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1. Introduction and results

In [4, 1 – 3], the spatial and euclidean spacetime lattices whose continuum limits are ex-

tended supersymmetric gauge theories in various dimensions are constructed. These lattices

are obtained by the orbifold projection of supersymmetric matrix models. The projection

generates a lattice, while preserving a subset of supersymmetry. But, a priori, a dimension-

ful parameter which can be identified as a lattice spacing is absent. However, these theories

possess a moduli space of vacua, along which the potential vanishes, and the distance from

the origin of the moduli space is interpreted as an inverse lattice spacing. Moving to infinity

in the moduli space corresponds to taking the lattice spacing to zero. The construction of

the supersymmetric lattices is inspired by orbifold projection [5] and the deconstruction of

the supersymmetric theories [6 – 8].

In [4, 1 – 3], the fluctuations of the complex bosonic link fields around a particular

configuration in moduli space are split into an hermitian and antihermitian matrix, as in

the cartesian decomposition of a complex number. In the continuum limit, these matrices

give rise to scalars and the gauge bosons of the target theory respectively. This construction

provides a formulation in which the gauge boson is noncompact. However, this expansion

is not the most natural one for two reasons. In terms of the shifted variables, certain global

symmetries and the local gauge symmetry become hidden. Let us explain both in turn.

The orbifold matrix theory, i.e, the lattice action before the shift, possesses at least a U(1)d

symmetry1 which corresponds to rotations of the complex link fields as za,n → eiαbδabza,n.

In terms of shifted variables, this symmetry is not manifest in the action. The latter

issue is gauge covariance. The complex link boson za,n is in bifundamental representation

and transforms covariantly under gauge transformation. Consequently, the orbifold matrix

theory action is manifestly gauge invariant. However, in terms of shifted fields, the gauge

1There are other continuous symmetries of the orbifold matrix theory, for example, the R-symmetry.
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Q = 4 Q = 8 Q = 16

d = 1 2 4 8

d = 2 1 2 4

d = 3 × 1 2

d = 4 × × 1

Table 1: The euclidean lattices for extended SYM theories. Q is the amount of supersymmetry

in both the mother theory and the target theory. The numbers in the boxes corresponds to the

number of exactly realized supersymmetries on the euclidean lattice. The boxes with × are the

theories that could not be reached due to insufficiency of R-symmetry within our approach.

invariance is a nonlinearly realized symmetry. It is, therefore, desirable, to make both the

global symmetry and gauge symmetry manifest.

In this note, we use a parametrization of the complex link fields which preserves the ex-

act gauge invariance of the orbifold matrix theory and keeps global symmetries manifest. It

relies on the polar decomposition of a complex matrix into radial and angular variables. We

expand our action around the same point in the moduli space. This expansion generates a

lattice action which is manifestly gauge invariant, and the gauge fields are compact, unitary

matrices, hence there is no need for gauge-fixing. However, having a compact gauge integra-

tion is not one of the advantages, since the moduli spaces of our target theories are noncom-

pact. On the other hand, the polar decomposition preserves the exact global symmetries

of the orbifold matrix theory and the observables of the theory are charged under these

symmetries. Such observables are the order parameters for the corresponding symmetries.2

To facilitate the identification of the gauge part of our supersymmetric lattice action

with the standard Wilson action [9], we choose to work with hypercubic lattices on the

moduli space. As explained in detail in [4, 3], different points in moduli space correspond

to different structures of the unit cell on the lattice. For example, in the two dimensional

lattice for the Q = 16 supercharge target theory, different points in moduli space corre-

spond to a hexagonal lattice, square lattice with a diagonal or asymmetric lattices such

as a rectangular lattice with diagonal. Each of these lattices has a different point group

symmetry. There are trajectories in moduli space which respect a particular type of point

group symmetry. To take the continuum limit, one moves along a particular trajectory

out to infinity with an appropriate scaling of the number of sites on the lattice. We chose

previously [4] the most symmetric lattices to minimize the number of relevant and marginal

operators. Our purpose here is to show a correspondence with the Wilson action, and the

hypercubic trajectories are better suited for that.

