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of the dominant and subdominant BLO effects in existing LO calculations. We also derive

similar expressions in the mass insertion approximation. We investigate in more detail

the focusing effect pointed out in our earlier work, which, at large tan β and µ > 0, leads

to a reduced supersymmetric contribution to the above processes. We also find that, in

some cases, flavour dependence, that accidentally cancels at leading order, can reappear at

BLO. We further include electroweak corrections, which, while generally subdominant, in

some cases may have a substantial effect. For example, their contribution to the charged

Higgs vertex in B̄ → Xsγ can be of the order of 20% at BLO. They can also reduce the

contribution of LL insertions to B̄s → µ+µ− and B̄s−Bs mixing by up to 20%, even at the

LO. We also analyse radiative generation of CKM elements and find the possibility that

the CKM matrix elements Kts and Kcb can be generated entirely by LR insertions. This

work constitutes the first complete analysis of dominant BLO effects in the GFM scenario.
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1. Introduction

Flavour physics, in both the leptonic and hadronic sectors, currently provides one of the

best hopes of discovering, or at least constraining, new physics beyond the Standard Model

(SM). In the hadronic sector in particular, decays mediated by flavour changing neutral

currents (FCNC) play an important role as the Glashow-Iliopoulos-Maiani (GIM) mech-

anism [1] ensures that both SM and contributions due to beyond the SM (BSM) physics

enter at the one-loop level. It is therefore possible that such contributions can be com-

parable to the SM ones, or even completely dominate the behaviour of the underlying

process. Once one takes into account the increasingly accurate experimental data that is

being gathered at both dedicated flavour physics experiments, as well as the B-physics pro-

grammes operating at collider experiments, useful constraints can often be placed on the

parameters and mass scale of a given model of new physics. Conversely, for some processes,

like B̄s → µ+µ−, a measurement of a branching ratio at the Tevatron would immediately

indicate a detection of BSM physics.

One of the most compelling extensions of the Standard Model is the Minimal Supersym-

metric Standard Model (MSSM) [2]. The non-renormalization theorem of the underlying

supersymmetric theory can explain the stability of scalar potentials in theories involv-

ing two different hierarchies. Additionally, the MSSM provides a viable cold dark matter

candidate (namely the lightest supersymmetric particle), a natural scheme for gauge cou-

pling unification, and is usually compatible with the precision electroweak data currently

available.

Softly broken low-energy supersymmetry (SUSY), however, like most new physics

schemes, allows for the possibility that contributions to FCNC and CP violating processes

can exceed SM expectations by orders of magnitude (the flavour and CP problems). The

source of the flavour problem in the MSSM is primarily due to the arbitrary nature soft

supersymmetry breaking terms [2].

The most common approach to these problems is to assume that the underlying theory

obeys the conditions imposed by minimal flavour violation (MFV) [3]. The definition of

MFV, presented in [3], is that flavour violation is determined completely by the structure of
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the usual Yukawa couplings. In other words, the mixings among the down and up squarks

are governed by the CKM matrix. In the MSSM this restricts the form the soft terms can

take (see [3] for the exact expressions). One popular scheme, that respects MFV, is that the

soft terms are universal at some high scale associated with supersymmetry (SUSY) break-

ing, like the grand unified scale or the Planck scale (a parameterisation used, for example, in

the Constrained MSSM). However, this hypothesis is not renormalization group invariant.

Flavour violating terms are induced, via running from the high scale Λ to the character-

istic mass scale of the squarks µSUSY , that are proportional to log(Λ2/µ2
SUSY )/(4π2) [4].

It should be noted however, that, provided the theory satisfies MFV up to the scale Λ (a

rather strong assumption), all FCNC transitions remain proportional to the appropriate

CKM matrix elements and the resulting low energy theory still satisfies the MFV hypoth-

esis. However, once seeds of non-universality are introduced at the high scale it is possible

that they can become amplified by running.

This provides motivation to generalise to a broader framework, namely general flavour

mixing (GFM) in the sfermion sector. In general, the flavour structure of the soft terms is

not protected by any symmetry and can be rather arbitrary. One simple example is that

a degree of non-universality can be allowed in the squark soft terms (beyond that allowed

by MFV). In this case additional effects are possible that are proportional, essentially, to

the degree of splitting between the entries for each generation.

Deviations from MFV can easily appear in a variety of SUSY models. In theories

with SUSY breaking mediated by supergravity, for example, it is possible to induce a

wide range of flavour violating effects [5] once one proceeds beyond the simplest minimal

SUGRA scheme [2]. Grand unified theories involving right handed neutrinos, like the

minimal SO(10) models with a specific family structure, often lead to additional sources of

flavour violation due to the interactions that exist, at the unification scale, between right-

handed down squarks and neutrinos [6 – 10]. Experimental limits and results are therefore

especially helpful when restricting the possible mixings between the various generations

and constraining these models.

In this paper we shall concern ourselves chiefly with flavour violation between the sec-

ond and third generations. FCNC processes involving such transitions have been studied

in detail in the context of the SM and the short-distance contributions to a wide variety of

processes have typically been calculated to NLO in the SM (the evaluation of long-distance

effects is another matter). In the case of B̄ → Xsγ these efforts have resulted in a very

good agreement between SM calculations and experimental results with relatively little

room left for new physics. When placing constraints on a given model it is useful to have

a calculation that is of a similar accuracy to the SM contribution. In the MSSM com-

plete NLO calculations, however, are rather complicated as additional two-loop diagrams

involving gluinos need to be evaluated. It is, however, possible to include the effects that

are large once one proceeds beyond the LO (BLO). Such effects are typically classified as

being proportional to either tanβ or large logs. Such BLO analyses have been performed

in MFV [11, 12, 3, 13, 14] and, more recently, in GFM [15 – 17]. In GFM, in particular,

a focusing effect was found in [15] that gave rise to significant shifts in the allowed re-

gions of parameter space compared to a LO analysis. (A similar effect appears also in the
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MFV scheme but is much weaker [15, 16].) Basically, in many cases of phenomenological

interest (e.g. , large tan β and µ > 0), SUSY contributions to B̄ → Xsγ are significantly

reduced compared to the LO approximation. A similar effect was also found in the decay

B̄s → µ+µ− and B̄s − Bs mixing [17].

The aim of this paper is to present the first complete analysis of dominant BLO effects

in general flavour mixing in the case of three processes. The first, B̄ → Xsγ, has been

discussed previously in [15, 16]. However, here we shall include the additional corrections

that arise when one includes charginos and neutralinos in the resummation procedure

discussed in [16]. In particular, we include contributions arising from higgsino exchange,

that are proportional to the Yukawa couplings of the third generation, and the additional

contributions to the charged Higgs vertex that were discussed in the context of MFV in [14].

The other two processes we shall consider are the decay B̄s → µ+µ− and B̄s − Bs

mixing. These processes have not been observed yet but have come under a lot of theoretical

scrutiny lately due to the large contributions possible in the large tan β regime. In this

paper we discuss the GFM contributions to both processes in detail, highlighting the effects

that appear once one proceeds beyond the LO.

In all the three cases, we shall present the analytic expressions required to implement

BLO corrections in the GFM scenario for possibly large deviations from the MFV scheme.

However, since these general expressions are often rather complicated, we shall also derive

expressions in the the mass insertion approximation (MIA), allowing the BLO effects to

be shown explicitly. In both cases we will provide an explicit recipe for including the

BLO effects into the existing LO expressions. Whilst we shall not include such effects

in the forthcoming analysis, the formalism we shall present should, with relatively little

modification, be applicable to the CP violating case.

The paper is organised as follows. In section 2 we summarise the formalism employed

in this paper, giving complete expressions for all the corrected masses and vertices used in

our calculation. In section 3 we present analytic expressions for these masses and vertices

in the MIA. In section 4 we discuss the decay B̄ → Xsγ providing analytic expressions

for the BLO corrections to supersymmetric and electroweak contributions in the MIA. In

sections 5 and 6 we perform a similar analyses for the decay B̄s → µ+µ− and B̄s − Bs

mixing, respectively. Finally, in section 7 we present our numerical analysis.

2. Beyond leading order effects and general flavour mixing

The influence of tan β enhanced effects on the down quark masses, the charged Higgs and

neutral Higgs vertex are known to be large. It is therefore essential, especially when working

in the large tan β regime, that such contributions are taken into account (and resummed

if necessary).

In this section, we shall follow the method first developed in [15, 16] and generalise it to

include the additional effects that appear once the contributions of chargino and neutralino

loops are taken into account. It should be noted that the analysis below encompasses both

MFV and the GFM scenario and can be easily extended to include, for example, CP

violation or flavour violation in the leptonic sector.
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2.1 The framework

Once the supersymmetric particles have been integrated out, the effective lagrangian de-

scribing the quark mass terms, at some scale µ < MSUSY , in the physical super-CKM basis

(SCKM) is given by

−Lmass
q = d̄R

(
m

(0)
d + δmd

)
dL + ūR

(
m(0)

u + δmu

)
uL + h.c. , (2.1)

where dL,R and uL,R denote the down and up components of the left and right quark fields,

respectively.1 In the physical SCKM basis the quark mass matrices are, by definition,

diagonal and it is possible to make the identifications

md =m
(0)
d + δmd = diag (md,ms,mb) , (2.2)

mu =m(0)
u + δmu = diag (mu,mc,mt) , (2.3)

where md,s,b and mu,c,t denote the physical masses of the down and up-type quarks re-

specitively. The bare mass matrix m
(0)
d is related to the 3 × 3 Yukawa couplings Y

(0)
d,u

derived from the superpotential in the usual manner,

m
(0)
d,u = vd,uY

(0)
d,u . (2.4)

where vd,u = 〈H0
d,u〉. Finally, δmd and δmu denote the radiative corrections to the quark

masses induced by integrating out the SUSY particles [18 – 21]. The corrections have the

form2

δmd = Σd
m L +

1

2
Σd

v Rm
(0)
d +

1

2
m

(0)
d Σd

v L . (2.5)

δmu is given by a similar formula after one performs the substitution d → u. The 3 × 3

hermitian matrices Σd,u
v L,R and the 3 × 3 complex matrices Σd,u

m L denote the contributions

arising from wavefunction and mass corrections due to two point diagrams involving gluinos,

charginos, neutralinos and squarks. (Full expressions will be given later in the text.)

Before discussing how the radiative corrections δmd are calculated, it will be useful to

consider the transformation from the interaction basis to the physical SCKM basis. In the

interaction basis, the MSSM superpotential is

WF = −µĤdĤu + Y
(0)o
l ĤdL̂

oÊo + Y
(0)o
d ĤdQ̂

oD̂o − Y (0)o
u ĤuQ̂oÛo , (2.6)

Q̂o and L̂o are the quark and lepton SU(2) doublet superfields, D̂o, Ûo and Êo denote the

singlet superfields and Ĥu and Ĥd are the two Higgs doublets that appear in the MSSM

(for more details see, for example, [2]), while Y o
l,d,u are the appropriate 3× 3 Yukawa mass

matrices in that basis.

1It should be noted that, throughout this section, we shall adopt matrix notation and suppress flavour

indices unless otherwise specified.
2As we allow the inclusion of electroweak effects we will not assume proportionality to the strong coupling

constant here, unlike in [15, 16].
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The soft SUSY breaking terms are also usually introduced in the interaction basis.

The lagrangian for the bilinear soft SUSY breaking terms is given by

−Lomass
eq soft = + d̃o†

L m2
Qd̃o

L + d̃o†
R m2

Dd̃o
R +

[
d̃o†

L (vdA
∗
d) d̃o

R + h.c.
]
+

+ ũo†
L m2

Qũo
L + ũo†

R m2
U ũo

R +
[
ũo†

L (vuA∗
u) ũo

R + h.c.
]
, (2.7)

where m2
Q, m2

D and m2
U are, in general, arbitrary 3 × 3 hermitian matrices. The trilinear

terms Ad and Au, on the other hand, are arbitrary 3 × 3 complex matrices. We have not

assumed that the trilinear soft terms are proportional to the appropriate Yukawa coupling.

(We discuss an alternative parameterisation, that can be used in the GFM scenario, in

appendix B.)

Transforming the quark fields from the interaction basis to the physical SCKM ba-

sis involves performing unitary transformations on both the left and right handed fields

such that

dR = VdR
do

R , dL = VdL
do

L , (2.8)

uR = VuR
do

R , uL = VuL
do

L . (2.9)

The bare mass matrix is then related to the Yukawa couplings defined in the interaction

basis via the relation

m
(0)
d = VdR

vdY
(0)o
d V †

dL
, m(0)

u = VuR
vuY (0)o

u V †
uL

, (2.10)

m
(0)
d and m

(0)
u appear in all quantities derived from the superpotential (2.6) not subject to

the corrections (2.5), such as the couplings of supersymmetric particles. The CKM matrix

K is related to the transformations (2.8)–(2.9) in the usual manner

K = VuL
V †

dL
. (2.11)

As the radiative corrections δmd,u are calculated in the SCKM basis, it is necessary to

consider how the transformations (2.8)–(2.9), when performed on the squark fields, affect

the relevant mass matrices. After transforming to the physical SCKM basis, the soft terms

become

m2
d,LL =VDL

m2
QV †

DL
, m2

d,RR =VDR
m2

DV †
DR

, m2
d,LR =VDL

(vdA
∗
d) V †

DR
,

m2
u,LL =VUL

m2
QV †

UL
, m2

u,RR =VUR
m2

UV †
UR

, m2
u,LR =VUL

(vuA∗
u) V †

UR
. (2.12)

The 6 × 6 down squark mass matrix M2
d̃

may then be written in the following manner

M2
d̃

=




m2
d,LL + Fd,LL + Dd,LL m2

d,LR + Fd,LR(
m2

d,LR + Fd,LR

)†

m2
d,RR + Fd,RR + Dd,RR


 . (2.13)

(The up squark mass matrix may be similarly defined by substituting d with u.) The

F -terms that appear in (2.13) are given by

Fd,LL = m
(0)
d

†m
(0)
d , Fd,RR = m

(0)
d m

(0)
d

† , Fd,LR = −µ tan βm
(0)
d

† , (2.14)

– 6 –
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and the flavour diagonal D-terms are

Dd,LL = mZ cos 2β
(
T3d − Qd sin2 θW

)
1l3 , Dd,RR = mZ cos 2βQd sin2 θW 1l3 . (2.15)

It should be noted that, in the physical SCKM basis, the F -terms are, in general, not

necessarily flavour diagonal as they are derived from the superpotential and are therefore

functions of the bare mass matrix m
(0)
d .

To obtain the physical squark masses medI
it is necessary to perform an additional

unitary transformation on the squark fields such that

ΓdM2
d̃
Γ†

d = diag
(
m

d̃1
, . . . ,m

d̃6

)
. (2.16)

It is conventional to decompose the original 6× 6 unitary matrix Γd into two 6× 3 subma-

trices Γd L and Γd R:

(Γd)Ii = (Γd L)Ii , (Γd)Ii+3 = (Γd R)Ii . (2.17)

where I = 1, . . . , 6 and i = 1, 2, 3.

Departures from the MFV scenario are often parameterised in terms of the dimension-

less quantities

(
δd
LL

)

ij
=

(
m2

d,LL

)
ij√(

m2
d,LL

)

ii

(
m2

d,LL

)

jj

,
(
δd
LR

)

ij
=

(
m2

d,LR

)
ij√(

m2
d,LL

)

ii

(
m2

d,RR

)

jj

, (2.18)

(
δd
RL

)
ij

=

(
m2

d,RL

)
ij√(

m2
d,RR

)
ii

(
m2

d,LL

)
jj

,
(
δd
RR

)
ij

=

(
m2

d,RR

)
ij√(

m2
d,RR

)
ii

(
m2

d,RR

)
jj

. (2.19)

The soft terms m2
d,XY (X,Y = L,R) are given in (2.12) and i, j = 1, 2, 3. Similar definitions

apply for the up quarks. It should be noted that, since m2
u,LL and m2

d,LL are related to one

another by SU(2) invariance, we have the relation

δd
LL = K†δu

LLK . (2.20)

Let us briefly comment on the basis dependence of these definitions of δd
XY . Physical

quantities such as cross-sections and branching ratios are naturally independent of the

basis in which one defines the soft terms. The basis in which one defines the insertions

δd
XY , however, is essentially a matter of convenience. As discussed above, we work in the

physical SCKM basis throughout this analysis and as such the definition (2.18)–(2.19) is

essentially the easiest to implement numerically. Other definitions of δd
XY have been used

in the literature before, for example, one might define δd
XY in the uncorrected (bare) SCKM

basis where the Yukawa matrices derived from the superpotential are diagonal (we shall

define this basis more formally in subsection 3.4). Transforming between different bases

involves performing additional unitary transformations on the soft terms (2.12) and, unless

large non-universalities exist, the differences between the transformed and the original

– 7 –
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δd
XY are typically rather small. Below we will derive many expressions in the MIA where

one usually assumes that the diagonal entries of the soft terms are universal. In light of

the above we expect them to be applicable to alternative definitions of δd
XY . During our

numerical analysis we employ a similar definition for the SUSY soft terms to ensure that

our formalism remains applicable to as wide a variety of models as possible.

After defining our framework, let us now move on to the effects that these corrections

have on the electroweak and supersymmetric vertices.

2.2 Corrections to electroweak vertices

Integrating out the supersymmetric particles, coupled with the effect of transforming be-

tween the interaction and the physical SCKM bases, can affect the form of the electroweak

(i.e. the Higgs and gauge boson) vertices present in the resulting effective theory.

After transforming to the physical SCKM basis, the W boson vertex has the follow-

ing form

LW = ūLγµCW
L dLW+

µ + ūRγµCW
R dRW+

µ + h.c. (2.21)

The 3 × 3 coupling matrices CW
L and CW

R , are given by

CW
L = − g2√

2

(
K +

1

2
Σu

v LK +
1

2
KΣd

v L

)
+ ∆CW

L = − g2√
2
Keff , (2.22)

CW
R = ∆CW

R . (2.23)

We employ the notation ∆CX
L,R to denote the vertex corrections that arise from three point

diagrams when one integrates out the SUSY particles. Identifying the left handed coupling

of the W boson with the physical CKM matrix Keff , that is measured from experiment,

we have the relation

Keff = K +
1

2
Σu

v LK +
1

2
KΣd

v L −
√

2

g2
∆CW

L . (2.24)

The uncorrected CKM matrix K is defined in (2.11) and appears in all vertices not subject

to the corrections (2.24).

Now consider the coupling of the Z boson with down quarks

LZ0 = d̄LγµCZ
L dLZ0

µ + d̄RγµCZ
RdRZ0

µ . (2.25)

The 3 × 3 coupling matrices CZ
L and CZ

R are given by

CZ
L =

g2

2 cos θW

(
1 − 2

3
sin2 θW

)(
1 + Σd

v L

)
+ ∆CZ

L , (2.26)

CZ
R = − g2

2 cos θW

2

3
sin2 θW

(
1 + Σd

v R

)
+ ∆CZ

R . (2.27)

The radiative corrections to CZ
L and CZ

R can induce off-diagonal elements to the coupling

that lead to additional sources of FCNC.

Turning to the Higgs sector, the inclusion of radiative corrections is especially impor-

tant. As the coupling between the Higgs sector and squarks features a dependence on the

– 8 –



J
H
E
P
0
8
(
2
0
0
5
)
0
9
4

soft SUSY breaking terms (rather than only gauge interactions), the corrected vertices that

arise when one integrates out the coloured SUSY particles can display a non-decoupling

property. Large corrections to the vertices are therefore feasible for even TeV scale sparticle

masses.

Once one has integrated out the SUSY particles, the charged Higgs interaction becomes

LS+ = ūRCS+

L dLS+ + ūLCS+

R dRS+ + h.c. , (2.28)

where S+ = H+, G+ and the 3 × 3 matrices coupling CS+

L,R are given by

CS+

L =
g2√

2mW sin β
yS+

(1)

(
muK − Σu

m LK − 1

2
m(0)

u Σu
v LK +

1

2
m(0)

u KΣd
v L

)
+ ∆CS+

L ,

(2.29)

CS+

R =
g2√

2mW cos β
yS+

(2)

(
Kmd − KΣd†

mL − 1

2
KΣd

v Lm
(0)
d

† +
1

2
Σu

v LKm
(0)
d

†

)
+ ∆CS+

R ,

(2.30)

where yS+

(1) = cos β, sin β and yS+

(2) = sin β,− cos β.

The neutral Higgs and Goldstone boson interact with the down quarks in the follow-

ing way

LS0 = d̄RCS0

L dLS0 + d̄LCS0

R dRS0 , (2.31)

where S0 = H0, h0, A0, G0 and the effective vertices CS0

R and CS0

R may be written in terms

of the 3 × 3 matrices

CS0

L = − g2

2mW cos β
xS0

(1)

(
md − Σd

m L

)
+ ∆CS0

L ,

CS0

R = − g2

2mW cos β
xS0∗

(1)

(
md − Σd†

m L

)
+ ∆CS0

R (2.32)

and xS0

(1) = cos α,− sin α, i sin β,−i cos β.

