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is much closer to 1, reducing the mismatch with perturbation theory. We show that all

these features persist over a wide range of couplings and that the details of filtering prove

immaterial. We investigate the properties of the kernel spectrum and find that the kernel

non-normality is reduced. As a side effect we observe that for certain applications of the

filtered overlap a speed-up factor of 2-4 can be achieved.
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1. Introduction

From a theoretical viewpoint the ascent of “overlap” fermions [1 – 3], i.e. fermions which at

zero quark mass satisfy the Ginsparg Wilson (GW) relation [4] (ρ is a parameter that will

be specified later)

γ5D + Dγ̂5 = 0 , γ̂5 = γ5

(

1 − 1

ρ
D

)

(1.1)

and thus realize a lattice version of the continuum chiral symmetry [5]

δψ = γ̂5ψ , δψ = ψγ5 (1.2)

together with an index theorem [6, 7], represents a major breakthrough in the field of non-

perturbative studies of QCD. We know how to discretize fermions in a way that preserves

the relevant symmetries: (i) gauge invariance, (ii) flavor symmetry, and (iii) chiral invari-

ance. Unfortunately, from a practical viewpoint the usefulness of this concept is limited

by the fact that the overlap tends to be one to two orders of magnitude more expensive,

in terms of CPU time, than a standard Wilson Dirac operator.

In this paper we study a variant of the overlap operator which makes use of a UV

filtered Wilson kernel. Here, the “filtering” refers to replacing the original (“thin”) links

of the gauge configuration in the standard definition of the Wilson kernel by “thick” links

obtained through APE [8] or HYP [9] smearing. This is a legal change of discretization

as long as one keeps the iteration level and smearing parameters fixed all the way down

to the continuum, since the “thick” links transform under a local gauge transformation

– 1 –



J
H
E
P
0
9
(
2
0
0
5
)
0
3
0

in the same way as the “thin” links; it should be seen as a modification of the operator

and not of the gauge background. Such filtering has been used in the context of staggered

quarks, where it has been found to reduce UV fluctuations, in particular taste changing

interactions due to highly virtual gluons [10]. In ref. [11] filtered staggered quarks were

compared against overlap quarks (where the filtered version was merely considered for

completeness), and it was observed that a single filtering step may speed up the forward

application of the overlap operator Dov on a source vector by a factor 2-4, depending on

the gauge background. This was seen to come through a reduction of the degree of the

Chebychev polynomial needed to approximate the inverse square root or sign function in

the definition of the massless overlap [3]

aDov = ρ
[

1 + DW,−ρ(D
†
W,−ρDW,−ρ)

−1/2
]

= ρ [1 + γ5 sign(aγ5DW,−ρ)] (1.3)

with DW,−ρ = DW −ρ/a the Wilson operator at negative mass −ρ/a. However, what

matters in view of most phenomenological applications is the performance of the massive

operator (bare quark mass m)

Dov,m =

(

1− am

2ρ

)

Dov + m (1.4)

in the process of calculating a given physical observable to a pre-defined accuracy. In other

words the total CPU time spent depends on:

1. The number of forward applications of the shifted Wilson operator DW,−ρ (or, gener-

ally speaking, of the kernel) needed to construct the massless overlap operator (1.3).

2. The number of iterations spent on inverting the so-constructed massive operator (1.4)

for a given renormalized quark mass (or a given M2
π).

3. The number of gauge backgrounds needed to reach a pre-defined statistical accuracy

of the desired observable at a given lattice spacing a.

4. The lattice spacing needed to enter the scaling window.

The main emphasis of this paper will be on point 1; in particular we attempt to give an

understanding of the observed speedup in terms of the spectral properties of the underlying

hermitean (shifted) Wilson operator HW = γ5DW,−ρ. At first sight it might seem that point

2 does not need to be considered at all. At fixed bare mass m and fixed ρ the filtered and

the unfiltered overlap do not differ on this point, since the number of forward applications

of Dov,m to get a column of the inverse depends only on its condition number, and that

is 2ρ/m for either variety. As we shall see, the optimum ρ (w.r.t. locality) gets reduced

through filtering whereas Zm = Z−1
S = Z−1

P increases and this means that in the filtered

case one has to use a smaller bare mass to work at a fixed physical mren = Zmm. These

two aspects tend to compensate, and as a result there is little net effect on point 2 from

filtering. Whether in points 3 and 4 filtering brings further savings is not clear, but we

plan to address this issue in the future.
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Figure 1: Eigenvalue spectra of DW with κ = κtree
crit = 0.25 in the quenched Schwinger model (162,

β = 3.2, 10 configurations) without filtering and after 3 steps with α = 0.5 (i.e. equal weight to the

original link and the staple, see [12] for details; in 2D APE involves already the full hypercube).

Filtering depletes the “bellies”, makes the physical (leftmost) branch narrower and shifts it to the

left.

Let us try to obtain a first understanding of the effect of filtering in terms of the

spectrum of the underlying (non-hermitean) Wilson operator. We are going to compute

all eigenvalues, and to avoid spending too much CPU time on this illustration, we shall do

this in 2D, but it is clear that the conceptual issue is — mutatis mutandis — the same as

in 4D. In d dimensions the Wilson Dirac operator has d + 1 branches, and the respective

flavor multiplicities are
(

d

0

)

,

(

d

1

)

, . . . ,

(

d

d

)

. (1.5)

Thus in 2D the Wilson operator has 3 branches with multiplicities 1,2,1, while in 4D it has

5 branches with multiplicities 1,4,6,4,1, respectively. Figure 1 shows the complete spectrum

of DW with the hopping parameter fixed at its tree-level critical value, κ = 0.25, on 10

configurations of size 162 at β = 3.2 in the quenched Schwinger model. Besides the “thin”

link operator also its UV filtered descendent is shown. In terms of the kernel spectrum the

filtering is seen to have the following effects:

(a) The two/four “bellies” are depleted — in particular exactly real modes which cannot

be assigned in a unique way to one of the three/five branches are severely suppressed.

(b) The horizontal scatter of any of the three/five branches diminishes.

(c) The additive mass renormalization of the physical (leftmost) branch is substantially

reduced.

If one were to ignore the kernel non-normality (we shall come back to this point), the

spectrum of DW could be linked, on a mode-by-mode basis, to the one of D†
W,−ρDW,−ρ,

HW = γ5DW,−ρ and Dov. Then the first observation above (the reluctance of the filtered

– 3 –



J
H
E
P
0
9
(
2
0
0
5
)
0
3
0

β 5.66 5.84 6.00 6.26

geometry 84 124 164 244

geometry 83×16 123×24 163×32 —

Table 1: Survey of matched 4D couplings and geometries with fixed L/r0 ≈ 3, according to the

interpolation formula of ref. [14]. The first coupling is slightly out of bound (see discussion in [14]).

eigenvalues to show up near the projection point ρ) simply means that the effect of filtering

on the spectrum of HW is to deplete the vicinity of the origin by pushing the eigenvalues

further towards the ends of the interval [−2d+1, 2d− 1]. In spite of the caveat mentioned,

the thinning effect that (any kind of) smearing has on the spectrum of HW near zero is

indeed the reason for the speedup in point 1 above. A bigger interval [0, ε2[ or ] − ε, ε[

that does not need to be covered by the polynomial/rational approximation to the 1/
√

. or

sign(.) function translates into a lower degree and thus into fewer forward applications of

the kernel operator.

In the remainder of this article we shall address the spectral properties of HW in more

detail (section 2), and show that (a reasonable amount of) filtering does not degrade the

locality properties of Dov, but rather makes the overlap operator more local (section 3).

