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Abstract: In bosonic closed string field theory the “tachyon potential” is a potential for

the tachyon, the dilaton, and an infinite set of massive fields. Earlier computations of

the potential did not include the dilaton and the critical point formed by the quadratic

and cubic interactions was destroyed by the quartic tachyon term. We include the dilaton

contributions to the potential and find that a critical point survives and appears to become

more shallow. We are led to consider the existence of a closed string tachyon vacuum,

a critical point with zero action that represents a state where space-time ceases to be

dynamical. Some evidence for this interpretation is found from the study of the coupled

metric-dilaton-tachyon effective field equations, which exhibit rolling solutions in which the

dilaton runs to strong coupling and the Einstein metric undergoes collapse.
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1. Introduction and summary

In the last few years the instabilities associated with open string tachyons have been studied

extensively and have become reasonably well understood [1]. The instabilities associated

with closed string tachyons have proven to be harder to understand. For the case of localized

closed string tachyons — tachyons that live on subspaces of spacetime — there are now

plausible conjectures for the associated instabilities and a fair amount of circumstantial

evidence for them [2 – 6].

The bulk tachyon of the closed bosonic string is the oldest known closed string tachyon.

It remains the most mysterious one and there is no convincing analysis of the associated

instability. The analogy with open strings, however, suggests a fairly dramatic possibility.

In open bosonic string in the background of a spacefilling D-brane, the tachyon potential has

a critical point that represents spacetime without the D-brane and thus without physical

open string excitations. In an analogous closed string tachyon vacuum one would expect

no closed string excitations. Without gravity excitations spacetime ceases to be dynamical

and it would seem that, for all intents and purposes, it has dissappeared.

– 1 –
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There has been no consensus that such a closed string tachyon vacuum exists. In

fact, no analysis of the closed string tachyon potential (either in the CFT approach or

in the SFT approach) has provided concrete evidence of a vacuum with non-dynamical

spacetime. Since the analogous open string tachyon vacuum shows up quite clearly in

the open string field theory computation of the potential it is natural to consider the

corresponding calculation in closed string field theory (CSFT) [7, 8].

The quadratic and cubic terms in the closed string tachyon potential are well known [9,

10]:

κ2
V

(3)
0 = −t2 +

6561

4096
t3 , (α′ = 2) . (1.1)

These terms define a critical point analogous to the one that turns out to represent the

tachyon vacuum in the open string field theory. In open string field theory higher level

computations make the vacuum about 46% deeper. Since CSFT is nonpolynomial, it is

natural to investigate the effect of the quartic term in the potential. This term was found

to be [11, 12]

κ2V
(4)
0 = −3.0172 t4 . (1.2)

This term is so large and negative that V
(3)
0 +V

(4)
0 has no critical point. In fact, the quartic

term in the effective tachyon potential (obtained by integrating out massive fields) is even a

bit larger [11]. The hopes of identifying a reliable critical point in the closed string tachyon

potential were dashed1.

Recent developments inform our present analysis. The tachyon potential must include

all fields that are sourced by the zero-momentum tachyon. As discussed in [14], this includes

massless closed string states that are built from ghost oscillators, in particular, the zero-

momentum ghost-dilaton state (c1c−1 − c̄1c̄−1)|0〉. The search for a critical point cannot

be carried out consistently without including the ghost dilaton. Computations of quartic

vertices coupling dilatons, tachyons, and other massive fields are now possible due to the

work of Moeller [12] and have been done to test the marginality of matter and dilaton

operators [15, 16].

As we explain now, ghost-dilaton couplings to the tachyon restore the critical point in

the potential. The key effect can be understood from the cubic and quartic couplings

κ2V (t, d) = −27

32
t d2 + 3.8721 t3d + · · · . (1.3)

The cubic coupling plays no role as long as we only consider cubic interactions: d can be

set consistently to zero. The quartic coupling is linear in d. Once included, the equation

of motion for the dilaton can only be satisfied if the dilaton acquires an expectation value.

Solving for the dilaton one finds d = 2.2944 t2 and substituting back,

κ2V (t, d) = 4.4422 t5 + · · · . (1.4)

1In the effective open string tachyon potential a negative quartic term also destroys the cubic critical

point. Nevertheless, the critical point can be gleaned using Pade-approximants [13]. For closed strings,

however, the quartic term is too large: for a potential v(t) = v2t
2 + v3t

3 + v4t
4, with v2, v4 < 0, the

approximant formed by the ratio of a cubic and a linear polynomial fails to give a critical point when

v2v4 ≥ v2

3 .
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This positive quintic term suffices to compensate the effects of (1.2) and restores the critical

point. Our computations include additional couplings and the effect of massive fields as

well. The critical point persists and may be reliable, although more work is needed to

establish this convincingly.

In order to interpret the critical point we raise and answer a pair of questions. The

ghost-dilaton has a positive expectation value at the critical point. Does this correspond

to stronger or weaker string coupling ? We do a detailed comparison of quadratic and

cubic terms in the closed string field theory action and in the low-energy effective field

theory action. The conclusion is that the positive dilaton expectation value corresponds

to stronger coupling. In our solution the ghost-dilaton is excited but the scalar operator

cc̄ ∂X · ∂̄X, sometimes included in the dilaton vertex operator, is not. We ask: Is the string

metric excited? Is the Einstein metric excited? These questions are only well-defined at

the linearized level, but the answers are clear: the string metric does not change, but the

Einstein metric does. We take the opportunity to explain the relations between the four

kinds of “dilatons” that are used in the literature: the ghost-dilaton, the matter-dilaton,

the dilaton, and the dilaton of the older literature. It is noted that one cannot define

unambiguously a dilaton vertex operator unless one specifies which metric is left invariant;

conversely, the metric vertex operator is only determined once one specifies which dilaton

is left invariant.

In a companion paper [17] we attempted to gain insight into the tachyon vacuum by

considering the rolling solutions2 of a low-energy effective action for the string metric gµν ,

the tachyon T , and the dilaton Φ:

Sσ =
1

2κ2

∫

dDx
√−g e−2Φ

(

R + 4(∂µΦ)2 − (∂µT )2 − 2V (T )
)

. (1.5)

This action, suggested by the beta functions of sigma models with background fields [22], is

expected to capture at least some of the features of string theory solutions. The potential

is tachyonic: V (T ) = −1
2m2T 2 + O(T 3), but is otherwise left undetermined. We found

that solutions in which the tachyon begins the rolling process always have constant string

metric for all times — consistent with the type of the SFT critical point. The dilaton,

moreover, grows in time throughout the evolution — consistent with the larger dilaton vev

in the SFT critical point. Rather generally, the solution becomes singular in finite time:

the dilaton runs to infinity and the string coupling becomes infinite. Alternatively, the

Einstein metric crunches up and familiar spacetime no longer exists. This seems roughly

consistent with the idea that the tachyon vacuum does not have a fluctuating spacetime.

Perhaps the most subtle point concerns the value of the on-shell action. In the open

string field theory computation of the tachyon potential, the value of the action (per unit

spacetime volume) is energy density. The tachyon conjectures are in fact formulated in

terms of energy densities at the perturbative and the non-perturbative vacuum [1]. Since

the tree-level cosmological constant in closed string theory is zero, the value of the action at

2Rolling solutions have long been considered using Liouville field theory to provide conformal invariant

sigma model with spacetime background fields that typically include a linear dilaton and a constant string

metric [18 – 21].

– 3 –
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Figure 1: A sketch of a closed string tachyon potential consistent with present evidence. The

perturbative vacuum is at T = 0. The closed string tachyon vacuum would be the critical point

with zero cosmological term, shown here at T → ∞ (in CSFT this point corresponds to finite

tachyon vev). A critical point with negative cosmological constant cannot provide a spacetime

independent tachyon vacuum.

the perturbative closed string vacuum is zero. We ask: What is the value of the potential,

or action (per unit volume) at the critical point ? The low-energy action (1.5) suggests a

surprising answer. Consider the associated equations of motion:

Rµν + 2∇µ∇νΦ − (∂µT )(∂νT ) = 0 ,

∇2T − 2(∂µΦ)(∂µT ) − V ′(T ) = 0 ,

∇2Φ − 2(∂µΦ)2 − V (T ) = 0 . (1.6)

If the fields acquire constant expectation values we can satisfy the tachyon equation if the

expectation value T∗ is a critical point of the potential: V ′(T∗) = 0. The dilaton equation

imposes an additional constraint: V (T∗) = 0, the potential must itself vanish. This is

a reliable constraint that follows from a simple fact: in the action the dilaton appears

without derivatives only as a multiplicative factor. This fact remains true after addition of

α′ corrections of all orders. It may be that V (T ) has a critical point T0 with V (T0) < 0,

but this cannot be the tachyon vacuum. The effective field equations imply that a vacuum

with spacetime independent expectation values has zero action.

The action (1.5) can be evaluated on-shell using the equations of motion. One finds

Son-shell =
1

2κ2

∫

d d+1x
√−g e−2Φ

(

−4V (T )
)

. (1.7)

In rolling solutions the action density changes in time but, as Φ → ∞ at late times the

action density goes to zero [17]. This also suggests that the tachyon vacuum is a critical

point with zero action.

In figure 1 we present the likely features of the tachyon potential. The unstable per-

turbative vacuum T = 0 has zero cosmological constant, and so does the tachyon vacuum

T = ∞. The infinite value of T is suggested by the analogous result in the effective open

– 4 –
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string theory tachyon potential (see conclusions). In SFT the tachyon vacuum appears

for finite values of the fields, but the qualitative features would persist. The potential is

qualitatively in the class used in cyclic universe models [23].