In the limit where the physical SCKM basis is identical to the bare SCKM basis (i.e.

where md = m
(0)
d ), (2.32) is identical to the diagrammatic result derived in the on-shell

formalism used in [22, 23].

2.3 Corrections to supersymmetric vertices

As the corrections to the electroweak vertices are calculated in the physical SCKM basis, it

is necessary to discuss how the supersymmetric interactions are altered once transformed

into this basis. Ignoring the effects of wavefunction renormalizations,3 that are not en-

hanced by tan β, the changes introduced by transforming to the physical SCKM basis

typically amount to the introduction of m
(0)
d and K into the various vertices. For instance,

after these replacements have been performed, the chargino vertex becomes4

Lχ± =
∑

a,i,J

ũ†
J

(
χ̄−

)
a
[(Cd L)aJi PL + (Cd R)aJi PR] (d)i , (2.33)

3We do, however, include these contributions in our numerical analysis.
4Our notation for the supersymmetric vertices differs slightly from that used in [16], broadly speaking,

one may convert between the two by making the substitution L ↔ R.
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where a = 1, 2, i = 1, 2, 3, and J = 1, . . . , 6 and the couplings Cd L and Cd R may be written

in terms of the matrices

(Cd L)aJi = − g2V
∗
a1 (Γu LK)Ji +

g2√
2mW sin β

V ∗
a2

(
Γu Rm(0)

u K
)

Ji
, (2.34)

(Cd R)aJi =
g2√

2mW cos β
U∗

a2

(
Γu LKm

(0)
d

†
)

Ji
, (2.35)

where K is defined in terms of the physical CKM matrix by Keff in (2.24) and the bare

masses are given by (2.3) and its analogue for the up quarks. The matrices U and V

diagonalise the chargino mass matrix Mχ± such that

UMχ±V † = diag
(
m

χ±

1

,m
χ±

2

)
.

The appearance of the bare quark mass matrix m
(0)
d in these vertices can lead to large

effects in both MFV and GFM models. A full list of vertices relevant to our calculation

appear in Appendix C.

2.4 Numerical aspects

Let us now discuss how the method discussed above should be implemented numerically.

As we will be investigating values of up to O(1) for the flavour violating parameters δd
XY

(X,Y = L,R) (2.18)–(2.19), it is important to devise a method such that the effects

discussed in section 2 are taken into account, whilst also retaining the numerical accuracy

associated with working in the squark mass basis. Such an iterative method was proposed

in [16] and it will be useful for our purposes to briefly summarise it here.

Once the unitary transformations (2.16) have been performed on the squark fields the

gluino contribution to δmd becomes [16]

δmd =
αs

2π
C2 (3)

6∑

I=1

(Γ∗
d R)Ii (Γd L)Ij meg B0

(
m2

eg,m
2
edI

)
.

The Passarino-Veltman function B0 can be found in appendix A.5. Using this relation it

is possible to calculate the bare mass matrix using (2.3). It should be noted, however, that

δmd contains a dependence on m
(0)
d as it appears in the squark mass matrix through the F -

terms (2.14). It is therefore necessary to employ an iterative procedure such that m
(0)
d and

the mixing matrices ΓdL,R are determined to the desired level of accuracy. The inclusion

of the effects induced by chargino and neutralino contributions introduces a dependence

on m
(0)
u and the uncorrected CKM matrix K in the formula for δmd. One must therefore

expand and generalise the iterative procedure presented in [16] such that these effects are

included as well.

In the first step of the procedure, m
(0)
d , m

(0)
u and K are set equal to the input parameters

md, mu and Keff , respectively, and δmd,u is set equal to zero. In the second step, the squark

mass matrices and the supersymmetric couplings are then calculated with these input

values, allowing the evaluation of the radiative corrections Σd, Σu and ∆CW
L using the

– 10 –
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formulae presented in appendix D. In the third step, δmd,u, the bare mass matrices and K

are determined using (2.3) and (2.24). The resulting values are then used as the new input

parameters in step two. The second and third steps are then repeated until convergence

occurs. The iterative procedure converges rather rapidly and after n iterations amounts

to including the first n terms that arise in a Taylor expansion in tan β. For an example

of the procedure applied to MFV, see [16]. With the final forms of the supersymmetric

couplings, uncorrected CKM matrix and bare mass matrices determined, the corrections

to the Z boson, charged Higgs and neutral Higgs vertices may be calculated using the

formulae presented in section 2.2 and appendix D. We should emphasise here that we work

in the squark mass basis throughout and therefore include all the effects that can occur at

higher orders in the MIA as well as the BLO effects described in the previous subsections.

In addition, we include the effects induced by additional electroweak contributions, light

quark effects and SU(2)L × U(1)Y breaking.

3. The mass insertion approximation

Expressions for m
(0)
d and the corrected vertices are well known in MFV models [25, 11, 14]

and it will be useful for our purposes to extend these results to the GFM scenario. The

flavour dependence of analytic expressions is often rather obscure when flavour violation

is communicated via the matrices (2.17). To express the underlying dependence on the

off-diagonal elements of the soft breaking terms it is therefore useful to work in the mass

insertion approximation (MIA). According to this approximation the off-diagonal elements

of M2
d̃

are treated as perturbations and enter expressions through mixed propagators pro-

portional to the relevant element (or insertion). These insertions are parameterised in terms

of the dimensionless quantities defined in (2.18)–(2.19). Equivalently, one may expand the

matrices (2.17) about the diagonal. When performing actual numerical calculations it is

more advantageous to diagonalise the squark mass matrices (2.13) using numerical routines

to ensure that higher order terms in the MIA are included, this is what we shall do in our

numerical analysis presented in section 7.

Before proceeding with our analytic expressions for the bare mass matrix and the

various effective vertices, let us first outline the approximations we shall use throughout

this section. As we are chiefly concerned in exhibiting the dominant behaviour displayed by

the corrections to the bare mass matrix and effective vertices, in this section we shall work in

the approximation of vanishing electroweak couplings and typically ignore SU(2)L ×U(1)Y
breaking effects. We therefore mainly concern ourselves with the effects induced by gluino

exchange, and those that arise from higgsino exchange that are proportional to the Yukawa

couplings of the third generation. Let us emphasise, however, that during our numerical

analysis we include all the effects that arise from non-zero electroweak couplings, SU(2)L×
U(1)Y breaking effects and the effects of the Yukawa couplings of the first two generations.

Concerning the accuracy that we work to within the MIA, we typically include terms up

to second order in the MIA (unless specified otherwise). We therefore do not include the

effects of multiple diagonal LR insertions that are proportional to m2
d,LR−µm

(0)
d tan β. It is

possible to resum the effects induced by these insertions via the method outlined in [23]. In

– 11 –
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dL dR

˜g

δd
RL

˜

dL
˜

dR

dL dR

˜

Hd

mtAt

˜
tR

˜
tL

˜

Hu

Figure 1: The dominant gluino and higgsino diagrams that contribute to Σd
m L.

this method however, some BLO effects are then encoded into the factors of cos θeb
and sin θeb

that appear in the MFV squark mixing matrices. Since the ultimate aim of this section is

to present analytic expressions that represent all of the BLO corrections that appear in the

framework presented in section 2, we shall only consider the effects of at most one flavour

diagonal LR insertion. Converting our expressions to take into account such effects however

should be relatively easy. Finally, to allow for easy comparison between our results and

those that already exist in the literature, we have assumed that the trilinear up-type soft

terms are proportional to the appropriate Yukawa coupling (i.e. m2
u,LR = muAu, where

Au = diag(Au, Ac, At)), although we still do not assume a similar relation for the down-

squark sector, (it is easy to convert back by making the substitution At →
(
m2

u,LR

)
33

/mt

in the various expressions that follow).

3.1 The bare mass matrix in the MIA

We shall first consider the corrections induced by CKM and GFM effects on the bare mass

matrix m
(0)
d . Loop corrections to the bare mass matrix in the MFV scenario were derived

in [19, 25, 11]. They were subsequently generalised to GFM in [21, 15, 16].

The bare mass matrix may be determined by evaluating the self energy corrections

that appear (2.5). The dominant contributions to Σd
m L arise from self-energy diagrams

involving gluino and chargino exchange, which are depicted in figure 1. On the other hand,

the corrections to Σd
v L,R are rather small when compared to those that arise from Σd

m L

as they are not enhanced by tan β, nor do they feature a chirality flip on the gluino line.

Coupled with the suppression factors of m
(0)
d that accompany them in (2.5), their omission

will not dramatically affect our final results.

To first order in the MIA, the diagonal elements of m
(0)
d are given by5

(
m

(0)
d

)
ii

=
(md)ii

1 + εi tan β
, (3.1)

where i = 1, 2, 3 and εi denotes the combined dominant gluino and chargino contributions

εi = εs + εY Y 2
t δi3 , (3.2)

5In the following we shall neglect the flavour diagonal contributions that arise from the soft terms m2
d,LR

unless they tanβ enhanced. The corrections induced by these terms are included in our numerical analysis.
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dL dR

δd
RR

˜g

δd
LL

δd
RL

˜

dL
˜

dR

˜

dL
˜

dR

Figure 2: Additional GFM contributions to the diagonal elements of m
(0)
d .

Yt is the top quark Yukawa coupling and δi3 is the usual Kronecker delta function. The

coefficients εs and εY are given by

εs = −αs

2π
C2(3)

µ

meg

H2

(
xedR

, xedL

)
, (3.3)

εY = − At

16π2µ
H2

(
yeuR

, yeuL

)
. (3.4)

In the above expressions αs is the strong coupling constant and C2(3) = 4/3 is the

quadratic Casimir operator for SU(3) and At = (Au)33. The loop function H2 is given

in appendix A.1, whilst the arguments of the function are

xedL
=

m2
d,LL

m2
eg

, yeuL
=

m2
u,LL

µ2
, (3.5)

the definitions for xedR
and yeuR

may be easily obtained by substituting L with R in the

above expressions. It should be noted that the soft terms that appear in (3.5) are common

values of the diagonal entries of the SUSY soft terms (2.12).

It is possible in GFM models to induce large contributions to the bare down and strange

quark masses through diagrams involving three insertions (figure 2) [26]. For example,

(
m

(0)
d

)
22

=
ms

(1 + εs tan β)

[
1 − mb

ms

ε4 tan βxedR
xedL

(1 + ε3 tan β)

(
δd
LL

)
32

(
δd
RR

)
23

]
, (3.6)

where ε4 is given by

ε4 = −αs

2π
C2(3)

µ

meg

H4

(
xedR

, xedL
, xedR

, xedL

)
. (3.7)

The loop function H4 is given in appendix A.1 whilst its arguments are given in (3.5).

Now let us turn to the off-diagonal elements of m
(0)
d . The diagrams in figure 1 and

figure 3 illustrate the flavour violating corrections that arise from MFV and GFM contri-

butions. Evaluating all four diagrams, we find the contribution

(
m

(0)
d

)

ij
=

εRLxedRL
meg

1 + εj tan β

(
δd
RL

)

ij
−

εRRxedR
(md)jj tan β

(1 + εj tan β)2

(
δd
RR

)

ij
−
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dL dR

δd
RR

˜g

δd
RL ˜

dR

˜

dL
˜

dR dL dR

δd
RL

˜g

δd
LL ˜

dL

˜

dL
˜

dR

Figure 3: GFM contributions to the off-diagonal elements of m
(0)
d .

−
[
εLLxedL

(
δd
LL

)
ij

+ εY Y 2
t K∗

tiKtj

]
(md)ii tan β

(1 + εi tan β) (1 + εj tan β)
, (3.8)

where εRL and εLL are given by

εRL = −αs

2π
C2 (3) H2

(
xedR

, xedL

)
, εLL = −αs

2π
C2(3)

µ

meg

H3

(
xedR

, xedR
, xedL

)
(3.9)

and εRR can be obtained by making the substitution L ↔ R in the formula for εLL. The

loop functions H2 and H3 are defined in appendix A.1, the CKM matrix K is defined

in (2.11), εi and εj are defined in (3.2), and xedRL
is given by

xedRL
=

√
m2

d,LLm2
d,RR

m2
eg

. (3.10)

It will be useful to see how the above expressions behave in the limit of degenerate

sparticle masses. For instance, the various ε-factors that appear in the above formulae

become

εs =
αs

3π
sgn (µ) , εY =

1

32π2
sgn

(
At

µ

)
, (3.11)

εG =
αs

18π
sgn (µ) , εRL =

αs

3π
, εLL = −αs

9π
sgn (µ) . (3.12)

From (3.11) it is easy to see that, in the phenomenologically favoured region µ > 0, At < 0,

the chargino and gluino contributions in (3.2) for i = 3 partially cancel. This can lead to

a reduction of BLO contributions compared to a case where only gluino contributions are

taken into account.

As we are chiefly concerned with flavour violation in the down squark sector, we can

safely omit the effects induced by LR, RL and RR mixings amongst the up squarks. In

other words we assume that m2
u,LR and m2

u,RR are diagonal matrices. However, the insertion

δu
LL is related by SU(2) symmetry to δd

LL and its effects on the bare mass matrix should

be included. In the approximation used in this subsection however, the contributions

proportional to δu
LL, that arise solely from higgsino exchange, are rather small, as they are

suppressed by factors of the Yukawa couplings of the first two generations. We will see in

section 3.3 however, that, once one includes the effects induced by non-zero electroweak

couplings, additional contributions are possible.
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δd
RL

dL

dL

δd
LR

Z0

˜g

Figure 4: The gluino correction to the Z boson vertex that arises at second order in the MIA.

3.2 Corrections to electroweak vertices in the MIA

Now let us consider the effect of supersymmetric contributions to the various electroweak

vertices in the MIA. As stated in section 2.2, the CKM matrix that appears, for example,

in the chargino vertex (2.33)–(2.35) is related to the physical CKM matrix by the rela-

tion (2.24). At first order in the MIA, the vertex and self energy corrections arising from

gluino exchange cancel due to SU(2)L ×U(1)Y gauge symmetry. The first corrections to K

therefore appear at second order, through diagrams involving two SU(2)L×U(1)Y breaking

insertions on one of the squark lines. The contributions to the vertex therefore tend to be

suppressed by factors of either mb or cot β and, whilst we take into account these effects

in our numerical analysis, to a good approximation we may set K = Keff . A similar result

holds for the effective right handed coupling of the W boson (2.23).

Turning to the Z boson vertex, once again we find that, to first order in the MIA,

the self energy and vertex corrections cancel due to SU(2)L × U(1)Y gauge symmetry

The first non-zero contribution arises from the diagram shown in figure 4 involving two

SU(2)L × U(1)Y breaking insertions.

Evaluating the contributions to the effective vertex we find for
(
CZ

L

)
23

(
CZ

L

)
23

= − g2

2 cos θW

αsC2 (3)

2π

fZ

(
xed

)

m2
eg
(1 + εs tan β)

[
(md,LR)33 −

mbµ tan β

1 + ε3 tan β

](
δd
LR

)

23
,

(3.13)

where the function fZ is given in appendix A.3. The expression in square brackets in

the above expression represents the effect of the flavour diagonal RL insertion. The off-

diagonal elements of the bare mass matrix can also induce terms proportional to δd
LL and

δd
RR, that can viably compete with the corresponding contributions that arise at third order

in the MIA. Although the vertex (3.13) is enhanced by tan β, we shall see later that the

contributions to a given process due to this vertex scale as m2
Z/M2

SUSY and are typically

rather small.
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Now let us turn to the Higgs sector, where the effects induced by supersymmetric

contributions to the charged and neutral Higgs couplings are known to be large [11, 12, 24].

These corrections can, in turn, affect FCNC processes especially in regions of parameter

space where FCNC mediated solely by sparticle exchange are suppressed by large sparticle

masses.

The charged Higgs vertex receives corrections [25, 11, 12] from both gluino and higgsino

exchange. To second order in the MIA, the effective charged Higgs coupling is given by
(
CH+

L

)
ij

=
g2√
2mW

(mu)ii cot β
[
Kij

(
1 − ε′s tan β + ε′Y (Y

(0)
b )2δ3j tan β

)
+ ΛL

ij

]
, (3.14)

(
CH+

R

)
ij

=
g2√
2mW

(md)jj
(1 + εi tan β)

tan β
(
Kij + ΛR

ij

)
, (3.15)

where i, j = 1, 2, 3 and Y
(0)
b = (Y

(0)
d )33. The factors ε′s and ε′Y are given by

ε′s = −αs

2π
C2(3)

µ

meg

H2

(
xeuR

, xedL

)
, ε′Y = − 1

16π2

(md,LR)33

µ
(
m

(0)
d

)
33

H2

(
yeuL

, yedR

)
. (3.16)

The arguments of the loop functions H2 can be obtained by the appropriate generalisations

of (3.5). Finally, the 3 × 3 matrices ΛL,R
ij denote the additional off-diagonal contributions

that arise in both MFV and GFM models due to the off-diagonal elements of the bare mass

matrix and the GFM parameters. ΛL,R
ij may be decomposed as follows

ΛL,R
ij = ∆L,R

ij + γL,R
ij . (3.17)

The MFV contributions ∆L
ij to the vertex have been highlighted in [3, 14]. In the formalism

developed in section 2, they arise due to the presence of the bare mass matrix in the

neutralino vertex, and have the following form

∆L
ij = Kij

ε′Y εY (Y
(0)
b Yt tan β)2

1 + εj tan β
, (i, j) = (3, 1), (3, 2) , (3.18)

∆L
ij = 0 , otherwise . (3.19)

It should be noted that the additional terms found in [14] for (i, j) = (1, 3), (2, 3) do not

appear as we do not assume that the trilinear soft terms are proportional to the bare

Yukawa coupling. If one adopts the parameterisation described in appendix B, where such

a relation is assumed, it can be shown that one obtains an additional contribution to ∆L
ij

in agreement with [14].

The GFM contributions to ΛL
ij arise from the two diagrams shown in figure 5. Evalu-

ating the contributions yields

γL
ij = −Kii tan β

[(
ε′LL − εLLε′Y (Y

(0)
b )2 tan β

1 + εj tan β

)
xedL

(
δd
LL

)

ji
+

+
meg

mb

εRLε′Y (Y
(0)
b )2xedRL

(1 + ε3 tan β)

(1 + εj tan β)

(
δd
LR

)
ji

+
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δd
LL

uR

dL

˜uR

H−
˜g

˜

dR

uR

dL

˜uL

H−

˜

Hu

δd
LR

˜

Hd

Figure 5: The dominant GFM contributions to the left-handed charged Higgs vertex, arising from

gluino and higgsino exchange.

+ ε′RL(Y
(0)
b )(Y

(0)
d )jjyedRL

(
δd
RL

)
ji

]
, (i, j) = (3, 1), (3, 2) , (3.20)

γL
ij = −Kii tan β

[
ε′LLxedL

(
δd
LL

)
ij

+

+ ε′RL(Y
(0)
b )2yedRL

(
δd
LR

)
ij

]
, (i, j) = (1, 3), (2, 3) , (3.21)

where ε′LL and ε′RL are

ε′LL = −αs

2π
C2(3)

µ

meg

H3

(
xeuR

, xedL
, xedL

)
, ε′RL = − 1

16π2

µ(
m

(0)
d

)
33

H2

(
yeuL

, yedR

)
.

(3.22)

It should be noted that the third term in (3.20) is proportional the Yukawa coupling of

the down or strange quark. We include it however as the factors of cos β present in the

denominators of the Yukawa couplings (we remind the reader that Yd ∼ md/mW cos β) can

effectively lead γL
ij to vary as tan3 β. This term can become important if

(
δd
LR

)
32

= δd
RL is

large O
(
10−2

)
.

Now consider the right-handed coupling of the charged Higgs. In this case the dominant

corrections to the vertex are due to the self-energy correction Σd
mL. The MFV contributions

to the vertex are reflected by the appearance of a factor of (1 + εi tan β) in the denominator

of (3.15), in agreement with [14].

In models with GFM it is possible to generate additional terms of the form

γR
ij = −Kii

[
εRRxedR

tan β

(1 + εi tan β)

(md)ii
(md)jj

(
δd
RR

)
ij

+

+ εRLxedRL
εi

meg

(md)jj

(
δd
RL

)
ji

]
, (i, j) = (3, 1), (3, 2) , (3.23)

γR
ij = −Kii

[
εLLxedL

tan β

(1 + εj tan β)

(
δd
LL

)
ij

+

+ εRLxedRL
εi

meg

(md)jj

(
δd
LR

)
ij

]
, (i, j) = (1, 3), (2, 3) . (3.24)
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A particularly interesting consequence of (3.23) is that one can often avoid the factor of

the strange quark mass, that appears in the right handed vertex (3.14) when i = 3 and

j = 2, via flavour violation in either the RL or RR sectors.

It is apparent from the above expressions that GFM contributions, to both the left and

right-handed vertices, can play the rôle of the off-diagonal elements of the CKM matrix.