We continue with an explicit demonstration that the kernel non-normality gets reduced by

filtering (section 4). We add some observations relevant to phenomenological applications

of the filtered overlap; in particular ZA is shown to be much closer to the tree-level value

1 than for the unfiltered variety (section 5). We rate this as a sign that perturbation

theory might work far better for the filtered overlap. We make an attempt to compare our

simple filtering recipe against other approaches (section 6). Finally, the appendix contains

spectral data which suggest that the spectral density of HW at the origin is non-zero for

any β and any filtering level.

We shall use pure gauge backgrounds and set the scale through the Sommer parameter

r0 [13]. We choose the Wilson gauge action, and since r0(β) is known [14] it is easy to select

β values such that the resulting lattices are matched, i.e. have fixed spatial size L'1.5 fm,

with the resolution varying by a factor 3 from the coarsest to the finest lattice — see table 1

for details. Henceforth we set a = 1.

2. Speedup and kernel spectrum

In a quenched simulation the overhead, in terms of CPU time, of overlap versus Wilson

quarks comes in the first place from the polynomial or rational approximation to the 1/
√

.

or sign(.) function in (1.3). Let us assume1 that the lowest eigenvalue of the unfiltered

|HW| is 0.14 while the highest eigenvalue takes the free field value 7. This leads to the task

to construct a polynomial/rational approximation of the inverse square root over the range

[ε2, 1] with ε = 0.02 the inverse condition number of |HW|. Modest filtering will lift the

lowest eigenvalue to something like 0.49, while the largest eigenvalue is almost invariant.

1In fact, these values are rather close to the actual situation at β'6.0, after projecting out the lowest

10-15 eigenvectors.
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Figure 2: Sequence of the lowest 15 eigenvalues of |HW| on 25 configurations at β = 6.0 without

filtering and after 1,3 steps of APE (left) or HYP (right) filtering. Throughout ρ = 1.

Then the task is to construct the approximation over the range [ε̃2, 1] with ε̃ = 0.07 the

filtered inverse condition number. The lower bound increasing from 0.0004 to 0.0049 means

that one gets away with a smaller overall polynomial degree or an increased minimum root

of the denominator polynomial. Therefore, the filtered overlap requires fewer forward

applications of D†
W,−ρDW,−ρ and this is how the savings on CPU time in point 1 above

come about. In the remainder of this section we will elaborate on this statement, replace

the fictitious numbers by actual figures from real simulations and see that the conclusion

remains unchanged.

Figure 2 shows, as an illustration, the 15 lowest eigenvalues [15] of |HW| on 25 con-

figurations at β = 6.0, without filtering and after 1,3 steps of APE or HYP smoothing.

The filtering increases the upper end of the band of eigenvalues shown. In fact, just this

upper end matters in terms of CPU time, since in practice one projects out the lowest few

modes [16] and constructs the function in (1.3) over the relevant spectral range of |HW|
on the subspace orthogonal to these modes. Hence the sequence of the 15th eigenvalue

represents the relevant quantity, if 14 modes are treated exactly, and this band gets lifted

by filtering. Evidently, a single APE step is less efficient than a single HYP step, and

adding two more steps lifts the 15th eigenvalue further, but the lifting factor is no more

as large as it was in the first step. Here and below we use the parameters αAPE = 0.5,

αHYP = (0.75, 0.6, 0.3) [9] (for details of the SU(3) projection see e.g. [17] or the appendix

of [18]) and, unless stated otherwise, ρ = 1.

Figure 3 shows the mean and the standard deviation of the 15 lowest eigenvalues of

|HW|, with our standard filtering options (none, 1APE, 3 APE, 1 HYP, 3HYP). In this

logarithmic representation it is easy to see that (apart from the coarsest lattice which

represents a special case discussed in appendix A) all 15 eigenvalues get lifted, at a given

coupling, by virtually the same factor. Specifically, the 15th2 eigenvalue gets multiplied by

λ1 HYP/λnone = 4.8, 4.2, 3.2 at β = 5.84, 6.00, 6.26. Thus the lifting effect that filtering has

2This number needs to be scaled with the physical box volume; working, for any given β, in a (2.0 fm)4

box instead of (1.5 fm)4, our statement would most likely be adequate for the 47th mode.
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Figure 3: Mean and standard deviation (β = 5.66, 5.84, 6.00, 6.26, from top to bottom) of the

15 lowest eigenvalues of |HW| at ρ = 1 in semi-logarithmic form with 0,1,3 steps of APE or HYP

filtering.
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β 5.66 5.84 6.00 6.00 (ρ = 1.4) 6.26

none 0.149(02) 0.087(2) 0.123(1) 0.222(3) 0.187(1)

1 APE 0.146(05) 0.213(4) 0.290(2) 0.343(5) 0.368(2)

3 APE 0.237(12) 0.364(6) 0.469(2) 0.547(7) 0.557(2)

1 HYP 0.281(14) 0.419(7) 0.519(2) 0.618(5) 0.597(2)

3 HYP 0.548(14) 0.653(5) 0.717(1) 0.639(1) 0.770(1)

Table 2: Start of the “bulk” part of the eigenvalue spectrum of the shifted hermitean Wilson

operator |HW| without filtering and after one or three APE or HYP steps. We use the mean of the

15th-smallest eigenvalue to define the “bulk” edge. Unless indicated otherwise, the numbers refer

to the case ρ = 1.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

1APE vs. 1HYP
3APE vs. 1HYP
3APE vs. 1APE

Figure 4: Correlation of the 15 eigenvalues closest to zero of HW with various filtering options at

β = 6.0.

on the “bulk” part of the |HW| spectrum diminishes somewhat towards the continuum,

but for accessible couplings it remains substantial. Details of the ensemble average of the

15th eigenvalue are collected in table 2. The second observation is that the bands become

flatter at large β, hence the onset of the “bulk” becomes a less ambiguous concept at

weaker coupling. Had we chosen the 10th or 20th mode to define the “bulk edge” instead

of the 15th, this would cause a small change at β = 6.26, but it would make a substantial

difference at the smallest β shown.

A point of theoretical interest is whether the low-lying eigenvalues of the (shifted)

hermitean Wilson operator HW are correlated, between different smearing levels, just as

the low-lying eigenvalues of the final Dov were found to be correlated for large enough

β [11]. Figure 4 shows that this is almost true — the eigenvalues correlate if they are

sufficiently large in absolute magnitude, but the correlation weakens closer to the origin.

Here, a technical issue comes along. Ideally, one would pair the eigenvalues by considering a

smooth interpolation between the two filtering recipes. Changes in topology (as seen by the

overlap operator) would then be evident as stray points in quadrants 2 or 4. However, since

– 7 –
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Figure 5: Eigenvalue flows of HW with three filterings (none, 1APE, 1 HYP) on one 164 configu-

ration.

we just know the eigenvalues shown we decided to pair them starting from 0. Now there

are no points in quadrants 2 or 4 by definition and changes in topology manifest themselves

through a reduced correlation of the few lowest eigenvalues in absolute magnitude. Such

topology changes are expected to occur with an O(a2) re-definition of the overlap operator,

e.g. by changing the filtering or ρ [11].

A similar conclusion is drawn from the flow of eigenvalues HW as shown in figure 5 for

one 164 configuration. One effect of filtering is to stretch the whole scenery in the vertical

direction (note the vertical scale). Filtering also shifts the entire eigenvalue flow to the left

which is consistent with the reduction of the additive mass renormalization of the kernel

operator as discussed in the introduction. Note that there is, from a conceptual viewpoint,

no reason to prefer one filtering level over any other one; what we see is just a manifestation

of the O(a2) ambiguity of the overlap operator [11].