The approach that has been presented here is applicable to all of the euclidean space-

time lattices listed in table 1, in particular, including all the Q = 16 target theories in

d ≤ 4 dimensions.3 In table 1, each box is associated with a pair (d,Q), a d dimensional

2We want to point out that our construction is not a new lattice formulation of the supersymmetric

lattice gauge theories; it is merely a reparametrization of the complex link field.
3These theories are sometimes named with respect to the multiplicity of their minimal spinor dimensions

in the corresponding dimension. More conventional names for the Q = 4, Q = 8, Q = 16 theories are: in d =

– 2 –
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target SYM theory with Q supersymmetries. The number within the box (associated with

(d,Q) theory) corresponds to the number of exactly realized supersymmetries by the d

dimensional lattice action. Among these, there is also the N = 4 SYM theory in d = 4

dimensions [3]. The theories with × sign are the ones that we are unable to reach, within

our approach, due to insufficiency of the R-symmetry of the mother theory. The details of

each supersymmetric lattice gauge theory can be quite different. For example, the number

of exactly realized supersymmetries, the supersymmetry algebra, the multiplet structures,

the point group symmetries of the spacetime lattices can be different in each case. The

application in section 2 is aimed to show the realization of the ideas in one simple example,

the Q = 4 target theory in d = 2 dimensions. Generalization to other supersymmetric

lattice theories listed in table 1 is also possible.

Before showing the realizations of these ideas explicitly in a simple example, we first

want to point out the other recent approach to the supersymmetic lattice, which is some-

times known under the rubric twisted supersymmetry. (For references to earlier work,

see [4, 10, 11]). Catterall and collaborators implemented the supersymmetry on the lattice

by keeping one or more nilpotent supersymmetries exactly realized on the lattice [12, 13].

This led to the construction of the two dimensional Wess-Zumino and supersymmetric

sigma models in various dimensions. [14, 15] In [16], the general criteria under which a

nilpotent symmetry can be carried consistently with a latticization had been analyzed(also

see [17, 18], which advocates more, and [19] for the recent results on N = 1 Wess-Zumino

in d = 4). Recently, Sugino [20 – 22] generalized this approach to the gauge theories with

compact gauge fields in the formulation. He showed that a continuum supersymmetric

gauge theory written in a Q-exact form, can be carried to the lattice and gave the lattice

counterpart of Q-transformations. However, this procedure is not unique. And as a result,

he encounters a vacuum degeneracy problem on the gauge field sector, as well as spurious

zero modes in the theory. Sugino argues that both problems can be solved. (see [21, 22] for

details.) More recently, Catterall [23] constructed the two dimensional four supercharge

SYM theory by using a geometric approach that is free of the problems encountered in [20].

(Also see [24]). However, the lattice theory he constructs requires a complexification (hence

doubling) of all the degrees of freedom. This turns, for example, the unitary compact vari-

ables, into noncompact variables. Then, he conjectures that, one can restrict the path

integral to a real line in the field space by preserving the Ward identities associated with

twisted supersymmetry, and also recovers the desired target theory. The approach that we

will follow does not encounter this problem.

2. Application: Compact lattice action for N = (2, 2) SYM theory

To illustrate these ideas explicitly, we work through a simple example in detail. The target

theory is the N = (2, 2) SYM theory in d = 2 dimensions. The lattice construction is

examined in detail in [1], and we refer the reader there for more details. The arguments in

this section can be easily applied to any of the other target theories listed in table 1.

4 dimensions N = 1, 2, 4, in d = 3 dimensions N = 2, 4, 8, and in d = 2 dimensions N = (2, 2), (4, 4), (8, 8)

respectively.

