

by plugging (C.4) in (C.2). The generalization to the other spin cases is straightforward

and again yields eq. (2.2). Therefore, the decomposition (2.1) is exact for every conserved

current in the large λ limit.
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