To assess the CPU time needed for the massless overlap, the behavior of the “bulk edge”

of the |HW| spectrum is one ingredient. What really matters is the condition number,

thus we need to study the largest eigenvalue, too. From the naive discussion around

figure 1 in the introduction one expects that filtering barely affects the largest eigenvalue

of |HW|. It turns out that this is indeed true, for instance at β = 6.0 a single HYP

filtering step lifts it from 6.55(1) to 6.88(1). Hence, filtering has an overall beneficial
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Figure 6: Condition number of |HW| on 25 configurations at β = 6.0 without projection (left) and

with 14 modes handled exactly (right), after 0,1,3 steps of APE or HYP filtering.

β 5.66 5.84 6.00 6.00 (ρ = 1.4) 6.26

none 43.5(04) 75.2(15) 53.2(4) 27.9(4) 35.3(2)

1 APE 47.2(18) 31.8(06) 23.4(2) 18.6(3) 18.5(1)

3 APE 30.5(17) 19.0(03) 14.7(1) 11.9(2) 12.4(1)

1 HYP 25.7(14) 16.5(03) 13.3(1) 10.5(1) 11.6(1)

3 HYP 12.8(04) 10.6(01) 9.69(3) 10.2(1) 9.04(2)

Table 3: Mean condition number 1/ε of |HW| at ρ = 1 after projecting the 14 lowest eigenmodes.

effect on the condition number as illustrated in figure 6. Without projection the condition

number fluctuates wildly and occasionally it may increase through filtering (i.e. the lowest

eigenvalue decreases, cf. figure 2) but after projecting 14 eigenmodes this never occurs.

The bottom line is that the combination of filtering and projection reduces the condition

number much more vigorously than either one alone could do. Average condition numbers

after projecting out 14 eigenmodes are collected in table 3 (regarding the first entry, cf.

appendix A). As a side remark we note that the horizontal increase to the left explains

why in a fixed physical volume simulating unfiltered overlap quarks on a coarse lattice is

not so much cheaper than on a fine one; for the filtered version this penalty is reduced.

We have also studied the condition number of |HW| as a function of the parameter ρ.

With and without filtering the minimum is rather shallow and at a ρ value above 1. Since

in the free case

ε =











ρ

(8 − ρ)
for 0 < ρ ≤ 1

(2 − ρ)

(8 − ρ)
for 1 ≤ ρ < 2

(2.1)

we expect that larger β values will further drive the minimum location towards ρ = 1.

The last step is to convert the reduced condition number, brought by the filtering, of

|HW| on the subspace orthogonal to the lowest 14 modes into a lower degree of the poly-

nomial/rational approximation of the 1/
√

. function in (1.3) and thus into actual savings

of CPU time in step 1 of the introduction.
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The precise speedup factor depends on
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Figure 8: Mean and standard deviation of the

Chebychev polynomial degree used to achieve a

minimax accuracy of 10−8. At β = 6.0 and ρ =

1, a single HYP step results in a speedup by

a factor ∼ 4 for the massless overlap operator.

Comparing to the situation with ρ = 1.4 and no

filtering the factor is ∼2.

the implementation of the massless overlap

operator (1.3). For definiteness let us con-

sider the approximation of the inverse square

root over the range [ε2, 1] through Cheby-

chev polynomials [16]. Figure 7 shows on

the l.h.s. for a few inverse condition numbers

ε of |HW| the well known exponential fall-off

pattern of the truncation error of the Cheby-

chev approximation versus the number of

applications of H2
W = D†

W,−ρDW,−ρ. What

matters for our purpose is the dependence

of the polynomial degree required to reach

a fixed minimax accuracy — say δ = 10−8

over the full approximation range — on ε.

As is evident from the r.h.s. of that figure,

the relation

degree ∝ ε−1 (2.2)

holds in good approximation. Thus, from (2.2) and a look at table 3 one predicts that at

β = 6.0 and ρ = 1 a single HYP step will speed up the construction of the overlap (on

average) by a factor 53.2/13.3 = 4.00, and this is in good agreement with what we find in

actual runs (see figure 8). On a coarser lattice this factor would be somewhat larger (4.56

at β = 5.84) while on a finer lattice it tends to decrease (3.04 at β = 6.26), but it certainly

remains substantial at all accessible couplings.
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To approximate the inverse square root or sign function over the relevant range, two

main strategies are found in the literature. Polynomial [19, 20, 16] and rational [20, 21]

representations have been tried. We have concentrated on the Chebychev variant, since

this one is efficient and easy to implement. It goes without saying that the lifting effect

on the bulk of the |γ5Dkern| eigenvalues translates into similar savings on CPU time in

step 1 of the introduction, if another representation is used. For instance, in the rational

approach it is the increase of the smallest zero of the denominator polynomial that lets one

get away with fewer iterations in the inner multishift CG.

For five dimensional variants of the overlap operator [22 – 26], in particular the domain

wall formulation, the computational gain comes from the reduction of the extent of the

fifth dimension needed to reach a given residual mass. What we would like to stress here

is simply that our proposal to replace the “thin” links by “thick” links is generically useful

for any kind of overlap variant.

3. Locality

It has been shown [27] that the overlap operator cannot be ultralocal, as opposed to the

Wilson operator where DW(x, y) = 0 for ||x− y||1 >1. To guarantee the universality of the

underlying field theory and hence to obtain the correct continuum limit it is sufficient to

have an operator with

Dov(x, y) ∝ exp(−ν||x − y||) for ||x − y|| À 1 (3.1)

where the localization ν is of the order of the cut-off, i.e. ν = O(1) [in lattice units].

In practice, for a given lattice spacing the condition (3.1) gives an upper bound on any

physical mass that one can extract, and it is therefore crucial to have an operator as local as

possible, i.e. with a maximal ν. In [28] it has been demonstrated that the standard overlap

operator indeed obeys (3.1). It is clear that their proof goes through for our filtered variant,

but it is open in which way the localization ν is influenced. Naively, one might think that

the locality will deteriorate, since the original links entering the covariant derivative of the

filtered kernel spread over a larger volume. As first observed by Kovacs [29], the filtered

overlap turns out to be even more local than the standard one and this is achieved without

tuning ρ.

In figure 9 we plot the localization of Dov at β = 6.0 with two projection parameters

(ρ = 1.0, 1.4) and two filtering options (none, 1HYP). The ordinate is the maximum over

the 2-norm of Dovη at x with η a normalized δ-peak source vector at the point y in the

lattice, the abscissa is the “taxi driver” distance d1 = ||x−y||1 to the location of the δ-peak,

i.e. we plot the function

f(d1) = sup
{

||(Dovη)(x)||2
∣

∣

∣
||x − y||1 = d1

}

(3.2)

versus d1, as first studied in [28]. Comparing the two unfiltered operators (black/dark
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diamonds and crosses) one finds their result reproduced that (at this β) adjusting ρ to a

value around 1.4 lets f(d1) fall off steeper than with the value 1.0 which is the canonical

choice in view of the spectrum of the Wilson operator sufficiently close to the contin-

uum (cf. figure 1). The interesting observation is that a single HYP step together with

ρ = 1.0 (red/light squares) results in an even steeper descent than the unfiltered version

with ρ = 1.4 (which was chosen to nearly optimize the locality of the unfiltered oper-

ator). The last curve shown (red/light pluses) indicates that one should not attempt

to combine the filtering with a ρ value that would be optimal for the unfiltered opera-

tor.