In our calculations we find some evidence that the action density, which is negative,

may go to zero as we increase the accuracy of the calculation. To begin with, the value

Λ0 of the action density at the critical point of the cubic tachyon potential (1.1) may be

argued to be rather small. It is a cosmological term about seventy times smaller than

the “canonical” one associated with D = 2 non-critical string theory (see [3], footnote 5).

Alternatively, Λ0 is only about 4% of the value that would be obtained using the on-shell

coupling of three tachyons to calculate the cubic term. The inclusion of cubic interactions

of massive fields makes the action density about 10% more negative. This shift, smaller

than the corresponding one in open string field theory, is reversed once we include the

dilaton quartic terms. In the most accurate computation we have done, the action density

is down to 60% of Λ0. Additional computations are clearly in order.

As a by-product of our work, we investigate large dilaton deformations in CSFT. For or-

dinary marginal deformations the description reaches an obstruction for some finite critical

value of the string field marginal parameter [24, 25]. The critical value is stable under level

expansion, and the potential for the marginal field (which should vanish for infinite level) is

small. For the dilaton, however, the lowest-order obstruction is not present [16]. We carry

this analysis to higher order and no reliable obstructions are found: critical values of the

dilaton jump wildly with level and appear where the dilaton potential is large and cannot

be trusted. This result strengthens the evidence that CSFT can describe backgrounds with

arbitrarily large variations in the string coupling. If the infinite string coupling limit is also

contained in the configuration space it may be possible to define M-theory using type-IIA

superstring field theory.

Let us briefly describe the contents of this paper. In section 2 we reconsider the

universality arguments [14] that require the inclusion of the ghost-dilaton, exhibit a world-

sheet parity symmetry that allows a sizable truncation of the universal space, and note

that universality may apply in circumstances significantly more general that originally

envisioned [26]. Our computational strategy for the tachyon potential, motivated by the

results of [15, 16], goes as follows. We compute all quadratic and cubic terms in the

potential including fields up to level four. We then begin the inclusion of quartic terms

and obtain complete results up to quartic interactions of total level four. The results make

it plausible that a critical point exists and that the value of the action density decreases in

magnitude as the accuracy improves. In section 3 we find the linearized relations between

the metric, dilaton, and tachyon closed string fields and the corresponding fields in the

sigma-model approach to string theory. These relations allow us to establish that the

dilaton vev at the critical point represents an increased string coupling and that the string

field at the critical point does not have a component along the vertex operator for the

string metric. We discuss the vertex operators associated with the various definitions of

the dilaton, determine the nonlinear field relations between the string field theory and

effective field theory dilatons and tachyons to quadratic order and at zero-momentum,

and examine large dilaton deformations. In the concluding section we discuss additional

– 5 –
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considerations that suggest the existence of the tachyon vacuum. These come from non-

critical string theory, p-adic strings, and sigma model arguments. Finally, the details of

the nontrivial computations of quartic couplings are given in the appendix.

2. Computation of the tachyon potential

In this section we present the main computations of this paper. We begin by introducing

the string field relevant for the calculation of the tachyon potential, giving a detailed

discussion of universality. This string field contains the tachyon, at level zero, the ghost-

dilaton, at level two, and massive fields at higher even levels. We then give the quadratic

and cubic couplings for the string field restricted to level four and calculate the critical

point. Finally, we give the quartic couplings at level zero, two, and four. The critical point

survives the inclusion of quartic interactions and becomes more shallow — consistent with

the conjecture that the tachyon vacuum has zero action.

The computations use the closed string field action [7, 8, 3], which takes the form

S = − 2

α′

(1

2
〈Ψ|c−0 Q|Ψ〉 +

κ

3!
{Ψ,Ψ ,Ψ} +

κ2

4!
{Ψ, Ψ,Ψ,Ψ} + · · ·

)

. (2.1)

The string field Ψ lives on H, the ghost number two state space of the full CFT restricted

to the subspace of states that satisfy

(L0 − L̄0)|Ψ〉 = 0 and (b0 − b̄0)|Ψ〉 = 0 . (2.2)

The BRST operator is Q = c0L0 + c̄0L̄0 + . . . , where the dots denote terms indepen-

dent of c0 and of c̄0. Moreover, c±0 = 1
2(c0 ± c̄0), and we normalize correlators using

〈0|c−1c̄−1c
−
0 c+

0 c1c̄1|0〉 = 1. All spacetime coordinates are imagined compactified with the

volume of spacetime set equal to one.

2.1 Tachyon potential universality and the ghost-dilaton

The universality of the closed string tachyon potential was briefly discussed in [14], where

it was also noted that the ghost number two universal string field that contains the tachyon

should include the zero-momentum ghost-dilaton state (c1c−1−c̄1c̄−1)|0〉. In here we review

the universality argument and extend it slightly, offering the following observations:

• The ghost-dilaton must be included because closed string field theory is not cubic.

• A world-sheet parity symmetry of closed string field theory can be used to restrict

the universal subspace.

• The arguments of [14] do not apply directly to general CFT’s, linear dilaton back-

grounds, for example. If the closed string background is defined by a general matter

CFT, solutions on the universal subspace may still be solutions, but there is no

tachyon potential [26].

– 6 –
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The original idea in universality is to produce a subdivision of all the component fields

of the string field theory into two disjoint sets, a set {ti} that contains the zero-momentum

tachyon and a set {ua} such that the string field action S(ti, ua) contains no term with a

single u-type field. It is then consistent to search for a solution of the equations of motion

that assumes ua = 0 for all a.

To produce the desired set {ti} we assume that the matter CFT is such that X0 is

the usual negative-metric field with associated conserved momentum k0 and the rest of the

matter CFT is unitary. The state space H (see (2.2)) is then divided into three disjoint

vector subspaces H1,H2, and H3. One has Hi = Mi ⊗ |G〉, where |G〉 denotes a state built

with ghost and antighost oscillators only and M1,M2, and M3 are disjoint subspaces of

the matter CFT whose union gives the total matter CFT state space:

M1 : the SL(2, C) vacuum |0〉 and descendents ,

M2 : states with k0 6= 0 ,

M3 : primaries with k0 = 0 but different from |0〉 and descendents . (2.3)

In the above, primary and descendent refers to the matter Virasoro operators. Note that

the primaries in M3 have positive conformal dimension. The BRST operator preserves

the conditions (2.2), and since it is composed of ghost oscillators and matter Virasoro

operators, it maps each Hi into itself. Finally, the spaces Hi are orthogonal under the BPZ

inner product; they only couple to themselves.

The claim is that the set {ti} is in fact H1, the states built upon the zero momentum

vacuum. The “tachyon potential” is the string action evaluated for H1.

We first note that because of momentum conservation fields in H2 cannot couple lin-

early to fields in H1. The fields in H3 cannot couple linearly to the fields in H1 either.

They cannot do so through the kinetic term because the BRST operator preserves the

space and H1 and H3 are BPZ orthogonal. We also note that the matter correlator in the

n-string vertex does not couple n−1 vacua |0〉 from H1 to a matter primary from H3: this

is just the one-point function of the primary in H3, which vanishes because the state has

non-zero dimension. The (matter) Virasoro conservation laws on the vertex then imply

that the coupling of any (n− 1) states in H1 to a state in H3 must vanish. This completes

the proof that H1 is the subspace for tachyon condensation.

The space H1 can be written as

Span
{

Lm
−j1 . . . Lm

−jp
L̄m
−j̄1

. . . L̄m
−j̄p̄

b−k1
. . . b−kq

b̄−k̄1
. . . b̄−k̄q̄

c−l1 . . . c−lr c̄−l̄1 . . . c̄−l̄r̄ |0〉
}

,

(2.4)

where

j1 ≥ j2 ≥ · · · ≥ jp , ji ≥ 2 , j̄1 ≥ j̄2 ≥ · · · ≥ j̄p̄ , j̄i ≥ 2 , (2.5)

as well as

ki, k̄i ≥ 2 , li, l̄i ≥ −1 , and r + r̄ − q − q̄ = 2 . (2.6)

Finally, the states above must also be annihilated by L0 − L̄0 as well as b0 − b̄0.

– 7 –
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There is a reality condition on the string field [7]: its BPZ and hermitian conjugates

must differ by a sign. We show now that this condition is satisfied by all the states

in (2.4), so the coefficients by which they are multiplied in the universal string field (the

zero-momentum spacetime fields) must be real. Suppose a state is built with p ghost

oscillators and p− 2 antighost oscillators. The BPZ and hermitian conjugates differ by the

product of two factors: a (−1)p from the BPZ conjugation of the ghost oscillators and a

(−1)(2p−2)(2p−1)/2 = (−1)p−1 from the reordering of oscillators in the hermitian conjugate.

The product of these two factors is minus one, as we wanted to show.