– 3 –
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The lattice action for the N = (2, 2) SYM target theory with gauge group U(k), in

Q = 1 superfield formulation is given by [1]

S =
1

g2

∑

n

tr

∫

dθ

[

−1

2
Λn∂θΛn − Λn (za,n−êa

Za,n−êa
− Za,nza,n) −

− Ξ12,n(Z1,nZ2,n+ê1
− Z2,nZ1,n+ê2

)

]

, (2.1)

where n is a two component integer vector labeling sites on the lattice and êa is the unit

vector in a’th direction where a = 1, 2.4 The Q = 1 supersymmetric multiplets in terms of

their component fields can be expressed as

Λn = λn − iθdn ,

Za,n = za,n +
√

2 θ ψa,n ,

za,n = za,n ,

Ξ12,n = ξ12,n − 2θ (z2,n+ê1
z1,n − z1,n+ê2

z2,n) . (2.3)

The fermi multiplet Λn lives on the site n. The bosonic multiplet Za,n lives on the ori-

ented link, starting at n and ending at n + êa. The supersymmetry singlet za,n lives on

the oppositely oriented link, starting at n + êa and ending at n, and the diagonal fermi

multiplet Ξn resides on the diagonal link, starting at n + ê1 + ê2 and ending at n. The

lowest component fermi multiplet Ξ12,n is antisymmetric under the exchange of its sub-

scripts; ξ12 = −ξ21, as its supersymmetric partner. By substituting the multiplets into the

action eq. (2.1), we obtain the action in component fields. For convenience, we split the

action into the bosonic and fermionic parts. The bosonic part is

Sb =
1

g2

∑

n

tr

[

1

2
d2
n + idn (za,n−êa

za,n−êa
− za,nza,n) + 2|(z1,nz2,n+ê1

− z2,nz1,n+ê2
)|2

]

,

(2.4)

and the fermionic part is

Sf =

√
2

g2

∑

n

tr
[

λn (za,n−êa
ψa,n−êa

− ψa,nza,n) + ξab,n(za,nψb,n+êa
− ψb,nza,n+êb

)
]

. (2.5)

The construction, symmetries and the continuum limit of this lattice action had been

examined in detail in [1]. The symmetries are the U(k) gauge symmetry, the discrete

translations ZN ×ZN of the lattice, a Z2 point group symmetry, the Q = 1 supersymmetry

4The lattice action eq. (2.1) can also be expressed in a Q-exact form (also noted in [25]), which is given

by

S =
1

g2

X

n

trQ

»

+
1

2
λn(idn) − λn (za,n−êa

za,n−êa
− za,nza,n) − ξ12,n(z1,nz2,n+ê1

− z2,nz1,n+ê2
)

–

, (2.2)

The action of Q on the components can be read of from the supermultiplets eq. (2.3). For example,

Qza,n =
√

2ψa,n, Qψa,n = 0 etc. The supersymmetry algebra is Q2· = 0. This is, in the sense of

supersymmetry algebra, the difference with the Catterall’s construction [23], in which the square of the

twisted supersymmetry generator is an infinitesimal field dependent gauge rotation, Q2· = δgauge·.

– 4 –
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Z1,n z1,n Z2,n z2,n Λn Ξn θ

r1 +1 −1 0 0 0 −1 0

r2 0 0 +1 −1 0 −1 0

Y 0 0 0 0 +1
2 +1

2 +1
2

Table 2: The U(1)3 global symmetry charges of the lattice theory. The r1,2 are the ones that are

used in orbifold projection. The last one, denoted by Y , is the exact R-symmetry on the lattice.

and a U(1)3 global symmetry given in table 2. The last U(1) denoted as Y in table 2 is

an R-symmetry on the lattice, i.e., it does not commute with supersymmetry since the the

superspace coordinate θ is charged under it. The global symmetries will be an essential

part of the discussion of observables.

In [1], we expanded the lattice action eq. (2.1) around a point in moduli space, where

the vacuum expectation value of the link field is interpreted as the inverse lattice spacing.

Thus, the complex link fields had been written as

za,n =
1√
2a

1k +
ha,n + iva,n√

2
(2.6)

where ha,n and va,n are the hermitean matrices, which become the scalar and vector bo-

son of the continuum theory. However, in terms of shifted fields, the U(1)2 subgroup of

the U(1)3, associated with (r1, r2) charges in table 2, is hidden. Even though these sym-

metries are there, they become obscured, and we can not benefit from them easily. (To

better appreciate these symmetries, one should address the observables, see section 3) It

is preferable to make these symmetries manifest. The other point is gauge covariance.

