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1. Introduction

The electromagnetic form factor of quarks is a quantity of considerable interest in Quantum

Chromodynamics (QCD) and in gauge theories in general. At high photon virtualities Q2

this quantity receives double logarithmic corrections of infrared and collinear origin [1],

which take the form of double poles in dimensional regularization for the case of massless

on-shell quarks studied in the present article. These contributions can be resummed by

evolution equations in Q2 based on universal factorization properties of the amplitude in the

relevant kinematic limit, resulting in the well-known exponentiation of the form factor [2 –

4]. So far perturbative calculations have been performed up to two loops for both the

massless on-shell case [5, 6] and heavy quarks [7]. Accordingly, the exponentiation has

been studied up to the next-to-leading (NL) contributions [8 – 10].

Higher-order corrections to the quark form factor are not only of general interest

in quantum field theory, but also relevant for practical applications, as this quantity con-

tributes to phenomenologically important processes. Research in the past years has yielded

dramatic progress in next-to-next-to-leading order (NNLO) perturbative calculations, see,

for example, ref. [11] and numerous references therein. This progress also led to further in-

vestigations of the general structure of amplitudes and cross sections at higher loop-orders,

which in turn further stimulated the interest in all-order resummations. Consequently, the

intimate connection between resummation and perturbative results at multiple loops has

become much more prominent [12 – 14].

Very recently, we have presented the first complete calculation of the third-order correc-

tions to a hard-scattering observable depending on a dimensionless variable, the structure
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function F2 in photon-exchange deep-inelastic scattering [15]. After exploring the conse-

quences of that result for the soft-gluon threshold resummation in ref. [16], we here present

its implications on the quark form factor (from now on always referring to the massless

on-shell case, if not explicitly indicated otherwise) and its resummation. We are able, after

extending the two-loop form factor beyond the previous order ε0 in dimensional regular-

ization, to derive the complete series of poles, ε−6 . . . ε−1, at three loops. These terms in

turn provide the coefficients required to extend the exponentiation of the form factor to

the next-to-next-to-leading (NNL) contributions which we work out explicitly.

This article is organized as follows: In section 2 we address the resummation of the

quark form factor. We briefly recall the evolution equation and its solution, and present the

explicit expansion up to four loops in terms of two perturbative functions, A(αs) (known

up to three loops from the NNLO splitting functions [17, 18]) and G(αs, ε). In section 3

we extend the two-loop form factor to order ε2 and extract the pole terms at three loops

from our structure-function calculation [15]. These results are employed to extend the

first- and second-order parts of the resummation function G to higher orders in ε, and to

derive the leading-ε term at the third order in the strong coupling. Some first implications

of these results are discussed in section 4. Here we extend the ratio of the time-like and

space-like form factors [9] to the fourth order in αs, compare to a recent result for N = 4

Super-Yang-Mills theory [19] and indicate applications on the infrared structure of massive

gauge theories [20, 21]. We briefly summarized our results in section 5. A few technical

details for the solution of the evolution equations in section 2 can be found in appendix A.

Finally the break-up of the (ε-extended) two-loop form factor into its Feynman diagrams

is presented in appendix B.

2. The resummation of the quark form factor

The subject of our study are the QCD corrections to the γ ∗qq (or γ ∗qq̄) vertex, where γ ∗

denotes a space-like (or time-like) photon with virtuality Q2, and q/q̄ a massless external

quark/antiquark. Until section 4 we will focus on the space-like case, thus the relevant

amplitude is

Γµ = ieq (ū γµ u)F(αs, Q
2) , (2.1)

where the scalar function F on the right-hand side is the space-like quark form factor.

This quantity can be calculated order by order in the strong coupling constant αs and, as

mentioned above, is so far known to two loops [5, 6]. F is gauge invariant, but divergent.

As usual we work in dimensional regularization with D = 4 − 2ε, thus these divergences

show up as poles ε−k in the present article.