In open string theory twist symmetry, which arises from world-sheet parity, can be

used to further restrict the universal subspace constructed from matter Virasoro and ghost

oscillators. In the case of closed string theory the world-sheet parity transformation that

exchanges holomorphic and antiholomorphic sectors is the relevant symmetry.3 World-sheet

parity is not necessarily a symmetry of arbitrary matter CFT’s, but it is a symmetry in

the universal subspace: correlators are complex conjugated when we exchange holomorphic

and antiholomorphic Virasoro operators as T (z) ↔ T̄ (z̄). More precisely, we introduce a

?-conjugation, a map of H1 to H1 that is an involution. In a basis of Virasoro modes ? can

be written explicitly as the map of states

? : AL−i1 · · ·L−in L̄−j1 · · · L̄−jn |0〉 → A∗ L̄−i1 · · · L̄−in L−j1 · · ·L−jn |0〉 , (2.7)

where A is a constant and A∗ denotes its complex conjugate. Given the operator/state

correspondence, the above defines completely the star operation ? : O → O? on vertex

operators for vacuum descendents. It results in the following property for the correlator of

n such operators placed at n points on a Riemann surface:

〈O1 . . .On〉 = 〈O?
1 . . .O?

n〉∗ . (2.8)

In the ghost sector of the CFT a small complication with signs arises because the basic

correlator is odd under the exchange of holomorphic and anti-holomorphic sectors:

〈 c(z1)c(z2)c(z3) c̄(w̄1)c̄(w̄2)c̄(w̄3)〉 = −〈 c̄(z̄1)c̄(z̄2)c̄(z̄3) c(w1)c(w2)c(w3) 〉∗ . (2.9)

Since two-point functions of the ghost fields are complex conjugated by the exchanges

c(z) ↔ c̄(z̄) and b(z) ↔ b̄(z̄), it follows from (2.9) that performing these exchanges on an

arbitrary correlator of ghost and antighost fields will give minus the complex conjugate of

the original correlator. We will define ?-conjugation in the ghost sector by:

? : Aci1· ·cin bj1· ·bjm c̄k1
· ·c̄kr

b̄l1· ·b̄ls |0〉 → A∗ c̄i1· ·c̄in b̄j1· ·b̄jm ck1
· ·ckr

bl1· ·bls |0〉 . (2.10)

For a general state Ψ of the universal subspace we define Ψ? to be the state obtained by

the simultaneous application of (2.7) and (2.10). It is clear from the above discussion that

the correlators satisfy

〈Ψ1 Ψ2 . . . Ψn〉 = −〈Ψ?
1 Ψ?

2 . . . Ψ?
n〉∗ , Ψi ∈ H1 . (2.11)

3We thank A. Sen for discussions that led us to construct the arguments presented below.

– 8 –
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We now define the action of the world-sheet parity operation P on arbitrary states of

the universal subspace:

PΨ ≡ −Ψ? , Ψ ∈ H1 . (2.12)

We claim that the string field theory action, restricted to H1, is P invariant:

S(Ψ) = S(PΨ) , for Ψ ∈ H1 . (2.13)

First consider the invariance of the cubic term. Using (2.12) and (2.11) we have

〈PΨ ,PΨ ,PΨ〉 = −〈Ψ? ,Ψ? ,Ψ?〉 = 〈Ψ ,Ψ ,Ψ〉∗ = 〈Ψ ,Ψ ,Ψ〉 , (2.14)

where in the last step we used the reality of the string field action. The kinetic term of the

action is also invariant. First note that (c−0 QΨ)? = −c−0 QΨ? . It then follows that

〈PΨ , c−0 QPΨ〉 = 〈Ψ? , c−0 QΨ?〉 = −〈Ψ? , (c−0 QΨ)?〉 = 〈Ψ , c−0 QΨ〉∗ = 〈Ψ , c−0 QΨ〉 . (2.15)

For higher point interactions, the invariance follows because the antighost insertions have

the appropriate structure. Each time we add a new string field we must add two antighost

insertions. For the case of quartic interactions they take the form of two factors BB? (see

eq. (A.3)). Since (BB?)? = −BB?, the extra minus sign cancels against the minus sign from

the extra string field. This can be seen to generalize to higher order interactions using the

forms of the off-shell amplitudes discussed in section 6 of [10]. This completes our proof

of (2.13).

Since P2 = 1 the space H1 can be divided into two disjoint subspaces: the space H+
1

of states with P = 1 and the space H−
1 of states with P = −1:

P(Ψ+) = +Ψ+, Ψ+ ∈ H+
1 ,

P(Ψ−) = −Ψ−, Ψ− ∈ H−
1 . (2.16)

It follows from the invariance of the action that no term in the action can contain just one

state in H−
1 . We can therefore restrict ourselves to the subspace H+

1 with positive parity.

The string field is further restricted by using a gauge fixing condition. The computation

of the potential is done in the Siegel gauge, which requires states to be annihilated by b0+b̄0.

To restrict ourselves to the Siegel gauge we take the states in (2.4) that have neither a c0

nor a c̄0.

The Siegel gauge fixes the gauge symmetry completely for the massive levels, but does

not quite do the job at the massless level. There are two states with L0 = L̄0 = 0 in H1

that are in the Siegel gauge:

(c1c−1 − c̄1c̄−1)|0〉 and (c1c−1 + c̄1c̄−1)|0〉 . (2.17)

The first state is the ghost dilaton and it is proportional to Q(c0−c̄0)|0〉. Since (c0−c̄0)|0〉 is

not annihilated by b0− b̄0 the gauge parameter is illegal and the ghost dilaton is not trivial.

The second state is proportional to Q(c0 + c̄0)|0〉, so it is thus trivial at the linearized level.

Although trivial at the linearized level, one may wonder if the triviality holds for large
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fields. Happily, we need not worry: the state is P odd, so it need not be included in the

calculation. The ghost-dilaton, because of the relative minus sign between the two terms,

is P even and it is included.

Had the closed string field theory been cubic we could have discarded the ghost-dilaton

state and all other states with asymmetric left and right ghost numbers. We could restrict

H+
1 to fields of ghost number (G, Ḡ) = (1, 1). Indeed, the cubic vertex cannot couple two

(1, 1) fields to anything except another (1, 1) field. Moreover, in the Siegel gauge c−0 Q acts

as an operator of ghost number (1, 1), so again, no field with asymmetric ghost numbers

can couple linearly. The quartic and higher order interactions in CSFT have antighost

insertions that do not have equal left and right ghost numbers. It follows that these higher

order vertices can couple the ghost-dilaton to (1, 1) fields. Indeed, the coupling of a dilaton

to three tachyons does not vanish. We cannot remove from H+
1 the dilaton, nor other

states with asymmetric left and right ghost numbers.

The construction of the universal string field and action presented here does not work

fully if the matter CFT contains a linear dilaton background. Momentum conservation

along the corresponding coordinate is anomalous and one cannot build an action with

states of zero momentum only: the action restricted to H1 is identically zero. There would

be no universal “potential” in H1. It appears rather likely, however, that any solution in

the universal subspace would still be a solution in a linear dilaton background. In fact,

any solution in the universal subspace may be a solution for string field theory formulated

with a general matter CFT [26].

We conclude this section by writing out the string field for the first few levels. The

level ` of a state is defined by ` = L0 + L̄0 + 2 . The level zero part of the string field is

|Ψ0〉 = t c1c̄1|0〉 . (2.18)

Here t is the zero-momentum tachyon. The level two part of the string field is

|Ψ2〉 = d (c1c−1 − c̄1c̄−1)|0〉 . (2.19)

Here d is the zero momentum ghost-dilaton. It multiplies the only state of P = +1 at this

level. At level four there are four component fields:

|Ψ4〉 =
(

f1 c−1c̄−1 + f2 L−2c1 L̄−2c̄1 + f3 (L−2c1c̄−1 + c−1 L̄−2c̄1) +

+ g1 (b−2c1 c̄−2c̄1 − c−2c1 b̄−2c̄1)
)

|0〉 . (2.20)

Note that the states coupling to the component fields all have P = +1 and that g1 couples

to a state with asymmetric left and right ghost numbers. In this paper we will not use

higher level terms in the string field.

With α′ = 2 the closed string field potential V associated with the action in (2.1) is

κ2V =
1

2
〈Ψ|c−0 Q|Ψ〉 +

1

3!
{Ψ,Ψ,Ψ} +

1

4!
{Ψ,Ψ,Ψ,Ψ} + · · · . (2.21)

Here |Ψ〉 = |Ψ0〉+ |Ψ2〉+ |Ψ4〉+ · · · . Our computations will not include quintic and higher

order interactions in the string action.
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2.2 The quadratic and cubic terms in the potential

Let us now consider the potential including only the kinetic and cubic terms in (2.21). To

level zero:

κ2V
(2)
0 = −t2 , κ2V

(3)
0 =

6561

4096
t3 . (2.22)

All potentials introduced in this subsection have a superscript that gives the order of the

interaction (two for quadratic, three for cubic, and so on), and a subscript that gives the

level (defined by the sum of levels of fields in the interaction). The next terms arise at level

four, where we have couplings of the tachyon to the square of the dilaton and couplings of

the level four fields to the tachyon squared:

κ2 V
(3)
4 = −27

32
d2 t +

(

3267

4096
f1 +

114075

4096
f2 −

19305

2048
f3

)

t2 . (2.23)

At level six we can couple a level four field, a dilaton, and a tachyon. Only level four fields

with G 6= G can have such coupling, so we find:

κ2 V
(3)
6 = −25

8
g1 t d . (2.24)

At level eight there are two kinds of terms. First, we have the kinetic terms for the

level four fields:

κ2 V
(2)
8 = f1

2 + 169 f2
2 − 26 f3

2 − 2 g1
2 . (2.25)

Second, we have the cubic interactions:

κ2 V
(3)
8 = − 1

96
f1 d2 − 4225

864
f2 d2 +

65

144
f3 d2 +

361

12288
f1

2 t +
511225

55296
f1 f2 t +

+
57047809

110592
f2

2 t +
511225

55296
f3

2 t − 49

24
g1

2 t − 13585

9216
f1 f3 t −

−5400395

27648
f2 f3 t +

143507

18432
f3

2 t . (2.26)

As we can see, these are of two types: couplings of a level four field to two dilatons (first

line) and couplings of two level four fields to a tachyon (second and third lines).

