
Journal of High Energy Physics
     

Four-loop decoupling relations for the strong
coupling
To cite this article: York Schröder and Matthias Steinhauser JHEP01(2006)051

 

View the article online for updates and enhancements.

You may also like
Four-loop pressure of massless O(N)
scalar field theory
Antti Gynther, Mikko Laine, York Schröder
et al.

-

Methods and progress in studying inelastic
interactions between positrons and atoms
R D DuBois

-

High-precision epsilon expansions of
single-mass-scale four-loop vacuum
bubbles
York Schröder and Aleksi Vuorinen

-

This content was downloaded from IP address 3.141.29.145 on 05/05/2024 at 06:40

https://doi.org/10.1088/1126-6708/2006/01/051
https://iopscience.iop.org/article/10.1088/1126-6708/2007/04/094
https://iopscience.iop.org/article/10.1088/1126-6708/2007/04/094
https://iopscience.iop.org/article/10.1088/1126-6708/2007/04/094
https://iopscience.iop.org/article/10.1088/1126-6708/2007/04/094
https://iopscience.iop.org/article/10.1088/1126-6708/2007/04/094
https://iopscience.iop.org/article/10.1088/0953-4075/49/11/112002
https://iopscience.iop.org/article/10.1088/0953-4075/49/11/112002
https://iopscience.iop.org/article/10.1088/1126-6708/2005/06/051
https://iopscience.iop.org/article/10.1088/1126-6708/2005/06/051
https://iopscience.iop.org/article/10.1088/1126-6708/2005/06/051


J
H
E
P
0
1
(
2
0
0
6
)
0
5
1

Published by Institute of Physics Publishing for SISSA

Received: December 5, 2005

Accepted: December 21, 2005

Published: January 12, 2006

Four-loop decoupling relations for the strong coupling

York Schröder
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1. Introduction

The strong coupling constant, αs, constitutes a fundamental parameter in the Standard

Model and thus its precise numerical value is very important for many physical predictions.

An interesting property of αs is its scale dependence, in particular its strong rise for low and

its small value for high energies which make perturbative calculations within the framework

of QCD possible. The scale dependence is governed by the β function. However, in order to

relate αs at two different scales it is also necessary to incorporate threshold effects of heavy

quarks which is achieved with the help of the so-called matching or decoupling relations.

Thus, when specifying αs it is necessary to indicate next to the scale also the number of

active flavours. In this paper we evaluate the decoupling relations to four-loop accuracy.

This makes it possible to perform a consistent running of the strong coupling evaluated at

a low scale, like, e.g., the mass of the τ lepton, to a high scale like the Z boson mass —

once the five-loop β function is available.

Many different techniques have been developed and applied to various classes of Feyn-

man diagrams. The complexity increases both with the number of legs and the number of

loops. As far as the application of multi-loop diagrams to physical processes is concerned

the current limit are four-loop single-scale Feynman diagrams, where either all internal

particles are massless and one external momentum flows through the diagram (see, e.g.,

ref. [1] for a recent publication), or all external momenta are zero and besides massless lines

there are also particles with a common mass M . The latter case has been developed in

refs. [2, 3] and first applications can be found in refs. [4, 5]. In this paper we consider a fur-

ther very important application: the four-loop contribution to the matching or decoupling

relation for the strong coupling.

The paper is organized as follows: In the next section we define the decoupling con-

stants and the theoretical framework of our calculation. In section 3 we present analytical
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results and discuss the numerical consequences. In section 4 the connection of the de-

coupling constant to the coupling of a Higgs boson to two gluons is explained and the

corresponding coupling strength is evaluated to five-loop order. Finally, we conclude in

section 5. In the appendix we present the result for the decoupling constant parameterized

in terms of the on-shell heavy quark mass.

2. Theoretical framework

We consider QCD with nf active quark flavours. Furthermore it is assumed that nl quarks

are massless and nh quarks are massive, i.e. we have nf = nl + nh. In practice one often

has nh = 1, however, it is convenient to keep a generic label for the massive quarks.