An obvious question is whether filter-

0 4 8 12 16 20 24 28 32
d1

���
��

���
��

0.0001

0.01

1

||D
(d

1)|
|

none 16
4

1 HYP 16
4

none 16
4
, ρ=1.4

1 HYP 16
4
,ρ=1.4

Figure 9: Localization of the overlap at β = 6.0

without filtering and after 1HYP step, for ρ =

1.0 and ρ = 1.4. A single HYP step proves more

efficient than optimizing ρ. Filtering and ρ > 1

should not be combined; for the filtered operator

the untuned choice ρ = 1 is reasonable (but still

not optimal).

ing remains useful on fine lattices. Fig-

ure 10 shows the fall-off at four couplings

with no smearing, 1APE and 1HYP step,

with ρ = 1 fixed. On the coarsest lat-

tice smearing alters the locality just mod-

estly, on the two intermediate ones (β =

5.84, 6.00) the locality gets substantially

improved, with HYP doing a better job

than APE. On the finest lattice, the im-

provement is still sizable, but there is al-

most no difference among the two filtering

recipes. At this coupling further smear-

ing steps would then diminish the local-

ity. The localization measured with the

definition (B.1) [which we use for techni-

cal reasons discussed below] is summarized

in table 4.

There is a loose connection between the localization of Dov and the spectrum of HW,

for instance

||Dov(x, y)|| ≤ const × exp

(

−θ

2
||x − y||1

)

(3.3)

is a bound found in [28], where ||.|| is the matrix norm in Dirac and color space. The

exponent θ/2 in (3.3) is defined via the largest and smallest eigenvalue of D†
W,−ρDW,−ρ

through

cosh(θ) =
λmax/λmin + 1

λmax/λmin − 1
=

1 + ε2

1 − ε2
(3.4)

where we like to express the r.h.s. in terms of the inverse condition number ε of |HW|.
Expanding either side to first order one obtains the simple relation (after getting rid of the

unphysical θ<0 solution)

θ

2
= ε + O(ε2) . (3.5)
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Figure 10: Localization of the unfiltered overlap and of the versions with one APE or HYP step.

The data are for the matched ensembles (84 at β = 5.66, 124 at β = 5.84, 164 at β = 6.00, 244

at β = 6.26) and ρ = 1 throughout. On sufficiently fine lattices the choice of smearing proves

irrelevant.

As already mentioned in [28] the exponent θ/2, defined via the spectral properties of

the underlying |HW|, is a rather bad estimate for the actual localization ν. The situa-

tion is not much better for the filtered variety, as a brief comparison of our tabulars 3

and 4 reveals.3 Though quantitatively unsuccessful, this connection still gives a qual-

itative hint that the overlap operator with a filtered Wilson kernel might enjoy better

localization properties due to the reduced condition number of HW . There are more

detailed bounds in the literature [30 – 34], but it seems fair to say that a quantitative

understanding of the localization of Dov in terms of the spectral properties of HW is a

challenge.

3Table 3 contains the condition number on the subspace orthogonal to the 14 lowest modes, while

ε in (3.3), (3.5) refers to the full operator. For two reasons we propose to re-interpret (3.5) as a pre-

diction for the locality of Dov with ε the ratio of the lower to the upper end of the bulk of eigenval-

ues of |HW|. A practical hint is that the unprojected condition number fluctuates wildly (see figure 6),

whereas the localization is rather stable for all configurations in an ensemble. Furthermore, in [28] it

is shown that an isolated near-zero mode of |HW| does normally not affect the locality of Dov. Of

course, one cannot repeat that argument indefinitely, but still a test whether a modified ε helps is in-

teresting.

– 13 –



J
H
E
P
0
9
(
2
0
0
5
)
0
3
0

β 5.66 5.84 6.00 6.00 (ρ = 1.4) 6.26

none 0.330(18) 0.236(17) 0.308(09) 0.571(10) 0.370(07)

1 APE 0.344(30) 0.447(29) 0.577(13) 0.543(06) 0.586(18)

3 APE 0.429(49) 0.634(30) 0.682(11) 0.485(04) 0.549(09)

1 HYP 0.469(48) 0.642(32) 0.695(10) 0.480(05) 0.554(05)

3 HYP 0.610(12) 0.630(32) 0.585(03) 0.476(08) 0.519(02)

Table 4: Localization ν of the overlap operator with an unfiltered Wilson kernel and after 1 or 3

steps of APE or HYP filtering. At β = 6.0 we compare to ρ = 1.4 which is nearly optimal without

filtering [28]. We use the definition (B.1); the error is only statistical.
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4
 lattice
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0.4
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1 HYP

β=6.00

16
4
 lattice

d1=20

Figure 11: Localization ν vs. ρ at β = 5.84 (left) and β = 6.00 (right) with no filtering, 1APE or

1 HYP step. This is the only case where we deviate from our convention to define ν via (B.1) and

use d1 = 5
4
L.

The localization ν as a function of the projection parameter ρ is presented in fig-

ure 11. For β = 5.84, 6.00 the optimum parameter for the unfiltered operator is around

ρ = 1.6, 1.4, respectively. For the 1HYP operator the localization at ρ = 1.0 does

not fall short of the maximal one by a large amount; this is why we restrict much of

our investigation with a filtered Dov to the case ρ = 1.0. Still, the figure suggests

that an optimal ρ for the 1 HYP filtered operator may be smaller than 1, and it de-

creases with increasing β; at β = 5.84 we find ρ1HYP
opt ' 1.0 and at β = 6.00 we find

ρ1 HYP
opt '0.8.

After dealing with some technical issues to make sure that an 484 lattice is large enough

(see appendix B), we have studied ν defined via (B.1) as function of ρ in the free case; the

result is shown in figure 12. The pattern observed in figure 11 should thus not come as a

surprise, filtering simply drives the locality properties of the overlap operator towards the

free field case. In fact, figure 12 offers a simple explanation why it is so difficult to predict

the localization ν from spectral properties of the underlying |HW| operator — in the free

case the inverse condition number (2.1) in the range 0<ρ<1 is monotonic, while ν has a

non-trivial extremum at ρfree
opt '0.54.
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Figure 12: Localization (B.1) in the free field case with an extremum at ρfree
opt ' 0.54 and a steep

descent to the left. Note that in the ρ range shown the inverse condition number ε = ρ/(8 − ρ) is

monotonic.

4. Kernel non-normality

An operator A is called normal, if it commutes with its adjoint

[A,A†] = 0 (4.1)

which implies that its left and right eigenbasis coincide. Normality has special implications

for lattice Dirac operators. For a normal Dirac operator D =
∑

k λk|k〉〈k| which, in

addition, is γ5-hermitean

γ5Dγ5 = D† (4.2)

we immediately obtain

D† =
∑

k

λ∗
k|k〉〈k| =

∑

k

λkγ5|k〉〈k|γ5 (4.3)

and this implies that eigenmodes with real λk are chiral (or may be linearly combined to

chiral modes in case of degeneracies). Furthermore, for such a D the eigenvectors of the

hermitean Dirac operator

H = γ5D =
∑

k

λkγ5|k〉〈k| (4.4)

are given by
√

λ∗
k|k〉 ±

√

λkγ5|k〉 with the corresponding eigenvalues ±|λk|.
The continuum Dirac operator is normal, and so are the naive and staggered dis-

cretizations (but the latter two yield more than one flavor in the continuum limit). The

GW relation (1.1) together with γ5-hermiticity (4.2) also implies normality of the operator,

hence Dov is normal. In fact, the overlap construction can be described as extracting the

unique unitary part of Dkern/ρ [35], and for a normal kernel it reduces to a simple radial

projection of the Dkern/ρ eigenvalues onto the unit circle.
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Figure 13: Non-normality (in lattice units) of the Wilson kernel, as defined in (4.5), as a function

of smearing. The improvement of the kernel normality does not seem to degrade towards the

continuum.