The terms at level 10 couple two level four fields and a dilaton. Because of ghost

number conservation, one of the level four fields must have G 6= G:

κ2 V
(3)
10 = − 25

5832

(

361 f1 + 4225 f2 − 2470 f3

)

d g1 . (2.27)

Finally, at level 12 we have the cubic couplings of three level-four fields:

κ2 V
(3)
12 =

1

4096
f3
1 +

1525225

8957952
f2
1 f2 −

1235

55296
f2
1 f3 +

6902784889

80621568
f1f

2
2 −

−102607505

6718464
f1f2f3 +

1884233

2239488
f1f

2
3 +

74181603769

26873856
f3
2 −

−22628735129

13436928
f2
2 f3 +

4965049817

20155392
f2f

2
3 − 31167227

3359232
f3
3 −

− 961

157464
f1g

2
1 − 207025

17496
f2g

2
1 +

14105

26244
f3g

2
1 . (2.28)
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Potential t f1 f2 f3 Action density

V
(3)
0 0.41620 −− −− −− −0.05774

V
(3)
8 0.43678 −0.06502 −0.00923 −0.02611 −0.06329

V
(3)
12 0.43709 −0.06709 −0.00950 −0.02693 −0.06338

Table 1: Vacuum solution with cubic vertices only.

2.3 Tachyon vacuum with cubic vertices only

With cubic vertices only the dilaton expectation value is zero. In fact, only fields with

G = G = 1 can acquire nonvanishing expectation values. To examine the tachyon vacuum

we define a series of potentials:

V
(3)
0 ≡ V

(2)
0 + V

(3)
0 ,

V
(3)
8 ≡ V

(3)
0 + V

(3)
4 + V

(3)
6 + V

(2)
8 + V

(3)
8 ,

V
(3)
12 ≡ V

(3)
8 + V

(3)
10 + V

(3)
12 . (2.29)

A few observations are in order. In all of the above potentials we can set d = g1 = 0.

As a consequence, V
(3)
6 and V

(3)
10 do not contribute. Since the level-two dilaton plays no

role, once we go beyond the tachyon we must include level four fields. The kinetic terms

for these fields are of level eight, so V
(3)
8 is the simplest potential beyond level zero. With

level-four fields the next potential is V
(3)
12 .

The critical points obtained with the potentials V
(3)
0 , V

(3)
8 , and V

(3)
12 are given in table 1.

We call the value of the potential κ2
V at the critical point the action density. The values

of the action density follow the pattern of open string theory. The original cubic critical

point becomes deeper. It does so by about 10%, a value significantly smaller than the

corresponding one in open string field theory.

2.4 Tachyon vacuum with cubic and quartic vertices

We can now examine the quartic terms in the potential. The associated potentials are

denoted with a superscript (4) for quartic and a subscript that gives the sum of levels of

the fields that enter the term. The quartic self-coupling of tachyons has been calculated

in [11, 12]:

κ2V
(4)
0 = −3.0172 t4 . (2.30)

With total level two we have a coupling of three tachyons and one dilaton. This is calculated

in appendix A.2 and the result is

κ2V
(4)
2 = 3.8721 t3d . (2.31)

With total level four there is the coupling of two tachyons to two dilatons (appendix A.2)

and the coupling of three tachyons to any of the level-four fields (appendix A.3):

κ2V
(4)
4 = 1.3682 t2d2 + t3

(

−0.4377 f1 − 56.262 f2 + 13.024 f3 + 0.2725 g1

)

. (2.32)
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Potential t d f1 f2 f3 g1 Action density

V
(3)
12 0.43709 0 −0.06709 −0.00950 −0.02693 −− −0.06338

V
(4)
0 −− −− −− −− −− −− −−

V
(4)
2 0.33783 0.49243 −0.08007 −0.00619 −0.02607 −0.10258 −0.05806

V
(4)
4 0.24225 0.45960 −0.04528 −0.00140 −0.01233 −0.07249 −0.03382

Table 2: Vacuum solution with cubic and quartic vertices. We see that the magnitude of the

action density becomes smaller as we begin to include the effects of quartic couplings.

With total level six there are three types of interactions: a tachyon coupled to three dilatons,

two tachyons coupled to a dilaton and a level-four field, and three tachyons coupled to a

level-six field. We have only computed the first one (appendix A.2):

κ2V
(4)
6 = −0.9528 td3 + · · · . (2.33)

The terms that have not been computed are indicated by the dots. Finally, the quar-

tic self-coupling of dilatons was computed in [16], where it played a central role in the

demonstration that the effective dilaton potential has no quartic term:

κ2V
(4)
8 = −0.1056 d4 + · · · . (2.34)

We use the dots to indicate the additional level eight interactions that should be computed.

Let us now consider the potentials that can be assembled using the above contributions.

We use the following strategy: we include cubic vertices to the highest possible level and

then begin to introduce the quartic couplings level by level. The most accurate potential

with quadratic and cubic terms that we have is V
(3)
12 and the tachyon vacuum it contains

appears in the last line of table 1. The lowest order quartic potential that we use is

therefore:

V
(4)
0 ≡ V

(3)
12 + V

(4)
0 . (2.35)

This potential has a familiar difficulty: the quartic self-coupling of the tachyon is so strong

that the critical point in the potential disappears. As we have argued, once additional

terms are included the critical point in the potential reappears. The higher level potentials

are defined by including progressively higher level quartic interactions:

V
(4)
2 ≡ V

(4)
0 + V

(4)
2 ,

V
(4)
4 ≡ V

(4)
2 + V

(4)
4 . (2.36)

Since our computations of V
(4)
6 and V

(4)
8 are incomplete, the results that follow from V

(4)
6 ≡

V
(4)
4 + V

(4)
6 and V

(4)
8 ≡ V

(4)
6 + V

(4)
8 cannot be trusted.

We are now in a position to calculate the critical points of the potentials V
(4). In our

numerical work we input the cubic coefficients as fractions and the quartic coefficients as

the exact decimals given above (so the t4 coefficient is treated as exactly equal to 3.0172.)

Our results are given in table 2. For ease of comparison, we have included the cubic results

for V
(3)
12 as the first line. Furthermore, we include a line for V

(4)
0 even though there is no
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critical point. The next potential is V
(4)
2 which contains only the additional coupling t3d.

The significant result is that the critical point reappears and can be considered to be a

(moderate) deformation of the critical point obtained with V
(3)
12 . Indeed, while there is a

new expectation value for the dilaton (and for g1), the expectation value of the tachyon

does not change dramatically, nor do the expectation values for f1, f2, and f3. The critical

point becomes somewhat shallower, despite the destabilizing effects of the tachyon quartic

self-couplings.

At the next level, where t2d2 and t3M4 (M4 denotes a level-four field) terms appear,

the critical point experiences some significant change. First of all, it becomes about 40%

more shallow; the change is large and probably significant, given the expectation that the

action density should eventually reach zero. The tachyon expectation changes considerably

but the dilaton expectation value changes little. Due to the t3M4 terms the expectation

values of some of the level four fields change dramatically.

Glancing at table 2, one notices that the tachyon expectation value is becoming smaller

so one might worry that the critical point is approaching the perturbative vacuum. This

is, of course, a possibility. If realized, it would imply that the critical point we have

encountered is an artifact of level expansion. We think this is unlikely. Since the dilaton

seems to be relatively stable, a trivial critical point would have to be a dilaton deformation

of the perturbative vacuum, but such deformations have negative tachyon expectation

values (see figure 2).

At this moment we do not have full results for higher levels. The computation of V
(4)
6

would require the evaluation of couplings of the form t2dM4 and, in principle, couplings

t3M6 of level-six fields, which we have not even introduced in this paper. The only addi-

tional couplings we know at present are td3, which enters in V
(4)
6 and d4, which enters in

V
(4)
8 (see eqs. (2.33) and (2.34)). Despite lacking terms, we calculated the resulting vacua to

test that no wild effects take place. The incomplete V
(4)
6 leads to t = 0.35426, d = 0.40763

and an action density of −0.05553. The incomplete V
(4)
8 leads to t = 0.36853, d = 0.40222

and an action density of −0.05836. In these results the action density has become more

negative. Given the conjectured value of the action, it would be encouraging if the full

results at those levels show an action density whose magnitude does not become larger.

One may also wonder what happens if terms of order higher than quartic are included

in the potential. Since the tachyon terms in the CSFT potential alternate signs [10], the

quintic term is positive and will help reduce the value of the action at the critical point.

The coefficient of this coupling will be eventually needed as computations become more

accurate. The sixtic term will have a destabilizing effect. Having survived the destabilizing

effects of the quartic term, we can hope that those of the sixtic term will prove harmless.

If, in general, even power terms do not have catastrophic effects, it may be better to work

always with truncations of odd power.

3. The sigma model and the string field theory pictures

In this section we study the relations between the string field metric hµν and the ghost-

dilaton d and the corresponding sigma model fields, the string metric h̃µν and dilaton Φ.
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These relations are needed to interpret the tachyon vacuum solution and to discuss the

possible relation to the rolling solutions.

We begin by finding the precise linearized relations between the string field dilaton

and the sigma model dilaton. The linearized relations confirm that the CSFT metric hµν ,

which does not acquire an expectation value in the tachyon vacuum, coincides with the

string metric of the sigma model, which does not change in the rolling solutions. Moreover,

the relation (3.14), together with hµν = 0, implies that our d > 0 in the tachyon vacuum

corresponds to Φ > 0, thus larger string coupling. This is also consistent with what we

obtained in the rolling solutions.

Our discussion of the linearized relations also allows us to examine the various vertex

operators associated with the various dilaton fields used in the literature (section 3.2.).

In section 3.3 we examine the nonlinear relations between the CSFT tachyon and dilaton

and the effective field theory ones. We work at zero momentum and up to quadratic order.