The decoupling relations relate quantities in the full and effective theory where the

latter is defined through the lagrangian L′ given by

L′
(

g0
s ,m

0
q , ξ

0;ψ0
q , G0,a

µ , c0,a; ζ0
i

)

= LQCD
(

g0′
s ,m0′

q , ξ0′;ψ0′
q , G0′,a

µ , c0′,a
)

. (2.1)

ψq, Ga
µ and ca are the fermion, gluon and ghost fields, respectively, mq are the quark

masses, ξ is the gauge parameter, and αs = g2
s/(4π) is the strong coupling constant. LQCD

is the usual QCD Lagrange density and the effective nl-flavour quantities are marked by

a prime. Eq. (2.1) states that the lagrangian in the effective theory has the same form as

the original one with rescaled fields, masses and coupling. It is convenient to define the

decoupling constants ζi in the bare theory through

g0′
s = ζ0

gg0
s , m0′

q = ζ0
mm0

q , ξ0′ − 1 = ζ0
3 (ξ0 − 1) ,

ψ0′
q =

√

ζ0
2ψ0

q , G0′,a
µ =

√

ζ0
3G0,a

µ , c0′,a =

√

ζ̃0
3c0,a . (2.2)

In a next step the renormalized quantities are obtained by the usual renormalization

procedure introduced by the multiplicative renormalization constants through [6]

g0
s = µεZggs , m0

q = Zmmq , ξ0 − 1 = Z3(ξ − 1) ,

ψ0
q =

√

Z2ψq , G0,a
µ =

√
Z3G

a
µ , c0,a =

√

Z̃3c
a . (2.3)

Combining eqs. (2.2) and (2.3) leads to renormalized decoupling constants, e.g.

ζg =
Zg

Z ′
g

ζ0
g , ζ3 =

Z3

Z ′
3

ζ0
3 , ζ̃3 =

Z̃3

Z̃ ′
3

ζ̃0
3 . (2.4)

Note that since we are interested in the four-loop results for ζi the corresponding renor-

malization constants have to be known with the same accuracy. In ref. [7] the results up

to four-loop order have nicely been summarized (see also refs. [8, 9]).

Due to the well-known Ward identities [6] there are several ways to compute the

renormalization constant for the strong coupling, Zg. A convenient relation, which has the

advantage that due to the appearance of renormalization constants involving ghosts less

diagrams contribute, is given by

Zg =
Z̃1

Z̃3

√
Z3

, (2.5)
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where Z̃1 is the renormalization constant of the ghost-gluon vertex gsGc̄c. The same is

true for the corresponding equation for the decoupling constant, such that one can use the

relation

ζ0
g =

ζ̃0
1

ζ̃0
3

√
ζ
0
3

, (2.6)

where ζ̃0
1 denotes the decoupling constant for the ghost-gluon vertex. Alternatively, one

can use the renormalized objects ζ3, ζ̃3 from eq. (2.4) as well as ζ̃1 = Z̃1

Z̃′

1

ζ̃0
1 and then obtain

ζg from the renormalized version of eq. (2.6).

In refs. [10, 11] formulae for the bare decoupling constants ζ0
i are derived which relate

the n-loop decoupling constants to n-loop vacuum integrals. In particular, one has

ζ0
3 = 1 + Π0h

G (0) ,

ζ̃0
3 = 1 + Π0h

c (0) ,

ζ̃0
1 = 1 + Γ0h

Gc̄c(0, 0) , (2.7)

where ΠG(p2) and Πc(p
2) are the gluon and ghost vacuum polarizations, respectively, and

the superscript h denotes the so-called hard part which survives after setting the external

momentum to zero. Specifically, ΠG(p2) and Πc(p
2) are related to the gluon and ghost

propagators through

i

∫

dx eip·x
〈

TG0,aµ(x)G0,bν(0)
〉

=δab

{

gµν

p2
[

1 + Π0
G(p2)

] + terms proportional to pµpν

}

,

i

∫

dx eip·x
〈

Tc0,a(x)c̄0,b(0)
〉

=− δab

p2 [1 + Π0
c(p

2)]
, (2.8)

respectively, while Γ0
Gc̄c(p, k) is defined through the one-particle-irreducible (1PI) part of

the amputated Gc̄c Green function as

i2
∫

dxdy ei(p·x+k·y)
〈

Tc0,a(x)c̄0,b(0)G0,cµ(y)
〉1PI

= pµg0
s

{

−ifabc
[

1 + Γ0
Gc̄c(p, k)

]

+ other colour structures
}

, (2.9)

where p and k are the outgoing four-momenta of c and G, respectively, and fabc are the

structure constants of the QCD gauge group. Sample four-loop diagrams for each line of

eq. (2.7) are shown in figure 1(a)–(c).