The exponentiation of the form factor, which extends beyond the resummation of

renormalization group logarithms, is achieved by solving the well-known evolution equa-

tions [3, 8, 4, 9, 10]

Q2 ∂

∂Q2
lnF

(

αs,
Q2

µ2
, ε

)

=
1

2
K(αs, ε) +

1

2
G

(

Q2

µ2
, αs, ε

)

. (2.2)
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Here µ represents the renormalization scale, and the functions G and K are subject to the

renormalization group equations [3]

(

µ2 ∂

∂µ2
+ β(αs, ε)

∂

∂αs

)

G

(

Q2

µ2
, αs, ε

)

= A(αs) , (2.3)

(

µ2 ∂

∂µ2
+ β(αs, ε)

∂

∂αs

)

K(αs, ε) = −A(αs) . (2.4)

All infrared singularities are collected by the scale-independent function K, which in the

MS scheme consists of a series of poles in ε. The function G, on the other hand, is finite for

ε → 0 and includes all dependence on the scale Q2. The renormalization properties of G

and K are both governed by the same anomalous dimension A, because the sum of G and

K is a renormalization group invariant. This quantity is given by a power expansion in the

strong coupling, for which we use the convention (also employed for all other expansions

in αs throughout this article)

A(αs) =

∞
∑

i=1

(αs

4π

)i
Ai ≡

∞
∑

i=1

a i
s Ai . (2.5)

In fact, the anomalous dimension A also occurs in many other circumstances, for instance

as the coefficient of the 1/(1−x)+ contribution to the Altarelli-Parisi quark-quark splitting

function and as the anomalous dimension of a Wilson line with a cusp [22].

As already indicated by the argument of the beta function, the solution of eqs. (2.3)

and (2.4) requires the running coupling in D dimensions. Following refs. [10, 23] we define

ā(λ, as, ε), where λ is a dimensionless ratio of scales like λ = Q2/µ2. The resummation

of the NNL contributions to the form factor requires the scale dependence of ā to NNLO

accuracy [24, 25] (see the discussion at the end of this section), obtained by solving

λ
∂

∂λ
ā(λ, as, ε) = −ε ā(λ, as, ε) − β0 ā2(λ, as, ε) − β1 ā3(λ, as, ε) − β2 ā4(λ, as, ε) (2.6)

with the boundary condition ā(1, as, ε) = as. Extending the result of ref. [23] by one order,

this solution is given by

ā(λ, as, ε) =
as

X

{

1 − ε
β1

β2
0

ln X

X

}

−
a 2

s

X2

{

β1

β0

(ln X + Y )

}

+

+
a 3

s

X3

{

β2
1

β2
0

3

2
ln2 X

(

1 + Y +
1

4
Y 2

)

+

+
β2

β0

ln X

(

1

6
(3 + Y )(1 − X) − 1 − Y −

1

3
Y 2

)}

+ O
(

a 4
s

)

, (2.7)

where we have used the abbreviations

X = 1 − as

β0

ε
(λ−ε − 1) , Y =

ε(1 − X)

asβ0

. (2.8)
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With eq. (2.7) for the running coupling, eq. (2.3) can now be solved to the required accuracy,

G

(

Q2

µ2
, αs, ε

)

= G

(

1, ā

(

Q2

µ2
, as, ε

)

, ε

)

+

1
∫

Q2/µ2

dλ

λ
A(ā(λ, as, ε)) . (2.9)

The perturbative expansion of the boundary condition G(1, ā, ε) can be derived by com-

parison to the fixed-order results for the form factor.

After recursively determining (see, e.g., ref. [10] for details) the scale-independent

counter-term function K from eq. (2.4), the resummed quark form factor reads

lnF

(

αs,
Q2

µ2
, ε

)

=
1

2

Q2/µ2

∫

0

dξ

ξ






K(αs, ε) + G(1, ā(ξ, as, ε), ε) +

1
∫

ξ

dλ

λ
A(ā(λ, as, ε))







(2.10)

with the boundary condition F(αs, 0, ε) = 1 [9]. After expanding the D-dimensional cou-

pling according to eq. (2.7), lnF exhibits double logarithms of Q2/µ2 and double poles in

ε, which are generated by the two integrations. In addition the integral over the anoma-

lous dimension A leads to terms which are independent of the outer integration variable ξ.

These logarithmic singularities at ξ = 0 are canceled by the function K order by order in

the perturbative expansion.

The well-known relation (2.10) can be employed either for a direct evaluation of the

form factor due to the analyticity in D dimensions [10] or, by means of finite-order expan-

sions and matching, for predictions of perturbative results at higher orders. Here we will

focus on the latter issue. In particular, we will derive explicit results at three and four loops.

This is done by performing the integrations in eq. (2.10) after inserting the perturbative

expansions of all quantities. The resulting integrals can be evaluated using algorithms for

the evaluations of nested sums [26, 27]. Some technical details for this step are given in

appendix A, where eqs. (A.4)–(A.7) represent sample types of relevant integrals. Further

details may also be found in ref. [10].