The off-diagonal BLO corrections to the charged Higgs vertex can therefore be rather

large in the GFM scenario. Substantial enhancement or suppression of charged Higgs

contributions to FCNC are therefore possible, even in the limit where the squarks decouple

from the theory. In addition, tan β enhanced corrections affect the underlying structure

of the charged Higgs vertex, in both GFM and MFV, via the factors of (1 + εi tan β) that

occur in the denominator in (3.15) and the corrections ε′s and ε′Y that appear in (3.14).

The corrections to the charged Goldstone boson vertex [11] prove to be rather small,

as the vertex is protected by SU(2) symmetry and the self energy and vertex contributions

approximately cancel. These cancellations are required as, in a general Rξ gauge, the

corrected Goldstone boson vertex must act to cancel the ξ dependence of the contributions

originating from W boson exchange. The corrected vertex must therefore, in a similar

manner to the corrected W boson vertex, be proportional to SU(2)L × U(1)Y breaking

effects, even for GFM.

Finally, let us consider the corrected neutral Higgs vertices (2.31)–(2.32). The dom-

inant contributions originate from the self energy corrections Σd
m L. To first order in the

MIA the contributions to the flavour diagonal elements of the effective A0 vertex become

(
CA0

L

)
ii

= − ig2

2mW
tan β

(md)ii

(1 + εi tan β)
, (3.25)

whilst the contributions to the effective H0 and h0 vertices are

(
CH0

L

)

ii
= − g2

2 cos βmW

(md)ii
(1 + εi tan β)

(cos α + εi sin α) , (3.26)

(
Ch0

L

)
ii

= +
g2

2 cos βmW

(md)ii
(1 + εi tan β)

(sin α − εi cos α) . (3.27)

At third order in the MIA, further corrections proportional to combinations of δd
LL and

δd
RR are generated in a similar manner to (3.6) that can lead to large corrections to the

Yukawa couplings of the first two generations. Full expressions can be found in [26].

The off-diagonal elements of the coupling are generated by MFV and GFM contri-

butions and, in a similar manner to the charged Higgs vertex, it is useful to perform the

decomposition

(
CS0

L,R

)
ij

=
(
CS0

L,R

)MFV

ij
+

(
CS0

L,R

)GFM

ij
, (3.28)

where S0 = A0, G0,H0, h0. The dominant MFV contributions to the off-diagonal elements

of the coupling arise from higgsino exchange and are given by [3, 14],

(
CA0

L

)MFV

ij
=

ig2

2mW

(md)ii εY Y 2
t K∗

tiKtj tan2 β

(1 + εi tan β) (1 + εj tan β)
. (3.29)
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dL dR

δu
LL

˜uL
˜uL

˜

W− ˜

Hd

Figure 6: Contributions to m
(0)
d arising from the insertion δu

LL.

The GFM contributions arise primarily from gluino exchange and yield the additional

contribution

(
CA0

L

)GFM

ij
=

ig2

2mW
tan2 β

[
(md)ii εLLxedL

(1 + εi tan β) (1 + εj tan β)

(
δd
LL

)
ij

+

+
εRLεjmegxedRL

(1 + εj tan β)

(
δd
RL

)
ij

+
(md)jj εRRxedR

(1 + εj tan β)2

(
δd
RR

)
ij

]
. (3.30)

The off-diagonal couplings of the scalar Higgs bosons H0 and h0 may be obtained via the

simple substitutions

CH0

L = i sin (α − β) CA0

L , Ch0

L = i cos (α − β)CA0

L , (3.31)

whilst the right handed couplings can be obtained by taking the hermitian conjugate. Due

to an accidental cancellation between the self-energy and vertex corrections, the terms

proportional to δd
RL and δd

LR vanish at LO. However, once BLO corrections are taken into

account, it is possible for these insertions to reappear through their effects on the bare

mass matrix m
(0)
d [17].

Once again, it should be noted that, due to SU(2) invariance, the Goldstone boson

vertex does not receive large corrections even once GFM contributions are taken into ac-

count. As a result any contributions to the corrected vertex are attributable solely to

SU(2)L × U(1)Y breaking effects and are rather small.

3.3 Additional electroweak effects

As discussed at the beginning of this section the results presented so far have been derived

in the limit where the electroweak gauge couplings g1 and g2 are set equal to zero. The

aim of this subsection is to briefly discuss the dominant contributions that arise once one

proceeds beyond that approximation, and to provide some simple substitutions such that

these effects can be taken into account.

First, let us consider the effect of such corrections on the bare mass matrix. One of

the most important corrections in this case is due to the gaugino-higgsino mixing diagram

shown in figure 6 that arises if the insertion δu
LL is non-zero [21].
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The corrections induced by this diagram may be taken into account by making the

following substitution in (3.8)

εLLxedL
→ εLLxedL

+
2∑

a=1

εa
χ LLya

edL
, (3.32)

where ya
edL

= m2
d,LL/m2

χ−
a

and εa
χ LL is given by

εa
χ LL =

α

4π sin2 θW

V ∗
a1mχ−

a
Ua2√

2mW sin β
H2

(
ya

edL
, ya

edL

)
. (3.33)

α denotes the electromagnetic coupling constant. We have made use of the relation (2.20)

to express the contribution in terms of flavour violation in the down squark sector. In the

phenomenologically interesting region µ > 0 and At < 0, εa
χ LL interferes destructively with

the gluino contribution εLL and acts to reduce the correction to m
(0)
d that is proportional

to flavour violation in the LL sector.

Turning to the charged Higgs vertex, as discussed in [14], large contributions to the

left-handed vertex arise from diagrams featuring gaugino and higgsino exchange. They

may be included by making the following substitution in (3.14)

ε′s → ε′s + ε′χ . (3.34)

ε′χ has the following form

ε′χ = − α

4π sin2 θW

∑

a,α

mχ0
α

mχ−
a

Mαa

{
− 2

3
V ∗

a2N
∗
α1 tan θW H2

(
ya

euR
, wa

α

)
+

+

[
1

2
V ∗

a2

(
1

3
N∗

α1 tan θW − N∗
α2

)
− 1√

2
V ∗

a1N
∗
α4

]
×

× H2

(
ya

edL
, wa

α

) }
, (3.35)

where the quantity Mαa is given by

Mαa = Ua2 (N∗
α1 tan θW + N∗

α2) −
√

2Ua1N
∗
α3 ,

and wa
α = m2

χ0
α
/m2

χ−
a
. Our results for ε′χ agree with those originally given in [14]. To include

the additional effects induced by GFM, one has to consider the diagrams shown in figure 7.

Their effects may be included by making the following correction to (3.20)–(3.21)

ε′LLxedL
→ ε′LLxedL

+
∑

a

ya
edL

εa ′
χ LL , (3.36)

where εa ′
χ LL is given by

εa ′
χ LL = − α

4π sin2 θW

∑

α

mχ0
α

m
χ−

a

Mαa×
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uR

dL

H−

˜

W,
˜

B

˜

Hd

δd
LL

˜

Hu

uR

dL

H−

˜

W−

˜

Hd

δu
LL

˜

Hu

Figure 7: Additional GFM contributions to the left-handed charged Higgs vertex, due to the

electroweak effects considered in subsection 3.3.

×
[
1

2
V ∗

a2

(
1

3
N∗

α1 tan θW − N∗
α2

)
− 1√

2
V ∗

a1N
∗
α4

]
H3

(
ya

edL
, ya

edL
, wa

α

)
. (3.37)

Both the MFV (3.35) and GFM (3.37) corrections typically interfere destructively with the

dominant gluino contributions and can lead to an appreciable reduction of BLO effects.

Finally, let us consider the neutral Higgs vertex. As discussed in the previous subsec-

tion, the dominant contributions to the effective vertex arise from the self-energy corrections

Σd
mL. The effects induced by non-zero electroweak couplings may therefore be included, in

a similar manner to the bare mass matrix, by making the substitution (3.32) in (3.30).

3.4 Other methods

The method outlined in section 2 takes into account both tan β enhanced effects and those

induced by non-minimal sources of flavour violation. Other methods have been proposed

in the literature that can be modified to include the effects of GFM and it shall be useful

to briefly consider how two specific examples compare with the method employed in this

paper.

The first method, presented by Buras et al. [14], works in the bare SCKM basis. In this

basis the Yukawa matrices Y
(0)
d and Y

(0)
u that appear in the superpotential are diagonal.

Calculating the self-energies in this basis gives the physical quark masses

md = DR

(
vdŶ

(0)
d + δm̂(0)

)
D†

L (3.38)

where Ŷ
(0)
d is the diagonalised Yukawa matrix, and δm̂(0) denotes the contributions of the

self energy corrections (2.5) calculated in the bare SCKM basis. DL and DR denote the

unitary transformations performed on the squark fields that transform between the bare

and physical SCKM bases. The bare mass matrix m
(0)
d defined in (2.3) is related to these

quantities by

m
(0)
d = DR

(
vdŶ

(0)
d

)
D†

L . (3.39)

It is straightforward to relate the matrices DL,R to the unitary matrices VdL,R
that ap-

peared in section 2. If, in analogy with the transformations (2.8)–(2.9), one defines a

transformation from the interaction basis to the bare SCKM basis such that

Ŷ
(0)
d = V

(0)
dR

(
Y

(0)o
d

)
V

(0)†
dL

. (3.40)
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DR and DL are then given by

DL = VdL
V

(0)†
dL

, DR = VdR
V

(0)†
dR

. (3.41)

One may also define the bare CKM matrix in the SCKM basis

K(0) = V (0)
uL

V
(0)†
dL

= U †
LKDL . (3.42)

The rôle played by the off-diagonal elements of m
(0)
d in section 2 is taken by the unitary

matrices DL, DR and the bare CKM matrix K(0). For instance, the bare CKM matrix

elements K
(0)
ts and K

(0)
cb , in the bare SCKM basis, are related to the corresponding matrix

elements K, defined in the physical SCKM basis via the relation

K
(0)
ts =

(1 + ε3 tan β)

(1 + εs tan β)
Kts −

−
[
εRL

(1 + ε3 tan β)

(1 + εs tan β)

meg

mb
xedRL

δd
LR − εLL tan β

(1 + εs tan β)
xedL

δd
LL

]
Ktb , (3.43)

K
(0)
cb =

(1 + ε3 tan β)

(1 + εs tan β)
Kcb +

+

[
εRL

(1 + ε3 tan β)

(1 + εs tan β)

meg

mb
xedRL

δd
LR − εLL tan β

(1 + εs tan β)
xedL

δd
LL

]
Kcs . (3.44)

Where we have used the shorthand δd
LL =

(
δd
LL

)
23

and δd
LR =

(
δd
LR

)
23

. Strictly speaking,

the uncorrected CKM matrix K should appear in the above relations, however, as discussed

in section 3.2, the vertex and self energy corrections are negligible and one may, to a good

approximation, set K = Keff . An interesting consequence of this formula is that the matrix

element K
(0)
ts obtained by diagonalising the bare Yukawa couplings Y

(0)o
d,u can be zero in

the presence of general flavour mixing [21, 16]. We will discuss the consequences of this in

section 7.4.

As the two methods are practically equivalent, choosing between them essentially be-

comes a choice as to which is more suitable for the problem at hand. In MFV scenarios the

method presented in [14] is generally more convenient as it is only necessary to calculate the

diagonal parts to the vertex and self-energy corrections induced by gluino exchange. For

example, when using the method described in section 2 the correct form of (3.29) is only

obtained when one considers the off-diagonal gluino contributions as well as the higgsino

exchange diagram.

In the GFM scenario the situation is rather different. As the off-diagonal contributions

to the electroweak vertices and non-renormalizable operators induced by gluino exchange

are evaluated anyway, the method described in this paper can become more preferable.

In particular, the flavour diagonal contributions, induced by the exchange of the super-

symmetric particles, to the various non-renormalizable operators applicable to the process

under investigation no longer have to be calculated, as the rôle played by the matrices DL

and DR is replaced by the off-diagonal elements of m
(0)
d .

The second method, presented by Dedes and Pilaftsis [13], concerns itself mainly with

CP violation, however it is essentially applicable to both MFV and GFM CP conserving
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scenarios as well. After translating to the physical SCKM basis their expression for the

bare mass matrix reads

md = m
(0)
d R , (3.45)

where R is a 3 × 3 matrix. It is then possible to express the various Higgs interactions

via an effective lagrangian expressed in terms of the physical quark masses and the inverse

of R. In the context of MFV and GFM scenarios with mixing only in the LL sector this

parameterisation is sufficient. However taking into account all sources of flavour violation

yields the more general form

md = m
(0)
d RL + RRm

(0)
d + RG . (3.46)

In the MIA, the 3 × 3 matrices RL, RR and RG may be decomposed in the following way

RL = 1l + εs tan β +
∑

u

εY K†Y 2
u K tan β + εLL tan β xedL

δd
LL ,

RR = +εRR tan β xedR
δd
RR ,

RG = −εRL megxedRL
δd
RL . (3.47)

Obtaining a solution for m
(0)
d is therefore rather more complicated than simply finding the

inverse of R. Considering each element of m
(0)
d in turn, however, it is possible to replicate

the results for m
(0)
d presented in subsection 3.1.

4. B̄ → Xsγ Beyond the LO

Of all the FCNC processes involving transitions between the b and s quarks, B̄ → Xsγ is

currently the best understood both experimentally and theoretically. The data being taken

by B-factories such as BaBar and BELLE, is leading to an increasing degree of precision

for the measurement of the branching ratio of the decay. The current world average is [27]

BR
(
B̄ → Xsγ

)
exp

=
(
3.39+0.30

−0.27

)
× 10−4 . (4.1)

This value takes into account the most recent BELLE [28] and BaBar results [29].

The SM prediction for the branching ratio is based on a NLO calculation that was

completed in refs. [30 – 32], resulting in the prediction6

BR
(
B̄ → Xsγ

)
SM

= (3.70 ± 0.30) × 10−4 . (4.2)

It has been pointed out recently [33] that, if one applies a realistic cut-off for the

photon energy (rather than Eγ > 1/20 mb), a dependence on two additional energy scales

appears when calculating the branching ratio for the decay. The first scale (µi =
√

mb∆) is

associated with the energy of the final hadronic state Xs, whilst the second is dependent on

6This result includes the NNLO effect induced by using the running charm quark mass rather than the

pole mass when calculating the charm quark contributions to the decay [30]. A more formal NNLO analysis

of these effects has been performed in [35]
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the energy range under investigation (µ0 = ∆ = mb−2Eγ). The perturbative uncertainties

associated with these scales are rather large and can lead to a significant increase in the

error associated with the branching ratio. However, in exchange, the final result can

be compared directly with those determined directly from experiment rather than model

dependent extrapolations to Eγ > 1/20 mb.

We should also briefly mention that steps are now being taken towards a NNLO cal-

culation [34, 35], that should increase the accuracy of the SM prediction to roughly 5%.

The effective hamiltonian relevant to ∆F = 1 processes such as the decay B̄ → Xsγ is

Heff = −4GF√
2

Keff
ts

∗Keff
tb

8∑

i=1

[
Ci (µ)Oi (µ) + C ′

i (µ)O′
i (µ)

]
. (4.3)

The operators most relevant to the decay are

O7 =
e

16π2
mb (sLσµνbR)Fµν , O8 =

gs

16π2
mb (sLσµνT abR) Ga

µν . (4.4)

(The six remaining operators can be found, for example, in [30]). The primed operators

can be obtained via the simple substitution L ↔ R. The contributions to the primed

operators are negligible in the SM. However, in more general models, such as the MSSM

with general flavour mixing, their effects can no longer be ignored. As the primed and

unprimed operators do not interfere with one another, any new physics contributions to C ′
7

and C ′
8 enter quadratically and therefore act to increase the value of the branching ratio.

New physics contributions to C7 and C8, on the other hand, interfere directly with the SM

contribution and can lead to far more varied effects.

The good agreement (within 1σ) of the SM prediction and the current experimental

results allows one to place increasingly stringent bounds on the effects and mass scale of

new physics contributions. In doing so it is important to include the effects of new physics

at a similar precision to the SM result. NLO matching conditions have been completed

for several extensions of the SM, for example, the NLO matching conditions relevant to

the 2HDM were presented in [37, 36] whilst a more general analysis was presented in [38].

Turning to the MSSM, however, things become rather more complicated. A complete

NLO calculation would involve the evaluation two loop diagrams involving both gluons

and gluinos. For MFV this task is already underway and, for example, the NLO matching

conditions for the charged Higgs contribution have been discussed in [39]. Theoretical

calculations have, thus far, concentrated on particular cases. The calculation presented

in [40], for example, considers a realistic but specific region of MSSM parameter space

where the charginos and lightest stop are relatively light compared to the rest of the

sparticle spectrum and tan β is rather small. These results were extended to the large

tan β regime in [11, 12]. The same papers also considered the dominant effects that occur

BLO for generic SUSY scenarios taking into account effects enhanced by large logs and

tan β. These results were subsequently extended to include CP violation [41], additional

CKM effects [3] and SU(2)L × U(1)Y breaking and electroweak effects in [14].

In the GFM scenario the LO matching conditions have been known for some time [42 –

44] and, in a similar manner to the MFV calculation, the NLO matching conditions have
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been derived in the limit where the gluino decouples and tanβ is small [38]. An extension of

the analysis given in [11] to the GFM scenario was presented in [15, 16] where it was found

that BLO corrections can play a large rôle and can lead to a significant relaxation of the

limits placed on GFM parameters compared to a LO analysis. The aim of this section is to

present calculations in the MIA for both the electroweak and SUSY contributions to B̄ →
Xsγ, allowing one to easily determine the dominant effects that occur once GFM is taken

into account compared to MFV calculations, as well as presenting the calculations detailed

in [16] in a more transparent way. In doing so we therefore adopt the approximations

discussed at the beginning of section 3.

4.1 BLO corrections to electroweak contributions in the MIA

As emphasised in section 2, including tan β enhanced corrections to the charged and neu-

tral Higgs vertices can lead to large effects. Let us first consider how the LO charged

Higgs contributions to the decay B̄ → Xsγ are altered once these effects are taken into

consideration. Using the corrected vertices (3.14)–(3.15) the dominant MFV contribution

in the large tan β regime is given by [11, 3, 14]

(
δH−

C7,8

)MFV
=

1

1 + ε3 tan β

(
1 − ε′s tan β +

ε′Y εY (Y
(0)
b Yt tan β)2

1 + εs tan β

)
F

(2)
7,8

(
m2

t

m2
H+

)
. (4.5)

The loop function F
(2)
7,8 is given in appendix A.2. Note that (4.5) includes the LO contri-

bution in addition to the BLO corrections. Turning to the degenerate mass limit we see

that ε′s depends on the sign of µ. In the phenomenologically favoured region µ > 0, for

example, the BLO corrections induced by gluino exchange typically reduce the branching

ratio compared to a simple LO calculation. The higher order contribution proportional to

Y
(0)2
b , first pointed out in [3], on the other hand is dependent on the sign of the trilinear

soft terms and can therefore interfere destructively or constructively with the (dominant)

gluino correction depending on the model at hand. It should be noted that (4.5) only

serves as a rough approximation of the BLO effects and that the additional effects arising,

for example, from gaugino mediated exchange and SU(2)L × U(1)Y breaking can lead to

deviations from this idealised result in some regions of parameter space [14]. The dominant

effects that arise from these corrections may be included by performing the substitutions

presented in subsection 3.3.

The GFM contributions to the charged Higgs vertex, discussed in section 3.2, give rise

to additional BLO corrections to C7,8 given by7

(
δH−

C7,8

)GFM
= −K∗

tb

K∗
ts

{ 
 ε′LLxedL

tan β

(1 + ε3 tan β)
−

ε′Y εLLxedL
(Y

(0)
b tan β)2

(1 + εs tan β) (1 + ε3 tan β)


 δd

LL +

+
meg

mb

εRLε′Y xedRL
(Y

(0)
b )2 tan β

1 + εs tan β
δd
LR +

7From now on we shall adopt the conventional shorthand δd
XY =

ą
δd

XY

ć
23

.

– 25 –



J
H
E
P
0
8
(
2
0
0
5
)
0
9
4

+ ε′RLyedRL
Y

(0)
b Y (0)

s tan β δd
RL

}
F

(2)
7,8

(
m2

t

m2
H+

)
. (4.6)

The factor of K∗
tb/K

∗
ts that appears in front of (4.6) reflects the fact that the flavour

change is governed by the GFM parameters δd
LL and δd

LR, rather than the CKM matrix.

The additional GFM contributions interfere directly with the MFV corrections to the LO

result and, depending on the sign of δd
LL or δd

LR, can easily lead to large reductions or

enhancements of the MFV result. In addition to these contributions to C7,8 it is also

possible, for non-zero δd
RR and δd

RL, to induce corrections to the primed Wilson coefficients

(
δH−

C ′
7,8

)GFM
= −

[
m2

b

3m2
t

tan2 β

(1 + ε3 tan β)2
F

(1)
7,8

(
m2

t

m2
H+

)
+

+
[1 − (ε′s + ε′Y (Y

(0)
b )2) tan β]

(1 + ε3 tan β)
F

(2)
7,8

(
m2

t

m2
H+

)]
×

×K∗
tb

K∗
ts

[
εRRxedR

tan β

(1 + ε3 tan β)
δd
RR +

meg

mb
εRLε3xedRL

δd
RL

]
. (4.7)

As the LO contributions to the primed coefficients are suppressed by factors of ms/mb the

dominant behaviour, once BLO corrections are taken into account, is determined solely by

GFM effects. Note that these GFM effects persist even if the squarks decouple from the

theory.