From eqs. (2.6), (2.4) and (2.7) it becomes clear that for the calculation of ζg four-

loop vacuum diagrams are needed. Currently the only practical method to express an

arbitrary four-loop vacuum integral in terms of a small set of master integrals is based

on the algorithm developed in ref. [12]. The application to four-loop bubbles has been

discussed in ref. [2]. First physical results deal with moments of the photon polarization

function [4] and the singlet contribution to the electroweak ρ parameter [5]. The essence

of the Laporta algorithm [12] is the generation of large tables containing relations between
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(a) (b) (c) (d) (e)

Figure 1: Sample diagrams for the gluon (a) and ghost (b) propagator and the ghost-gluon vertex

(c). In (d) the lowest-order diagram is shown mediating the Higgs-gluon coupling in the Standard

Model and (e) shows an example for a five-loop diagram contributing to the result in eq. (4.4).

arbitrary integrals and the so-called master integrals. For the calculation at hand the tables

have a size of about 8 GB and contain 6 million equations.

The master integrals needed for the evaluation of ζg have been computed in ref. [13],

where, however, some of the higher order coefficients in ε could only be determined numer-

ically.

3. Running and decoupling for αs

Whereas at three-loop level of the order of 1000 diagrams have to be considered, at four

loops there are almost 20000 diagrams which contribute to the gluon and ghost propagators

and the ghost-gluon vertex. They are generated with the program QGRAF [14]. With the

help of the packages q2e and exp [15, 16] the topologies and notation are adopted to the

program performing the reduction of the four-loop vacuum diagrams [2]. As an output we

obtain the bare four-loop results as a linear combination of several master integrals. All of

them have been computed in ref. [13].

Since at four-loop order the renormalization is quite non-trivial, let us in the following

briefly describe the procedure necessary to arrive at a finite result. It is convenient to

build in a first step the sum of the bare contributions to ζ0
3 , ζ̃0

3 and ζ̃0
1 and combine them

immediately to ζ0
g according to eq. (2.6). Already at this point the gauge parameter,

ξ, which for the individual pieces starts to appear at three-loop order, drops out and

hence spares us from renormalizing ξ. Let us mention that due to the complexity of the

intermediate expressions, the four-loop diagrams have been evaluated for Feynman gauge,

whereas the lower-order diagrams were computed for general ξ.

In a next step it is convenient to renormalize the parameters αs = g2
s/(4π) and mh

applying the usual multiplicative renormalization (cf. eq. (2.3)). The corresponding coun-

terterms have to be known up to the three-loop order. At this point one has to apply

eq. (2.4) which requires the ratio Zg/Z
′
g up to four-loop order. In order to evaluate this

ratio one has to remember that Z ′
g is defined in the effective theory and thus depends on

α′
s and nl whereas Zg depends on αs and (nl + nh). Thus it is necessary to use ζg up to

three-loop level in order to transform α′
s to αs where due to the presence of the divergences

in Z ′
g also higher-order terms in ε of ζg have to be taken into account.
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Finally one arrives at the following finite result for (ζg)
2 which for Nc = 3 and nh = 1

is given by

ζ2
g = 1 +

α
(nl+1)
s (µ)

π

(

−1

6
ln

µ2

m2
h

)

+

(

α
(nl+1)
s (µ)

π

)2
(

11

72
− 11

24
ln

µ2

m2
h

+
1

36
ln2 µ2

m2
h

)

+

(

α
(nl+1)
s (µ)

π

)3
[

564731

124416
− 82043

27648
ζ(3) − 955

576
ln

µ2

m2
h

+
53

576
ln2 µ2

m2
h

− 1

216
ln3 µ2

m2
h

+ nl

(

− 2633

31104
+

67

576
ln

µ2

m2
h

− 1

36
ln2 µ2

m2
h

)]

+

(

α
(nl+1)
s (µ)

π

)4
[

291716893

6123600

+
3031309

1306368
ln4 2 − 121

4320
ln5 2 − 3031309

217728
ζ(2) ln2 2 +

121

432
ζ(2) ln3 2 − 2362581983

87091200
ζ(3)