It is convenient to express the loop-expanded form factor in terms of the bare (un-

renormalized) coupling αb
s instead of the renormalized coupling αs as in eq. (2.10). The

couplings αb
s and αs are related by

αb
s = Zαs

αs , (2.11)

with the renormalization constant Zαs
in the MS scheme given by

Zαs
= 1 −

β0

ε
as +

(

β2
0

ε2
−

1

2

β1

ε

)

a 2
s −

(

β3
0

ε3
−

7

6

β1β0

ε2
+

1

3

β2

ε

)

a 3
s , (2.12)

and also the bare expansion parameter normalized as ab
s = αb

s /(4π). The perturbative

expansion of the bare (unrenormalized) quark form factor then reads

Fb(αb
s , Q2) = 1 +

∞
∑

l=1

(ab
s)

l

(

Q2

µ2

)−lε

Fl . (2.13)
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In terms of the i-th order parameters Ai in eq. (2.5) and the corresponding functions Gi(ε),

the expansion coefficients up to four loops read

F1 = −
1

2

1

ε2
A1 −

1

2

1

ε
G1 , (2.14)

F2 =
1

8

1

ε4
A2

1 +
1

8

1

ε3
A1(2G1 − β0) +

1

8

1

ε2
(G2

1 − A2 − 2β0G1) −
1

4

1

ε
G2 , (2.15)

F3 = −
1

48

1

ε6
A3

1 −
1

16

1

ε5
A2

1(G1 − β0) −
1

144

1

ε4
A1(9G

2
1 − 9A2 − 27β0G1 + 8β2

0 ) −

−
1

144

1

ε3
(3G3

1 − 9A2G1 − 18A1G2 + 4β1A1 − 18β0G
2
1 + 16β0A2 + 24β2

0G1) +

+
1

72

1

ε2
(9G1G2 − 4A3 − 6β1G1 − 24β0G2) −

1

6

1

ε
G3 , (2.16)

F4 =
1

384

1

ε8
A4

1 +
1

192

1

ε7
A3

1(2G1 − 3β0) +
1

1152

1

ε6
A2

1(18G
2
1 − 18A2 − 72β0G1 + 41β2

0 ) +

+
1

576

1

ε5
A1(6G

3
1 − 18A2G1 − 18A1G2 + 8β1A1 − 45β0G

2
1 + 41β0A2 +

+ 82β2
0G1 − 18β3

0 ) +

+
1

1152

1

ε4
(3G4

1 − 18A2G
2
1 + 9A2

2 − 72A1G1G2 + 32A1A3 + 64β1A1G1 −

− 36β0G
3
1 + 100β0A2G1 + 228β0A1G2 − 48β0β1A1 + 132β2

0G2
1 −

− 108β2
0A2 − 144β3

0G1) +

+
1

288

1

ε3
(−9G2

1G2 + 8A3G1 + 9A2G2 + 24A1G3 − 3β2A1 + 12β1G
2
1 − 9β1A2 +

+ 66β0G1G2 − 27β0A3 − 48β0β1G1 − 108β2
0G2) +

+
1

96

1

ε2
(3G2

2 + 8G1G3 − 3A4 − 4β2G1 − 12β1G2 − 36β0G3) −
1

8

1

ε
G4 . (2.17)

The three- and four-loop relations (2.16) and (2.17) are new results of the present article.

Recall that eqs. (2.14)–(2.17) directly refer to the bare form factor. The corresponding

renormalized results can be derived with the help of eqs. (2.11) and (2.12).

The ε0 term of G1, together with β0 and the lowest-order anomalous dimension A1,

specify the two most singular terms ε−2n and ε−2n+1 to all orders αn
s . Likewise, if (besides

two more contributions to G1) also the leading term of G2 and the NLO quantities β1

and A2 are known, the resummation fixes the first four leading poles at each order. This

has been the status up to now, referred to as the next-to-leading (NL) contributions in

section 1. In the next section, we will present the leading term of G3 and the corresponding

higher coefficients in the ε-expansions of G2 and G3. Together with β2 (as indicated before

eq. (2.6)) and our recent result for A3 [17], these results provide the NNL terms at all

orders, especially fixing the ε−4 and ε−3 poles in eq. (2.17).