Finally, in section 3.4, we present evidence that CSFT can describe arbitrarily large dilaton

deformations.

3.1 Relating sigma model fields and string fields

Consider first the effective action (1.5), suggested by the conditions of conformal invariance

of a sigma model with gravity, dilaton and tachyon background fields. If we set the tachyon

to zero, this action reduces to the effective action for massless fields, in the conventions

of [32]. In this action gµν is the string metric, Φ is the diffeomorphism invariant dilaton,

and T , with potential V (T ) = − 2
α′ T 2 + · · · , is the tachyon. In order to compare with the

string field action we expand the effective action in powers of small fluctuations using

gµν = ηµν + h̃µν , (3.1)

where we use a tilde in the fluctuation to distinguish it from the metric fluctuation in the

string field. The result is

Sσ =
1

2κ2

∫

dDx

(

1

4
h̃µν∂2h̃µν − 1

4
h̃∂2h̃ +

1

2
(∂ν h̃µν)2 +

1

2
h̃∂µ∂ν h̃µν + 2h̃ ∂2Φ −

− 2Φ ∂µ∂ν h̃
µν − 4Φ ∂2Φ − (∂T )2 +

4

α′
T 2 + h̃µν∂µT∂νT +

+

(

h̃

2
− 2Φ

)

(∂T )2 + · · ·
)

, (3.2)

where we have kept cubic terms coupling the dilaton and metric to the tachyon. Such

terms are needed to fix signs in the relations between the fields in the sigma model and

the string fields.

Let us now consider the string field action. The string field needed to describe the

tachyon, the metric fluctuations, and the dilaton is

|Ψ〉 =

∫

dDk

(2π)D

(

t(k) c1c̄1 −
1

2
hµν(k)αµ

−1ᾱ
ν
−1c1c̄1 + d(k)(c1c−1 − c̄1c̄−1) +

+ i

√

α′

2
Bµ(k)c+

0 (c1α
µ
−1 − c̄1ᾱ

µ
−1)

)

|k〉 . (3.3)
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Here t(k) is the tachyon, hµν(k) = hνµ(k) is a metric fluctuation, d(k) is the ghost-dilaton,

and Bµ(k) is an auxiliary field. The sign and coefficient of hµν have been chosen for future

convenience. The linearized gauge transformations of the component fields can be obtained

from δ|Ψ〉 = QB|Λ〉 with

|Λ〉 =
i√
2α′

εµ(c1α
µ
−1 − c̄1ᾱ

µ
−1)|p〉 . (3.4)

The resulting coordinate-space gauge transformations are:

δhµν = ∂νεµ + ∂µεν , δd = −1

2
∂ · ε , δBµ = −1

2
∂2εµ , δ t = 0 . (3.5)

We now calculate the quadratic part of the closed string field action, finding

S(2) = − 1

κ2α′
〈Ψ|c−0 QB|Ψ〉 ,

=
1

2κ2

∫

dDx

(

1

4
hµν∂2hµν − 2d ∂2d − 2Bµ(∂νh

µν + 2∂µd ) − 2B2 − (∂t)2 +
4

α′
t2

)

,

=
1

2κ2

∫

dDx

(

1

4
hµν∂2hµν +

1

2
(∂νhµν)2 − 4d ∂2d − 2d ∂µ∂νhµν − (∂t)2 +

4

α′
t2

)

. (3.6)

In the last step we eliminated the auxiliary field Bµ using its algebraic equation of motion.

The gauge transformations (3.5) imply that the linear combination d + h
4 is gauge

invariant. It follows that the sigma model dilaton must take the form

λΦ = d +
h

4
, (3.7)

where λ is a number to be determined. Using (3.7) to eliminate the ghost-dilaton d from

the action (3.6) we find

S(2) =
1

2κ2

∫

dDx

(

1

4
hµν∂2hµν − 1

4
h∂2h +

1

2
(∂νhµν)2 +

1

2
h∂µ∂νh

µν +

+ 2λh∂2Φ − 2λΦ ∂µ∂νhµν − 4λ2 Φ∂2Φ − (∂t)2 +
4

α′
t2

)

. (3.8)

We also use the string field theory to calculate the on-shell coupling of hµν to two tachyons.

This coupling arises from the term

S(3) = − 1

α′κ2
〈 T ,H ,T 〉 , (3.9)

where T and H denote the parts of the string field (3.3) that contain t(k) and hµν(k),

respectively. We thus have

S(3) =
1

2α′κ2

(

3
∏

i=1

∫

dDki

(2π)D

)

〈

c1c̄1e
ik1·X , c1c̄1α

µ
−1ᾱ

ν
−1e

ik2·X , c1c̄1e
ik3·X

〉

t(k1)t(k3)hµν(k2) .

(3.10)
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The on-shell evaluation is readily carried out using kµhµν(k) = 0. We obtain

S(3) = − 1

2κ2

∫

dDk1

(2π)D
dDk3

(2π)D
kµ
1 kν

3 t(k1)t(k3)hµν(−k1 − k3) =
1

2κ2

∫

dDxhµν∂µt∂νt .

(3.11)

Combining this result with (3.8) we obtain the closed string field theory action

Scsft =
1

2κ2

∫

dDx

(

1

4
hµν∂2hµν − 1

4
h∂2h +

1

2
(∂νhµν)2 +

1

2
h∂µ∂νhµν +

+ 2λh∂2Φ − 2λΦ∂µ∂νh
µν − 4λ2 Φ∂2Φ −

− (∂t)2 +
4

α′
t2 + hµν∂µt∂νt + · · ·

)

. (3.12)

We are finally in a position to identify the sigma model action (3.2) and the string

field action (3.12). Comparing the quadratic terms in h̃µν and those in hµν we see that

h̃µν = ±hµν . We also note that T = ±t. The coupling h̃µν∂µT∂νT in (3.2) coincides with

the corresponding coupling in (3.12) if and only if

h̃µν = hµν . (3.13)

This simple equality justifies the multiplicative factor of (−1/2) introduced for hµν in

the string field (3.3). The string field hµν so normalized is the fluctuation of the string

metric. Comparing the couplings of metric and dilaton in both actions we also conclude

that λ = +1 and, therefore, equation (3.7) gives

Φ = d +
h

4
. (3.14)

This expresses the sigma model dilaton Φ in terms of the string field metric trace and the

ghost dilaton d. It is important to note that when we give a positive expectation value to

d (and no expectation value to h) we are increasing the value of Φ and therefore increasing

the value of the string coupling.

3.2 The many faces of the dilaton

Equipped with the precise relations between string fields and sigma-model fields we di-

gress on the various dilaton fields used in the literature. Of particular interest are the

corresponding vertex operators, which are determined by the CFT states that multiply the

component fields in the closed string field.

We introduce the states

|Oµν(p)〉 = −1

4
(αµ

−1ᾱ
ν
−1 + αν

−1ᾱ
µ
−1)|p〉 , |Od(p)〉 = (c1c−1 − c̄1c̄−1)|p〉 . (3.15)

The corresponding vertex operators are

Oµν(p) =
1

2α′
(∂Xµ∂̄Xν + ∂Xν ∂̄Xµ) eipX , Od(p) =

1

2
(c∂2c − c̄∂̄2c) eipX . (3.16)
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Working for fixed momentum, the string field (3.3) restricted to metric and dilaton fluctu-

ations is

|Ψ〉 = hµν |Oµν〉 + d |Od〉 . (3.17)

This equation states that Od is the vertex operator associated with the ghost-dilaton field d.

An excitation by this vertex operator does not change the metric hµν . Our transformation

to a gauge invariant dilaton gives

Φ = d +
1

4
h , h̃µν = hµν . (3.18)

Here h̃µν is the fluctuation of the string metric. Inverting these relations

d = Φ − 1

4
h̃ , hµν = h̃µν . (3.19)

Subtituting into the string field (3.17) we obtain

|Ψ〉 = h̃µν

(

|Oµν〉 − 1

4
ηµν |Od〉

)

+ Φ |Od〉 . (3.20)

It is interesting to note that Od is the vertex operator associated with a variation of

the gauge-invariant dilaton Φ and no variation of the string metric. On the other hand,

Oµν − 1
4 ηµν Od varies the string metric and does not vary the gauge-invariant dilaton

(although it varies the ghost-dilaton).

Finally, we consider the formulation that uses the Einstein metric gE
µν and the dilaton

Φ. The field redefinition is

gE
µν = exp(2ω) gµν , with ω = − 2

D − 2
Φ . (3.21)

Expanding in fluctuation fields we obtain

hE
µν = h̃µν − 4

D − 2
ηµν Φ . (3.22)

Solving for d and hµ in terms of Φ and hE
µν we get

d = − 2

D − 2
Φ − 1

4
hE , hµν = hE

µν +
4

D − 2
ηµν Φ . (3.23)

Substituting into the string field (3.17) we obtain

|Ψ〉 = hE
µν

(

|Oµν〉 − 1

4
ηµν |Od〉

)

+
2

D − 2
Φ

(

2ηµν |Oµν〉 − |Od〉
)

. (3.24)

Interestingly, the vertex operator that varies the Einstein metric (without variation of the

dilaton) is the same as that for the string metric (see (3.20)). It is the dilaton operator

that changes this time. The vertex operator

D = 2ηµνOµν −Od =

(

2

α′
∂X · ∂̄X − 1

2
(c∂2c − c̄∂̄2c)

)

eipX , (3.25)
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varies the dilaton without varying the Einstein metric. This is the dilaton vertex operator

used almost exclusively in the early literature — it is naturally associated with the Einstein

metric. The corresponding state |D(p)〉 has a particularly nice property: it is annihilated

by the BRST operator when p2 = 0. Indeed,

QB |D(p)〉 =
α′

2
p2c+

0 |D(p)〉 . (3.26)

The dilaton D is in fact the unique linear combination of the matter and ghost dilatons

that has this property. For other combinations, terms linear in the momentum p (such as

(p · α−1)c1 c̄1c̄−1|p〉), survive.