−76940219

2177280
ζ(4) +

2057

576
ζ(4) ln 2 +

1389

256
ζ(5) +

3031309

54432
a4 +

121

36
a5 −

151369

2177280
X0

+

(

7391699

746496
− 2529743

165888
ζ(3)

)

ln
µ2

m2
h

+
2177

3456
ln2 µ2

m2
h

− 1883

10368
ln3 µ2

m2
h

+
1

1296
ln4 µ2

m2
h

+nl

(

−4770941

2239488
+

685

124416
ln4 2 − 685

20736
ζ(2) ln2 2 +

3645913

995328
ζ(3)

− 541549

165888
ζ(4) +

115

576
ζ(5) +

685

5184
a4 +

(

−110341

373248
+

110779

82944
ζ(3)

)

ln
µ2

m2
h

− 1483

10368
ln2 µ2

m2
h

− 127

5184
ln3 µ2

m2
h

)

+ n2
l

(

− 271883

4478976
+

167

5184
ζ(3) +

6865

186624
ln

µ2

m2
h

− 77

20736
ln2 µ2

m2
h

+
1

324
ln3 µ2

m2
h

)]

+ O





(

α
(nl+1)
s (µ)

π

)5


 , (3.1)

where the heavy quark mass mh is renormalized in the MS scheme at the scale µ. The

corresponding expression for the on-shell mass is given in appendix A. In eq. (3.1), ζ(n) is

Riemann’s zeta function and an = Lin(1/2) =
∑∞

k=1 1/(2kkn). The constant X0, which is

the leading coefficient of a certain finite four-loop master integral, is only known numerically

with the value [13]

X0 = +1.808879546208334741426364595086952090 . (3.2)

Interestingly, in principle the number of numerical coefficients occurring in eq. (3.1) should

be three. One relation among them can be established through the separate renormalization

of the ghost propagator while a further constant has become available recently in analytical

form [17]. Thus one remains with one coefficient which is only known numerically.

Inserting numerical values into eq. (3.1) one obtains

ζ2
g ≈ 1 + 0.1528

(

α
(nl+1)
s (mh)

π

)2

+ (0.9721 − 0.0847nl)

(

α
(nl+1)
s (mh)

π

)3

+
(

5.1703 − 1.0099nl − 0.0220n2
l

)

(

α
(nl+1)
s (mh)

π

)4

. (3.3)
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It is interesting to note that the nl-independent four-loop coefficient is relatively big as

compared to the corresponding constants at lower loop-order. However, for the interesting

values nl = (3, 4, 5) one observes a big cancellation leading to a well-defined perturbative

series with coefficients (−0.4288,+0.7790,+1.9428) in front of (αs/π)4. Note, that the

two-loop result for ζg has been computed in refs. [18, 19] and the three-loop terms have

been evaluated for the first time in ref. [20].

We are now in a position to study the numerical impact of our result. As an example

we consider the evaluation of α
(5)
s (MZ) from α

(4)
s (Mτ ), i.e. we apply our formalism to the

crossing of the bottom quark threshold with nl = 4. In general one assumes that the value

of the scale µb, where the matching has to be performed, is of order mb. However, it is

not determined by theory. Thus this uncertainty contributes significantly to the error of

physical predictions. On general grounds one expects that while including higher order

perturbative corrections the relation between α
(4)
s (Mτ ) and α

(5)
s (MZ) becomes insensitive

to the choice of the matching scale. This has been demonstrated in refs. [21, 10] for the

three- and four-loop evolution, respectively. In the following we want to extend the analysis

to five loops.

The procedure is as follows. In a first step we calculate α
(4)
s (µb) by exactly integrating

the equation

µ2d

dµ2

α
(nf )
s

π
= β(nf )

(

α
(nf )
s

)

= −
∑

i≥0

β
(nf )
i

(

α
(nf )
s

π

)i+2

, (3.4)

with the initial condition α
(4)
s (Mτ ) = 0.36. Afterwards α

(5)
s (µb) is obtained from the

renormalized version of the first equation in (2.2) where we use ζg parameterized in terms

of the on-shell mass (cf. eq. (A.1)) Mb = 4.7 GeV. Finally, we compute α
(5)
s (MZ) using

again eq. (3.4). For consistency, i-loop evolution must be accompanied by (i − 1)-loop

matching, i.e. if we omit terms of O(αi+2
s ) on the right-hand side of eq. (3.4), we need to

discard those of O(αi+1
s ) in eq. (A.1) at the same time. Since the five-loop coefficient in

eq. (3.4) is not yet known we set β
(nf )
4 to zero in our numerical analysis.