3. Fixed-order results and resummation coefficients

We now turn to the extraction of the quark form factor up to order α 3
s from our third-order

computation of the deep-inelastic structure functions [15]. As also discussed in refs. [17, 18],

the calculation has been performed via forward Compton amplitudes and the optical the-

orem. The cuts of the corresponding diagrams always include real-emission contributions,
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thus the purely virtual form-factor part cannot be directly read off at this level. Never-

theless we can reconstruct the form factor from our results, except (as explained below)

at the highest power of ε which was consistently kept in the calculations. Consequently,

we can derive all 1/ε pole terms at order α 3
s , since the forward Compton amplitudes have

been computed to order ε0 for ref. [15].

Our starting point for the determination of the form factor is the unrenormalized (and

unfactorized) partonic structure function F b for γ ∗q → X in the limit x → 1, where x

denotes the partonic Bjorken variable. Using the end-point properties of the harmonic poly-

logarithms [28] in which these results are expressed, we remove all regular contributions and

only retain the singular pieces proportional to δ(1−x) and the +-distributions at order αn
s ,

D k =

[

ln k(1 − x)

1 − x

]

+

, k = 1, . . . 2n − 1 . (3.1)

The resulting expressions are then compared to the general structure of the n-th order con-

tribution F b
n in terms of the l-loop form factors Fl and the corresponding pure real-emission

parts S l,

F b
0 = δ(1 − x)

F b
1 = 2F1 δ(1 − x) + S1

F b
2 = 2F2 δ(1 − x) + (F1)

2 δ(1 − x) + 2F1S1 + S2

F b
3 = 2F3 δ(1 − x) + 2F1F2 δ(1 − x) + 2F2S1 + 2F1S2 + S3 . (3.2)

The x-dependence of the factors Sk is given by the D-dimensional +-distributions fkε

defined by

fkε(x) = [(1 − x)−1−kε]+ = −
1

kε
δ(1 − x) +

∑

i=0

(−kε)i

i !
D i . (3.3)

The αn
s contributions Fn and Sn in eq. (3.2) exhibit poles in ε up to order ε−2n. The

corresponding bare structure function F b
n , on the other hand, only include terms up to ε−n,

as the higher divergences on the right-hand sides cancel for these inclusive quantities due to

the Kinoshita-Lee-Nauenberg theorem [29, 30]. In fact, the complete cancellation already

occurs at the level of the individual diagrams of ref. [15] for the forward Compton amplitude.

Once the products of lower-order quantities in eq. (3.2) have been subtracted from

F b
n , the contribution of the n-loop form factor Fn can be extracted by performing the

substitution

D 0 →
1

nε
δ(1 − x) −

∑

i=1

(−nε)i

i !
D i (3.4)

which eliminates, besides the +-distributions, the remaining δ(1 − x) originating in the

factor fnε of eq. (3.3) in the purely real part Sn. However, as δ(1 − x) enters fnε with a

factor 1/ε, this extraction does not work at the highest order of ε kept in the calculation of

F b
n . Hence, as stated above, the determination of the n-loop form factor Fn to order εk in

this approach requires the calculation of the bare partonic structure function F b
n to order

εk+1.

– 6 –
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In addition, the subtraction of the lower-order contributions Fl and Sl with l < n

in eq. (3.2) requires the extension of these quantities to higher orders in ε. Specifically,

the first- and second-order quantities are required to order ε3 and ε1, respectively, for the

extraction of the pole terms of the three-loop form factor. These functions have been

determined from the calculation of F b
1 to order ε4 and F b

2 to order ε2. In fact, anticipating

a future extension to the finite parts of the three-loop form factor F3, we have extended

these calculations to one more power of ε, making use of the fact that the one- and two-loop

integrals for the calculation of the structure functions were evaluated to order ε5 and ε3

anyway, see table 3 of ref. [15]. As a check of these new two-loop results (the one-loop

quantities are known to all orders in ε anyway), a separate calculation of F2 has been

performed to order ε2 in the approach of refs. [5, 6]. The results for the corresponding

seven diagrams are listed in appendix B.