3.3 Relating the sigma model and string field dilaton and tachyon

The closed string theory potential V , as read from the effective action (1.5) is

κ2V = e−2Φ
(

V (T ) + · · ·
)

, with V (T ) = −T 2 + · · · . (3.27)

Here Φ and T are the zero momentum dilaton and tachyon fields in the effective field

theory. The purpose of this section is to discuss the relation between Φ and T and the

corresponding string fields d and t, both sets at zero-momentum. To do this we must

consider the effective potential for d and t calculated in string field theory. We only have

the potential itself. Collecting our previous results, we write

κ2V = −t2 + 1.6018 t3 − 3.0172 t4 + 3.8721 t3d + (−0.8438 t + 1.3682 t2) d2 −
−0.9528 t d3 − 0.1056 d4 . (3.28)

The contributions from massive fields affect quartic and higher order terms. In our setup,

the relevant terms arise when we eliminate the level-four massive fields using their kinetic

terms in (2.25) and their linear couplings to t2 in (2.23), to td in (2.24), and to d2 in (2.26).

We find

∆V = − 6241

186624
d4+

25329

16384
d2 t2−1896129

4194304
t4 ' −0.0334 d4+1.5460 d2t2−0.4521 t4 . (3.29)

It follows that the effective potential for the tachyon and the dilaton, calculated up to

terms quartic in the fields and including massive fields of level four only, is given by:

κ2Veff = −t2 + 1.6018 t3 − 3.4693 t4 + 3.8721 t3d + (−0.8438 t + 2.9142 t2) d2 −
−0.9528 t d3 − 0.1390 d4 + · · · . (3.30)

The dots represent quintic and higher terms, which receive contributions both from ele-

mentary interactions and some integration of massive fields. We write, more generically

κ2Veff = −t2 + a3,0t
3 + a4,0 t4 + a3,1 t3d + (a1,2 t + a2,2 t2) d2 +

+a1,3 t d3 + a0,4 d4 + · · · . (3.31)

The values of the coefficients ai,j can be read comparing this equation with (3.30).
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There are two facts about Veff that make it clear it is not in the form of a ghost-dilaton

exponential times a tachyon potential. First, it does not have a term of the form t2d that

would arise from the tachyon mass term and the expansion of the exponential. Second,

it contains a term linear in the tachyon; those terms should be absent since the tachyon

potential does not have a linear term. Nontrivial field redefinitions are necessary to relate

string fields and sigma model fields.

To linearized order the fields are the same, so we write relations of the form:

t = T + α1TΦ + α2Φ
2 + · · · ,

d = Φ + β0T
2 + β1TΦ + β2Φ

2 + · · · , (3.32)

where the dots indicate terms of higher order in the sigma model fields. We found no need

for a T 2 term in the redefinition of tachyon field, such a term would change the cubic and

quartic self-couplings of the tachyon in V (T ). Since d gives rise to pure tachyon terms that

are quadratic or higher, only at quintic and higher order in T will V (T ) differ from the

potential obtained by replacing t → T in the first line of (3.30). We thus expect that after

the field redefinition (3.30) becomes

κ2V = e−2Φ
(

− T 2 + 1.6018T 3 − 3.4693T 4 + . . .
)

, (3.33)

at least to quartic order in the fields. We now plug the substitutions (3.32) into the

potential (3.30) and compare with (3.33). A number of conditions emerge.

• In order to get the requisite T 2Φ term we need α1 = −1.

• In order to have a vanishing TΦ2 term α2 = 1
2a1,2 must be half the coefficient of td2

in (3.30).

• Getting the correct T 3Φ coupling then fixes β0 = (a3,0 − a3,1)/(2a1,2).

• Getting the correct value of T 2Φ2 fixes β1 = −(1 + 3
2a3,0a1,2 + a2,2)/(2a1,2). The

vanishing of TΦ3 fixes β2 = −a1,3/(2a1,2). All coefficients in (3.32) are now fixed.

• The coefficient of Φ4, which should be zero, turns out to be (a0,4 + 1
4a2

1,2) ' 0.0389,

which is small, but does not vanish.

Our inability to adjust the coefficient of Φ4 was to be expected. The potential (3.30)

contains the terms −t2 + a1,2 td2 + a0,4d
4 and, to this order, integrating out the tachyon

gives an effective dilaton quartic term of (a0,4+ 1
4a2

1,2). With the contribution of the massive

fields beyond level four this coefficient in the dilaton effective potential would vanish. This

is, in fact, the statement that was verified in [16]. It follows that we need not worry that

the quartic term in Φ do not vanish exactly. Following the steps detailed before we find

t = T − T Φ − 0.4219Φ2 + · · · ,

d = Φ + 1.3453T 2 + 1.1180T Φ − 0.5646Φ2 + · · · . (3.34)

– 20 –



J
H
E
P
0
9
(
2
0
0
5
)
0
5
4

-1 -0.75 -0.5 -0.25 0.25 0.5
d

-0.2

-0.15

-0.1

-0.05

t

Figure 2: The solid line is the dilaton marginal direction defined by the set of points (d, t(d))

where t(d) is the expectation value of t obtained solving the tachyon equation of motion for the

given d. The dashed line represents the direction along the sigma model dilaton Φ (thus T = 0). It

is obtained by setting T = 0 in equation (3.34). The two lines agree well even reasonably far from

the origin.

In string field theory the dilaton deformation is represented in the (d, t) plane by the

curve (d, t(d)), where t(d) is the expectation value of the tachyon when the dilaton is set

equal to d. This curve, calculated using the action (3.30), is shown as a solid line in figure 2.

On the other hand, it is clear that Φ (with T = 0) defines the marginal direction in the

effective field theory. Setting T = 0 in (3.34) we find the pair (d(Φ), t(Φ)), which must be

a parameterization of the flat direction in terms of Φ. This curve is shown as a dashed line

in figure 2. It is a good consistency check that these two curves agree well with each other

over a significant fraction of the plot.

3.4 Dilaton deformations

In ref. [16] we computed the effective dilaton potential that arises when we integrate out

the tachyon from a potential that includes only quadratic and cubic terms. We found

that the domain of definition of this potential is the full real d line. This happens be-

cause the (marginal) branch t(d) that gives the expectation value of t for a given value

of d is well defined for all values of d. In this section we extend this computation by

including higher level fields and higher order interactions. As we will demonstrate, it ap-

pears plausible that the domain of definition for the effective dilaton potential remains

d ∈ (−∞,∞).

The marginal branch is easily identified for small values of the dilaton: as the dilaton

expectation value goes to zero all expectation values go to zero. For large enough values

of the dilaton the marginal branch may cease to exist, or it may meet another solution

branch. If so, we obtain limits on the value of d. Since the dilaton effective potential is

supposed to be flat in the limit of high level, we propose the following criterion. If we

encounter a limit value of d, this value is deemed reliable only if the dilaton potential at

this point is not very large. A large value for the potential indicates that the calcula-

tion is not reliable because the same terms that are needed to make the potential small
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could well affect the limit value. In open string field theory a reliable limit value was ob-

tained for the Wilson line parameter: at the limit point the potential energy density was

a relatively small fraction of the D-brane energy density. The purely cubic potential for

t gives a critical point with κ2V ∼ −0.05774. We define R(d) ≡ |κ2V (d)|
0.05774 , where V (d) is

the effective dilaton potential. A critical value of d for which R > 1 will be considered

unreliable.

We start with cubic potentials and then include the elementary quartic interactions

level by level. With cubic potentials, the effective dilaton potential is invariant under

d → −d. With V
(3)
4 dilaton deformations can be arbitrarily large [16]. We then find

• The dilaton potential derived from V
(3)
8 is defined for |d| ≤ 624. This is plausible

since, at this level, the equations of motion for the level-four fields are linear.

• The dilaton potential derived from V
(3)
12 is defined for |d| ≤ 1.71. Since R(±1.71) =

42.4, there is no reliable limit value.

• The dilaton potential derived from V
(4)
0 is defined for |d| ≤ 4.67, where R(±4.67) =

49.5. The large value of R indicates that there is no evidence of a limit value.

• The dilaton potential derived from V
(4)
2 is not invariant under d → −d. We find a

range d ∈ (−∞ , 3.124) . Although R(3.124) = 0.387, the potential has a maximum

with R = 3.325 at d = 1.92. This fact makes the limit point d = 3.124 unreliable.

• The dilaton potential derived from V
(4)
4 , the highest level potential we have computed

fully, is regular for d ∈ (−2.643, 6.415). Since R(6.415) = 1502.4 and R(−2.643) =

89.2, there is no branch cut in the reliable region.

We have also computed the higher level quartic interactions td3 and d4. We have

checked that V
(4)
4 , supplemented by those interactions does not lead to branch cuts in the

potential for the dilaton. This result, however, is not conclusive. Additional interactions

must be included at level six (the level of td3) and at level eight (the level of d4).