The lattice action eq. (2.1) is gauge invariant and its constituents transforms covariantly

under gauge rotations.. However, the shifted fields hide manifest gauge covariance and it

is hard to construct manifestly gauge invariant objects. In this sense, both a U(1)2 subset

of the global symmetries and gauge symmetry are nonlinearly realized when the lattice

action is expressed in terms of shifted fields. It is, therefore, preferable to make the global

symmetries and gauge invariance manifest.

Here, we show that there is a more natural decomposition of the complex bosonic

link fields, which makes all the global symmetries manifest and generates manifestly gauge

invariant hopping terms. It is the polar decomposition of the complex link matrices. This

also provides a formulation of the supersymmetric lattice gauge theory in which the gauge

fields are compact, group valued matrices. However, it is not a new formulation, it is

reexpressing the eq. (2.1) in a new parametrization.

Given a complex nonsingular matrix za,n, we can always write za,n = Ha,nUa,n where

Ha,n is a hermitian nonnegative matrix and Ua,n is a unitary matrix. This decomposition

is unique (modulo left-right decomposition, we chose left.) up to a set of measure zero. It

is not unique for matrices with zero eigenvalues. However, this is not a problem for us,

because we do an expansion about a point which is far from the origin of the moduli space.

The vacuum that we are expanding around is 〈Ha,n〉 = 1√
2a

1k and Ua,n = 1k . Thus, we

– 5 –
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express the complex link matrices as

za,n =
1√
2
Ha,nUa,n =

1√
2

(

1k

a
+ ha,n

)

Ua,n (2.7)

where Ha,n is a hermitean matrix with nonnegative eigenvalues, Ua,n is a unitary matrix and

ha,n is a hermitean matrix. The
√

2 in the denominator is for normalization. Notice that for

the small gauge field configurations, one can expand the unitary matrix Ua,n = 1+ iava,n +

O(a2) and the expression for the polar decomposition reduce to cartesian decomposition

eq. (2.6). Thus, for small gauge field configurations, the corresponding lattice action reduces

to the action we examined in [1]. For this reason, we will not reexamine the classical and the

quantum continuum limit and the matching of the target theory fields to the lattice fields.

Now, let us analyze briefly the gauge transformation properties. Notice that the first

term in eq. (2.7) dictates the gauge transformation property of the unitary link matrix

Ua,n. Let gn denote a unitary gauge rotation matrix. Since under a gauge transformation,

the complex link matrix transforms as bifundamental za,n → gnza,ng
†
n+êa

, the unitary link

field transforms the same way as well, Ua,n → gnUa,ng
†
n+êa

and the hermitian matrix as

an adjoint of site n, ha,n → gnha,ng
†
n. Basically, the polar decomposition places the scalar

ha,n on the site n and Ua,n on the oriented link (n,n + êa), where the first entry is the

starting point and the latter is the termination point.

The global U(1)2 symmetry, which becomes hidden in the case of cartesian decomposi-

tion, is manifest now. For example, under the first two U(1)2, the variable z1,n has a global

charge (1, 0). This imposes the charge of the unitary link field U1,n as (1, 0), the charge of

the hermitian scalar h1,n as (0, 0). The charge of the fermionic superpartner of z1,n, the

ψ1,n, is unchanged and equal to (1, 0).

Next, we will show that expanding the action by using polar decomposition, eq. (2.7)

will reproduce the Wilson action for the gauge fields and gauge invariant hopping terms

for fermions and scalars. Before we do that, let us rewrite the superfields eq. (2.3) by using

the new parametrization. The superfield Λn is same as above and the others are

Za,n =
1√
2

(

1

a
Ua,n + ha,nUa,n

)

+
√

2 θ ψa,n ,

za,n =
1√
2

(

1

a
U †

a,n + U †
a,nha,n

)