In figure 2 the result for α
(5)
s (MZ) as a functions µb is displayed for the one- to five-

loop analysis. For illustration, µb is varied rather extremely, by almost two orders of

magnitude. While the leading-order result exhibits a strong logarithmic behaviour, the

analysis is gradually getting more stable as we go to higher orders. The five-loop curve

is almost flat for µb ≥ 1 GeV and demonstrates an even more stable behaviour than the

four-loop analysis of ref. [10]. It should be noted that around µb ≈ 1 GeV both the three-,

four- and five-loop curves show a strong variation which can be interpreted as a sign for the

breakdown of perturbation theory. Besides the µb dependence of α
(5)
s (MZ), also its absolute

normalization is significantly affected by the higher orders. At the central matching scale

µb = Mb, we encounter a rapid convergence behaviour.

4. Effective coupling between a Higgs boson and gluons

In this section we want to discuss the relation between ζg and the coupling of a scalar

Higgs boson to gluons. Due to the fact that gluons are massless, there is no coupling at

– 6 –
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µb(GeV)

α s(
M

Z
)

0.12

0.121

0.122

0.123

0.124

0.125

0.126

0.127

0.128

0.129

0.13

1 10

Figure 2: µb dependence of α
(5)
s (MZ) calculated from α

(4)
s (Mτ ) = 0.36 and Mb = 4.7GeV. The

procedure is described in the text. The dotted, short-dashed, long-dashed and dash-dotted line

corresponds to one- to four-loop running. The solid curve includes the effect of the new four-loop

matching term.

tree-level. At one-loop order the HGG coupling is mediated via a top-quark loop depicted

in figure 1(d).

For an intermediate-mass Higgs boson which formally obeys the relation MH ¿ mt it

is possible to construct an effective lagrangian of the form

Leff = −H0

v0
C1O1 , (4.1)

with the effective operator

O1 =
(

Ga
µν

)2
, (4.2)

where Ga
µν is the colour field strength. The coefficient function C1 incorporates the contri-

bution from the top-quark loops. At one-loop order it is easy to see that the contribution

from the triangle diagrams can be obtained through the derivative of the one-loop diagram

for Π0
G with respect to the top-quark mass. However, at higher-loop orders this simple pic-

ture does not hold anymore and the relation between the HGG diagrams and derivatives

of the two-point functions containing a top-quark loop gets more involved. In ref. [10] an

all-order low-energy theorem has been derived which establishes such a relation and which

has a surprisingly simple form (for definiteness we specify to the top-quark in this section):

C1 = −1

2

m2
t ∂

∂m2
t

ln ζ2
g . (4.3)

– 7 –
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An appealing feature of eq. (4.3) is that at a given order in αs only the logarithmic con-

tributions of ζg are needed for the calculation of C1 at the same order. Thus, from our

calculation we can reconstruct the five-loop logarithms of ζg from lower-order terms and

the β and γm functions governing the running of αs and the top-quark mass, respectively.

This leads to the following result, at Nc = 3 and nh = 1,

C1 = − 1

12

α
(nl+1)
s (µ)

π

{

1 +
α

(nl+1)
s (µ)

π

(

11

4
− 1

6
ln

µ2

m2
t

)

+

(

α
(nl+1)
s (µ)

π

)2 [

2821

288
− 3

16
ln

µ2

m2
t

+
1

36
ln2 µ2

m2
t

+ nl

(

−67

96
+

1

3
ln

µ2

m2
t

)

]

+

(

α
(nl+1)
s (µ)

π

)3 [

− 4004351

62208
+

1305893

13824
ζ(3) − 859

288
ln

µ2

m2
t

+
431

144
ln2 µ2

m2
t

− 1

216
ln3 µ2

m2
t

+ nl

(

115607

62208
− 110779

13824
ζ(3) +

641

432
ln

µ2

m2
t

+
151

288
ln2 µ2

m2
t

)

+ n2
l

(

− 6865

31104
+

77

1728
ln

µ2

m2
t

− 1

18
ln2 µ2

m2
t

)

]

+

(

α
(nl+1)
s (µ)