To the accuracy in ε just discussed, the unrenormalized quark form factor reads, up

to three loops in the notation of eq. (2.13),

F1 = CF

{

−2
1

ε2
− 3

1

ε
− 8 + ζ2 + ε

(

−16 +
3

2
ζ2 +

14

3
ζ3

)

+

+ ε2

(

−32 + 4ζ2 + 7ζ3 +
47

20
ζ 2
2

)

+ ε3

(

−64 + 8ζ2 +
56

3
ζ3 +

141

40
ζ 2
2 −

7

3
ζ2ζ3 +

62

5
ζ5

)

+

+ ε4

(

−128 + 16ζ2 +
112

3
ζ3 +

47

5
ζ 2
2 −

7

2
ζ2ζ3 +

93

5
ζ5 +

949

280
ζ 3
2 −

49

9
ζ 2
3

)}

, (3.5)

F2 = C 2
F

{

2
1

ε4
+ 6

1

ε3
+

1

ε2

(

41

2
− 2ζ2

)

+
1

ε

(

221

4
−

64

3
ζ3

)

+
1151

8
+

17

2
ζ2 −

− 58ζ3 − 13ζ 2
2 + ε

(

5741

16
+

213

4
ζ2 −

839

3
ζ3 −

171

5
ζ 2
2 +

112

3
ζ2ζ3 −

184

5
ζ5

)

+

+ ε2

(

27911

32
+

1839

8
ζ2 −

6989

6
ζ3 −

3401

20
ζ 2
2 + 54ζ2ζ3 −

−
462

5
ζ5 +

223

5
ζ 3
2 +

2608

9
ζ 2
3

)}

+

+CF CA

{

−
11

6

1

ε3
+

1

ε2

(

−
83

9
+ ζ2

)

+
1

ε

(

−
4129

108
−

11

6
ζ2 + 13ζ3

)

−

−
89173

648
−

119

9
ζ2 +

467

9
ζ3 +

44

5
ζ 2
2 +

+ ε

(

−
1775893

3888
−

6505

108
ζ2 +

6586

27
ζ3 +

1891

60
ζ 2
2 −

89

3
ζ2ζ3 + 51ζ5

)

+

+ ε2

(

−
33912061

23328
−

146197

648
ζ2 +

159949

162
ζ3 +

2639

18
ζ 2
2 −

−
397

9
ζ2ζ3 +

3491

15
ζ5 −

809

70
ζ 3
2 −

569

3
ζ 2
3

)}

+

+nfCF

{

1

3

1

ε3
+

14

9

1

ε2
+

1

ε

(

353

54
+

1

3
ζ2

)

+
7541

324
+

14

9
ζ2 −

26

9
ζ3 +

– 7 –
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+ ε

(

150125

1944
+

353

54
ζ2 −

364

27
ζ3 −

41

30
ζ 2
2

)

+

+ ε2

(

2877653

11664
−

26

9
ζ2ζ3 +

7541

324
ζ2 −

4589

81
ζ3 −

287

45
ζ 2
2 −

242

15
ζ5

)}

, (3.6)

F3 = C 3
F

{

−
4

3

1

ε6
− 6

1

ε5
+

1

ε4
(−25 + 2ζ2) +

1

ε3

(

−83 − 3ζ2 +
100

3
ζ3

)

+

+
1

ε2

(

−
515

2
−

77

2
ζ2 + 138ζ3 +

213

10
ζ 2
2

)

+

+
1

ε

(

−
9073

12
−

467

2
ζ2 +

2119

3
ζ3 +

1461

20
ζ 2
2 −

214

3
ζ2ζ3 +

644

5
ζ5

)}

+

+C 2
F CA

{

11

3

1

ε5
+

1

ε4

(

431

18
− 2ζ2

)

+
1

ε3

(

6415

54
−

7

6
ζ2 − 26ζ3

)

+
1

ε2

(

79277

162
+

1487

36
ζ2 −

83

5
ζ 2
2 − 210ζ3

)

+

+
1

ε

(

1773839

972
+

38623

108
ζ2 −

6703

6
ζ3 −

9839

72
ζ 2
2 +

215

3
ζ2ζ3 − 142ζ5

)}

+

+CF C 2
A

{

−
242

81

1

ε4
+

1

ε3

(

−
6521

243
+

88

27
ζ2

)

+
1

ε2

(

−
40289

243
−

553

81
ζ2 +

1672

27
ζ3 −

88

45
ζ 2
2

)

+

+
1

ε

(

−
1870564

2187
−

68497

486
ζ2 +

12106

27
ζ3 +

802

15
ζ 2
2 −

88

9
ζ2ζ3 −

136

3
ζ5

)}

+

+nfC 2
F

{

−
2

3

1

ε5
−

37

9

1

ε4
+

1

ε3

(

−
545

27
−

1

3
ζ2

)

+
1

ε2

(

−
6499

81
−

133

18
ζ2 +

146

9
ζ3

)