The shifted Wilson operator, which we use as a kernel, is not normal. Some conse-

quences of this non-normality have been explored in other contexts [36]. Here, it suffices

to point out that the relations between the eigenmodes of the overlap operator, its kernel

and the hermitean Dirac operator are not as simple as above for the case of a normal op-

erator. Typically, an eigenvector of the (hermitean) kernel will mix into every mode of the

overlap operator, which we expect to have a detrimental effect on the efficiency of overlap

construction algorithms. Thus, a practically relevant question is whether UV filtering can

reduce the amount of non-normality of the overlap kernel.

To quantify the non-normality of DW we measure the 2-norm of the commutator;

technically
∣

∣

∣

∣

∣

∣

[

DW,−1,D
†
W,−1

]
∣

∣

∣
η
〉
∣

∣

∣

∣

∣

∣
(4.5)

is averaged over a number of normalized random vectors |η〉. In figure 13 the commuta-

tor (4.5) is shown for all β and smearing levels (since this is not a physical observable, we

use lattice units). Evidently, any kind of filtering reduces it — the filtered kernel is thus

closer to normality and has left- and right-eigenvectors that are better aligned than for the

unfiltered version. Whether “smart” overlap construction algorithms can be written which

exploit this property is an open question.

5. Physics perspectives

To explore the physics potential of filtered overlap quarks a quenched spectroscopy study

would be highly desirable. Physical results should reproduce — after a continuum extrap-

olation — results in the traditional “thin link” formulation. It would be interesting to see

whether the speedup in point 1 of the introduction gets enhanced in points 2-4; in partic-

ular if scaling and/or asymptotic scaling set in earlier, this would make a real difference.
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Unfortunately, a detailed scaling study requires substantial computational resources, but

as a first step in this direction we want to investigate the renormalization of the axial-vector

current with filtered overlap quarks.

We follow the method of [37 – 39], where one starts from the usual (chirally rotated)

densities

P (x) = ψ̄1(x)γ5

[(

1 − 1

2ρ
Dov

)

ψ2

]

(x) (5.1)

Aµ(x) = ψ̄1(x)γµγ5

[(

1 − 1

2ρ
Dov

)

ψ2

]

(x) (5.2)

with ψ1 6=ψ2 (flavor non-singlet) and defines the correlators [x = (x, t)]

GPP (t) =
∑

x

〈P (x, t)P c(0, 0)〉 (5.3)

G∇AP (t) =
∑

x

〈∇̄4A4(x, t)P c(0, 0)〉 (5.4)

where ∇̄4 is the symmetric derivative in the time direction and P c is the conjugate of (5.1),

i.e. with the flavor indices 1↔ 2 interchanged. With these correlators at hand one forms

the ratio

ρ(t,m1,m2) =
G∇̄AP (t)

GPP (t)
(5.5)

where the second and third argument indicate that the spinors ψ1 and ψ2 in the densi-

ties (5.1), (5.2) are solutions to the massive operators Dov,m1
and Dov,m2

, respectively. On

account of the axial Ward identity (AWI) the ratio ρ should be constant in time, and for

light enough quarks (5.5) tends indeed to plateau rather nicely (see e.g. figure 1 in [39]). In

a slightly sloppy but transparent notation the plateau value is ρ(m1,m2). This quantity

will — to the extent to which the AWI is respected at finite lattice spacing — only depend

on the sum4 of the quark masses, and thus defines the mAWI quark masses

ρ(m1,m2) = ρ(m1 + m2) + O(a2) = mAWI
1 + mAWI

2 + O(a2) . (5.6)

The actual data for our ZA determination for quenched filtered and unfiltered overlap

quarks are generated with couplings and geometries as given in the last line of table 1. We

restrict ourselves to the canonical choice ρ = 1. We plot ρ(m1,m2) versus m1 + m2 for

various quark mass combinations and filtering levels in figure 14 for β = 5.66 and in figure 15

for β = 5.84, 6.00, respectively. They form one universal band, i.e. different m1 and m2

combinations with a fixed sum m1 + m2 always give the same ρ(m1 + m2) [within errors].

Furthermore, the relationship is in good approximation linear, but there is an anomaly

without filtering at our strongest coupling (figure 14). Here, the slope is negative, and this

4In principle, we might use the covariant conserved current for overlap quarks (see [40] and the 2nd work

in [44]) with the “thin” links replaced by “thick” links. Then the last term on the r.h.s. of (5.6), (5.7) would

be absent, and the AWI would be an exact identity. However, there is a practical problem with APE or

HYP filtering, due to the SU(3) projection involved. The solution via stout/EXP links is in exact analogy

to the dynamical case discussed in the last section.
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Figure 14: mAWI
1 + mAWI

2 vs. mbare
1 + mbare

2 [slope = Z−1
A ] at β = 5.66 . Without filtering ZA <0,

while any filtering prescription gives ZA > 1, with higher filtering levels resulting in a value closer

to 1.

0 0.1 0.2 0.3 0.4 0.5
(m1+m2)a

0

0.05

0.1

ρ(
m

1+
m

2)

none
1 APE
1 HYP
3 APE
3 HYP

0 0.1 0.2
(m1+m2)a

0

0.05

0.1

ρ(
m

1+
m

2)

none
1 APE
1 HYP
3 APE
3 HYP

Figure 15: mAWI
1 +mAWI

2 vs. mbare
1 +mbare

2 at β = 5.84, 6.00. Higher filtering levels shift ZA closer

to 1.

supports the view established in appendix A that with β = 5.66 and ρ = 1.0 the projection

point is “in” or “to the left” of the physical branch of the underlying Wilson operator, and

we effectively operate in the “zero fermion” sector. Also at β = 5.84 the unfiltered plateau

was not very pronounced either, resulting in a large systematic uncertainty beyond the

statistical error quoted below. We use the ansatz

ρ(m1 + m2) = const +
1

ZA
(m1 + m2) + const (m1 + m2)

2 (5.7)

and see whether we obtain acceptable fits and whether the first constant is consistent with

zero. It turns out that this is the case, and the associate ZA values are summarized in

table 5.

It is interesting to discuss both the general pattern of these ZA values and the relation

to 1-loop perturbation theory. Evidently, at fixed β and ρ the filtered ZA is much closer to

the tree-level value 1. We recover the relative strength ordering of section 2, i.e. one APE
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β 5.66 5.84 6.00 6.00 (ρ = 1.4)

Znone
A ill-def. 7.06(73) 3.145(94) 1.554(1) [39]

Z1APE
A 2.57(7) 1.66(02) 1.452(04) —

Z3APE
A 1.55(3) 1.23(01) 1.160(06) —

Z1HYP
A 1.44(2) 1.22(01) 1.153(03) —

Z3HYP
A 1.21(1) 1.10(01) 1.072(02) —

Znone
A |1−loop [41] 1.280 1.272 1.264 1.120

Table 5: ZA determined via (5.7) with various filtering prescriptions. On the last line the 1-loop

result [41] for the thin-link overlap ZV,A = 1 + CF 0.198206g2
0 + O(g4

0) = 1 + 1.585648/β + O(1/β2)

at ρ = 1.0 and ZV,A = 1 + CF 0.090301g2
0 + O(g4

0) = 1 + 0.722408/β + O(1/β2) at ρ = 1.4 is added

for comparison.

step is less efficient than 3 APE or a single HYP step, but the latter is topped by 3 HYP

steps. At β = 6.0 we compare to ρ = 1.4 which is the the standard choice for the “thin link”

overlap. Without filtering, Znone
A (ρ = 1.4)' 1.554 is about half of Znone

A (ρ = 1.0)' 3.145,

and this means that the choice ρ = 1.4 is not just near-optimal w.r.t. locality, but also

beneficial to tame (one particular) renormalization. Once the filtering recipe is specified,

ZA seems to be monotonic in 6/β = g2
0 , as expected from perturbation theory. In the

unfiltered case the 1-loop value is included in the last line of table 5 for comparison.