π

)4 [

− 69820734619

27993600
− 39407017

373248
ln4 2 +

11011

8640
ln5 2 +

39407017

62208
ζ(2) ln2 2

− 11011

864
ζ(2) ln3 2 +

27642438179

24883200
ζ(3) +

996205247

622080
ζ(4) − 187187

1152
ζ(4) ln 2 − 894391

4608
ζ(5)

− 39407017

15552
a4 −

11011

72
a5 +

1967797

622080
X0

−
(

1276661933

1492992
− 226222121

331776
ζ(3)

)

ln
µ2

m2
t

+
33517

1728
ln2 µ2

m2
t

+
140357

20736
ln3 µ2

m2
t

+
1

1296
ln4 µ2

m2
t

+ nl

(

58259821853

195955200
+

3896297

580608
ln4 2 − 121

1440
ln5 2 − 3896297

96768
ζ(2) ln2 2 +

121

144
ζ(2) ln3 2

−74306021071

348364800
ζ(3) +

141211087

3870720
ζ(4) +

2057

192
ζ(4) ln 2 − 20227

2304
ζ(5) +

3896297

24192
a4 +

121

12
a5

−151369

725760
X0 +

(

23250409

186624
− 8736121

82944
ζ(3)

)

ln
µ2

m2
t

+
569

2304
ln2 µ2

m2
t

+
2551

2592
ln3 µ2

m2
t

)

+ n2
l

(

−33014371

8957952
+

685

41472
ln4 2 − 685

6912
ζ(2) ln2 2 +

970259

110592
ζ(3) − 518509

55296
ζ(4)

+
115

192
ζ(5) +

685

1728
a4 −

(

1107181

186624
− 28297

9216
ζ(3)

)

ln
µ2

m2
t

− 1729

13824
ln2 µ2

m2
t

− 1205

5184
ln3 µ2

m2
t

)

+ n3
l

(

− 255947

1492992
+

5

64
ζ(3) +

481

5184
ln

µ2

m2
t

− 77

6912
ln2 µ2

m2
t

+
1

108
ln3 µ2

m2
t

)

+ 6
(

β
(nl)
4 − β

(nl+1)
4

)

]

+ O





(

α
(nl+1)
s (µ)

π

)5




}

, (4.4)

with mt being the MS top-quark mass renormalized at the scale µ. Note the appearance of

the flavour-dependent part of β4 in the five-loop contribution, whereas the corresponding

coefficient from the anomalous mass dimension does not appear. We want to stress that the

term of order α5
s covers the contributions from five-loop diagrams like the one in figure 1(e).
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Evaluating eq. (4.4) numerically leads to

C1 ≈ − 1

12

α
(nl+1)
s (mt)

π

[

1 + 2.7500
α

(nl+1)
s (mt)

π
+ (9.7951 − 0.6979nl)

(

α
(nl+1)
s (mt)

π

)2

+
(

49.1827 − 7.7743nl − 0.2207n2
l

)

(

α
(nl+1)
s (mt)

π

)3

+
(

−662.5065 + 137.6005nl − 2.5367n2
l − 0.0775n3

l + 6
(

β
(nl)
4 − β

(nl+1)
4

))

×
(

α
(nl+1)
s (mt)

π

)4 ]

. (4.5)

Again one observes large cancellations between the n0
l and n1

l term in the five-loop contri-

bution to C1.

Note that the result of eq. (4.4) constitutes a building block for the N4LO calculation

to the Higgs boson production and decay in the two-gluon channel, for which the complete

answer currently is certainly out of range. Still, the five-loop result for C1 constitutes a

high-order result in perturbative QCD which is of theoretical interest by itself.

5. Conclusions

In this paper the decoupling constant of the strong coupling is presented to four-loop order.

This constitutes a fundamental quantity of QCD and is one of the very few known to such a

high order. The decoupling constant is necessary for performing a consistent running of αs

with five-loop accuracy including important effects from the crossing of quark thresholds.

The calculation has been performed analytically, and the main result can be found in

eq. (3.1). With the help of a low-energy theorem it is possible to derive the five-loop result

for the effective coupling of the Higgs boson to gluons, which constitutes a building block

in the corresponding production and decay processes.