It has been pointed out in refs. [3, 14] that the corrected neutral Higgs vertex can

also induce contributions to C7,8 through the diagram where a neutral Higgs boson and

a bottom quark undergoing a chirality flip are exchanged. In the limit of MFV using the

corrected vertex (3.29) one obtains [3, 14]

(
δH0

C7,8

)MFV
= − 1

36

m2
b

m2
A

tan3 β
εY Y 2

t

(1 + εs tan β) (1 + ε3 tan β)2
. (4.8)

The tan3 β dependence of the Wilson coefficient is characteristic of the corrected Higgs

vertex (3.29) and can compensate for the suppression factor m2
b/m

2
A.

Turning to the effects of GFM contributions, using (3.30) it is possible to induce

additional corrections to C7,8

(
δH0

C7,8

)GFM
= − 1

36

m2
b

m2
AK∗

tsKtb

tan3 β

[
εLLxedL

(1 + εs tan β) (1 + ε3 tan β)2
δd
LL +

+
meg

mb

εRLxedRL
εs

(1 + εs tan β) (1 + ε3 tan β)
δd
LR

]
. (4.9)

In a similar manner to (4.8), the GFM contributions arising from neutral Higgs exchange

vary as tan3 β. The primed coefficients also receive contributions if δd
RL or δd

RR are non

zero

(
δH0

C ′
7,8

)GFM
= − 1

36

m2
b

m2
AK∗

tsKtb

tan3 β

[
εRRxedR

(1 + ε3 tan β)3
δd
RR +

meg

mb

εRLε3xedRL

(1 + ε3 tan β)2
δd
RL

]
.

(4.10)
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bR sL

˜g

µm
(0)†
d tan β

˜

bR
˜sL

bL sR

˜g

µ∗m
(0)
d tan β

˜

bL
˜sR

Figure 8: BLO corrections to C7 (C8) and C′

7 (C′

8) arising from gluino exchange, the photon

(gluon) line is attached in every possible manner.

4.2 BLO corrections to SUSY contributions in the MIA

The supersymmetric contributions to the decay B̄ → Xsγ can proceed through a number

of channels. In MFV, the only SUSY contributions arise from diagrams involving chargino

exchange. Once GFM effects are taken into account, additional diagrams arising from

FCNC mediated by gluinos and neutralinos can occur and give rise to contributions to both

the unprimed and primed Wilson coefficients. As the gluino contributions are enhanced by

factors of αs (compared to the MFV contributions), these effects are rather large and can

play an important rôle for even small deviations from MFV.

All four insertions give rise to contributions to either C7,8 or their primed counter-

parts and it will be useful, for our purposes, to decompose the overall gluino mediated

contribution to the decay as follows

δegC7,8 =
(
δegC7,8

)MFV
+

(
δegC7,8

)LL
+

(
δegC7,8

)LR
+

(
δegC7,8

)RL
+

(
δegC7,8

)RR
. (4.11)

The primed coefficients and other SUSY contributions may be defined in a similar manner.

The dominant BLO corrections to the gluino contributions, shown in figure 8, arise from

the flavour violation mediated by the off-diagonal elements of the bare mass matrix and

are proportional to m
(0)
d tan β.

The MFV terms present in the bare mass matrix (3.8) can lead to a correction to the

gluino contribution of the following form

(
δegC7,8

)MFV
= −8

3

αs

α

sin2 θW m2
W

m2
eg

εY Y 2
t tan2 β

(1 + εs tan β) (1 + ε3 tan β)

µ

meg

I
[7,8]
6

(
xed

)
. (4.12)

The loop functions I
[7,8]
i (x) and J

[7,8]
i (x), that appear throughout this section, can be

found in appendix A.2, xed
denotes the ratio

xed
=

m2
eq

m2
eg

(4.13)

where m2
eq is a common mass of the quadratic soft terms (2.12) (that is, m2

eq =
(
m2

d,LL

)
ii

=
(
m2

d,RR

)

ii
). Due to the 1/m3

eg suppression of the amplitude it would be expected that these

effects are typically rather small when compared to the additional BLO effects arising, for

example, from the modified charged Higgs vertex. However, the terms feature a dependence

on tan2 β in the numerator and should be included if one wants to consider the effects of
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all tan β enhanced corrections. We should note that this correction is entirely consistent

with the definition of MFV presented in [3] and is a result of the transition between the

bare and physical super-CKM bases.

The GFM contributions to the Wilson coefficient C7,8 arising from gluino exchange are

due mainly to the LL and the LR insertions. The contributions due to the RL and the RR

insertions are suppressed by factors of the strange quark mass and may be safely ignored.

Contributions arising from the insertion δd
LL are generated at first and second order in

the MIA. At first order, the chirality flip is generated via the bottom quark that appears in

the operators (4.4). At second order, the contribution arises from the diagram involving a

diagonal LR insertion, an LL insertion and a chirality flip on the gluino line. This correction

can play an important rôle for even moderate tan β, and for large tan β dominates the

overall behaviour of the contribution to C7. If we ignore the effects generated by the

diagonal elements of the trilinear soft terms, we have

(
δegC7,8

)LL
=

8

3K∗
tsKtb

αs sin2 θW

α

(
mW

meg

)2

xed
×

×
{[

I
[7,8]
5

(
xed

)
−− εLL tan2 β

(1 + εs tan β) (1 + ε3 tan β)

µ

meg

I
[7,8]
6

(
xed

) ]
+

+
µ

2meg

tan β

(1 + ε3 tan β)
×

×
[
J

[7,8]
6

(
xed

)
−−m2

bµ

m3
eg

εLL tan2 β

(1 + εs tan β) (1 + ε3 tan β)
J

[7,8]
5

(
xed

) ]}
δd
LL . (4.14)

The first and second terms in square brackets that appear in (4.14) arise at the respective

order in the MIA. The chirally enhanced BLO term (that is proportional to I
[7,8]
6

(
xed

)
)

occurs at first order in the MIA, due to the off-diagonal elements of m
(0)
d . This term tends

to reduce the overall effect of the contribution that arises at second order in the MIA (the

term proportional to J
[7,8]
6

(
xed

)
) for µ > 0 (this is one of the contributions to the focusing

effect discussed in [15, 16]). For µ < 0 on the other hand, the two contributions interfere

constructively and increase the contribution to C7,8 relative to a LO calculation. The LO

contribution proportional to I
[7,8]
5 (x) also undergoes a similar reduction once BLO effects

are taken into account. However, in this case, the BLO correction is reduced by a factor

of m2
b/m

2
eg.

For non-zero δd
LR, the dominant contribution at LO arises from the diagram involving

an LR insertion and a chiral flip on the gluino line. This contribution is therefore en-

hanced by a factor of meg/mb. Higher order contributions in the MIA do not feature this

enhancement and are typically rather small. To second order in the MIA we have

(
δegC7,8

)LR
=−8 sin2 θW

3K∗
tsKtb

αs

α

(
mW

meg

)2

xed

[
meg

mb

1

(1 + εs tan β)
I
[7,8]
6

(
xed

)
+

µmb

2m2
eg

×

× tan β

(1 + εs tan β) (1 + ε3 tan β)
J

[7,8]
5

(
xed

)
]
δd
LR (4.15)
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Once again the first and second terms in the square bracket arise at the respective order in

the MIA. From (4.15) it can be seen that BLO effects can reduce, or enhance, the dominant

contribution due to the insertion δd
LR that arises at first order in the MIA, depending on

the sign of εs. In the phenomenologically favoured scenario µ > 0, in particular, εs is

positive and BLO effects act to reduce the LO contribution to C7,8. The term that occurs

at second order in the MIA tends to be subdominant, compared with the chirally enhanced

term that appears at first order, but acts to reduce the contribution to C7,8 further.

Turning to the primed sector, the corrections due to MFV, LL and LR contributions

are suppressed by factors of ms and are rather small. We are therefore left with the

contributions arising from RL and RR insertions.

The contribution due to the insertion δd
RL to second order in the MIA is given by

(
δegC ′

7,8

)RL
= −8 sin2 θW

3K∗
tsKtb

αs

α

(
mW

meg

)2

xed

[
meg

mb

(
1 + εY Y 2

t tan β
)

(1 + ε3 tan β)
I
[7,8]
6

(
xed

)
+

+
µmb

2m2
eg

tan β
(
1 + εY Y 2

t tan β
)

(1 + ε3 tan β)2
J

[7,8]
5

(
xed

)
]

δd
RL .

(4.16)

Comparing the above expression with (4.15) we can see that the form of the two are rather

similar, the only differences being the replacement of εs with ε3 in the denominator of

(4.15) and multiplication by an overall factor of 1+εY Y 2
t tan β. We therefore see that BLO

corrections, once again, act to reduce the contribution due to δd
RL with respect to a purely

LO calculation if µ > 0.

Finally the contribution to C ′
7,8 arising from non-zero δd

RR has the form

(
δegC ′

7,8

)RR
=

8 sin2 θW

3K∗
tsKtb

αs

α

(
mW

meg

)2

xed
×

×
{[

I
[7,8]
5

(
xed

)
− εRR tan2 β

(1 + ε3 tan β)2
µ

meg

I
[7,8]
6

(
xed

)]
+

+
µ

2meg

tan β

(1 + ε3 tan β)
×

×
[
J

[7,8]
6

(
xed

)
− m2

bµ

m3
eg

εRR tan2 β

(1 + ε3 tan β)2
J

[7,8]
5

(
xed

)
]}

δd
RR . (4.17)

In a similar manner to (4.14), the chirally enhanced BLO term arising at first order in the

MIA, due to the off-diagonal elements of the bare mass matrix, can once again affect the

dominant, chirally enhanced, LO contribution that arises at second order in the MIA (the

first and second order terms that appear in the square brackets respectively).

We now turn to the chargino contributions to C7,8 and C ′
7,8, and use an analogous

decomposition to (4.11). The dominant BLO corrections to chargino exchange arise from

the diagrams shown in figure 9.

The effect of BLO corrections in the limit of MFV are well known [11, 14]. In GFM

models, however, it is possible that additional sources of flavour violation in both the up

and down squark sectors can significantly alter the MFV result.
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bR sL

˜cL

˜

Hd
˜

W−
m

(0)†
d 〈H0

d〉−1

bL sR

˜

Hu

mtA
∗
t

˜
tR

˜
tL

m
(0)
d 〈H0

d〉−1
˜

Hd

bL sR

˜tL

m
(0)
d 〈H0

d〉−1˜

W− ˜

Hd

Figure 9: BLO corrections to C7 (C8) and C′

7 (C′

8) arising from chargino exchange, the photon

(gluon) line is attached in every possible manner.

Contributions from flavour violation in the up squark sector enter at LO and are

therefore rather large. As we are chiefly concerned with flavour violation in the down

squark sector, the only relevant source of flavour violation in the up squark sector is the

insertion δu
LL, which is related, by SU (2) symmetry, to δd

LL (2.20). Flavour violation in

the down squark sector, on the other hand, only enters via BLO effects induced by the

off-diagonal elements of m
(0)
d .

The contributions that arise due to LL insertions have the form

(
δχ−

C7,8

)LL
=

K∗
cs

K∗
ts

2∑

a=1

{
m2

W

m2
χ−

a

ya

[
V ∗

a1Va1I
[7,8]
1

(
ya

ed

)
−

−
m

χ−
a

mW

U∗
a2Va1√

2 cos β (1 + ε3 tan β)
I
[7,8]
2

(
ya

ed

) ]
δu
LL +

+
Kcs

Ktb

mW

m
χ−

a

U∗
a2Va1εLLxed

tan β√
2 cos β (1 + εs tan β) (1 + ε3 tan β)

×

×
(
H

[7,8]
2

(
ya

ed

)
+ λ[7,8]

)
δd
LL

}
. (4.18)

Once again the loop functions H
[7,8]
i and I

[7,8]
i can be found in appendix A.2, the ratio ya

ed
is given by

ya
ed
=

m2
eq

m2
χ−

a

. (4.19)

The dominant contribution at LO for large tan β arises from the second term in square

brackets in (4.18) that is enhanced by factors of m
χ−

a
/mW and 1/ cos β. This term, for µ >

0, has the same sign as the gluino contribution (4.14) and acts to enhance the contributions
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due to flavour violation in the LL sector. The BLO corrections to the Wilson coefficient

are reflected by a factor of (1 + ε3 tan β) that appears in the denominator of the second

term in square brackets in (4.18), and the term that appears in the second line of (4.18),

proportional to δd
LL. Both of these BLO corrections for µ > 0 act to decrease the LO

contribution. For µ < 0, on the other hand, both corrections act to increase the Wilson

coefficient relative to the LO result.

The LR insertions also contribute to the Wilson coefficient

(
δχ−

C7,8

)LR
=−KcsK

∗
cs

KtbK
∗
ts

2∑

a=1

mW√
2mχ−

a
cos β

Va1U
∗
a2

meg

mb

εRLxed

(1 + εs tan β)

(
H

[7,8]
2

(
ya

ed

)
+ λ[7,8]

)
δd
LR .

(4.20)

In this case, GFM contributions only enter via BLO effects induced by the off-diagonal

elements of the bare mass matrix. For µ > 0 and large tan β, the contribution (4.20) has

the opposite sign to the gluino contribution (4.15) and large cancellations are possible,

which contribute significantly to the focusing effect pointed out in [15].

Before proceeding with the results relevant to the primed sector we should note that

once again, the contributions to C7,8 arising from RL and RR insertions are suppressed by

factors of ms.

In a similar manner to the corrections that arise from gluino exchange, the only dom-

inant contributions to the primed coefficients arise from RL and RR insertions. The con-

tribution arising from RL insertions is given by

(
δχ−

C ′
7,8

)RL
=

2∑

a=1

K∗
tb

K∗
tsmχ−

a

[
m2

t At

2m2
χ−

a

V ∗
a2Ua2 tan βI

[7,8]
2

(
ya

ed

)
−

− mW√
2 cos β

V ∗
a1Ua2

(
H

[7,8]
2

(
ya

ed

)
+ λ[7,8]

)]
meg

mb

εRLxed

(1 + ε3 tan β)
δd
RL ,

(4.21)

and the contribution arising from RR insertions is

(
δχ−

C ′
7,8

)RR
=−

2∑

a=1

K∗
tb

K∗
tsmχ−

a

[
m2

t At

2m2
χ−

a

V ∗
a2Ua2 tan βI

[7,8]
2

(
ya

ed

)
−

− mW√
2 cos β

V ∗
a1Ua2

(
H

[7,8]
2

(
ya

ed

)
+ λ[7,8]

)]
εRRxed

tan β

(1 + ε3 tan β)2
δd
RR .

(4.22)

LO contributions to both coefficients arising from either MFV or non-zero δu
LL are sup-

pressed by factors of ms/mb and are therefore rather small. At large tan β, therefore, the

BLO effects dominate the behaviour of the chargino contributions to the primed opera-

tors. We should also note that in a similar manner to the case of the LR insertion both

corrections (for µ > 0) have the opposite sign to the gluino contributions (4.16)–(4.17).

In the GFM scenario, neutralino contributions also play a rôle. They can become

especially important when, for example, the gluino and chargino contributions partially
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cancel [44]. However, as the neutralino couplings (C.6)–(C.7) are rather complicated, we

shall refrain from presenting complete analytic expressions for the coefficients in the MIA.

The overall effect of including BLO corrections is to modify the Wilson coefficient in a

similar manner to the gluino contributions (4.15)–(4.17). As an example, the contribution

arising from LR insertions to C7,8 due to bino exchange becomes

(
δB̃C7

)LR
=

m2
W tan2 θW

9K∗
tsKtbmbM1

zd̃I
[7,8]
4

(
zd̃

)

(1 + εs tan β)
δd
LR . (4.23)

The loop function I
[7,8]
4 can be found in appendix A.2 whilst its argument is given by

zd̃ = m2
eq/M

2
1 . The contributions induced by neutral gaugino-higgsino mixing, on the

other, hand are more complicated due to the appearance of the bare quark mass matrix in

the couplings (C.6)–(C.7).

Finally, let us consider the effect of evolving these coefficients from the SUSY matching

scale µSUSY to the electroweak scale µW . Considering only the mixing between O7 and O8

we have the LO relation [47]

δC7 (µW ) = η
16

21 δC7 (µSUSY ) +
8

3

(
η

2

3 − η
16

21

)
δC8 (µSUSY ) . (4.24)

The factors of η in the above expression reflect the resummation of leading logarithms and

are given by

η =
αs (µSUSY )

αs (µW )
, (4.25)

where αs (µSUSY ) and αs (µW ) should be evaluated with the QCD β function relevant for

six active flavours. If we retain only the first logarithm that appears when expanding the

factors η we have

δC7 (µW ) = δC7 (µSUSY ) − 4

3π
αs (µW )

[
δC7 (µSUSY ) − 1

3
δC8 (µSUSY )

]
log

µ2
SUSY

µ2
W

.

(4.26)

From the above expression, it is apparent that the evolution of the coefficients from µSUSY

to µW acts to reduce the overall SUSY contribution. In addition mixing with the coefficient

C8 can also play a rôle. If δC8 has the opposite sign compared to δC7, for example, further

reductions are possible.

Finally, let us provide a recipe for implementing BLO corrections into existing LO

gluino matching conditions calculated in the MIA [45, 46]. When performing LO calcula-

tions, one ignores the corrections to the bare mass matrix, discussed in section 2.1, and

the F -terms are therefore assumed to be flavour diagonal. Once one proceeds beyond

the LO however, this assumption no longer holds and additional off-diagonal elements in

the squark mass matrix appear, that are attributable to the factors of m
(0)
d that appear

in (2.14). In the LR sector, in particular, the off-diagonal elements of the bare mass matrix

are enhanced by a factor of tan β. The effect of these BLO corrections can be included in
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existing LO expressions by making the following substitutions

(
δd
LR

)
ij

→
(
δd
LR

)
ij
−

µ tan β
(
m

(0)
d

†
)

ij√(
m2

d,LL

)
ii

(
m2

d,RR

)
jj

, (4.27)

(
δd
RL

)
ij

→
(
δd
RL

)
ij
−

µ tan β
(
m

(0)
d

)
ij√(

m2
d,RR

)
ii

(
m2

d,LL

)
jj

. (4.28)

Similar substitutions exist for the insertions δd
LL and δd

RR, however the effects are typically

proportional to O(m2
b/m

2
SUSY ) and may therefore be safely omitted. In each of the sub-

stitutions given above, the off-diagonal elements of the bare mass matrix are enhanced by

a factor of tan β and can therefore play a rather large rôle. One should also note that

the factor of the down quark mass, that appears in flavour-diagonal LR mixings, should

also be replaced by the appropriate element of m
(0)
d . Following this recipe, it is relatively

easy to modify the LO calculation presented in, for example, [45] and obtain results in

agreement with those presented above. We should note that, provided one calculates m
(0)
d

to a similar precision, the substitutions can be used to all orders in the MIA. One may

also use these substitutions in LO expressions for the chargino and neutralino matching

conditions, however here one must also take into account the factors of the bare mass ma-

trix that appear in the chargino and neutralino vertices. Finally, let us emphasise that the

substitutions (4.27)–(4.28) do not amount to a redefinition of the δ’s given in (2.18)–(2.19)

but merely represent the form of the BLO corrections to LO expressions.

4.3 Full calculation

With our results derived in the MIA in mind let us now outline the steps required to im-

plement BLO corrections in the general framework outlined in section 2 where the squark

mass matrices are diagonalised numerically. After performing the iterative procedure de-

scribed in subsection 2.4 one may obtain the BLO charged Higgs and SM contributions

by using the matching conditions presented in [37, 36, 38], to account for the NLO gluon

contribution, and using the corrected vertices presented in section 2 to evaluate the LO

matching conditions. As discussed in subsection 3.2 the corrections to the SM contribu-

tions tend to be rather small and can generally be ignored. The effect of the neutral Higgs

contribution can also be included by using the matching conditions presented in [3, 14].

Turning to the supersymmetric contributions, BLO corrections can be incorporated

by using the supersymmetric vertices detailed in section 2.3 and appendix C in the LO

matching conditions given in [38, 16]. It should be noted that one should use the uni-

tary matrices Γd,u that are obtained at the end of the iterative procedure described in

subsection 2.4 when evaluating these contributions. One may also, with care, include the

additional NLO effects that appear if the gluino decouples by using the matching condi-

tions presented in [38]. Once one has evaluated all the supersymmetric corrections they

may be evolved from the SUSY matching scale to the electroweak matching scale using the

NLO six flavour anomalous dimension matrix presented in [47].
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With the supersymmetric and electroweak contributions evaluated at the scale µW it

is finally possible to calculate the branching ratio for B̄ → Xsγ according to [30]. Let us

note that this recipe is quite general and may be applied to any other process providing

the relevant matching conditions and anomalous dimension matrices are available.