Assuming that in perturbation theory 1<Z1HYP
A <Znone

A holds for ρ = 1, one may compare

the deviation of the unfiltered β = 6.0 operator 3.145− 1.264 = 1.881 to 1.153− 1 = 0.153

which then amounts to an upper bound in the 1 HYP case. Evidently, the discrepancy is

dramatically reduced, which in view of the perturbative results in [42, 43], should not come

as a surprise. To get a slightly more quantitative view, we consider it useful to fit our data

without filtering at ρ = 1 to a Pade-type ansatz of the form

Znone
A =

1 + c1x + c2x
2

1 + (c1 − 1.585648)x
(5.8)

with x = 1/β, where the perturbative knowledge [41] (cf. caption of table 5) is built-in as

a constraint. In the same spirit a Pade ansatz for any of the filtered operators reads

Z
1HYP / 3HYP

A =
1 + c1x + c2x

2

1 + c3x
(5.9)

with — as of now — no constraint on c1 − c3 yet. There is a problem with the functional

forms (5.8), (5.9), since our data sets contain 2 and 3 entries, respectively, and there is

zero degree of freedom. Still, for an illustration such a “fit” might be worth while, and

the result is shown in figure 16. With sufficient data the curves would contain two pieces

of information. The asymptotic slope for x → 0 would predict the perturbative 1-loop

coefficients for Z1HYP
A , Z3HYP

A . And the pole in (5.8), (5.9), i.e. the values c1 − 1.585648

or c3, respectively, would predict the coupling where the perturbative description breaks

down. Hence, if the curves in figure 16 are indicative at all, it seems that filtering renders

the perturbative 1-loop coefficient of ZA much smaller, but the perturbative range gets

barely enhanced.
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Figure 16: Pade functional forms through our ρ = 1 data in standard (left) or double logarithmic

form (right). In the unfiltered case the constraint to reproduce the known 1-loop behavior is built

in and the latter is indicated with a dotted line. It seems the 1-loop coefficients of the filtered ZA

are dramatically reduced, while the perturbative range (blow-up point of the Pade ansatz) gets

barely enlarged.

6. Discussion

In this paper we have studied the massless overlap operator constructed from a filtered

Wilson kernel where the original “thin” links were replaced by “thick” links which behave

in the same manner under local gauge transformations. This is a legal change of the

fermion discretization as long as one particular filtering recipe [e.g. 1 HYP step with αHYP =

(0.75, 0.6, 0.3)] is maintained at all couplings. It amounts to an O(a2) re-definition of Dov

at fixed ρ, as does a change of ρ at fixed filtering level.

Our key observations are the following. First, the onset of the “bulk” part of the

spectrum of the underlying shifted hermitean Wilson operator HW = γ5(DW − ρ) gets

lifted. This leads to an increased inverse condition number ε (after projection typically by

a factor 2-4 through a single HYP step) and the latter reflects itself in a reduction (by

the same factor) of the polynomial degree (and thus the number of forward applications

of H2
W) needed to construct the inverse square root over the relevant range. What is the

precise impact on CPU requirements to invert the massive operator is a topic for future

research. Second, at standard couplings the filtered massless overlap is — even with the

untuned canonical choice ρ = 1 — better localized than the unfiltered version with an

optimally tuned ρ could ever be. Our finding is backed by the observation that in the free

case the optimum ρ (w.r.t. locality) is around 0.54 and thus substantially smaller than the

typical ρ' 1.4 used in the past. Our third observation is that the filtered kernel is much

closer to being a normal operator. In other words the left- and right-eigenvectors of DW

are better aligned with higher filtering level, and in this respect the effect of the “thick”

links is the same as a shift much closer towards the continuum under which the overlap

construction (1.3) tends to be a simple radial projection of the DW eigenvalues. Finally,
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our fourth observation is that the renormalization constant of the axial-vector current is

much closer to 1 with filtering than without. We rate this as a sign that lattice perturbation

theory for the filtered overlap might work much better than for the unfiltered variety. If

this is indeed so, and if it goes through for 4-fermion operators, it is likely to be the most

important consequence of our work, since it offers the perspective of considerably reduced

theoretical uncertainties in electroweak precision studies.

Let us finally discuss a variety of proposals in the literature that are similar in spirit

to the one put forth in the present paper.

There is a top-level version deriving from “parametrized fixed-point fermions”. The

idea behind this approach pursued by Hasenfratz and Niedermayer is that true fixed-point

fermions would satisfy the GW relation exactly [6], but a practical implementation is always

ultralocal. Hence, sticking such an ansatz into the overlap formula (1.3) yields fermions

with exact chiral symmetry and otherwise properties that are at least as good (but typically

better) than the version with a plain Wilson kernel [44].

Bietenholz has considered a variety of actions, originally based on RG concepts [45].

The idea was that an action with a spectrum close to the GW circle could be iteratively

improved in its chiral properties. Over time the focus has shifted towards using the overlap

formula (1.3) to have exact chiral symmetry, but it is clear that the kernel of his “hypercubic

overlap” benefits from a larger inverse condition number ε of |γ5Dkern| just as we do.

Gattringer and collaborators construct a “chirally improved” Dirac operator that in-

volves the full Dirac Clifford algebra with links restricted to the hypercube. The coeffi-

cients are adjusted such that (for a given coupling) the violation of the GW relation is

minimized [46]. The problem is the same as in the Bietenholz approach: a single forward

application with such a kernel is so expensive that the improvement, if it is not “perfect”,

does not really pay off.

DeGrand has considered — both perturbatively and non-perturbatively — Wilson and

clover action varieties that involve smeared gauge links [47, 42]. Based on this experience he

went on to construct a “variant overlap” which starts from a kernel with only scalar/vector

terms and smoothed links, and is thus sufficiently cheap as to allow for sticking it into the

overlap formula [48, 43].

The closest to what we do is found in the work of Kovacs [29]. He uses a “fat-link

clover” overlap in which all links are smeared, together with the tree-level value cSW = 1.

As far as we know, he was the first author to notice that such a filtered kernel allows for the

untuned choice ρ = 1, and still the resulting overlap shows good localization properties.

A related approach has been pursued by the Adelaide group [49]. Their “fat link

irrelevant clover” overlap quarks are built from a clover action in which only the irrelevant

pieces (i.e. the Wilson and the Sheikoleslami-Wohlert terms) use smeared links, but not the

covariant derivative. They found a similar speedup factor in the construction of the overlap

operator (cf. “step 1” in the introduction) and tied it to the reduced spectral density of

|γ5Dkern| near the origin.

Finally, “overlap” quarks with smeared gauge links have been used by several lattice

collaborations. RBC has found that the residual mass of domain-wall fermions at fixed N5

gets reduced [50], though they miss out an important ingredient, the projection to SU(3).
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UKQCD has used overlap valence quarks with 3-fold HYP smeared links on staggered sea

as supplied by the MILC collaboration, finding a surprisingly good signal on as few as 10

configurations [51]. Similarly, LHP and NPLQCD have used filtered domain-wall valence

quarks on staggered sea to compute the pion form factor [52] and the I = 2 ππ-scattering

length [53], respectively.