,

Ξ12,n = ξ12,n − θ

[

1

a2
(U †

2,n+ê1
U

†
1,n − U

†
1,n+ê2

U
†
2,n) +

1

a
(U †

2,n+ê1
U

†
1,nh1,n −

− U
†
1,n+ê2

h1,n+ê2
U

†
2,n) +

+
1

a
(U †

2,n+ê1
h2,n+ê1

U
†
1,n − U

†
1,n+ê2

U
†
2,nh2,n) +

+ (U †
2,n+ê1

h2,n+ê1
U

†
1,nh1,n − U

†
1,n+ê2

h1,n+ê2
U

†
2,nh2,n)

]

. (2.8)

The superfields are covariant under gauge transformations and the components transform

homogeneously under all global symmetries. Also notice that the θ component of the fermi

multiplet Ξn involves the square root of the standard Wilson action found in lattice QCD

and its decoration with scalars insertions. The θ component is depicted in figure 1.

– 6 –
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Figure 1: The −θ component of the fermi multiplet, Ξ12,n. The vertical and horizontal arrows are

unitary link fields, the red (yellow) circle is the h1 (h2) scalar. The arrow starts at site n + ê1 + ê2

and terminates at site n. The modulus square of the sum generates both Wilson action and part

of the scalar action.

2.1 The boson lattice action

Gauge fields. Our first goal is to show that our action involves the Wilson action for

lattice gauge theory. The Wilson action is hidden in the third term of the bosonic action

eq. (2.4). The dn term does not contribute to the gauge field action. One easy geometric

way to see that is, the dn term is coupled to composite fields which do not surround an

area, and the Wilson action is a sum over trace of the elementary square plaquettes, (which

can be associated with the exponential of the Aharonov-Bohm flux in U(1) target theories.)

For our purpose, it is more useful to rewrite the third term in the bosonic action

eq. (2.4) in a more suggestive form which makes the geometric visualization easier:

Sb2 =
2

g2

∑

n

tr
[

|(z1,nz2,n+ê1
− z2,nz1,n+ê2

)|2
]

=
2

g2

∑

n

tr
[

z1,nz2,n+ê1
z1,n+ê2

z2,n − z1,nz2,n+ê1
z2,n+ê1

z1,n + h.c.
]

(2.9)

where h.c. stands for hermitian conjugate. By plugging the expansion eq. (2.7) into above

expression, we obtain (among other things which will be explained momentarily)

Sgauge =
1

2g2a4

∑

n

tr
[

|(U1,nU2,n+ê1
− U2,nU1,n+ê2

)|2
]

=
1

2g2a4

∑

n

tr
[

U1,nU2,n+ê1
U

†
1,n+ê2

U
†
2,n − 1 + h.c.

]

, (2.10)

This is exactly the Wilson action for the pure lattice gauge theory. The constant term in

the action sets the action to zero for the vacuum state. The first term is a square plaquette

variable. We will refer to the constant term as “flipped L” ( ) since it is a product of

unitary link fields U1,nU2,n+ê1
U

†
2,n+ê1

U
†
1,n = 1. Even though it seems useless to introduce

such a name for identity, it will be a convenient tool when we incorporate scalars. The

scalars enter as decorations on plaquette and flipped L terms. Since the action eq. (2.10)

is expressed in terms of the angular variables, the gauge fixing becomes unnecessary.

– 7 –
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Scalar-gauge and scalar-scalar interactions. The scalar hopping terms and the the

scalar potential term originate from two sources. One is the third term in scalar action

eq. (2.4), which also gives rise the Wilson action, and the other is the dn term. We examine

both in turn, starting with the second part eq. (2.9).

The second part of the action eq. (2.9) is the trace of the modulus square of the θ

component of the fermi multiplet Ξ12,n (See figure 1). The first pair in figure 1 generates

the field strength for the gauge field. The second pair generates gauge covariant hopping

terms for scalar h1 in the ê2 direction. Similarly, the third pair generates the hopping terms

for the scalar h2 in the ê1 direction. The last term give rise to the scalar-scalar interactions.

In the continuum limit, these terms add up to iv12 + D2h1 −D1h2 + [h1, h2] + O(a) where

v12 is the gauge field strength and Da = ∂a + i[va, · ] is the gauge covariant derivative.