+

+
1

ε

(

−
138865

486
−

2849

54
ζ2 +

2557

27
ζ3 +

337

36
ζ 2
2

)}

+

+nfCF CA

{

88

81

1

ε4
+

1

ε3

(

2254

243
−

16

27
ζ2

)

+
1

ε2

(

13679

243
+

316

81
ζ2 −

256

27
ζ3

)

+

+
1

ε

(

623987

2187
+

11027

243
ζ2 −

6436

81
ζ3 −

44

5
ζ 2
2

)}

+ (3.7)

+n 2
f CF

{

−
8

81

1

ε4
−

188

243

1

ε3
+

1

ε2

(

−
124

27
−

4

9
ζ2

)

+
1

ε

(

−
49900

2187
−

94

27
ζ2 +

136

81
ζ3

)}

.

Here nf stands for the number of effectively massless quark flavours, CF and CA are the

usual QCD colour factors, CF = 4/3 and CA = 3, and the values of Riemann’s zeta function

are denoted by ζn.

Eq. (3.7) and the ε1 and ε2 parts of eq. (3.6) are new results of this article. The

four highest 1/ε poles of the three-loop form factor F3 provide the first complete ver-

ification of the resummation of the next-to-leading contributions. With the anomalous

dimensions (2.5) known up to A3, the remaining two poles are sufficient to fix the NNL

contributions to the function G in eq. (2.9). Especially, we can derive the first (ε = 0) term

of the third-order function G3(ε).
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Before we turn to these results we recall, for completeness, the known coefficients of

the cusp anomalous dimension A(as). The results for A1 and A2,

A1 = 4CF , A2 = 8CF CA

(

67

18
− ζ2

)

+ 8CF nf

(

−
5

9

)

, (3.8)

have been known for a long time [31]. The recently completed expression for A3 reads [17]

A3 = 16CF C 2
A

(

245

24
−

67

9
ζ2 +

11

6
ζ3 +

11

5
ζ 2
2

)

+ 16C 2
F nf

(

−
55

24
+ 2 ζ3

)

+

+16CF CAnf

(

−
209

108
+

10

9
ζ2 −

7

3
ζ3

)

+ 16CF n 2
f

(

−
1

27

)

. (3.9)

See refs. [32 – 34] for previous partial results on the nf -contributions. Very recently the ζ 2
2

term in eq. (3.9) has been confirmed in ref. [19], see the discussion at the end of section 4.

Inserting eqs. (3.8) and (3.9) into the resummation relations (2.14)–(2.16) and com-

paring to the explicit results (3.5)–(3.7), we obtain the following perturbative expansion of

eq. (2.9) at µ2 = Q2:

G1 = 6CF + εCF (16 − 2ζ2) + ε2CF

(

32 − 3ζ2 −
28

3
ζ3

)

+

+ε3CF

(

64 − 8ζ2 − 14ζ3 −
47

10
ζ 2
2

)

+

+ε4CF

(

128 − 16ζ2 −
112

3
ζ3 −

141

20
ζ 2
2 +

14

3
ζ2ζ3 −

124

5
ζ5

)

+

+ε5CF

(

256 − 32ζ2 −
224

3
ζ3 −

94

5
ζ 2
2 + 7ζ2ζ3 −

186

5
ζ5 −

949

140
ζ 3
2 +

98

9
ζ 2
3

)

,(3.10)

G2 = C 2
F (3 − 24ζ2 + 48ζ3) + CF CA

(

2545

27
+

44

3
ζ2 − 52ζ3

)

+

+CF nf

(

−
418

27
−

8

3
ζ2

)

+ εC 2
F

(

1

2
− 116ζ2 + 120ζ3 +

176

5
ζ 2
2

)

+

+εCF CA

(

70165

162
+

575

9
ζ2 −

520

3
ζ3 −

176

5
ζ 2
2

)

+

+εCF nf

(

−
5813

81
−

74

9
ζ2 +

16

3
ζ3

)

+

+ε2C 2
F

(

−
109

4
− 437ζ2 + 736ζ3 +

432

5
ζ 2
2 − 112ζ2ζ3 + 48ζ5

)

+

+ε2CF CA

(

1547797

972
+

7297

27
ζ2 −

24958

27
ζ3 −

653

6
ζ 2
2 +

356

3
ζ2ζ3 − 204ζ5

)

+

+ε2nfCF

(

−
129389

486
−

850

27
ζ2 +

1204

27
ζ3 +

7

3
ζ 2
2

)