There is another idea that should not be confused with filtering. Using an improved

gauge action has been found to reduce ρ|HW|(0) by up to an order of magnitude [54 –

56]. There is, however, an important practical difference to the filtering concept, which is a

modification of the fermion action. As already discussed in [11], a better choice of the gauge

action improves, in the first place, the very low end of the |HW| eigenvalue distribution.

After projecting out the lowest O(15) eigenvectors (which nowadays is a standard thing to

do [16]) much of the advantage is lost (in figure 3 of [56] the lifting factor diminishes to the

right). By contrast, filtering lifts the complete low-energy end of the |HW| eigenvalues (in

our figure 3 one finds an almost-universal lifting factor) and the usefulness of filtering is

not vitiated by the projection. Still, it might be interesting to see whether the two ideas

can be fruitfully combined.

An extension of the filtering concept to full QCD is straightforward, albeit hampered

by a technical problem. These days, most dynamical fermion simulations are set up with

a HMC algorithm, and the latter requires the fermion action to be differentiable w.r.t. the

gauge links. The kernel of our filtered overlap quarks is differentiable w.r.t. the “thick”

links, but not w.r.t the elements of the original set, due to the projection involved in the

APE [8] or HYP [9] procedure. A convenient way out is offered by the stout/EXP links

introduced in [57], involving a differentiable mapping between the “thick” and “thin” links.

In pure gauge observables the usefulness of this smearing recipe was found to be restricted

to small parameter values [57, 18], and one may fear that this feature persists in stout/EXP

overlap quarks, since in perturbation theory they are equivalent to APE filtered overlap

fermions with αAPE = 1/(1 − 6αEXP) [58]. Thus, due to the pole at αEXP = 1/6 we

expect them to have a “narrow therapeutic range” in parameter space, but it is clear that

there is no conceptual issue in simulating full QCD with filtered overlap quarks beyond the

difficulties met in the unfiltered case [59].

To summarize, our suggestion is to use the overlap recipe (1.3) with an unimproved

(cSW = 0) Wilson kernel in which all links are replaced by some smeared descendents

of the actual gauge background. We recommend to stay with a moderate amount of

link “fattening”, e.g. with a single step of standard HYP smearing [9]. The projection

parameter ρ may be fixed at its canonical value 1, and in this sense the filtered overlap

involves less tuning than the unfiltered version.5 An important restriction is that the choice

of iteration level and smearing parameter must be the same for all couplings considered in

a scaling study. This is one point on which our proposal differs from some of the attempts

reviewed above which involve coefficients (e.g. in the extended γ-algebra) that are adjusted

“by hand” to yield a GW-type spectrum at one standard value of the gauge coupling. The

5Of course, there are parameters in the filtering recipe, but our results show that they hardly matter.

Thus filtering allows one to trade a parameter that needs to be tuned for parameters on which the lattice

data show very little sensitivity.
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other difference is that our kernel remains cheap and still requires fewer D†
kernDkern forward

applications. From a practical viewpoint, a clear advantage is the ease of implementation

of the “filtered overlap” — everyone with a running overlap code has it (in disguise).
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A. Cumulative eigenvalue distributions in 4D and 2D

In this appendix we discuss what can be learned from the cumulative eigenvalue distribu-

tion (CED). We consider both the eigenvalues in 4D generated for the main part of this

paper and data from dedicated runs in the quenched Schwinger model (QED with massless

fermions in 2D) to elucidate the effects that filtering and changing β have on the spectral

density of the hermitean Wilson operator HW = γ5DW,−1.

Figure 17 presents the cumulative eigenvalue distribution (CED) of the 15 smallest

eigenvalues of |HW| on the ensembles discussed before. We show it both in standard form

and in double logarithmic form, and the scale on the ordinate follows from the requirement

that it would extend up to 1, if all eigenvalues were calculated (cf. figure 18 below). For

the two intermediate couplings (β = 5.84, 6.00) we see the expected linear rise of the CED

near the origin, which soon gets complemented by a higher order piece. The coefficient of

the linear part is a measure for the spectral density of the hermitean Wilson operator at

the origin, ρ|HW|(0). That density being non-zero means that there is a finite probability

to encounter arbitrarily small eigenvalues. The main effect of smearing is to reduce this

spectral density, as is evident from the double logarithmic plots — here the initial slope

1 piece gets shifted downwards, and this corresponds to a smaller coefficient in front of

the linear piece in the standard representation. Our data at β = 6.26 are of lesser quality

— here we definitely cannot identify a linearly dominated regime. The situation is far

more favorable in figure 18 where quenched Schwinger model data are shown. Apart from

the statistics, the main difference is that all eigenvalues (extending up to ∼ 3 in 2D) are

included. The higher the filtering level or β, the more pronounced is the “jump” in the

CED at λ' 1. Note that with a chiral kernel all eigenvalues of |γ5Dkern| would be there,

i.e. the CED would be a step function at λ = 1. Finally, to come back to figure 17, the

situation at the strongest coupling (β = 5.66) is different, since here the linear piece in the

unfiltered CED is not larger than in the filtered versions. This is, because our choice ρ = 1

lets us “loose” the fermion — at this coupling our projection point is somewhere “in” the

physical branch or “to the left” of it, while for the filtered version ρ = 1 is still appropriate.

One might avoid such a situation by choosing a larger ρ with the unfiltered kernel, but

an even safer option might be to refrain from simulating unfiltered overlap quarks on such

coarse lattices. It looks like this is a situation where the filtered overlap may help a lot,

since it allows simulations on coarser lattices than the unfiltered operator, but in order to

really be useful such simulations should be in the scaling regime (and not just in the right

universality class), and this is, of course, not yet clear.
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Figure 17: Cumulative eigenvalue distribution (CED) of |HW| in standard (left) or double loga-

rithmic (right) form for β = 5.66, 5.84, 6.00 (from top to bottom) with 0,1,3 steps of APE or HYP

filtering. At each β the upper cut in the vertical direction is the same on the left and on the right

and the upper end in the horizontal direction is 0.2 throughout. Note the change in the ordinate

scale between different couplings. At β = 6.26 we definitely lack the statistics needed to see a

linearly dominated regime.

The spectral properties of HW play a role in the context of the physical interpretation

of the Aoki phase [60]. The latter is a conjectured phase, originally specific to Nf = 2

active Wilson fermions at negative mass, in which after switching off an external trigger

term

Ssource = ±hψγ5σ3ψ (A.1)
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Figure 18: Log-log plot of the cumulative eigenvalue distribution (CED) of |HW| in the Schwinger

model (Nf = 0, 162 geometry, β = 3.2, ρ = 1) without filtering (top curve) and after 1 or 3 filtering

steps. In all cases the CED starts out linearly, raises sharply somewhere near λ'1 and reaches 1

at λ' 3 (in 2D). This figure includes all eigenvalues of all three operators on 22,500 decorrelated

configurations.

parity and flavor break spontaneously and a condensate (const 6=0)

lim
h→0±

〈ψγ5σ3ψ〉 = ±const (A.2)

forms. Good numerical evidence for a non-zero condensate (A.2) in the (dynamical) 2-

flavor case for an appropriate choice of the negative mass −ρ(β) is found in [61]. Ref. [62]

argues that in the massless limit of the continuum theory a condensate of the form (A.2) is

simply an axial rotation of the usual (flavor diagonal) condensate and thus breaks neither

parity nor flavor. They relate the spectral density of DW to that of HW and argue that the

absence of a gap (around the origin) of the latter is indicative of chiral symmetry breaking

and that ρ|HW|(0) > 0 if and only if (A.2) is non-zero. This was later elucidated to be a

continuum argument [63], which — in view of our section 4 — might be an important point.