Notice that this is not the most economical way to express the gauge covariant deriva-

tives or scalar-scalar interactions on the lattice. For example, consider the h2 field. A more

economical covariant derivative in direction one would be h2,n+ê1
−U

†
1,nh2,nU1,n. However,

the exact supersymmetry dictates something different then that. Nevertheless, both turn

out to yield the same gauge covariant derivative in the continuum, where the difference

between the two is suppressed by lattice spacing. Also, the scalar-scalar interaction term

[h1, h2]
2 in the action does not follow from a local potential on the lattice. The way it

arises seems a bit extravagant. For example, it emerges from a plaquette and flipped L

decorated with four scalars at various sites. This is slightly nonlocal, unlike our usual way

of writing the scalar interactions. But similar to the covariant derivative, the difference

of the slightly nonlocal potential and local potential is suppressed with the lattice spacing

toward the continuum limit.

The full expression for the eq. (2.9), expressed in terms of unitary link fields and

hermitian scalars, is the trace of the modulus square of the sum of figures presented in

figure 1. The square involves both the plaquettes (denoted as ) and the flipped L’s

(denoted as ) with scalar decorations. Hence, it is more convenient to assemble eq. (2.9)

into a simple (symbolic) expression given as:

Sb2 =

4
∑

k=0

1

2a4−kg2

∑

( , )

tr
[

(U [ , k] − U [ , k]) + h.c.
]

. (2.11)

where k is the number of the scalar insertions onto the plaquette or the flipped L. The rule

for the scalar insertions was indeed fixed when we chose the left decomposition in polar

decomposition eq. (2.7). The scalar ha,n can only be inserted at the starting point of Ua,n

and at the end point of U
†
a,n.

The k = 0 term is the Wilson action as discussed. There are harmless k = 1 and k = 3

terms, the decorations with one and three scalars respectively. Examination of these terms

shows that due to exact cancellations among the various components in the sum, the lowest

dimensional operators arising from these terms are dimension five (in the normalization

used in [1]), suppressed by lattice spacing, and hence irrelevant. The k = 2 terms in the

sum provide gauge invariant hopping terms for scalars, namely h1 (h2) hopping in the

ê2 (ê1) direction. There are two types of Lorentz symmetry violating cross term, which

– 8 –
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cancels by the contribution coming from the dn term. The k = 4 sector generates the

quartic scalar interaction of the continuum theory.

The auxiliary dn field enters into the action quadratically and can be integrated out.

The equation of motion gives

dn = −i
∑

a

(za,n−êa
za,n−êa

− za,nza,n) (2.12)

= −i
∑

a

(

1

a
(U †

a,n−êa
ha,n−êa

Ua,n−êa
− ha,n) +

1

2
(U †

a,n−êa
h2

a,n−êa
Ua,n−êa

− h2
a,n)

)

which generates the gauge covariant hopping term for scalars. In the continuum, this

becomes D1h1 + D2h2 + O(a). Substituting the eq. (2.12) into the first part of the bosonic

action, we obtain

Sb1 =
1

2g2

∑

n

tr

[(

∑

a

1

a
(U †

a,n−êa
ha,n−êa

Ua,n−êa
− ha,n)

)2

+ · · ·
]

(2.13)

where the ellipsis indicates the terms which becomes irrelevant in the infrared . The

continuum limit of the action eq. (2.13), generates hopping terms for ha in êa directions

and a mixed Lorentz symmetry violating term. The latter cancels exactly with the cross

term arising from the eq. (2.11). Upon adding these two parts, Sb1 + Sb2, we obtain the

bosonic part of the target theory action, the N = (2, 2) SYM theory in d = 2 dimensions.

Namely,

Sb =
1

2g2
2

∫

d2xtr
[

(D1h1 + D2h2)
2 + |(D1h2 − D2h1) + i(v12 − i[h1, h2])|2

]

=
1

g2
2

∫

d2xtr
[1

4
v2
µν +

1

2
(Dµha)

2 − 1

4
[ha, hb]

2
]

(2.14)

where µ, ν = 1, 2 and a, b = 1, 2. The three cross terms add up to a Lorentz invariant

surface term proportional to

εµν

(

Dµh1Dνh2 −
i

2
vµν [h1, h2]

)

,

which can be shown to be the dimensional reduction of the topological term, tr ~E. ~B from

d = 4 to d = 2 dimensions.