+ε3C 2
F

(

−
1287

8
−

2991

2
ζ2 + 3614ζ3 + 508ζ 2

2 −

− 104ζ2ζ3 + 72ζ5 −
6864

35
ζ 3
2 − 1072ζ 2

3

)

+

– 9 –
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+ε3CF CA

(

31174909

5832
+

155701

162
ζ2 −

308810

81
ζ3 −

100907

180
ζ 2
2 +

+
478

3
ζ2ζ3 − 840ζ5 +

1618

35
ζ 3
2 +

2276

3
ζ 2
3

)

+

+ε3nfCF

(

−
2628821

2916
−

8405

81
ζ2 +

16340

81
ζ3 +

1873

90
ζ 2
2 +

44

3
ζ2ζ3 + 48ζ5

)

, (3.11)

G3 = C 3
F

(

29 + 36ζ2 + 136ζ3 +
576

5
ζ 2
2 − 64ζ2ζ3 − 480ζ5

)

+

+C 2
F CA

(

232

3
−

2096

3
ζ2 +

3008

3
ζ3 −

8

3
ζ 2
2 + 32ζ2ζ3 + 240ζ5

)

+

+CF C 2
A

(

1045955

729
+

34732

81
ζ2 −

34928

27
ζ3 −

188

3
ζ 2
2 +

176

3
ζ2ζ3 + 272ζ5

)

+

+nfC 2
F

(

−
3826

27
+

296

3
ζ2 −

1232

9
ζ3 +

208

15
ζ 2
2

)

+

+nfCF CA

(

−
309838

729
−

11728

81
ζ2 +

1448

9
ζ3 +

88

15
ζ 2
2

)

+

+n 2
f CF

(

19676

729
+

304

27
ζ2 +

32

27
ζ3

)

. (3.12)

As discussed at the end of section 2, these results are sufficient to fix the next-to-next-to-

leading contributions, i.e., the six highest poles in ε, to all orders in the strong coupling. In

fact, in view of a future extension of G3 to order ε, the first- and second-order results (3.10)

and (3.11) already transcend this accuracy by one power in ε.

We close this section by a brief discussion of our three-loop results (3.7) and (3.12).

The former result for the 1/ε poles of the quark form factor in massless QCD is not

directly applicable to any physical process. For use in cross section calculations such as

e+e− → 2 jets at the next-to-next-to-next-to-leading order (N3LO), one would need the

finite contribution to F3 as well. However, the resulting leading term (3.12) of G3 is

of immediate interest for predictions of the pole structure of QCD amplitudes at higher

orders [13, 14] generalizing Catani’s NNLO formula [12]. For the four-quark amplitude at

N3LO, qq → qq, for instance, an explicit prediction has been derived in ref. [13], for which

eqs. (3.7) and (3.12) now provide the last missing piece of information.

4. The time-like case and non-QCD applications

So far, our discussion has been restricted to space-like photon momenta, q2 = −Q2 < 0.

The modifications for the time-like case q2 > 0 are obtained by analytic continuation.

For the resummed quark form factor in eq. (2.10) this continuation has been discussed in

ref. [9], while the finite-order expansions (2.13) are transferred to q2 > 0 according to [5]

(

−q2

µ2

)−lε

=

(

q2

µ2

)−lε( Γ(1 − lε)Γ(1 + lε)

Γ(1 − 2lε)Γ(1 + 2lε)
− i

πlε

Γ(1 − lε)Γ(1 + lε)

)

. (4.1)
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Of particular interest is the absolute ratio |F(q2)/F(−q2)| of the renormalized time-

like and space-like form factors. This quantity is infrared finite and directly enters the

cross section for Drell-Yan lepton pair production in hadronic collisions. Transforming

eqs. (2.14)–(2.17) back to the renormalized quantities using eqs. (2.11) and (2.12), and

then employing the analytic continuation (4.1) we obtain the expansion

∣

∣

∣

∣

F(q2)

F(−q2)

∣

∣

∣

∣

2

= 1 + as{3ζ2A1} + α 2
s

{

9

2
ζ 2
2 A2

1 + 3ζ2(β0G1 + A2)

}

+

+a 3
s

{

9

2
ζ 3
2 A3

1 + 3ζ 2
2 A1(3β0G1 − β2

0 + 3A2) + 3ζ2(A3 + β1G1 + 2β0G2)