In summary, in this section we have included all the relevant corrections that appear

beyond the LO in the MIA. In the electroweak sector, we have seen that the additional

GFM contributions to the charged and neutral Higgs vertices can lead to potentially large

modifications to the MFV results depending on the sign of the insertion at hand. The

interplay and cancellations between the various supersymmetric contributions, has also

been shown to be significant once one proceeds BLO [15] and leads to a focusing effect

in the phenomenologically interesting region µ > 0 and At < 0. For the insertions δd
LR,

δd
RL and δd

RR, in particular, large cancellations can arise between the gluino and chargino

contributions to the decay. For the insertion δd
LL on the other hand, the cancellations play

a more minor role, as a LO correction to the chargino correction already exists (arising

from the insertion δu
LL) and tends to reduce the effect of BLO corrections. Finally we

have seen that the RG evolution of these corrections can lead to further reductions to the

supersymmetric contributions to the decay.

5. B̄s → µ+µ− beyond the LO

As B-factories do not run at the energy required to produce large quantities of Bs mesons,

the best experimental constraint on the rare decay B̄s → µ+µ− is provided by collider

experiments. The current 95% confidence limits provided by the CDF [48] and DØ [49]

experiments at the Tevatron are8

BR
(
B̄s → µ+µ−

)
CDF

< 2.0 × 10−7 , (5.1)

BR
(
B̄s → µ+µ−

)
DØ

< 3.8 × 10−7 . (5.2)

CDF and DØ intend to further probe regions of up to O
(
10−8

)
. At the LHC, on the other

hand, branching ratios of up to O
(
10−9

)
are easily obtainable after a few years of running

at ATLAS, CMS and LHCb [52].

Theoretically, the decay B̄s → µ+µ− provides one of the cleanest FCNC ∆F = 1 decay

channels. It is described by the effective hamiltonian [23]

Heff = −GF α√
2π

Keff
ts

∗Keff
tb

∑

i

[
Ci(µ)Oi(µ) + C ′

i(µ)O′
i(µ)

]
(5.3)

where the operators Oi are given by

O10 = (s̄αγµPLbα)
(
l̄γµγ5l

)
, O′

10 = (s̄αγµPRbα)
(
l̄γµγ5l

)
,

OS = mb (s̄αPRbα)
(
l̄l
)
, O′

S = ms (s̄αPLbα)
(
l̄l
)
,

OP = mb (s̄αPRbα)
(
l̄γ5l

)
, O′

P = ms (s̄αPLbα)
(
l̄γ5l

)
. (5.4)

8These results are preliminary, one can find the most recent published results in [50, 51].
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As the anomalous dimensions of all three operators are zero, the RG running is trivial and

the overall branching ratio for the process l = µ is given by

BR
(
B̄s → µ+µ−

)
=

G2
F α2m2

Bs
f2

Bs
τBs

64π3
|Keff

ts
∗Keff

tb |2
√

1 − 4m̂2
µ ×

×
[(

1 − 4m̂2
µ

)
|FS |2 + |FP + 2m̂2

µF10|2
]
, (5.5)

where m̂µ = mµ/mBs and the dimensionless quantities Fi are given by

FS,P = mBs

[
CS,P mb − C ′

S,P ms

mb + ms

]
, F10 = C10 − C ′

10 .

It should be noted from the above expression that the Wilson coefficient of the operator

O10 is helicity suppressed by a factor of m̂2
µ as the Bs meson has spin zero. The SM

contributions are only proportional to O10 as the Higgs mediated contributions to OS,P

can be safely neglected. The SM contributions to C10 have been evaluated to NLO [53]

resulting in the branching ratio [54]

BR
(
B̄s → µ+µ−

)
SM

= (3.46 ± 1.5) × 10−9 . (5.6)

The large uncertainty is mainly attributable to the hadronic matrix element fBs that can

be determined from either lattice or QCD sum rule calculations. A representative value

for fBs is9

fBs = (230 ± 30) MeV . (5.7)

In scenarios beyond the SM, particularly SUSY with large tan β, the contributions

to CS and CP arising from neutral Higgs penguins can become large and dominate the

underlying behaviour of the branching ratio. Studies in the MSSM have focussed on both

MFV [58, 22, 60] and GFM scenarios [61, 62, 17] where the corrections induced by the

corrected neutral Higgs vertex (3.29)–(3.30) lead the branching ratio for the decay to

vary as tan6 β (for a review see [24]). At large tan β it is therefore quite possible for

BR
(
B̄s → µ+µ−

)
to be enhanced by a few a orders of magnitude compared to the SM

value, providing an ideal signal for physics beyond the SM. The aim of this section is to

present analytic expressions for the contributions to CS and CP in the MIA that include the

BLO effects discussed in section 2. We also discuss briefly the effect BLO contributions have

on the subdominant contributions that arise from box diagrams mediated by neutralinos

and charginos. Finally we discuss the application of the recipe given at the end of the

previous section to B̄s → µ+µ−.

5.1 BLO corrections to electroweak contributions in the MIA

As above for B̄ → Xsγ, here we will present MIA calculations for the contributions that

arise due to the effective vertices presented in section 2.2.

9The current unquenched lattice calculations for fBs
vary from 215 MeV [55] up to 260 MeV [56] (for

details of the errors associated with these values we refer the reader to the original papers). As the branching

ratio is proportional to the square of fBs
we decide to take a rather conservative estimate for the magnitude

of fBs
as recommended in [57].
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bR

sL

µ

µ

H0, h0, A0

bL

sR

µ

µ

H0, h0, A0

Figure 10: The neutral Higgs penguin contributions to CS,P (on the left) and C′

S,P (on the right).

Corrections to the effective Z vertex (3.13) lead to contributions to C10 proportional

to δd
LR

(
δZC10

)GFM
=

1

3KtbK
∗
ts

αs

α

µmb

m2
eg

tan β

(1 + εs tan β) (1 + ε3 tan β)
fZ

(
xed

)
δd
LR (5.8)

whilst there is a similar contribution proportional to δd
RL to C ′

10. Terms proportional to δd
LL

may be generated at third order in the MIA, which undergo BLO corrections from terms

that appear when using the bare mass matrix (3.8). As stated in the previous section

however, C10 and C ′
10 are both helicity suppressed by factors of m2

µ and their contribution

to the overall branching ratio is therefore typically limited to the low tan β regime.

The charged Higgs contributions to C10 and C ′
10 arise from Z penguins and box dia-

grams. The contribution to C10 is suppressed by a factor of cot2 β and, whilst the contribu-

tion to C ′
10 is enhanced by a factor of tan2 β, it is suppressed by a factor of ms. Including

BLO effects can alleviate these suppression factors. However, as the Wilson coefficients are

suppressed by a factor of m2
µ the overall effect is rather small.

The LO contributions to CS,P induced by neutral Higgs penguins and box diagrams

have been calculated in [22]. For completeness we present them here

δH−

C
(0)
S,P = ± mµ tan2 β

4m2
W sin2 θW

y log y

1 − y
, δH−

C
(0) ′
S,P = ±

(
δH−

C
(0)
S,P

)
(5.9)

where y = m2
t /m

2
H+ .

BLO effects can be included by using the couplings presented in subsection 3.2 when

calculating the matching conditions. The largest correction induced by using these cou-

plings is attributable to the factor of (1 + ε3 tan β) that accompanies the right handed

coupling of the charged Higgs. This factor typically acts to reduce the charged Higgs con-

tribution relative to the LO prediction. The GFM corrections to the vertex can act to

replace the factors of K∗
tsKtb that characterise flavour change in the MFV contribution

with the flavour violating insertions (2.18)–(2.19).

The contributions that arise due to the corrected neutral Higgs vertex proceed via

the penguin diagram shown in figure 10. Using (3.29) it is relatively easy to obtain the

dominant contribution arising from chargino exchange in the limit of MFV [58, 60]

(
δH0

CS,P

)MFV
= ± mµm2

t At tan3 β

4m2
W m2

Aµ sin2 θW

H2

(
yeuR

, yeuL

)

(1 + ε3 tan β) (1 + εs tan β)
. (5.10)

mA denotes the mass of the pseudoscalar Higgs, whilst we decompose the MFV and GFM

contributions in a similar manner to (3.28). The most striking aspect of this contribution
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stems from the factor of tan3 β that appears in the numerator of (5.10) coupled with a

relatively weak dependence on the underlying SUSY mass scale. It is therefore possible

in SUSY models with large tan β that large contributions to CS,P can occur even if the

sparticle masses are O (1TeV). (Provided, of course, that the Higgs sector does not decou-

ple, too.) The BLO contributions in (5.10) are contained in the factors of (1 + ε3 tan β)

and (1 + εs tan β) that appear in the denominator. In the limit of degenerate sparticle

masses, for µ > 0, these corrections tend to reduce the neutral Higgs contribution to CS,P

compared with the LO limit εY , εs → 0.

The GFM corrections to the effective neutral Higgs vertex (3.30) contribute to CS,P [17]

(
δH0

CS,P

)GFM
= ±4αs

3α

µmµ

m2
A

tan3 β

KtbK
∗
ts

×

×
[

εRL

(1 + εs tan β)

xedRL

mb

H2(xedR
, xedL

)δd
LR +

+
1

(1 + εs tan β) (1 + ε3 tan β)

xedL

meg

H3(xedR
, xedL

, xedL
)δd

LL

]
, (5.11)

and the primed coefficients

(
δH0

C ′
S,P

)GFM
=

4αs

3α

µmµ

m2
A

tan3 β

KtbK
∗
ts

×

×
[(

εRL +
meg

µ
εY Y 2

t

)

(1 + ε3 tan β)

xedRL

ms
H2(xedL

, xedR
)δd

RL +

+
1

(1 + ε3 tan β)2
xedR

meg

mb

ms
H3(xedL

, xedR
, xedR

)δd
RR

]
. (5.12)

The contributions arising from the insertions δd
LL and δd

RR are modified in a similar manner

to the MFV contribution (5.10) and for µ > 0 undergo the familiar reduction once BLO

effects are taken into account. It should be noted that once one proceeds beyond the

approximation of setting electroweak couplings to zero, and uses the substitutions gathered

in subsection 3.3 an additional contribution, proportional to the insertion, δd
LL arises

(
δH0

CS,P

)EW
= ∓

2∑

a=1

mµV ∗
a1mχ−

a
Ua2

2
√

2mW m2
A

tan3 β

KtbK
∗
ts sin β sin2 θW

ya
edL

H2

(
ya

euL
, ya

euL

)
δd
LL . (5.13)

This LO correction tends to interfere destructively with the dominant gluino contribution

given in (5.11) and is typically the largest contribution attributable to the insertion δd
LL

once one proceeds beyond the approximation described in section 3.

Turning to the insertions δd
LR and δd

RL, their appearance is a strictly BLO effect and can

lead to large deviations from LO results where the contributions arising from the insertions

accidentally cancel as we have shown in [17].
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˜u ˜ν

bR µ

sL µχ−

χ−

˜

d ˜e

bR µ

sL µχ0

χ0

˜

d ˜e

bR µ

sL µχ0

χ0

Figure 11: The contributions to B̄s → µ+µ− arising from box diagrams mediated by charginos

and neutralinos.

5.2 BLO corrections to SUSY contributions

As the gluino does not couple to the leptonic sector the supersymmetric contributions to

B̄s → µ+µ− take place via the box diagrams mediated by chargino and neutralino exchange

shown in figure 11. Including BLO effects when calculating these contributions introduces

a dependence on the bare mass matrix, through the vertices (2.34)–(2.35) and (C.6)–(C.7).

Sources of flavour violation can therefore enter through either the chargino or the neutralino

contributions. However these contributions tend to scale as tan2 β and, coupled with the

underlying dependence on 1/M2
SUSY , rather than 1/m2

A, are rather small when compared

to the effects induced by the neutral Higgs penguins discussed in the previous subsection.

5.3 Full calculation

During our numerical analysis we shall follow the recipe described in subsection 4.3 and use

the expressions gathered in appendix D to evaluate the corrections to the various effective

vertices. We therefore include higher order terms in the MIA as well as any (subdominant)

SU(2)L × U(1)Y breaking effects. Concerning the SM and charged Higgs contributions

to the decay we use the matching conditions gathered in [63] to evaluate the NLO gluon

contribution. The contributions that arise from SUSY boxes are given in [59, 22].

In conclusion, in this section we have discussed how the BLO effects discussed in

section 2 alter LO contributions to B̄s → µ+µ−. In the electroweak sector, these corrections

typically manifest themselves as factors of either (1 + ε3 tan β) or (1 + εs tan β) that act to

reduce both MFV and GFM contributions to the decay. In addition, we have seen that

new flavour structures, absent at LO, can appear once BLO effects are taken into account,

leading to potentially large deviations from LO calculations.

6. B̄s − Bs mixing beyond the LO

The final process that we will consider concerns mixing in the Bs meson system. In a

similar manner to the neutral kaon and Bd systems mixing can occur between the Bs and

B̄s mesons via ∆F = 2 loop diagrams. In contrast to the neutral kaon and Bd systems,

however, the mass difference ∆MBs between the physical states formed from the two mesons

has so far remained unobserved. The best bound provided by experiment is currently [27]

∆M exp
Bs

> 14.5 ps−1 . (6.1)
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In future, the experiments at the Tevatron intend to increase this limit by 20-30% [64]

whilst even after a year of low luminosity running ATLAS, CMS and LHCb intend to place

limits of 30ps−1, 26ps−1 and 48ps−1 [52] respectively on ∆MBs . Comparing these limits

with the NLO Standard Model prediction [65, 66]

∆MSM
Bs

= (18.0 ± 3.7) ps−1 , (6.2)

it can be seen that the full range of values allowed by the SM can be probed in a relatively

short time after data taking has commenced at the LHC.

The effective hamiltonian that most generally describes B̄s−Bs mixing effects is given

by [67, 68]

Heff =
G2

F

16π2
m2

W

(
Keff

tb
∗Keff

ts

)2 ∑

i

Ci (µ)Oi (µ) . (6.3)

In the SM the only non-negligible contribution is proportional to the operator

OV LL = (b̄αγµPLsα)(b̄βγµPLsβ) . (6.4)

However, in the presence of any source of new physics it is possible to induce additional

contributions to the operators

OLR
1 = (b̄αγµPLsα)(b̄βγµPRsβ) , OLR

2 = (b̄αPLsα)(b̄βPRsβ) , (6.5)

OSLL
1 = (b̄αPLsα)(b̄βPLsβ) , OSLL

2 = (b̄ασµνPLsα)(b̄βσµνPLsβ) , (6.6)

as well as the parity flipped operators OV RR and OSRR
i that can be obtained by substituting

PL with PR in (6.4) and (6.6). The mass difference ∆MBs may then be evaluated by taking

the matrix element

∆MBs = 2|〈B̄0
s |Heff |B0

s 〉| , (6.7)

where 〈B̄0
s |Heff |B0

s 〉 is given by

〈B̄0
s |Heff |B0

s 〉 =
G2

F

48π2
m2

W mBsfBs

(
Keff

tb
∗Keff

ts

)2 ∑

i

PiCi (µW ) , (6.8)

mBs denotes the mass of the Bs meson, whilst fBs is given in (5.7). The coefficients Pi

contain the effects due to RG running between µt and µb as well as the relevant hadronic

matrix element for the operator in question. Using the MS lattice calculation [69] the

coefficients Pi have the form

P V LL
1 = 0.73 , PLR

1 = −1.97 , PLR
2 = 2.50 , PSLL

1 = −1.02 , PSLL
2 = −1.97 . (6.9)

where we have taken µb = 4.25GeV and µW = mt(mt). The coefficients P V RR
1 , etc. , may

be obtained by simply exchanging L and R. One interesting aspect of (6.9) is that QCD

effects act to enhance the contributions arising from the scalar operators relative to the

SM operator CV LL.

The new physics contributions to neutral meson mixing have been discussed extensively

in the literature. The NLO charged Higgs contributions to CV LL, for instance, have been

– 39 –



J
H
E
P
0
8
(
2
0
0
5
)
0
9
4

known for some time now [70]. Turning to the MSSM, the NLO matching conditions have,

in a similar manner to the decay B̄ → Xsγ, only been derived for some special cases in the

MFV limit [71]. Most analyses have therefore focussed on using LO matching conditions.

For example, in [72] the LO gluino matching conditions, relevant for mixing in the kaon

system, were used alongside the NLO anomalous dimension matrix and lattice matrix

elements to place limits on the insertions governing non-minimal flavour violation between

down and strange squarks. This analysis has since been extended to the Bd [73] and Bs [74]

meson systems. In the B̄s −Bs mixing system, in particular, large contributions to ∆MBs

of up to 120 ps−1 have been found to arise. In the large tan β regime another possibility

for large contributions arises from the inclusion of the effects induced by the neutral Higgs

penguin. Although strictly speaking an NLO contribution the corrections arising from

flavour violation mediated by two neutral Higgs penguins have been shown to vary as

tan4 β. Such corrections have been analysed in the context of MFV [75, 61, 76, 60, 14] and

GFM [75, 61, 62, 17] and can similarly induce rather large corrections to ∆MBs .

The aim of this section is to discuss how the inclusion of BLO corrections affect the

electroweak and supersymmetric contributions to the Wilson coefficients associated with

the operators (6.4)–(6.6). In particular, we shall discuss, in detail, the contributions that

arise from double Higgs penguins in the GFM scenario and the dominant BLO corrections

to the existing LO gluino matching conditions. When presenting our analytic expressions

we shall use the MIA and follow the approximation outlined at the beginning of section 3.

We therefore only include the effects induced by gluino and higgsino exchange and ignore

additional corrections induced by electroweak gaugino exchange and SU(2)L×U(1)Y break-

ing. One may include the additional contributions that appear once one proceeds beyond

this approximation by using the substitutions gathered in subsection 3.3. Finally, we shall

briefly discuss the application of the recipe given in subsection 4.3 to B̄s − Bs mixing.

6.1 BLO corrections to electroweak contributions in the MIA

Charged Higgs exchange leads to contributions to all of the operators given in (6.4)–(6.6)

(with the exception of OSLL
2 and its parity flipped counterpart). BLO effects can be easily

included by using the matching conditions given in [14] and the corrected vertices given in

section 3.2. As an example, the contribution to CLR
2 arising from the diagram shown in

figure 12 is given by

δH−

CLR
2 =

8m4
t mbms tan2 β

m4
H+m2

W (1 + ε3 tan β)2

(
1 +

ΛR
32

Kts

)
H3

(
m2

W

m2
H+

,
m2

t

m2
H+

,
m2

t

m2
H+

)
. (6.10)

(The other contributions undergo similar corrections.) The factor of (1 + ε3 tan β) that

appears in the denominator acts, once again, to reduce the contributions relative to a

LO calculation. The GFM corrections included in the term proportional to ΛR
32, defined

in (3.17), can remove the dependence on the strange quark mass that appears in (6.10)

and lead to potentially large corrections to the MFV result.

The corrected neutral Higgs vertex can give rise to large corrections to ∆MBs in the

large tan β regime via the double Higgs penguin diagrams shown in figure 13 [75]. The
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G− H−

sL bR

bL sRt

t

Figure 12: The tan2 β enhanced contribution to CLR
2 arising from charged Higgs and Goldstone

boson exchange.

corresponding matching conditions are

CSLL
1 = − 16π2

2G2
F m2

W

(
K∗

tbKts

)2

∑

S0=H0,h0,A0

(
CS0

L

)

32

(
CS0

L

)

32

m2
S0

, (6.11)

CLR
2 = − 16π2

G2
F m2

W

(
K∗

tbKts

)2

∑

S0=H0,h0,A0

(
CS0

L

)
32

(
CS0

R

)
32

m2
S0

. (6.12)

The contribution to the parity flipped operator OSRR
1 can be obtained via the substitution

L ↔ R in (6.11). Using the corrected neutral Higgs vertex (3.29) in the limit of MFV it is

easy to obtain the results for CSLL
1 [14]

(
δH0

CSLL
1

)MFV
= − GF m2

bm
4
t

2
√

2π2m2
W

ε2
Y

(
16π2

)2
tan4 β

(1 + εs tan β)2 (1 + ε3 tan β)2
F− (6.13)

and CLR
2

(
δH0

CLR
2

)MFV
= −GF mbmsm

4
t√

2π2m2
W

ε2
Y

(
16π2

)2
tan4 β

(1 + εs tan β)2 (1 + ε3 tan β)2
F+. (6.14)

Here we decompose the MFV and GFM contributions to the Wilson coefficients in similar

manner to (4.11). We have adopted the notation

F± =
sin2 (α − β)

m2
H0

+
cos2 (α − β)

m2
h0

± 1

m2
A0

(6.15)

to represent the interference between the scalar and pseudoscalar contributions. At large

tan β, (6.15) becomes (for m2
A > m2

Z)

F± =
1

m2
H0

± 1

m2
A0

, (6.16)

and the scalar and pseudoscalar contributions to CSLL
1 approximately cancel, whilst the

contributions to CLR
2 interfere constructively. As has been pointed out in [76, 14], the

double penguin contribution to CLR
2 acts to reduce the value of ∆MBs , bringing it closer
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Figure 13: The contributions to B̄s − Bs mixing arising from neutral Higgs penguins.

to the current experimental limit (6.1). The factor of ms that appears (6.14) suppresses

the contribution somewhat, however it can still be of the order of 50% of the Standard

Model contribution in certain regions of parameter space even once the current limits on

B̄s → µ+µ− are taken into account [14].