2.2 The fermion lattice action

The fermion gauge field interactions and the hopping terms are particularly simple. Sub-

stituting eq. (2.7) into fermion action eq. (2.5), we find the fermion-gauge field and the

fermion-scalar interaction terms. The former is

Sf−g =
1

ag2

∑

n

tr
[

λn(U †
a,n−êa

ψa,n−êa
− ψa,nU †

a,n) + ξab,n(Ua,nψb,n+êa
− ψb,nUa,n+êb

)
]

,

(2.15)
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ψ

ψ

Type I Type II

Figure 2: Representatives of type-I and type-II fermionic hopping terms. The black lines are

unitary link fields. The green circle represents a site fermion λn. Red lines are link fermions, ψa,n.

The diagonal of the triangular plaquette is the diagonal link fermion ξn starting at n+ ê1 + ê2 and

terminating at site n.

These hopping terms can be classified in two types. The first type is the usual hopping

term, which does not surround an area, and the second type makes a triangular plaquette.

Both are manifestly gauge invariant. In the type-I case in figure 2, the unitary link fields

properly parallel transport the link fermions ψa,n and ψa,n−êa
to the site n, by a backward

and forward parallel transport, respectively. The signed sum of these two terms couples

to the site fermion λn. In the type-II case, ξab,n resides on the diagonal of the unit cell.

The gauge invariant hopping term is a signed sum of two triangular plaquettes, whose two

sides are fermionic and one side is the unitary link field.

Unlike the traditional hopping terms for adjoint fermions, which typically involves two

parallel transports to make a gauge invariant hopping term, such as Tr(χnUn,aχn+êa
U

†
n,a),

our hopping terms only involve one unitary link field. The difference comes about because

the fermions in our formulation are scattered to both sites and links, and it suffices to have

a single unitary link field to build a gauge invariant hopping term. However, for example,

with adjoint fermions, the fermions are all residing on the sites and the simplest gauge

invariant object requires two parallel transports.

The fermion scalar interaction can easily be incorporated from eq. (2.5). We obtain

Sf−s =
1

g2

∑

n

tr
[

λn(U †
a,n−êa

ha,n−êa
ψa,n−êa

− ψa,nU †
a,nha,n) +

+ ξab,n(ha,nUa,nψb,n+êa
− ψb,nha,n+êb

Ua,n+êb
)
]

, (2.16)

The fermion-scalar interaction part of the action can be regarded as decoration of the

fermion hopping terms with scalars. The unitary link fields are needed to make gauge

invariant fermion-scalar interaction terms since most of the fermions are residing on the

links.

3. Observables and global symmetries

In pure gauge theories, the observables are the the gauge invariant Wilson loops, con-

structed out of an ordered product of the unitary link fields along the loop. In supersym-

metric lattice gauge theories (constructed within the approach of this work), the link fields
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U1,n U
†
1,n U2,n U

†
2,n h1,n h2,n λn ξ12,n ψ1,n ψ2,n

r1 +1 −1 0 0 0 0 0 −1 1 0

r2 0 0 +1 −1 0 0 0 −1 0 1

Y 0 0 0 0 0 0 +1
2 +1

2 −1
2 −1

2

Table 3: The U(1)3 symmetry charges of the lattice theory. The first two are associated with the

center symmetry of the two dimensional lattice gauge theory and the Y is R-symmetry.

can be both fermions and unitary matrices.(Scalar are placed at the sites by the polar

decomposition eq. (2.7).) Thus, the natural generalization of the Wilson loops are the

gauge invariant loops, constructed out of an ordered product of group valued unitary and

algebra valued fermionic link fields, also possibly decorated with arbitrary insertions of site

fermions and scalars along the loop [26]. Obviously, a subset of observables are the usual

Wilson loops. Bosonic and fermionic loops solely composed of fermions are also possible,

such as Tr[ψ1,nψ2,n+ê1
ξ12,n], a fermionic triangular plaquette. The correlation function of

such loops are also among observables.