The next issue is whether there is an Aoki phase in the quenched theory with 2 valence

(but 0 sea) flavors [64, 65]. The simplest expectation is that qualitatively the picture with

the 5 Aoki “fingers” goes through, though the phase boundary is somewhat shifted w.r.t.

the Nf = 2 case.

Our 4D data in figure 17 clearly show the suppression of ρ|HW|(0) as one approaches

the continuum, but we cannot see any sign that this distribution would vanish at some

“critical” coupling. Given the uniform pattern in the figures (apart from the scale on the

y-axis they seem qualitatively similar), it seems more likely to us that ρ|HW|(0) will stay

non-zero for arbitrary couplings.

To test this view, we analyze the quenched Schwinger model where high statistics can

be reached. The couplings and geometries are chosen such as to have a fixed physical

volume, with a box size about 5 times larger than the Compton wavelength of the lightest
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β 0.8 1.8 3.2 5.0 7.2

geometry 8×8 12×12 16×16 20×20 24×24

statistics 90,000 40,000 22,500 14,400 10,000

statistics — — — 275,000 75,000

Table 6: Matched quenched 2D lattices; reweighting to Nf = 1 the lightest particle in the chiral

limit would fit 5 times into the box. In the first set all |HW| eigenvalues are determined with

statistics such as to have an equal number of eigenvalues. In the second set only the lowest 10

eigenvalues are computed.

degree of freedom in the chiral limit of the Nf = 1 theory. A survey of the parameters is

given in table 6 and for technical details we refer to [12].

Figure 19 provides an overview over the complete |HW| eigenvalue distribution; one

sees a “peak” at λ = 1 forming that gets more pronounced with higher β and higher filtering

level. This “peak” corresponds to the “jump” at λ = 1 in the CED of |HW| in figure 18.

Figure 20 presents the distribution of the lowest eigenvalue of |HW|. At low β this dis-

tribution accumulates at zero, at intermediate values of the coupling there is a horizontal

band of eigenvalues connecting down to zero, and at the largest β there are just scattered

eigenvalues. Evidently, one cannot draw a final conclusion whether these scattered eigen-

values really make up for a non-zero ρ(0), but it seems worth while to study this band in

the region of β values where it is clearly visible and see whether changing β implies some

structure, or whether it just stays flat, regardless of β.

Figure 21 presents the CED in the area of interest, the very-low λ region. At β =

5.0, 7.2 we show the data from the high-statistics run with 10 eigenvalues per configuration

(bottom line of table 6), but we checked that the results are consistent with what we get

from the runs where all eigenvalues were determined. At a given coupling filtering clearly

reduces ρ|HW|(0). The overall impression is that changing β merely rescales the y-axis,

in striking analogy with what we have seen in 4D (figure 17). If this is indeed true, the

natural conclusion is that ρ|HW|(0)>0 at any finite β in the quenched theory.

Figure 22 contains a summary of our determinations of the spectral densities ρ|HW|(0)

for various β and filtering levels, extracted from the initial slopes in the CED shown in

figure 21. It looks like eventually the density decreases exponentially in β and changing

the filtering level amounts to an overall rescaling factor which is, in good approximation,

independent of β. Obviously, this is just numerical evidence, but the message seems to be

as clear as one can possibly hope for from a numerical experiment. Note that for practical

reasons we cannot take the infinite volume limit, but given our physical box size we expect

finite volume effects to be exponentially small.

We remind the reader that (both in 2D and in 4D) we were working at fixed negative

mass m0 = −1 and pushed towards the continuum line. In other words, we were trying to

stay as far outside the Aoki phase as one can, if one wants to be in the supercritical region

with one overlap fermion. Of course, our data do not exclude the existence of a critical

β, but they favor the view that there is no βcrit that makes the |HW,−1| spectral density

strictly zero and therefore we conjecture that ρ|HW|(0) > 0 throughout the supercritical

region. Still, we do not see why this would create a problem for the localization of the

overlap operator, since the two seem not one-to-one inversely connected.
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Figure 19: Distribution of all eigenvalues of |HW| = |γ5DW,−1| at five β and 0,1,3 smearings.
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Figure 20: Distribution of the 1st eigenvalue of |HW| = |γ5DW,−1| at five β, with 0,1,3 smearings.

– 28 –



J
H
E
P
0
9
(
2
0
0
5
)
0
3
0

0 0.2 0.4
0

0.005

0.01

0.015

0.02

8x8, β=0.80, cum. eigenval. distr.

0 0.2 0.4
0

1

2

3

4

5

x 10
−3 12x12, β=1.80, cum. eigenval. distr.

0 0.2 0.4
0

1

2

3

4

x 10
−4 16x16, β=3.20, cum. eigenval. distr.

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−5 20x20, β=5.00, CED from 10 low. eig.

0 0.2 0.4
0

0.5

1

1.5

2

x 10
−7 24x24, β=7.20, CED from 10 low. eig.

Figure 21: Cumulative eigenvalue distribution of |HW| = |γ5DW,−1| at five β, with 0,1,3 smearings.
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Figure 22: ρ|HW|(0) versus β in the quenched Schwinger model. Filtering seems to reduce, for

all β, the eigenvalue density by a near-universal factor. The data suggest an exponential fall-off at

large β.

Finally, there is a simple argument that ρ|HW|(0) > 0 holds in all quenched or un-

quenched theories with a massive overlap determinant at all couplings. Acquire infinite

statistics at β = 0, Nf = 0. When integrating over the full configuration space the spectral

density is certainly non-zero. Results for the case of interest at finite β and maybe finite

Nf can be obtained through reweighting. As long as one can guarantee that there is no

configuration where the reweighting factor vanishes, the spectral density will be modified,

but it cannot be made strictly zero. This holds true in the quenched case and in the dy-

namical theory with an overlap determinant (m 6= 0,−2ρ), but it would not be true with

Wilson fermions at a negative mass.

B. Overlap operator locality in the free case

In this appendix we collect some technical points to make sure that a numerical investiga-

tion of the localization ν versus ρ as shown in figure 12 for a 484 lattice is not overwhelmed

with finite size effects.
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Figure 23: Free overlap couplings in four directions and the function (3.2) together with their

“effective masses” for (324, ρ = 1) and (484, ρ = 1). Some effective masses are missing, since

correlator values below 10−17 have been cut off (double precision limit). The good agreement of

the 324 and 484 data with evaluation point d1 = L (dotted vertical lines) suggests that these data

are much less affected by finite size effects than those near the maximal d1 = 2L. The correlator

with ρ = 0.54 is visibly steeper.

Considering f(d1) as given in (3.2) [28] on a finite lattice one encounters a technical

problem that is evident in figure 23. The free field case is far from showing rotational
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symmetry and the supremum function (3.2) has a couple of initial bumps (in particular at

d1 = 4, 8, 12), and this means that one needs to go to sufficiently large distances to measure

the slope in a logarithmic representation. On the other hand, the choice to measure the

distance in the 1-norm leads to rather large finite size effects for d1 >L, in particular the

region near the maximal distance d1 = 2L is heavily contaminated. Therefore, we tried

ν =
1

2
log

(

f(L − 1)

f(L + 1)

)

(B.1)

as a technical definition of the localization ν in (3.1). The comparison between the 324

and 484 geometries shows that our choice to evaluate the logarithmic derivative at d1 = L

produces rather consistent ν values, and we take this as a sign that they cannot be far from

the asymptotic exponent. For the (two-digit-precision) projection parameter that we find

to be optimal w.r.t. locality in the free case, ρfree
opt '0.54, the correlator is explicitly shown

to be steeper than in the ρ = 1 case.
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