We tested in [16] that cubic and quartic interactions combine to give a vanishing

quartic term in the dilaton effective potential. We can ask if the potential for the dilaton

becomes flatter as the level of the calculation is increased. We find that it roughly does,

but the major changes in the potential are due to the elementary quartic term in the

dilaton. For the cubic vertex, the interactions of the type d2M , with M massive give rise

to terms quartic on the dilaton. Other cubic couplings that do not involve the dilaton

typically induce d6 (and higher order) terms, which play a secondary role in flattening

the potential if the quartic terms have not cancelled completely. Therefore, the potentials

that arise from V
(3)
8 , V

(3)
10 and V

(3)
12 (without the contribution from level six massive fields)

have no obvious difference. The potentials obtained at various levels are shown in figure 3.

The dashed line arises from V
(3)
4 , the solid line arises from V

(3)
8 , and the thick line arises

from V
(4)
8 .

– 22 –



J
H
E
P
0
9
(
2
0
0
5
)
0
5
4

-0.1 -0.05 0.05 0.1
d

2·10-7

4·10-7

6·10-7

8·10-7

1·10-6

V

Figure 3: Dilaton effective potential. The dashed line arises from V
(3)
4 , the solid line arises from

V
(3)
8 , and the thick line arises from V

(4)
8 .

4. Conclusions

In this paper we have presented some calculations that suggest the existence of a tachyon

vacuum for the bulk closed string tachyon of bosonic string theory. We have discussed

the physical interpretation using the effective field theory both to suggest the value of the

action density at the critical point (zero!) and to obtain rolling solutions [17] that seem

consistent with the interpretation of the tachyon vacuum as a state in which there are no

closed string states.

The numerical evidence presented is still far from conclusive. A critical point seems

to exist and appears to be robust, but it is not all that clear what will happen when the

accuracy of the computation is increased. If the action density at the critical point goes

to zero it may indeed define a new and nontrivial tachyon vacuum. Conceivably, however,

the critical point could approach the perturbative vacuum, in which case there would be

no evidence for a new vacuum. Alternatively, if the action density at the critical point

remains finite, we would have no interpretation for the result.

Let us consider some additional indirect arguments that support the existence of a

closed string tachyon vacuum. The first one arises from the existence of sub-critical bosonic

string theories. The evidence in string theory is that most string theories are related by

compactifications and/or deformations. It seems very likely that non-critical string theories

are also related to critical string theory. It should then be possible to obtain a non-critical

string theory as a solution of critical string theory. Certainly the view that D = 2 bosonic

string theory is a ground state of the bosonic string has been held as likely [34]. In non-

critical string theory the number of space dimensions is reduced (at the expense of a linear

dilaton background). The analogy with lower-dimensional D-branes in open string theory

seems apt: the branes are solitons of the open string field theory tachyon in which far

away from the branes the tachyon sits at the vacuum. It seems plausible that non-critical

string theories are solitonic solutions of the closed string theory tachyon. As sketched in

figure 4, far away along the coordinates transverse to the non-critical world-volume, the
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Figure 4: A non-critical (p + 1)-dimensional string theory would correspont to a solitonic solution

of critical string theory in which, far away from the reduced space, the fields approach the values

of the closed string tachyon vacuum.

background would approach the closed string tachyon vacuum. The universality of the

tachyon vacuum would imply that a noncritical string theory could be further reduced

using the same background configuration used to reduce the original critical theory.

In fact, in the p-adic open/closed string theory lump solutions of the closed string

sector appear to describe spacetimes of lower dimensionality, as explained by Moeller and

Schnabl [30]. Indeed, far away from the lump the open string tachyon must be at its

vacuum and therefore there are no D-brane solutions with more space dimensions than

those of the lump. Away from the lump the closed string tachyon is at its vacuum, and no

linearized solutions of the equations of motion exist.

A suggestive argument for zero action at the tachyon vacuum follows from the sigma

model approach. As discussed by Tseytlin [27], it seems likely that the closed string effective

action for the spacetime background fields may be written in terms of the partition function

Z of the two-dimensional sigma model as well as derivatives thereof (this does work for

open strings [29]). The conventional coupling of the world-sheet area to the tachyon T

results in a partition function and an effective action with a prefactor of e−T . Thus one

expects a tachyon potential of the form e−T g(T ) where g is a polynomial that begins with

a negative quadratic term4. In this case, for a tachyon vacuum at T → ∞ the action goes

to zero.

The computations and the discussion presented in this paper have led to a set of

testable conjectures concerning the vacuum of the bulk closed string tachyon of bosonic

string theory. It seems likely that additional computations, using both string field theory,

effective field theory, and conformal field theory will help test these ideas in the near future.

4In [27], a tachyon potential of the form −T 2e−T is considered. Complications in fixing the kinetic terms

made it unclear if T = ∞ was a point in the configuration space (see the discussion below eq. (4.13)) of [27].

For additional comments on the possible form of the tachyon potential, see Andreev [28].
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A. Quartic computations

A.1 The setup

We normalize correlators using 〈0|c−1c̄−1c
−
0 c+

0 c1c̄1|0〉 = 1 with c±0 = 1
2(c0 ± c̄0). All states

in this paper have zero momentum. For convenience, all spacetime coordinates have been

compactified and the volume of spacetime is equal to one. To use results from open string

field theory, we note that

〈c(z1)c(z2)c(z3) c̄(w̄1)c̄(w̄2)c̄(w̄3)〉 = −2〈c(z1)c(z2)c(z3)〉o · 〈c̄(w̄1)c̄(w̄2)c̄(w̄3)〉o , (A.1)

since open string field theory uses 〈c(z1)c(z2)c(z3)〉o = (z1 − z2)(z1 − z3)(z2 − z3). Then:

〈c1c̄1, c1c̄1, c1c̄1〉 = 2 · 〈c1, c1, c1〉o · 〈c̄1, c̄1, c̄1〉o = 2 · R3 · R3 = 2R6 , (A.2)

where R ≡ 1/ρ = 3
√

3/4 ' 1.2990 , and ρ is the mapping radius of the disks in the

three-string vertex.

To construct four-string amplitudes we use antighost insertions [7, 10]

B =
4

∑

I=1

∞
∑

m=−1

(BI
m bJ

m + CI
m b̄I

m) , B? =
4

∑

I=1

∞
∑

m=−1

(CI
m bI

m + BI
m b̄I

m) , (A.3)

where B? is the ?-conjugate of B. The multilinear function in string field theory is

{Ψ1,Ψ2,Ψ3,Ψ4} ≡ 1

π

∫

V0,4

dx ∧ dy 〈Σ| B B? |Ψ1〉|Ψ2〉|Ψ3〉|Ψ4〉 . (A.4)

The first, second, third, and fourth states are inserted at 0, 1, ξ = x+iy, and ∞, respectively.

Operationally, the fourth state is inserted at t = 0 with z = 1/t, where z is the global

uniformizer. For further details and explanations the reader should consult [16]. We

record that

BJ
−1 =

δ3J

ρ3
, CJ

−1 = 0 ,

BI
1 = ρI∂βI +

1

2
ρ3ε3δI3 , CI

1 = ρI ∂̄βI , (A.5)

BI
2 =

1

6
ρ2

I∂(2β2
I − εI) + ρ2

I(−4δI − 2εIβI + 8β3
I )δ3I , CI

2 = 1
6ρ2

I ∂̄(2β2
I − εI) .

Here ∂̄ ≡ ∂/∂ξ̄ and ∂ ≡ ∂/∂ξ. Since our string fields are annihilated both by b0 and b̄0,

the coefficients BI
0 and CI

0 are not needed. Taking note of the vanishing coefficients, we

see that for states in the Siegel gauge the antighost factor B is given by

B = B3
−1b

(3)
−1 +

4
∑

I=1

(BI
1 bJ

1 + CI
1 b̄I

1) +

4
∑

I=1

(BI
2 bJ

2 + CI
2 b̄I

2) + · · · . (A.6)
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The Strebel quadratic differential on the surfaces determines:

β1 =
a

2ξ
− 1

ξ
− 1 , β2 =

a − 2ξ

2(1 − ξ)
, β3 =

a − 2

2ξ(ξ − 1)
, β4 =

a

2
− 1 − ξ . (A.7)

Here a(ξ, ξ̄) is a function that determines the quadratic differential completely. We also

have

ε1 = 2 +
1

ξ
(a − 2) +

1

ξ2

(

2 + a − 5

8
a2

)

,

ε2 =
−5a2 + 16ξ(ξ − 3) + 8a (ξ + 3)

8 (ξ − 1)2
,

ε3 =
16 + 8a − 5a2 + 24(a − 2)ξ

8 ξ2 (ξ − 1)2
,

ε4 = 2 + a − 5

8
a2 − 2ξ + a ξ + 2ξ2 . (A.8)

The function a(ξ) is known numerically to high accuracy for ξ ∈ A, where A is a

specific subspace of V0,4 described in detail in figures 3 and 6 of ref. [12]. The full space

V0,4 is obtained by acting on A with the transformations generated by ξ → 1 − ξ and

ξ → 1/ξ, together with complex conjugation ξ → ξ̄. In fact V0,4 contains twelve copies of

A. Let f(A) denote the region obtained by mapping each point ξ ∈ A to f(ξ). Then V0,4

is composed of the six regions

A ,
1

A , 1 −A ,
1

1 −A , 1 − 1

A ,
A

1 −A , (A.9)

together with their complex conjugates. The values of a in these regions follow from the

values of a on A via the relations

a(1 − ξ) = 4 − a(ξ) , a

(

1

ξ

)

=
a(ξ)

ξ
, a(ξ̄) = a(ξ) . (A.10)

For states of the form |Mi〉 = Oic1c̄1|0〉, where Oi is built with matter oscillator, one

finds

{M1,M2,M3,M4} = − 2

π

∫

V0,4

dx ∧ dy

(ρ1ρ2ρ3ρ4)2
〈〈O1O2O3O4〉〉ξ . (A.11)

Here 〈〈O1O2O3O4〉〉ξ ≡ 〈h1 ◦ O1 h2 ◦ O2 h3 ◦ O3 h4 ◦ O4〉Σξ
, where the right-hand side

is a matter correlator computed after the local operators Oi have been mapped to the

uniformizer.