Including the effects of GFM when evaluating the contributions to the Wilson coeffi-

cients CSLL
1 and CLR

2 can lead to far more varied effects. The full expressions for CLR
2 and

CSLL
1 can be obtained by using (3.28)–(3.30), however, as they are rather complicated, let

us highlight the phenomenologically most interesting terms that appear. If the insertion

δd
LL is non-zero the contribution to CLR

2 becomes

(
δH0

CLR
2

)LL
= − mbms

2π2g2
2

(
K∗

tbKts

)2

ε2
LLx2

edL

(
16π2

)2
tan4 β

(1 + εs tan β)2 (1 + ε3 tan β)2
F+

(
δd
LL

)2
. (6.17)

In a similar manner to the MFV correction (6.14), the contribution acts to reduce the value

of ∆MBs . Once again, however, CLR
2 is suppressed by a factor of the strange quark mass

that tends to limit the size of the correction to ∆MBs . The insertion δd
LR also contributes

to CLR
2 via the diagram where one penguin is mediated by gluino exchange and the other

is mediated by chargino exchange

(
δH0

CLR
2

)LR
= − msmegm

2
t

4π2m2
W K∗

tbKts

εRLεsεY xedRL

(
16π2

)2
tan4 β

(1 + εs tan β)2 (1 + ε3 tan β)
F+δd

LR . (6.18)

In this case the contribution can increase or decrease the value of ∆MBs depending on the

sign of δd
LR. However the factor of ms that appears in (6.18) means that these effects are,

once again, rather small.

It is possible to avoid factors of the strange quark mass that appear in the above

expressions for CLR
2 by considering scenarios where the right handed Higgs coupling that

appears in (6.12) does not feature such a suppression. This occurs if either δd
RL or δd

RR are

non-zero. If we consider the diagram where one Higgs penguin is mediated by chargino

exchange and the other by gluino exchange we have, for non-zero δd
RR [17]

(
δH0

CLR
2

)RR
= − m2

bm
2
t

4π2m2
W K∗

tbKts

εRRεY xedR

(
16π2

)2
tan4 β

(1 + εs tan β) (1 + ε3 tan β)3
F+δd

RR . (6.19)

A similar contribution is possible for the insertion δd
RL

(
δH0

CLR
2

)RL
= − mbmegm

2
t

4π2m2
W K∗

tbKts

εRLε3εY xedRL

(
16π2

)2
tan4 β

(1 + εs tan β) (1 + ε3 tan β)2
F+δd

RL . (6.20)
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As one penguin is mediated by chargino exchange, (6.19)–(6.20) feature only a linear de-

pendence on δd
RR and δd

RL. Large positive or negative contributions to ∆MBs are therefore

possible, depending on the sign of the insertions.

If δd
LL or δd

LR are non-zero, in addition to either δd
RL or δd

RR the diagram involving two

gluino mediated penguins becomes viable. For example, if δd
LL and δd

RR are non-zero we

have the contribution

(
δH0

CLR
2

)LL+RR
= − m2

b

2π2g2
2

(
K∗

tbKts

)2

εRRεLLxedL
xedR

(
16π2

)2
tan4 β

(1 + εs tan β) (1 + ε3 tan β)3
F+δd

LLδd
RR . (6.21)

Similar contributions arise for the remaining combinations LL+RL, LR+RR and LR+RL.

The tan4 β dependence of (6.21), coupled with its dependence on the strong coupling

constant present in the factors of εLL and εRR, can lead to large corrections to ∆MBs in

the large tan β regime. We should briefly mention here how this result compares to that

presented in [62]. As discussed in [17] the authors of [62] omit the effects that arise when

considering the GFM contributions to the bare CKM matrix (3.42). Once one takes into

account such contributions, one of the factors of (1 + ε3 tan β) that appears in eq. (5.8)

of [62] is replaced by a factor of (1 + εs tan β). Taking this correction into account, our

results agree.

A common feature of all of these corrections lie in the factors of (1 + ε3 tan β) and

(1 + εs tan β) that appear in the denominators of all double Higgs penguin contributions.

These factors represent the resummation of tan β enhanced effects and act to reduce the

contributions for µ > 0, At < 0 compared to calculations where resummation is not taken

into account.

6.2 BLO corrections to SUSY contributions in the MIA

The supersymmetric contributions to B̄s − Bs mixing proceed via box diagrams mediated

by gluino, chargino and neutralino exchange. Unlike the decay B̄ → Xsγ however, sizeable

effects due to these contributions are often limited to regions where the squarks and gluinos

are relatively light O (500GeV).

As B̄s − Bs mixing is a ∆F = 2 process, the gluino and neutralino contributions, at

LO, feature combinations of two insertions. The LO gluino matching conditions have been

discussed, in the context of the MIA, in [73]. It is relatively easy to modify them to take

into account the BLO effects discussed in section 2 by using the recipe discussed at the

end of subsection 4.2. The gluino contribution to the operator CLR
2 is given by (to second

order in the MIA)

(
δegCLR

2

)GFM
=

16α2
s sin4 θW

9α2
(
K∗

tbKts

)2

m2
W

m2
eg

×

×
{

11
(
1 + εY Y 2

t tan β
)
f

[2]
eg

(
xed

)

(1 + εs tan β) (1 + ε3 tan β)
δd
LRδd

RL +

+

[
− 42f

[1]
eg

(
xed

)
+
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+

(
6 + 11

µ2m2
b

m2
eg

εLLεRR tan4 β

(1 + εs tan β) (1 + ε3 tan β)3

)
f

[2]
eg

(
xed

)
]
×

× δd
LLδd

RR

}
. (6.22)

The functions f
[1,2]
eg

(
xed

)
are given in appendix A.4 and xed

is defined in (4.13). Once again,

we see that the contributions arising from the insertions δd
LR and δd

RL are modified in the

same manner as the supersymmetric contributions to B̄ → Xsγ (namely (4.15) and (4.16))

that appear in section 4.2. The inclusion of BLO effects therefore tends to reduce the

overall contribution to CLR
2 arising from these insertions. The BLO term proportional to

δd
LLδd

RR, on the other hand, tends to interfere with terms that arise at fourth order in the

MIA and on the whole tends to be rather small. In addition, the combinations δd
LLδd

RL

and δd
LRδd

RR also appear once BLO effects are taken into account. Due to their tan2 β

dependence, they can viably compete with the corresponding terms that arise at higher

orders in the MIA. Contributions arising from MFV corrections to the bare mass matrix

can also appear and play the rôle of δd
LL and δd

LR insertions. (Contributions where the

MFV corrections play the rôle of δd
RL and δd

RR insertions are suppressed by factors of ms.)

Turning to the contributions arising from chargino box diagrams, in MFV the domi-

nant behaviour at LO arises from contributions to the Wilson coefficient CV LL. At large

values of tan β, however, large corrections to CSLL
1,2 are possible that interfere destructively

with CV LL and can reduce the contribution that arises from chargino box diagrams to

∆MBs [14]. The inclusion of BLO effects in MFV, however, tends to reduce this cancel-

lation somewhat; whilst the Wilson coefficient CV LL remains virtually unaffected by BLO

corrections, the BLO corrections to CSLL
1,2 introduce factors of (1 + ε3 tan β) that, in the

phenomenologically favoured region µ > 0 and At < 0, act to reduce the contribution to

the Wilson coefficient. These effects therefore reduce the cancellations that occur between

the two Wilson coefficients, and can lead to an enhancement of the contributions that arise

from chargino box diagrams [14].

In the GFM scenario, the occurrence of the bare mass matrix in the chargino ver-

tex (2.33) can play the rôle of one (or both) of the factors of Kts that mediate the flavour

change in the leading order matching conditions. A dependence on the flavour violating

parameters δd
XY can therefore appear once one proceeds beyond the LO. In particular, the

factor of ms, that features in the matching condition for CLR
2 in MFV, can be bypassed

in the GFM scenario if either δd
RL or δd

RR are non-zero. A similar effect occurs for the

Wilson coefficients CSLL
1,2 , where non-zero δd

LL or δd
LR can lead to additional contributions

to the coefficient. It is therefore possible to enhance, or decrease, the cancellations that

occur between CV LL and the remaining Wilson coefficients depending on the sign of the

insertions δd
XY .

The appearance of the bare mass matrix in the neutralino vertex also introduces ad-

ditional BLO corrections that can modify the LO contributions. In a similar manner to

the contributions to the decay B̄ → Xsγ, these corrections typically manifest themselves

as factors of (1 + ε3 tan β) or (1 + εs tan β) and tend to reduce the contributions compared

– 44 –



J
H
E
P
0
8
(
2
0
0
5
)
0
9
4

to a LO analysis.

Let us finally comment on the RG running of the SUSY corrections. The six flavour

anomalous dimension matrix required to evolve the Wilson coefficients from the SUSY

matching scale to the electroweak scale was given in [68]. If we consider the running of the

coefficient CLR
2 we have

δCLR
2 (µW ) = δCLR

2 (µSUSY ) +
αs (µW )

π

[
2δCLR

2 (µSUSY ) − 3

2
δCLR

1 (µSUSY )

]
log

µ2
SUSY

µ2
W

.

(6.23)

In contrast to the decay B̄ → Xsγ, the RG evolution of the Wilson coefficients, from µSUSY

to µW , acts to increase the coefficients with respect to an analysis where RG running is

ignored. A similar effect exists in the SLL sector. In the VLL sector, however, RG running

acts to decrease the Wilson coefficients in a similar manner to B̄ → Xsγ. These effects can

therefore act to enhance the cancellations between contributions to the VLL sector and the

remaining operators.

6.3 Full calculation

Let us now discuss the calculation we perform in our numerical analysis. Following the

method discussed at the end of section 4, we evaluate the SM matching conditions to NLO

using the matching conditions originally given in [65]. For the charged Higgs contribution,

we use the corrected vertices given in appendix D when evaluating the LO matching con-

ditions given in [14]. When evaluating the SUSY contributions we use the LO matching

conditions collected in [9] (transformed into our operator basis). They are then subse-

quently evolved from the SUSY matching scale to the EW scale using the NLO anomalous

dimension matrix given in [68].

In summary, in this section we have discussed the effects of all the dominant BLO

corrections to B̄s − Bs mixing. In particular, we have considered all the contributions

that arise once one takes into account the double Higgs penguin contribution. In the

region where tan β and the sparticle masses are large, for example, these contributions can

dominate the corrections to ∆MBs that arise from new physics, due to the non-decoupling

property of the corrections to the neutral Higgs vertex. Turning to the supersymmetric

contributions to the process, we see that, although they play a more minor rôle compared

to the neutral Higgs contributions in the large tanβ regime, the overall effect of BLO

corrections is to reduce the contributions arising from gluino exchange. We have also seen

that, in contrast to the decay B̄ → Xsγ, RG evolution between µSUSY and µW can act to

enhance the contributions of the coefficient CLR
2 in particular.

7. Numerical results

Before proceeding with our numerical results let us first define our parameterisation for the

soft sector. We treat the soft terms (2.12), defined in the physical SCKM basis, as input.

For the diagonal elements we set

(
m2

d,LL

)
ii

= m2
eq δii ,

(
m2

d,RR

)
ii

= m2
eq δii ,

(
m2

d,LR

)
ii

= Ad (md)ii , (7.1)
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Figure 14: The panel on the left depicts corrections to the Wilson coefficient C7 induced by

gluino, neutralino and neutral Higgs exchange for MFV. The panel on the right illustrates the

behaviour of the approximate result (4.12) compared with the full numerical calculation. The soft

sector is parameterised as follows: meq = 1 TeV, meg =
√

2meq, At = −500 GeV, mA = 500 GeV,

µ = 500 GeV.

The off-diagonal elements are related to the parameters δd
XY via the relations defined in

(2.18)–(2.19). The soft terms in the up-sector are defined analogously. As inputs for the

Higgs sector we take mA, µ and tan β and use FeynHiggs 2.2.8 [77] to determine the

remaining parameters. For the majority of this section we will only vary one δd
XY at a

time unless stated otherwise. Finally the gaugino soft terms M1 and M2 are related to the

gluino mass meg via the usual unification relation.

Let us briefly specify the abbreviations used to denote the various approximations used

in this section:

• LO: a calculation that does not feature the resummation procedure described in

section 2. We do, however, include the LO effects that arise from RG evolution from

µSUSY to µW (in contrast with [16]);

• g̃-BLO: the approximation used in [16] where only gluino contributions were taken

into account in the resummation procedure;

• BLO: the results obtained using the full expressions included in appendix D.

7.1 B̄ → Xsγ

A detailed analysis of the BLO effects relevant to B̄ → Xsγ was presented in [16] and we

shall therefore tend to focus on the additional effects induced by the inclusion of electroweak

contributions. We shall also compare the approximate expressions, gathered in section 4,

with our complete calculation.

Before focusing on the GFM scenario, let us briefly consider the effects induced by the

bare mass matrix and corrected Higgs vertices in the case of MFV. The panel on the left of

figure 14 illustrates the contributions mediated by gluinos, neutralinos and neutral Higgs.
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Figure 15: The corrections to the Wilson coefficient C7 (evaluated at the scale µSUSY ) induced

by gluino exchange (on the left) and chargino exchange (on the right). δd
LR = 0.01 and δd

RR = 0.2

in the top and bottom panels, respectively. The soft sector is described by the same parameters as

figure 14. As stated at the beginning of section 7, LO is used to denote a calculation that does not

take into account the BLO effects discussed in section 2. g̃-BLO denotes the approximation used

in [15] where only gluino contributions are taken into account in the resummation procedure. BLO

is used to denote the results obtained using the expressions collected in appendix D.

As is evident from the graph, all three contributions are rather small and, compared with

the corrections to C7 induced by charged Higgs or chargino exchange, are of the order of a

few percent. However, it should be noted that the gluino and neutralino contributions are

both larger than the neutral Higgs contribution in this particular region of parameter space.

The panel on the right of figure 14 depicts the approximate expression (4.12) alongside the

result taken from our numerical analysis. As is evident, (4.12) describes the behaviour of

the full numerical result rather well for this choice of parameters and only differs by about

5% from the result of a full numerical calculation at large tan β.

Now let us turn to the GFM scenario. As stated in sections 4.1 and 4.2, it is possible,

once BLO effects are taken into account, that large cancellations can occur between the

various supersymmetric contributions. The top two plots in figure 15, for example, illustrate
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Figure 16: Plots comparing of the results of our full numerical calculation with the analytic results,

derived in the MIA, given in section 4. The gluino contribution is shown in the panel on the left,

whilst the chargino contribution is shown in the panel on the right. δd
LR = 0.01 in both panels

whilst the remaining parameters are described in the caption of figure 14. The MFV contribution

to the Wilson coefficient in question has been removed in both panels.

the cancellations that occur between the chargino and gluino contributions for non-zero

δd
LR. The dominant BLO chargino contributions to C7 stem from the appearance of the bare

mass matrix in the modified chargino vertex (2.34)–(2.35). The inclusion of electroweak

effects, as indicated by the absence of a term dependent on εY in the terms proportional

to δd
LR in (4.15) and (4.20), is rather small. The lower two plots in figure 15 show the

contributions in the primed sector for non-zero δd
RR. Here we see a similar cancellation

between the BLO effects arising from the chargino contribution and gluino contribution

to C ′
7. The effect of including electroweak effects is, however, larger than the case of the

LR insertion due to the appearance of (1 + ε3 tan β) (rather than (1 + εs tan β)) in the

denominators of (4.17) and (4.22). However, one can see from the two graphs that the

increase in the gluino contribution tends to be compensated by a similar correction to the

chargino contribution. As such the overall effect on the branching ratio is rather small.

Let us briefly discuss how well the MIA expressions presented in section 4 describe

the results of our numerical analysis. The two panels in figure 16 show the approximate

expressions for the gluino (4.15) and chargino (4.20) contributions, alongside the results

of our full numerical analysis, performed in the mass eigenstate formalism where flavour

violation is communicated via the unitary matrices (2.17). As is evident from the graph, in

this region of parameter space at least, the agreement between the approximate expression

and that of the full calculation is rather good (within 10%). We have checked that expres-

sions for the chargino and gluino contributions that arise from the remaining insertions

also tend to agree within a similar accuracy.

Now let us consider the effect of including electroweak corrections when computing

the corrected charged Higgs vertex (3.14)–(3.15). The panel on the top-left of figure 17,

illustrates the effect of including BLO corrections when calculating the charged Higgs me-

diated contribution to C7, for non-zero δd
LL. If δd

LL is positive, the GFM corrections to the
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Figure 17: The corrections to the Wilson coefficients C7 (the top two panels) and C′

7 (the bottom

two panels) arising from charged Higgs exchange. In the top two panels δd
LL = 0.2 whilst in bottom

panels δd
RR = 0.2. LO, BLO and g̃ are defined in the caption of figure 15. In the panels to

the right our analytic results are compared with those of our complete numerical analysis. The

MFV contributions to C7 and C′

7 arising from charged Higgs exchange have been removed in the

panels to the right. The abbreviation “Approx.” denotes the results gathered in section 4.1, whilst

“Impr. App.” is used to denote the same results supplemented by the substitutions gathered in

subsection 3.3. The soft sector is described by the same parameters as figure 14.

charged Higgs vertex tend to interfere constructively with the MFV contribution, reducing

the charged Higgs contribution to C7 compared to a LO analysis. On the other hand, if δd
LL

is negative, the MFV and GFM corrections to the LO contribution interfere destructively

and can therefore lead to an enhancement of the charged Higgs contribution to the decay.

As Ab is set equal to zero, the bulk of the difference induced by the inclusion of EW contri-

butions in the figure results from the correction to the right handed coupling (3.15) and the

corrections that arise from the additional gaugino mediated electroweak effects discussed in

subsection 3.3. This is confirmed in the top-right panel that illustrates the behaviour of the

approximate expression (4.6) compared with the results of our full numerical calculation.

As is evident from the figure, the agreement between the curves is rather poor and the

approximate result where the electroweak couplings g1 and g2 are ignored provides a 30%
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overestimate of the beyond leading order effects. The origin of this discrepancy stems from

graphs featuring gaugino exchange. This result is not specific to the GFM scenario and

such effects have been discussed before, in the context of MFV in [14]. Once one takes into

account these effects, by applying the substitutions found in subsection 3.3, the agreement

between the numerical and approximate results improves dramatically. As is evident from

the line depicting the improved approximation in the top-right panel of figure 17.

The lower two panels in figure 17 depict the contributions to the primed coefficients

arising from BLO corrections to charged Higgs exchange for δd
RR = 0.2. In a similar manner

to the insertion δd
LL, the majority of the difference between the effects considered in [16]

(the line labeled g̃-BLO) and the complete calculation presented in this analysis, stems from

the destructive interference between the εs and εY terms that appear in the denominator

of (3.15) and the additional electroweak corrections to the (3, 3) element of the left-handed

charged Higgs vertex. Both of these effects act to increase the charged Higgs contribution

attributable to RR insertions. This situation is also evident in the lower right panel, where

the inclusion of the additional electroweak corrections described in subsection 3.3 roughly

doubles the accuracy of the approximate expression.

The contributions due to new physics for each insertion are shown in figure 18. As is

evident from the plots for the LR, RL and RR insertions, the effect of BLO corrections

tends to be rather large. For example, in the case of the LR insertion (the top-right

panel in figure 18), the reduction of the gluino contribution with increasing tan β, coupled

with its destructive interference with the chargino contribution, can dramatically alter the

behaviour of the Wilson coefficient for even moderate tan β. Similar effects occur for the

RL and RR insertions. For the LL insertion the difference between the LO and BLO

calculations shown in the top-left panel of figure 18 is rather slight. This is because a tan β

enhanced correction, proportional to δd
LL, appears at LO in the chargino Wilson coefficients.

It is therefore rather difficult for the BLO corrections to the chargino contribution to play

as large a rôle as they do for the other three insertions.

Finally, let us consider the combined effect these contributions have on the branching

ratio. figure 19 illustrates the variation of the branching ratio with the flavour violating

parameters δd
XY . As is evident from the figure, BLO effects can be significant for all four

insertions. Contributions due to flavour violation in the LR and RL sectors, in particular,

can undergo reductions by up to a factor of two compared to a LO analysis. Turning to the

inclusion of electroweak effects, we see that although such corrections can effect the Wilson

coefficients by up to 30%, the overall difference between the approximation used in [16]

and the full calculation used in this analysis is rather small. This is primarily because the

origin of the large discrepancy, between the LO and BLO calculations, is mainly due to the

cancellation between the gluino and chargino contributions, that arise for each insertion. As

both the chargino and gluino contributions undergo similar corrections, once electroweak

effects are taken into account, the overall effect on the branching ratio tends to be rather

minor.

figure 20 depicts the variation of the branching ratio with tan β. All four panels exhibit

the focusing effect first described in [15, 16] where BLO corrections act to reduce the LO

result such that the SM result (4.2) is preferred. Once again we see that for the insertion
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Figure 18: The corrections to the Wilson coefficients C7 (the top two panels) and C′

7 (the lower two

panels) due to contributions beyond the SM. The soft sector is described by the same parameters

as figure 14.