We want to mention that the result for ζ2
g in eq. (3.1) has been obtained independently

in ref. [22]. Except for QGRAF, which is used for the generation of the diagrams, there is

no common code. Even the master integrals have meanwhile been computed indepen-

dently [23] and for the renormalization a different procedure has been chosen.
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A. Results for ζOS
g

Replacing in eq. (3.1) the MS mass mh by the pole mass Mh using the three-loop approx-

imation [24 – 26] one gets
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(

ζOS
g

)2
= 1 +

α
(nl+1)
s (µ)

π

(

−1

6
ln

µ2

M2
h

)

+

(

α
(nl+1)
s (µ)

π

)2
(

− 7

24
− 19

24
ln

µ2

M2
h

+
1

36
ln2 µ2

M2
h

)

+

(

α
(nl+1)
s (µ)

π

)3
[

− 58933

124416
− 2

3
ζ(2) − 2

9
ζ(2) ln 2 − 80507

27648
ζ(3) − 8521

1728
ln

µ2

M2
h

−131

576
ln2 µ2

M2
h

− 1

216
ln3 µ2

M2
h

+ nl

(

2479

31104
+

1

9
ζ(2) +

409

1728
ln

µ2

M2
h

)]

+

(

α
(nl+1)
s (µ)

π

)4 [

− 141841753

24494400
+

3179149

1306368
ln4 2 − 121

4320
ln5 2 − 697121

19440
ζ(2)

+
1027

162
ζ(2) ln 2 − 2913037

217728
ζ(2) ln2 2 +

121

432
ζ(2) ln3 2 − 2408412383

87091200
ζ(3)

+
1439

216
ζ(3)ζ(2) − 71102219

2177280
ζ(4) +

2057

576
ζ(4) ln 2 +

49309

20736
ζ(5)

+
3179149

54432
a4 +

121

36
a5 −

151369

2177280
X0

−
(

19696909

746496
+

29

9
ζ(2) +

29

27
ζ(2) ln 2 +

2439119

165888
ζ(3)

)

ln
µ2

M2
h

− 7693

1152
ln2 µ2

M2
h

− 8371

10368
ln3 µ2

M2
h

+
1

1296
ln4 µ2

M2
h

+ nl

(

1773073

746496
+

173

124416
ln4 2 +

557

162
ζ(2)

+
22

81
ζ(2) ln 2 − 1709

20736
ζ(2) ln2 2 +

4756441

995328
ζ(3) − 697709

165888
ζ(4) +

115

576
ζ(5) +

173

5184
a4

+

(

1110443

373248
+

41

54
ζ(2) +

2

27
ζ(2) ln 2 +

132283

82944
ζ(3)

)

ln
µ2

M2
h

+
6661

10368
ln2 µ2

M2
h

+
107

1728
ln3 µ2

M2
h

)

+ n2
l

(

− 140825

1492992
− 13

162
ζ(2) − 19

1728
ζ(3)

−
(

1679

186624
+

1

27
ζ(2)

)

ln
µ2

M2
h

− 493

20736
ln2 µ2

M2
h

)

]

≈ 1 − 0.2917

(

α
(nl+1)
s (Mh)

π

)2

+ (−5.3239 + 0.2625 nl)

(

α
(nl+1)
s (Mh)

π

)3

+
(

−85.8750 + 9.6923 nl − 0.2395 n2
l

)

(

α
(nl+1)
s (Mh)

π

)4

. (A.1)
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[5] Y. Schröder and M. Steinhauser, Four-loop singlet contribution to the ρ parameter, Phys.

Lett. B 622 (2005) 124 [hep-ph/0504055].

[6] T. Muta, Foundations of quantum chromodynamics, World Scientific, Singapore, 1987.

[7] K.G. Chetyrkin, Four-loop renormalization of QCD: full set of renormalization constants and

anomalous dimensions, Nucl. Phys. B 710 (2005) 499 [hep-ph/0405193].

[8] T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, The four-loop beta function in

quantum chromodynamics, Phys. Lett. B 400 (1997) 379 [hep-ph/9701390].

[9] M. Czakon, The four-loop QCD β-function and anomalous dimensions, Nucl. Phys. B 710

(2005) 485 [hep-ph/0411261].

[10] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α3
s) and their

connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255].

[11] M. Steinhauser, Results and techniques of multi-loop calculations, Phys. Rept. 364 (2002) 247

[hep-ph/0201075].

[12] S. Laporta, High-precision calculation of multi-loop Feynman integrals by difference

equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].
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