A.2 Couplings of dilatons and tachyons

Elementary contribution to t3d. We insert the dilaton on the moving puncture to

make the integration identical over each of the 12 regions of the moduli space. Since all

the states inserted on the fixed punctures have ghost oscillators c1c̄1, the antighost factor

B B? is only supported on the moving puncture:

BB?(c1c−1 − c̄1c̄−1)
(3)|0〉 = −(B3

−1C
3
1 + B3

−1 C3
1 )|0〉 = −(∂̄β3 + ∂β̄3)|0〉 . (A.12)
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There are no matter operators, thus the correlator just involves the ghosts:

〈ΣP |B B?|T 〉|T 〉|D〉|T 〉 = −(∂̄β3 + ∂β̄3)〈(c1c̄1)
(1)(c1c̄1)

(2)(c1c̄1)
(4)〉

= −(∂̄β3 + ∂β̄3)
2

(ρ1ρ2ρ4)2
. (A.13)

Using (A.4), the amplitude is:

{T 3D} = −24

π

∫

A
dxdy(∂̄β3 + ∂β̄3)

1

(ρ1ρ2ρ4)2
= 23.2323 . (A.14)

The contribution to the potential is κ2V = 4
4!{T 3D} t3d = 3.8721 t3d .

Elementary contribution to t2d2. We insert the dilatons at z2 = 1 and z3 = ξ. The

amplitude to be integrated is identical to the ghost part of the amplitude for the quartic

interaction a2d2, as given in [16], eq. (4.9):

〈Σ|BB?|T 〉|D〉|D〉|T 〉 =
2

(ρ1ρ4)2

(

∂̄β2∂(ξ̄β̄3) − ∂β2∂̄(ξ̄β̄3) + ∗-conj
)

. (A.15)

The four-point amplitude is then

{T 2D2} =
4

π

∫

V0,4

dxdy

(ρ1ρ4)2
Re

(

∂̄β2∂(ξ̄β̄3) − ∂β2∂̄(ξ̄β̄3)
)

. (A.16)

Since we have the same states on punctures one and four, and these punctures are ex-

changed by the transformation z → 1/z, the integral over A gives the same contribution

as the integral over 1/A. The conjugation properties of the amplitude also imply that A
contributes the same as A. Consequently, the four regions A, 1/A, A, and 1/A all give the

same contribution. To get the full amplitude we must multiply the contributions of A, of

1 −A, and 1 − 1/A by four:

{T 2D2} = 4 · 4

π

[

∫

A
+

∫

1−A
+

∫

1−1/A

]

dxdy

(ρ1ρ4)2
Re

(

∂̄β2∂(ξ̄β̄3) − ∂β2∂̄(ξ̄β̄3)
)

. (A.17)

The transformation laws given in appendix B of [16] allow one to rewrite the second and

third integrals as integrals over A, where they can be easily evaluated. We find

{T 2D2} = 4 · (−0.2410 + 0.4031 + 1.2065) = 5.4726 . (A.18)

The contribution to potential is κ2V = 6
4!{T 2D2} t2d2 = 1.3682 t2d2.
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Elementary contribution to td3. The tachyon field is inserted at z3 = ξ. We then

have

BB?(c1c̄1)
(3)D(1)D(2)D(4)|0〉 =

{

B3
−1b

(3)
−1 +

∑

J 6=3

(

BJ
1 b

(J)
1 + CJ

1 b̄
(J)
1

)

}

×

×
{

B3
−1 b̄

(3)
−1 +

∑

J 6=3

(

BJ
1 b̄

(J)
1 + CJ

1 b
(J)
1

)

}

×

×(c1c̄1)
(3)D(1)D(2)D(4)|0〉

=
∑

I 6=J 6=K 6=3

(

1

2
B3

−1C
I
1D(J) D(K) c

(I)
1 c̄

(3)
1 + (A.19)

+BI
1CJ

1 (c1c̄1)
(3)c

(I)
1 c

(J)
1 (c̄−1c̄1)

(K)

)

|0〉 − ?-conj .

Therefore, the correlator Ctd3 = 〈Σ|B B?TD3|0〉 is:

Ctd3 =
∑

I 6=J 6=K 6=3

〈

−B3
−1C

I
1 (c̄−1c̄1)

(J)(c−1c1)
(K) c

(I)
1 c̄

(3)
1 +

+ BI
1CJ

1 (c̄−1c̄1)
(K)c

(I)
1 c

(J)
1 (c1c̄1)

(3)
〉

+ ∗-conj .

Factorizing into holomorphic and antiholomorphic parts we get

Ctd3 = 2
∑

I 6=J 6=K 6=3

(

B3
−1C

I
1BKI(BJ3)

∗ − BI
1CJ

1 DIJ(BK3)
∗
)

+ ∗-conj , (A.20)

where BIJ ≡ 〈(c−1c1)
(I), c

(J)
1 〉 was introduced and evaluated in [16], eqs. (4.18), (4.20),

and (4.21). Additionally,

DIJ ≡ 〈c(I)
1 , c

(J)
1 , c

(3)
1 〉 =

zIJzI3zJ3

ρIρJρ3
, DI4 = −D4I =

zI3

ρIρ3ρ4
, I, J 6= 4 . (A.21)

The full amplitude is

{TD3} =
12

π

∫

A
dxdy Ctd3 = −5.7168 . (A.22)

The contribution to the potential is κ2V = 4
4!{TD3} td3 = −0.9528 td3.

A.3 Couplings of tachyon to massive fields

In all cases the massive field will be inserted on the moving puncture z3 = ξ.

Elementary contribution to t3f1. With F1 ≡ c−1c̄−1 inserted at z3 = ξ we find:

B B?(c−1c̄−1)
(3)|0〉 = (C3

1C3
1 − B3

1 B3
1)|0〉. (A.23)

{T 3F1} =
12

π

∫

A
dxdy

2

(ρ1ρ2ρ4)2
(C3

1C3
1 − B3

1 B3
1) = −2.6261 . (A.24)

The contribution to the potential is: κ2V = 4
4!{T 3F1}t3f1 = −0.4377 t3f1.
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Elementary contribution to t3f2. With F2 ≡ c1c̄1L−2L̄−2 at z3 = ξ, the ghost part is

that of the four-tachyon amplitude (eq. (3.34) of [16]). With w = 0 corresponding to z = z3,

and S(z,w) denoting the Schwarzian derivative, the holomorphic matter correlator is:

〈L(3)
−2〉 = 〈T (3)(w = 0)〉 = ρ2

3〈T (z3)〉 +
26

12
S(z,w) =

13

6
ρ2
3(2β

2
3 − ε3) . (A.25)

Therefore, the amplitude is

{T 3F2} = −24

π

∫

A

dxdy

(ρ1ρ2ρ3ρ4)2

∣

∣

∣

13

6
ρ2
3(2β

2
3 − ε3)

∣

∣

∣

2
= −337.571 . (A.26)

The contribution to the potential is κ2V = 4
4!{T 3F2}t3f2 = −56.262 t3f2.

Elementary contribution to t3f3. With L−2c1c̄−1 inserted at z3 = ξ we find

BB?(c1c̄−1)
(3)|0〉 = −B3

−1B
3
1 |0〉 . (A.27)

Ct3f3
≡ 〈Σ|B B?TT (c1c̄−1)

(3)T |0〉 · 〈L(3)
−2〉

= − 2B3
−1B

3
1

(ρ1ρ2ρ4)2
· 13

6
ρ2
3(2β

2
3 − ε3) . (A.28)

With F3 ≡ L−2c1c̄−1 + c−1L̄−2c̄1, the string amplitude relevant to t3f3 is:

{T 3 F3} =
12

π

∫

A
dxdy (Ct3f3

+ C∗
t3f3

) = 78.1432 . (A.29)

The contribution to the potential is: κ2V = 4
4!{T 3F3} t3f3 = 13.024 t3f3.

Elementary contribution to t3g1. With b−2c1 c̄−2c̄1 at z3 = ξ, one finds

BB?(b−2c1c̄−2c̄1)
(3)|0〉 = C3

2 B3
−1(c1b−2)

(3)|0〉 . (A.30)

The state c1b−2|0〉 is created by the non-primary ghost current j(z) = cb(z) by acting on

the vacuum. For the ghost current

j(w) = j(z)
dz

dw
− 3

2

z′′

z′
→ j(w = 0) = ρ3(j(z3) − 3β3) . (A.31)

We thus have the correlator:

Ct3g1
≡ 〈Σ|B B?TT (b−2c1 c̄−2c̄1)

(3)T |0〉

= C3
2 B3

−1

1

(ρ1ρ2ρ4)2

〈

cc̄(0) cc̄(1)ρ3(j(z3) − 3β3)cc̄(t = 0)
〉

= C3
2 B3

−1

ρ3

(ρ1ρ2ρ4)2
· 2

(

1

ξ
+

1

ξ − 1
− 3β3

)

. (A.32)

With G1 ≡ b−2c1 c̄−2c̄1 − c−2c1b̄−2c̄1, the amplitude relevant for the t3g1 coupling is

{T 3 G1} =
12

π

∫

A
dxdy (Ct3g1

+ C∗
t3g1

) = 1.6350 . (A.33)

The contribution to the potential is κ2V = 4
4!{T 3G1} t3g1 = 0.2725 t3g1.
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