δd
LL BLO corrections are rather small due to the presence of the LO correction to the

chargino contribution in (4.18). For the remaining insertions we see that the BLO effects

described in this paper can significantly alter LO corrections for tan β as low as 20.

In summary, we have seen that whilst electroweak corrections can effect individual

Wilson coefficients by up to 20%, the overall effect of such contributions is rather small.

In particular, the focusing effect described in [15, 16] remains even once one includes all

the electroweak corrections described in this paper. This is unsurprising as the focusing

effect mainly arises from the combined effect of two contributions. The first arises from

renormalization group evolution of the Wilson coefficients evaluated at the SUSY scale

to the electroweak scale, which is naturally independent of electroweak corrections. The

second is due to cancellations between the gluino and chargino contributions to the de-

cay. We have seen however that electroweak corrections typically alter each contribution

in a similar manner, and an increase in the gluino contribution, attributable to the de-

structive interference of the gluino and chargino contributions to the bare mass matrix,

is often accompanied by a similar increase in the chargino contribution. Finally, we have

– 51 –



J
H
E
P
0
8
(
2
0
0
5
)
0
9
4

�

��

��

��

��

��

���
� ���

�� � �
�
�� �

�
�

�
	

��

�
�
��
�
�
��

��
��

����� ���� !�

"#

$%&'"#
'"#

(

)(

*(

+(

,(

-(

.(/
(- .(/

(*- ( (
/
(*- (

/
(-

0
12
30

4
56
78
9
:
;<

=>
?@

ABCDE FGGHIJ>

KL

MNOPKL
PKL

Q

R

SQ

SR

TQ

TR

UQV
QR UQV

QTR Q Q
V
QTR Q

V
QR

W
XY
ZW

[
\]
_̂
`
a
bc

de
fg

hijkl mnnopqe

rs

tuvwrs
wrs

x

y

z

{

|}~
� |}~

x� } }
~
x� }

~
�

�
��
��

�
��
��
�
�
��

��
��

����� �������

��

������
���

Figure 19: The variation of BR(B̄ → Xsγ) with the flavour violating parameters δd
XY . The soft

sector is parameterised as follows meq = 1 TeV, meg = meq /
√

2, Au = −500 GeV, mA = 500 GeV,

µ = 500 GeV and tanβ = 50. A broad region in agreement with the current experimental limit is

shown in all four panels.

seen that the approximate expressions gathered in section 4 tend to describe the overall

behaviour of the supersymmetric contributions rather well. The contributions arising from

the charged Higgs exchange however, often have to be modified according to the improved

approximation described in subsection 3.3 to obtain a sufficient level of accuracy.

7.2 B̄s → µ+µ−

As discussed in section 5, large corrections to the decay B̄s → µ+µ− are possible in the

large tan β regime due to the contributions of scalar and pseudoscalar operators that are

proportional to tan3 β. figure 21 depicts the dependence of our analytic and numerical

results for the Wilson coefficients CP and C ′
P on tan β for various choices of flavour violating

parameters. The top-left panel in the figure shows the contribution due to the insertion δd
LL.

Let us point out that when one only uses expression (5.11) to calculate the contribution to

CP , one obtains a value roughly 20% larger than the result obtained from a full numerical

analysis. Once one takes into account the additional LO correction induced by gaugino-
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Figure 20: The variation of BR(B̄ → Xsγ) with the tanβ. The soft sector is parameterised as

follows meq = 1 TeV, meg =
√

2meq, Au = −500 GeV, mA = 500 GeV and µ = 500 GeV. A broad

region in agreement with the current experimental limit is also shown when applicable.

higgsino mixing (5.13) (denoted by Impr. App. in figure 21) the agreement improves

to roughly 10%. The remaining sources of discrepancy are mainly due to wavefunction

corrections to the bare mass matrix, which can be as large as 10%, and the inevitable

limitations associated with the MIA. The contributions due to the insertions δd
LR and δd

RL

shown in the top-right and bottom-left figures respectively are absent at LO as the effects of

the insertions cancel [17]. However, once BLO effects are taken into account, a dependence

on the insertions is reintroduced due to their appearance in the bare mass matrix (3.8).

(The δd
LR dependence of (3.8) becomes apparent once one recalls that

(
δd
LR

)
23

=
(
δd
RL

)
32

.)

Comparing the approximate and numerical results for the BLO corrections we see that

they typically agree with one another very well. (Unlike the δd
LL insertion, contributions

due to wavefunction corrections are typically rather small as they appear at second order

in the MIA and tend to be suppressed by factors of m2
b .) Finally, the bottom-right panel

shows the contributions that arise for non-zero δd
RR where, once again, the analytic and

numerical results agree with one another rather well.
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Figure 21: The tanβ dependence of the Wilson coefficients CP and C′

P . In the top two panels

δd
LL = 0.2 and δd

LR = 0.01, respectively, whilst in the lower two δd
RL = 0.01 and δd

RR = 0.2. In all

four panels the MFV contributions to C
(′)
P have been removed. The soft sector is parameterised

as follows meq = 1 TeV, meg =
√

2meq, Au = −500 GeV, mA = 500 GeV, µ = 500 GeV. The

abbreviation “Approx.” is used to denote the contributions arising from formulae (5.11)–(5.12)

whilst “Imp. Appr.” is used to denote the calculation that includes the additional electroweak

contribution (5.13).

With these results in mind let us now consider the overall effect of such corrections on

the branching ratio of the decay. figure 22 depicts the dependence the branching ratio on

the various sources of flavour violation in the squark sector. The two graphs depicting the

variation with δd
LL and δd

RR show the characteristic suppression associated with the BLO

factors of (1 + ε3 tan β) and (1 + εs tan β) that appear in the denominators of the Wilson

coefficients (5.10)–(5.12). This suppression can loosen the bounds placed on these insertions

by the B̄s → µ+µ− constraint. The panel depicting the variation with δd
LL displays a larger

dependence on the the gluino mass than the panel featuring the insertion δd
RR as the gluino

mass not only features in the gluino contribution, but also in the corrections that arise once

one includes gaugino-higgsino mixing. (We remind the reader that we assume that the mass

of the wino and the gluino are related.) Let us briefly comment however, that in contrast to
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Figure 22: The dependence of BR(B̄s → µ+µ−) on δd
XY for meq = 1 TeV, Au = −500 GeV,

mA = 500 GeV, µ = 500 GeV and tanβ = 50. The light blue (light grey) and red (dark grey) bands

depict the effect of varying meg between meq/
√

2 and
√

2meq. The published DØ and preliminary

CDF limits for the decay are shown.

B̄ → Xsγ, the differences between the BLO and LO results for MFV and GFM calculations

tend to be rather similar. This is because, now, the only dominant contribution to the

decay is via the neutral Higgs penguin and BLO effects tend to be limited to the factors

of (1 + εs tan β) and (1 + ε3 tan β) that accompany the LO matching conditions. Turning

to the δd
LR and δd

RL insertions, large deviations from a purely leading order calculation are

possible due to the reappearance of the insertion in the Wilson coefficients (5.11)–(5.12)

once one proceeds beyond the LO [17]. Finally, the asymmetric nature of the δd
LL and δd

LR

curves arises as these contributions interfere directly with the MFV contribution and it is

therefore possible to induce quite large cancellations. For δd
RR and δd

RL on the other hand,

direct interference with the MFV contributions is generally not possible. Cancellations with

the Wilson coefficient CA when calculating the branching ratio (5.5) can occur, however,

and lead the minima of the curves to deviate slightly from MFV. In general however, in
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Figure 23: The dependence of BR(B̄s → µ+µ−) on tanβ (the top two panels) and mA (the bottom

two panels). The soft sector is parameterised as follows: meq =
√

2meg = 1 TeV, Au = −500 GeV,

µ = 500 GeV. In the top two panels mA = 500 GeV, in the lower two panels tanβ = 40. The

published DØ and the preliminary CDF bounds are shown when appropriate. Only one LO curve

is shown in the panels on the right as the dependence on the insertion vanishes at LO.

a similar manner to B̄ → Xsγ, the overall effect of these insertions is to increase the

branching ratio with respect to the MFV result, independent of the sign of the insertion.

The dependence of the branching ratio on tan β and the pseudoscalar mass mA is shown

in figure 23. As discussed in section 5 the scalar and pseudoscalar contributions to the decay

can lead the branching ratio to vary as tan6 β. As is evident from the top two panels, values

of BR
(
B̄s → µ+µ−

)
approaching (or even exceeding) the current experimental limit are

possible, even for TeV scale sparticle masses, if tan β is large ∼ 40. A strong dependence

on mA is also apparent in the lower two panels. Both figures illustrate the reductions

associated with BLO calculations for the LL insertion and the new effects that appear

beyond the leading order for the RL insertion.
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Figure 24: Contributions to ∆MBs
vs. tanβ. The combined effect of box diagrams mediated

by SUSY particles is shown in the left panel, whilst the right panel shows the double penguin

contribution. The soft sector is parameterised as follows: meq = 500 GeV, At = −meq, meg =
√

2meq,

µ = meq and mA = 300 GeV. The flavour violating parameters are δd
LL = δd

RR = 0.1.

In summary, we have seen that the approximate formulae gathered in section 5 seem

to describe the results of our numerical analysis rather well (within 10%) especially once

one considers the approximations involved in their derivation. For the LL insertion the

additional electroweak corrections, described in subsection 3.3, typically act to reduce the

correction to B̄s → µ+µ− by up to 20% compared with calculations performed in the limit

of vanishing electroweak couplings. This reduction coupled with the resummation of tan β

enhanced effects can relax the contribution due to δd
LL by roughly 60% compared with a

näıve LO analysis in which only the effects of the gluino contribution to the neutral Higgs

vertex are taken into account.

7.3 B̄s − Bs mixing

Turning now to B̄s − Bs mixing, here we shall not compare the expressions gathered in

section 6 to those of our numerical analysis as our approximations for the effective Higgs

vertex have been discussed in the previous subsection.

As discussed in section 6, contributions to ∆MBs in the GFM scenario stem from box

diagrams mediated by SUSY particles and charged Higgs and, in the large tan β regime,

from double penguin diagrams. The panel on the left of figure 24 shows the tan β de-

pendence of the contributions to ∆MBs arising from box diagrams mediated by SUSY

particles. The main difference between the two curves at low tan β, originates from the

use of the NLO anomalous dimension matrix to run the BLO calculation from the SUSY

matching scale to the electroweak matching scale. At large tan β the interference between

the dominant gluino contribution and the BLO corrections to the chargino and neutralino

contributions acts to reduce the overall contribution to ∆MBs further. As is apparent from

plot however, the overall correction tends to be only of the order of five to ten percent.

The double penguin contributions are depicted on the panel on the right of figure 24.

Here we see a rather more dramatic difference between LO and BLO calculations and at
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Figure 25: The dependence of ∆MBs
on δd

XY for the same parameters as figure 22.

large tan β it is possible that BLO corrections can lead to a reduction of LO effects by up

to a factor of three.

Let us briefly comment on which values of tan β should analyses, that typically only

feature LO matching conditions for the gluino contributions to B̄s − Bs mixing, include

the double Higgs penguin contribution. As is evident from figure 24, the double penguin

contribution completely dominates the behaviour of ∆MBs at large tan β and can become

as important as the LO result for tan β as low as 20. We have checked that a similar

situation arises for non-zero LR and RL insertions.

With these results in mind let us consider the combined effect of all the beyond Stan-

dard Model corrections in the large tan β regime. The dependence of ∆MBs on each of the

flavour violating parameters is illustrated in figure 25. In the top left panel corresponding

to the insertion δd
LL one can see a largely quadratic dependence on the insertion, in agree-

ment with the analytic result (6.17). The graph is not centred on δd
LL = 0 as, in a similar

manner to the B̄s → µ+µ− graph in figure 22, the MFV and GFM contributions to the

neutral Higgs vertex approximately cancel for δd
LL ∼ 0.08. Turning to the top right panel,

depicting the dependence of ∆MBs on δd
LR, we can see that the overall effect on ∆MBs

is rather slight, for small δd
LR the effect is mainly linear as δd

LR only contributes to the
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Figure 26: Scatter plots showing the correlation between ∆MBs
and BR(B̄s → µ+µ−). In the

panel to the left δd
LL is varied over the range [−0.8, 0.8] whilst in the panel to the right the insertion

δd
RR is varied over the same range of values. In both plots meq is varied over the range [500, 1500] GeV.

The remaining parameters describing the SUSY sector are as follows: µ = 500 GeV, mA = 500 GeV,

Au = −500 GeV and meg = 1 TeV, tan β = 40. The published DØ and the preliminary CDF bounds

for the decay B̄s → µ+µ− are shown, as well as the lower limit for ∆MBs
. Points compatible with

B̄ → Xsγ are highlighted by light blue (light grey) squares.

left-handed vertex that appears in (6.12). It is therefore necessary for the other penguin to

be mediated by chargino exchange (6.18). For larger values of δd
LR, contributions to CSLL

1 ,

as well as SUSY box diagrams, lead to a quadratic dependence on the insertion to emerge,

however, once again, the corrections are rather small.

The bottom two panels depict the larger effects induced in the δd
RL and δd

RR sectors.

The linear dependence of the contributions is due once again to one Higgs penguin being

mediated by chargino exchange and the other by gluino exchange. The only alteration to

this behaviour arises for very large δd
RR (∼ 0.4) where the gluino mediated contributions

to the left-handed Higgs coupling, that are suppressed by a factor of ms, can become

important and interfere with the chargino contribution. Finally, let us once again point

out the large differences between the LO and BLO calculations featured in all four plots.

For δd
LL and δd

RR we see the characteristic suppression of LO effects that arise from the

factors of (1 + ε3 tan β) and (1 + εs tan β) that appear in (6.13)–(6.21). These typically

lead to reductions proportional to factors of two or three, if µ > 0. In a similar manner

to the decay B̄s → µ+µ−, a dependence on the insertions δd
LR and δd

RL, which is absent at

LO, reappears when BLO corrections are taken into account [17].

Before ending this section let us briefly discuss the correlation between B̄s → µ+µ−

and ∆MBs at large tan β. As was pointed out earlier in this subsection, the double Higgs

penguin tends to completely dominate the contributions that arise from new physics in the

large tan β regime. It is therefore natural to expect a degree of correlation with the decay

B̄s → µ+µ−, that is also dependent on the neutral Higgs penguin when tan β is large. Such

a situation is illustrated by the scatter plots shown in figure 26.
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Figure 27: The ratio K
(0)
cb /Keff

cb vs. δd
LL (the panel on the left) and δd

LR (the panel on the right).

The soft sector is parameterised as follows: tan β = 40, meq = 1 TeV, µ = 500 GeV, mA = 500 GeV

and At = −1 TeV. Solid and dashed lines denote meg =
√

2meg and meg = meq /
√

2 respectively.

Here we see in both panels that a large correlation exists between each process. The

panel on the left (where only the LL insertion is varied) features only one branch as the

double Higgs penguin in this case tends to only lead to a reduction in ∆MBs . Varying

the RR insertion can lead to reductions or enhancements of ∆MBs thanks to the linear

dependence on the insertion exhibited in the matching condition given in (6.19). This effect

leads to two distinct branches being visible in the right panel of figure 26.

7.4 Radiative corrections to the CKM matrix

It was mentioned briefly in subsection 3.4 that the rotation from the bare to the physical

SCKM basis can induce large contributions to the bare CKM matrix K(0) [21]. One

particularly interesting consequence of this is that the CKM matrix elements Kts and

Kcb could be generated radiatively via GFM effects [16]. Such a situation is illustrated

in figure 27. From both plots it is evident that K
(0)
cb (and similarly K

(0)
ts ) can receive

significant corrections due to the presence of GFM in the squark sector. In the LR sector

in particular, radiative generation of the entire matrix element can typically occur for

δd
LR ∼ −0.01. One could imagine the scenario where corrections to the remaining matrix

elements might induce similar effects and lead the CKM matrix to be fully diagonal before

SUSY threshold corrections are taken into account.

From the top-right panel in figure 22 it is also apparent that, due to a cancellation

between the chargino and gluino corrections to neutral Higgs vertex, the branching ratio

of the decay B̄s → µ+µ− also tends to approach SM like values for negative δd
LR. The

minima of the two curves however tend not to coincide unless εY Y 2
t ∼ −εs (this typically

only occurs if At is rather large and negative).

8. Summary

We have presented here the first complete analysis that includes the resummation of all

tan β enhanced BLO effects in SUSY with GFM that contribute to the processes B̄ → Xsγ,
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B̄s → µ+µ− and B̄s−Bs mixing. We have derived analytic expressions applicable in general

and in the MIA. As such, they match the precision of similar calculations performed in the

context of MFV. We have provided a recipe for including BLO effects into LO expressions.

We have found that BLO effects in GFM can be large. In particular, we have more fully

analysed the focusing effect that was initially pointed out in [15, 16] in the case of B̄ → Xsγ

and next shown to also exist in the other two processes [17]. In the phenomenologically

interesting case of large tan β and µ > 0 the focusing effect often leads to a significant

relaxation of experimental bounds on the soft mass mixings.

Finally, we have examined radiative corrections to the CKM entries. These can be

large, or even dominant, due to large LR mixings. We have pointed out a possible, although

apparently accidental, correlation with the processes analysed here.

The method presented here is rather general and can readily be extended to include

CP violating contributions, here BLO corrections can carry additional phases and lead to

potentially large deviations from LO calculations. One might also consider the process

B̄ → Xsl
+l−, where the BLO corrections to the Wilson coefficients C7 and C8 (and their

primed counterparts) may also play a large rôle. Another possible application would be to

include the B̄d −Bd mixing system where, at large tan β, one can expect strict bounds the

insertions
(
δd
RR

)
13

and
(
δd
RL

)
13

due to contributions to ∆MBd
unsuppressed by md.

The formalism presented here can be applied to data from present and future B-

factories and hadron colliders in constraining mass insertions and, eventually, in extracting

information on an emerging pattern of flavour violation in the squark sector [78].
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A. Loop functions

A.1 The functions Hi

The loop functions Hi that appear throughout the text are given by

H2(x1, x2) =
x1 log x1

(1 − x1) (x1 − x2)
+

x2 log x2

(1 − x2) (x2 − x1)
, (A.1)

H3(x1, x2, x3) =
H2(x1, x2) − H2(x1, x3)

x2 − x3
, (A.2)
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H4(x1, x2, x3, x4) =
H3(x1, x2, x3) − H3(x1, x2, x4)

x3 − x4
. (A.3)

In the limit of degenerate arguments the functions become

H2 (1, 1) = −1

2
, H3 (1, 1, 1) =

1

6
, H4 (1, 1, 1, 1) = − 1

12
. (A.4)

A.2 B̄ → Xsγ

The loop functions F
(2)
7,8 (x) that appear in the charged Higgs matching conditions (4.5)–

(4.7) are

F
(2)
7 (x) =

x (3 − 5x)

12 (x − 1)2
+

x (3x − 2)

6 (x − 1)3
log x ,

F
(2)
8 (x) =

x (3 − x)

4 (x − 1)2
− x

2 (x − 1)3
log x .

The functions H
[7,8]
i (x) that appear in section 4.2 are given by the following expres-

sions. The chargino contribution features the functions

H
[7]
1 (x) =

−3x2 + 2x

6 (1 − x)4
log x +

−8x2 − 5x + 7

36 (1 − x)3
,

H
[8]
1 (x) =

x

2 (1 − x)4
log x +

−x2 + 5x + 2

12 (1 − x)3
,

H
[7]
2 (x) =

−3x2 + 2x

3 (1 − x)3
log x +

−5x2 + 3x

6 (1 − x)2
,

H
[8]
2 (x) =

x

(1 − x)3
log x +

−x2 + 3x

2 (1 − x)2
.

The functions relevant to the neutralino contribution are given by

H
[7]
3 (x) = −1

3
H

[8]
1 (x) , H

[8]
3 (x) = H

[8]
1 (x) ,

H
[7]
4 (x) = −1

3

(
H

[8]
2 (x) +

1

2

)
, H

[8]
4 (x) = H

[8]
2 (x) +

1

2
.

The functions relevant to the gluino contribution are

H
[7]
5 (x) = −1

3
H

[8]
1 (x) , H

[8]
5 (x) =

9x2 − x

16 (1 − x)4
log x +

19x2 + 40x − 11

96 (1 − x)3
,

H
[7]
6 (x) = −1

3

(
H

[8]
2 (x) +

1

2

)
, H

[8]
6 (x) =

9x2 − x

8 (1 − x)3
log x +

13x − 5

8 (1 − x)2
.