The questions about the nature of these loops, such as “how do we classify them”, or

“what do these loops corresponds to” can be partially be answered by analyzing the global

symmetries. For example, in pure gauge theories Wilson loops are neutral under the center

of the gauge group and Polyakov loops transform in the one dimensional representation

of the center. For the U(N) lattice gauge theory in d dimensions, the action possesses a

U(1)d symmetry associated with the invariance of the action under Ua,n → eiαbδabUa,n, an

independent U(1) rotations in each direction.5 A particular U(1) charge of a Polyakov loop

can be characterized by the the number of winding of the loop in that direction.

The supersymmetric lattice action that we examined in section 2 has a U(1)3 symmetry.

The charges under the global U(1)3 symmetry are listed in table 3. (This table has the same

content as table 2, but it has been rewritten in terms of new variables for convenience.)

The U(1)2 associated with (r1, r2) are associated with the square of the center symmetry

of the gauge group U(N) in the two dimensional lattice. The last U(1) was clear from the

outset; it is the global R-symmetry.

Let us now consider the observables. Assume the lattice is compact in all directions,

a discretized torus. Let us first consider the loops which do not wind around the lattice.

All the closed loops of this type are neutral under U(1)2, associated with center symmetry.

This can be easily read of from the table 3. However, it is not hard to see that only

a subclass of observables are neutral under U(1)R. This is the case if the total number

of λn, and ξ12,n (whose R charges are 1
2) is exactly same as the total number of ψ1,n,

and ψ2,n (whose R charges are −1
2). The observables with a nonvanishing R-charge and

transforming homogeneously under U(1)R rotation have zero expectation value. (As long

as the U(1)R is not spontaneously broken.) This type of observable can be used to probe

the spontaneous breaking of U(1)R symmetry. (see, for example, the review [27] and [28]

5More precisely, consider a gauge theory with a gauge group G on a d dimensional torus. Let C(G)

denote the center of the gauge group G. Then, the Polyakov loops are charged under C(G)d. In particular,

for U(N) gauge group, the center is U(1) and the Polyakov loops are charged under U(1)d.
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about the spontaneous breaking of R-symmetry, Z2N , in N = 1 SU(N) SYM theory on

the four dimensional lattice.) In particular, the expectation value of any observable with

an odd number of fermions is zero, which is fermion number conservation modulo two.

There are also observables, the counterparts of the Polyakov loops, which are charged

under the center U(1)2 and possibly under U(1)R. In general, an observable is associated

with a charge triplet, (n1, n2,
nR

2 ) under U(1)3. The n1 (n2) is the net number of windings

in direction one (two). However, there is subtlety here, which does not show up in the

pure gauge theory. In pure gauge theory, a Polyakov loop in a direction can be undone

by traversing the same loop in the opposite direction, since the constituents are unitary

matrices. In our case, since some of the link fields are algebra valued fermions, the back-

tracking (Polyakov) loops do not necessarily cancel. The integer nR is the net R-charge

of the corresponding loop. Obviously, an observable which is charged under any one of

the global symmetries has vanishing expectation value as long as the global symmetry

associated with the given charge is not spontaneously broken.

4. Prospects

The technique we have described here can be applied to all the euclidean lattice construc-

tions [1 – 3] for extended supersymmetric gauge theories listed in table 1. It is also possible

to work with spatial lattices, [4] which are more suitable for hamiltonian formulation of

supersymmetric lattice gauge theories.

It would be useful to investigate the strong coupling expansion for the observables

(loops and the connected correlators of loops) in the large-Nc limit, where Nc is the number

of colors. Or equivalently, one can examine the lattice regularized loop equations for the

supersymmetric lattice gauge theories by generalizing [26] to the theories with massless

fermions. It would be interesting to examine to what extend the large Nc reduction holds

in the supersymmetric gauge theories [29, 30] and understand their large-Nc phase diagram.
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