The loop functions I
[7,8]
i (x) and J

[7,8]
i (x) that appear at higher orders in the MIA are

related to the functions H
[7,8]
i (x) via the relations

I
[7,8]
i (x) =

d

dx
H

[7,8]
i (x) , J

[7,8]
i (x) =

d2

dx2
H

[7,8]
i (x) .
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A.3 B̄s → µ+µ−

The function that appears in (5.8) is given by

fZ (x) =
x

4 (x − 1)4
log x +

(
x3 − 6x2 + 3x + 2

)

24 (x − 1)4
.

A.4 B̄s − Bs

The functions that appear the gluino matching condition (6.22) are given by

f
[1]
eg

(x) =
x2 (x + 3)

(x − 1)5
log x +

(−17x3 + 9x2 + 9x − 1)

6 (x − 1)5
,

f
[2]
eg

(x) =
2x2 (x + 1)

(x − 1)5
log x +

(−x3 − 9x2 + 9x + 1)x

3 (x − 1)5
.

A.5 Passarino-Veltman functions

The Passarino-Veltman functions that appear in appendix D have the following form

B0 (x, y) = η − log
x

µ2
+ 1 +

y

x − y
log

y

x
,

B1 (x, y) = −1

2
η +

1

2
log

x

µ2
− 1

4
− x

2 (x − y)
+

y2 − 2xy

2 (x − y)2
log

y

x
,

C0 (x, y, z) =
y

(x − y)(y − z)
log

y

x
+

z

(x − z)(z − y)
log

z

x
,

C00 (x, y, z) =
1

4

(
η +

3

2
− log

x

µ2
+

y2

(x − y)(y − z)
log

y

x
+

z2

(x − z)(z − y)
log

z

x

)
,

where η = 2
ε

+ log 4π − γE.

B. Alternative forms for δd

LR
and δd

RL

As discussed in section 2, throughout this analysis we assume that the trilinear SUSY

breaking terms are not proportional to the appropriate Yukawa coupling. To illustrate how

our results are altered if we do make this assumption, let us consider a specific example

with relevance to models with SUSY breaking mediated by either supergravity or gauge

interactions [80]

m2
d,LR = Ã†

d Lm
(0)
d

† + m
(0)
d

†Ã†
d R . (B.1)

The insertions δd
LR and δd

RL are therefore equal to

(
δd
LR

)
23

=

(
Ã†

d Lm
(0)
d

†
)

23
+

(
m

(0)
d

†Ã†
d R

)
23√(

m2
d,LL

)
22

(
m2

d,RR

)
33

,

(
δd
RL

)
23

=

(
Ãd Rm

(0)
d

)
23

+
(
m

(0)
d Ãd L

)
23√(

m2
d,LL

)

33

(
m2

d,RR

)

22

. (B.2)
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It should be noted that, in addition to the off-diagonal elements of the complex matrices

ÃL,R
d , there is a contribution proportional to the appropriate off-diagonal element of m

(0)
d . If

we use the choice (B.1), one can redefine the insertions δd
LR and δd

RL (B.2) to be independent

of the bare mass matrix in the following way (ignoring terms suppressed by the strange

quark mass)

(
δd
LR

)
23

=
mb

(
Ã†

d L

)
23√(

m2
d,LL

)
22

(
m2

d,RR

)
33

,
(
δd
RL

)
23

=
mb

(
Ãd R

)
23√(

m2
d,LL

)
22

(
m2

d,RR

)
33

.

This definition is largely independent of BLO corrections and would correspond to a input

value appropriate for the iterative procedure described in section 2.4. The effects due to

the bare mass matrix then appear in two ways. The diagonal elements result in a factor of

1/ (1 + ε3 tan β) that accompanies each factor of δd
LR and δd

RL. The off-diagonal elements,

on the other hand, may be included in a similar manner to the off-diagonal elements of

the F -terms that appear in the squark mass matrix by altering εs with a small (cot β

suppressed) correction. The only exception to this rule concerns the corrected charged

Higgs vertex, where one must perform the substitution

δd
LR → δd

LR +

(
Ã†

d L

)
22

(
m

(0)
d

†
)

23
+

(
Ã†

d R

)
33

(
m

(0)
d

†
)

23√(
m2

d,LL

)
22

(
m2

d,RR

)
33

in (3.21). In the limit of MFV (Ãd L = A0, Ãd R = 0) we reproduce the result presented

in [14].

C. Supersymmetric vertices

Now let us present a complete list of supersymmetric vertices required for our calculation.

Throughout this section I, J = 1, . . . , 6, a, b = 1, 2, α, β = 1, . . . , 4 and finally i, j = 1, 2, 3.

The coupling of the gluino to down quarks and squarks is given by

Leg = d̃†J (ḡ) [(Gd L)Ji PL + (Gd R)Ji PR] (d)i , (C.1)

where (Gd L)Ji and (Gd R)Ji are given by

(Gd L)Ji = −
√

2gs (Γd L)Ji , (Gd R)Ji =
√

2gs (Γd R)Ji (C.2)

The couplings to up quarks and squarks may be obtained via the simple substitution d → u.

The chargino coupling to down quarks and up squarks was discussed in section 2.3

whilst the coupling to up quarks and down squarks is given by

(Cu L)aJi = − g2Ua1

(
Γd LK†

)

Ji
+

g2√
2mW cos β

Ua2

(
Γd Rm

(0)
d K†

)

Ji
(C.3)

(Cu R)aJi =
g2√

2mW sin β
Va2

(
Γd LK†m(0)

u
†
)

Ji
. (C.4)
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The neutralino couplings between down quarks and squarks are

Lχ0 = d̃†J
(
χ̄0

)
α

[(Nd L)αJi PL + (Nd R)αJi PR] (d)i , (C.5)

where (Nd L)Jiα and (Nd R)Jiα are given by

(Nd L)αJi = − g2√
2

(
1

3
N∗

α1 tan θW − N∗
α2

)
(Γd L)Ji −

g2√
2mW cos β

N∗
α3

(
Γd Rm

(0)
d

)
Ji

, (C.6)

(Nd R)αJi = −g2

√
2 tan θW

3
Nα1 (Γd R)Ji −

g2√
2mW cos β

Nα3

(
Γd Lm

(0)
d

†
)

Ji
. (C.7)

The matrix N diagonalises the neutralino mass matrix in the usual manner

N∗Mχ0N † = diag
(
mχ0

1
, . . . ,mχ0

4

)
. (C.8)

The couplings to up quarks and squarks are

(Nu L)αJi = − g2√
2

(
1

3
N∗

α1 tan θW + N∗
α2

)
(Γd L)Ji −

g2√
2mW sin β

N∗
α4

(
Γu Rm(0)

u

)
Ji

, (C.9)

(Nu R)αJi =
2
√

2g2 tan θW

3
Nα1 (Γu R)Ji −

g2√
2mW sinβ

Nα4

(
Γu Lm(0)

u
†
)

Ji
. (C.10)

Let us now consider the couplings of the W boson that appear in (D.3). The coupling

to squarks is given by (
Wed

)
IJ

= − g2√
2

(
Γu LKΓ†

dL

)
IJ

. (C.11)

The couplings to neutralinos and charginos are given by

(Wχ L)
aα

= g2

(
N∗

α2Va1 −
1√
2
N∗

α4Va2

)
, (Wχ R)

aα
= g2

(
Nα2Ua1 +

1√
2
Nα3Ua2

)
.

(C.12)

The couplings of the Z boson to up and down squarks are given by

(
Zed

)
IJ

=
g2

2 cos θW

(
Γd LΓ†

d L − 2

3
sin2 θW

)

IJ

, (C.13)

(Zeu)IJ = − g2

2 cos θW

(
Γu LΓ†

u L − 4

3
sin2 θW

)

IJ

. (C.14)

The couplings to neutralinos and charginos on the other hand are

(
Zχ− L

)
ab

=
g2

2 cos θW

[
Ua1U

∗
b1 +

(
cos2 θW − sin2 θW

)
δab

]
, (C.15)

(
Zχ− R

)
ab

=
g2

2 cos θW

[
Va1V

∗
b1 +

(
cos2 θW − sin2 θW

)
δab

]
, (C.16)

(
Zχ0 L

)
αβ

=
g2

2 cos θW

(
Nα4N

∗
β4 − Nα3N

∗
β3

)
, (C.17)

(
Zχ0 R

)
αβ

= − g2

2 cos θW
(N∗

α4Nβ4 − N∗
α3Nβ3) . (C.18)
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The coupling of the charged Higgs boson to squarks is given by
(
CS+

ed

)

IJ
=− g2mW√

2 sin θW

(
cos βyS+

(2) + sin βyS+

(1)

) (
Γu LKΓ†

d L

)

IJ
+

+
g2√
2mW

[
yS+

(2)

cos β

(
Γu LKm

(0)
d

†m
(0)
d Γ†

d L

)
IJ

+
yS+

(1)

sin β

(
Γu Lm(0)

u
†m(0)

u KΓ†
dL

)
IJ

]
+

+
g2ηS+√

2 cos β sin β

(
Γu Rm(0)

u Km
(0)
d

†Γ†
d R

)
IJ

+

+yS+

(2)

g2√
2mW cos β

[(
Γu LKmd,LRΓ†

dR

)
IJ

+ µ∗ cot β
(
Γu Rm(0)

u KΓ†
dL

)
IJ

]
+

+yS+

(1)

g2√
2mW sinβ

[(
Γu Rmu,RLKΓ†

dL

)
IJ

+ µ tan β
(
Γu LKm

(0)
d

†Γ†
d R

)
IJ

]
,(C.19)

where ηS+ = 1, 0. The coupling of the charged Higgs to the chargino and neutralinos is

given by

(
CS+

χ L

)
aα

=
g2

cos θW
yS+

(2)

[
1√
2
Ua2 (N∗

α1 sin θW + N∗
α2 cos θW ) − Ua1N

∗
α3 cos θW

]
, (C.20)

(
CS+

χ R

)

aα
= − g2

cos θW
yS+

(1)

[
1√
2
Va2 (Nα1 sin θW + Nα2 cos θW ) + Va1Nα4 cos θW

]
. (C.21)

The couplings of the neutral Higgs bosons to squarks are

(
SS0

ed

)

IJ
= ηS0

{
g2

3
tan2 θW mW

(
cos βxS0

(1) − sin βxS0

(2)

)(
1 +

3 − 4 sin2 θW

2 sin2 θW

Γd LΓ†
d L

)

IJ

−

− g2

mW cos β
xS0

(1)

[(
Γd Lm

(0)
d

†m
(0)
d Γ†

d L

)
IJ

+
(
ΓdRm

(0)
d m

(0)
d

†Γ†
d R

)
IJ

]}
−

− g2

2mW cos β

[(
ΓdRmd,RLΓ†

dL

)
IJ

xS0

(1) +
(
Γd Lmd,LRΓ†

d R

)
IJ

xS0∗
(1) −

− µ
(
Γd Lm

(0)
d

†Γ†
d R

)
IJ

xS0

(2) − µ∗
(
Γd Rm

(0)
d Γ†

dL

)
IJ

xS0∗
(2)

]
, (C.22)

(
SS0

eu

)
IJ

= ηS0

{
− 2g2

3
tan2 θW mW

(
cos βxS0

(1) − sin βxS0

(2)

)(
1+

3 − 8 sin2 θW

4 sin2 θW

Γu LΓ†
u L

)

IJ

−

− g2

mW sinβ
xS0

(2)

[(
Γu Lm(0)

u
†m(0)

u Γ†
u L

)
IJ

+
(
Γu Rm(0)

u m(0)
u

†Γ†
u R

)
IJ

]}
−

− g2

2mW sin β

[(
Γu Rmu,RLΓ†

u L

)

IJ
xS0

(2) +
(
Γu Lmu,LRΓ†

u R

)

IJ
xS0∗

(2) −

− µ
(
Γu Lm(0)

u
†Γ†

u R

)
IJ

xS0

(1) − µ∗
(
Γu Rm(0)

u Γ†
u L

)
IJ

xS0∗
(1)

]
, (C.23)

where ηS0 = 1, 1, 0, 0 and xS0

(2) = sinα, cos α, i cos β, i sin β.

The couplings of the bosons to charginos and neutralinos are

(
Sχ−L

)
ab

= − g2√
2

(
xS0∗

(1) Ua2V
∗
b1 + xS0∗

(2) Ua1V
∗
b2

)
, (C.24)

(
Sχ−R

)
ab

= − g2√
2

(
xS0

(1)U
∗
a2Vb1 + xS0

(2)U
∗
a1Vb2

)
, (C.25)
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(
Sχ0 L

)
αβ

=
g2

2 cos θW

[(
xS0∗

(1) N∗
α3 − xS0∗

(2) N∗
α4

) (
N∗

β1 sin θW − N∗
β2 cos θW

)
+

+
(
xS0∗

(1) N∗
β3 − xS0∗

(2) N∗
β4

)
(N∗

α1 sin θW − N∗
α2 cos θW )

]
, (C.26)

(
Sχ0 R

)
αβ

=
g2

2 cos θW

[(
xS0

(1)Nα3 − xS0

(2)Nα4

)
(Nβ1 sin θW − Nβ2 cos θW ) +

+
(
xS0

(1)Nβ3 − xS0

(2)Nβ4

)
(Nα1 sin θW − Nα2 cos θW )

]
. (C.27)

D. Corrected vertices

Let us now present the full analytic expressions used in our numerical analysis. A number of

the corrections given in this section are divergent and should be renormalized appropriately.

However, we have checked that numerically these terms are negligible compared to the

tan β enhanced corrections discussed in 3 and tend to play only a minor rôle. Throughout

this section i, j = 1, 2, 3, I, J = 1, . . . , 6, a, b = 1, 2, α, β = 1, . . . , 4, S+ = H+, G+ and

S0 = H0, h0, A0, G0. Repeated indices that appear in the expressions below should be

summed over. We have checked our results with those that appear in [14] and find that,

once one takes into account the different form of Passarino-Veltman functions we adopt

our results agree.

The self-energies that appear in the corrected vertices presented in section 2.2 as well

as the expression for δmd are given by

(
Σd

m L

)
ij

= − 1

16π2

[
meg (G∗

d R)Ii (Gd L)Ij C2 (3) B0

(
m2

eg,m
2
edI

)
+

+ mχ−
a

(C∗
d R)aIi (Cd L)aIj B0

(
m2

χ−
a
,m2

euI

)
+

+ mχ0
α

(N∗
d R)αIi (Nd L)αIj B0

(
m2

χ0
α
,m2

edI

) ]
, (D.1)

(
Σd

v L

)

ij
=

1

16π2

[
(G∗

d L)Ii (Gd L)Ij C2 (3) B1

(
m2

eg,m
2
edI

)
+

+ (C∗
d L)aIi (Cd L)aIj B1

(
m2

χ−
a
,m2

euI

)
+

+ (N∗
d L)αIi (Nd L)αIj B1

(
m2

χ0
α
,m2

edI

)]
. (D.2)

The various supersymmetric couplings that appear in the above expressions are given in

appendix C whilst the Passarino-Veltman functions are defined in appendix A.5. Σd
v R can

be obtained by substituting L with R in (D.2) the up quark self-energy corrections can be

obtained by substituting u ↔ d.

The correction ∆CW
L that appears in (2.24) is given by

(
∆CW

L

)
ij

=
1

16π2

{
2C2 (3)

(
Wed

)
IJ

(G∗
u L)Ii (Gd L)Jj C00

(
m2

eg,m
2
edJ

,m2
euI

)
+

+ 2
(
Wed

)
IJ

(N∗
u L)αIi (Nd L)αJj C00

(
m2

χ0
α
,m2

edJ
,m2

euI

)
+

– 67 –



J
H
E
P
0
8
(
2
0
0
5
)
0
9
4

+ mχ0
α
mχ−

a
(Wχ R)

aα
(N∗

u L)αIi (Cd L)aIj C0

(
m2

χ0
α
,m2

χ−
a
,m2

euI

)
−

− mχ0
α
mχ−

a
(Wχ L)

aα
(C∗

u L)aJi (Nd L)αJj C0

(
m2

χ0
α
,m2

χ−
a
,m2

edJ

)
−

− 2 (Wχ L)
aα

(N∗
u L)αIi (Cd L)aIj

[
C00

(
m2

χ0
α
,m2

χ−
a
,m2

euI

)
− 1

4

]
+

+ 2 (Wχ R)
aα

(C∗
u L)aJi (Nd L)αJj

[
C00

(
m2

χ0
α
,m2

χ−
a
,m2

edJ

)
− 1

4

]}
. (D.3)

∆CW
R can be obtained by the simple substitution L ↔ R. The correction to the left handed

coupling of the Z-boson (2.27) is given by

(
∆CZ

L

)
ij

=
1

16π2

{
2C2 (3)

(
Zed

)
IJ

(G∗
d L)Ii (Gd L)Jj C00

(
m2

eg,m
2
edI

,m2
edJ

)
+

+ 2
(
Zed

)
IJ

(N∗
d L)αIi (Nd L)αJj C00

(
m2

χ0
α
,m2

edI
,m2

edJ

)
+

+ 2 (Zeu)IJ (C∗
d L)aIi (Cd L)aJj C00

(
m2

χ−
a
,m2

euI
,m2

euJ

)
−

− mχ−
a
mχ−

b

(
Zχ− L

)
ab

(C∗
d L)bIi (Cd L)aIj C0

(
m2

χ−
a
,m2

χ−

b

,m2
euI

)
−

− mχ0
α
mχ0

β

(
Zχ0 L

)
αβ

(N∗
d L)βJi (Nd L)αJj C0

(
m2

χ0
α
,m2

χ0
β
,m2

edJ

)
+

+ 2
(
Zχ− R

)
ab

(C∗
d L)bIi (Cd L)aIj

[
C00

(
m2

χ−
a
,m2

χ−

b

,m2
euI

)
− 1

4

]
+

+ 2
(
Zχ0 R

)
αβ

(N∗
d L)βJi (Nd L)αJj

[
C00

(
m2

χ0
α
,m2

χ0
β
,m2

edJ

)
− 1

4

]}
. (D.4)

∆CZ
R may be obtained in a similar manner to ∆CW

R .

Turning to the Higgs sector the vertex correction ∆CS+

L is given by

(
∆CS+

L

)
ij
=− 1

16π2

{
C2 (3) meg

(
CS+

ed

)
IJ

(G∗
u R)Ii (Gd L)Jj C0

(
m2

eg,m
2
edJ

,m2
euI

)
+

+ mχ0
α

(
CS+

ed

)
IJ

(N∗
u R)αIi (Nd L)αJj C0

(
m2

χ0
α
,m2

edJ
,m2

euI

)
+

+ mχ0
α
mχ−

a

(
CS+

χL

)
aα

(N∗
u R)αIi (Cd L)aIj C0

(
m2

χ0
α
,m2

χ−
a
,m2

euI

)
+

+ mχ−
a
mχ0

α

(
CS+

χL

)
aα

(C∗
u R)aJi (Nd L)αJj C0

(
m2

χ−
a
,m2

χ0
α
,m2

edJ

)
+

+ 4
(
CS+

χR

)

aα
(N∗

u R)αIi (Cd L)aIj

[
C00

(
m2

χ0
α
,m2

χ−
a
,m2

euI

)
− 1

8

]
+

+ 4
(
CS+

χR

)
aα

(C∗
u R)aJi (Nd L)αJj

[
C00

(
m2

χ−
a
,m2

χ0
α
,m2

edJ

)
− 1

8

]}
.(D.5)

∆CS+

R may be obtained via the substitution L ↔ R. Finally the corrections to the neutral

Higgs vertex may be written

(
∆CS0

L

)
ij
=− 1

16π2

{
C2 (3) meg

(
SS0

ed

)
IJ

(G∗
d R)Ii (Gd L)Jj C0

(
m2

eg,m
2
edI

,m2
edJ

)
+

+ mχ0
α

(
SS0

ed

)

IJ
(N∗

d R)αIi (Nd L)αJj C0

(
m2

χ0
α
,m2

edI
,m2

edJ

)
+
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+ mχ−
a

(
SS0

eu

)
IJ

(C∗
d R)aIi (Cd L)aJj C0

(
m2

χ−
a
,m2

euI
,m2

euJ

)
+

+ mχ0
α
mχ0

β

(
SS0

χ0 L

)
αβ

(N∗
d R)βJi (Nd L)αJj C0

(
m2

χ0
α
,m2

χ0
β
,m2

edJ

)
+

+ mχ−
a
mχ−

b

(
SS0

χ− L

)
ab

(C∗
d R)bIi (Cd L)aIj C0

(
m2

χ−
a
,m2

χ−

b

,m2
euI

)
+

+ 4
(
SS0

χ0 R

)

αβ
(N∗

d R)βJi (Nd L)αJj

[
C00

(
m2

χ0
α
,m2

χ0
β
,m2

edJ

)
− 1

8

]
+

+ 4
(
SS0

χ− R

)
ab

(C∗
d R)bIi(Cd L)aIj

[
C00

(
m2

χ−
a
,m2

χ−

b

,m2
euI

)
− 1

8

]}
. (D.6)

The correction to the right-handed vertex may be obtained in a similar manner to ∆CS+

R .
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