}

+

+a 4
s

{

27

8
ζ 4
2 A4

1 +
9

2
ζ 3
2 A2

1(3β0G1 − 2β2
0 + 3A2) +

+
3

2
ζ 2
2 (−6β2

0A2 + 3β2
0G2

1 + 3A2
2 + 12β0A1G2 + 6A1A3 + 6β1A1G1 −

− 5β0β1A1 + 6β0A2G1 − 6β3
0G1) +

+ 3ζ2(A4 + β2G1 + 3β0G3 + 2β1G2)

}

+ O(a 5
s ) (4.2)

in terms of the couplings as(q
2) = as(−q2) = as. Note that, since this ratio is infrared

finite, only the ε = 0 parts of the coefficients Gi enter eq. (4.2). Consequently, all terms

contributing at the fourth order are now known, with the exception of the four-loop cusp

anomalous dimension A4 of which only the small n 3
f contribution has been derived so

far [32].

The effect of A4 is expected to be small, therefore we can nevertheless evaluate the

ratio (4.2) also numerically up to the fourth order, employing the [1/1] Padé estimate of

ref. [16],

Aq,4 ≈ 7849, 4313, 1553 for nf = 3, 4, 5 , (4.3)

to which we assign a conservative 50% uncertainty. Switching back to the strong coupling

αs = 4π as at the scale q2 as the expansion parameter, eq. (4.2) for nf = 4 yields the

numerical expansion

∣

∣

∣

∣

F(q2)

F(−q2)

∣

∣

∣

∣

2

= 1 + 2.094αs + 5.613α 2
s + 15.70α 3

s + (48.63 ± 0.43)α 4
s . (4.4)

This result does not look like a nicely converging expansion, but so far does not exhibit

a clear factorial growth of the higher-order coefficients either. As already pointed out

in ref. [9], the only genuine l-loop contribution at order α l
s is given by the anomalous

dimension Al, which in eq. (4.4) contributes 24%, 7% and (2 ± 1)% of the total coefficient

at the second, third and fourth order, respectively. On the other hand, the contributions

of the quantities Gl−1 at order α l
s are large, amounting to 37%, 41%, 50% at l = 2, 3, 4.

Consequently, the higher-order (l ≥ 5) terms in eq. (4.4) cannot be predicted quantitatively

at this point.

Exponentiations like eq. (2.10) for the form factor F have also been studied for elec-

troweak interactions [20], where a fermion or gauge-boson mass m acts as a regulator for

– 11 –



J
H
E
P
0
8
(
2
0
0
5
)
0
4
9

collinear or infrared singularities. Of course, both the counter-term function K in eq. (2.4)

and the lower integration limit in eq. (2.10) are modified in this case, as they depend on

the infrared sector of the theory. However, the leading (ε = 0) term of the function G

in eq. (2.3) is independent of the regulator at each order in the coupling constant. This

contribution entirely originates in the so-called hard region in an expansion of the loop in-

tegrals in different regions [35]. In this region all loop momenta are of order Q, effectively

leading to the massless case considered in eqs. (2.16) and (3.7).

This ‘universality’ implies, for instance, that eq. (3.12) provides a prediction for the

coefficient C3
F ln(Q2/m2) in the three-loop quantity F3 for an abelian gauge theory with

fermion masses like Quantum Electrodynamics (QED) [36] after the usual identification of

the colour factors. For QED, e.g., one has CF = 1, CA = 0 and Tf = 1 instead of our QCD

convention Tf nf = nf/2.

Another interesting implication of eq. (3.7) arises for maximally supersymmetric Yang-

Mills theory (MSYM), i.e., Yang-Mills theory with N = 4 supersymmetry in four dimen-

sions. QCD results may be carried over to this theory using the inspired observation [37]

that the MSYM results can be obtained from the contributions of leading transcendentality

in QCD. This procedure has been applied to the QCD results for the three-loop anomalous

dimensions of spin N of leading-twist operators [17, 18], which were employed to extract

corresponding quantities in MSYM [37]. Strikingly enough, the resulting MSYM anoma-

lous dimensions completely agree with predictions based on integrability for the planar

three-loop contribution to the dilatation operator [38]. This agreement has been checked

up to spin N = 8 in ref. [39] and is now established up to N = 70 [40] (for a review see

also ref. [41]).

Although no formal proof exists for the procedure of ref. [37], it has recently been used

in reverse, namely to predict terms of highest transcendentality in the QCD form factor.

Based on studies of planar amplitudes in MSYM at three loops [19], where an interesting

pattern of iteration for the four-point amplitude has been found, both the coefficients

Al|MSYM and the leading contribution to Gl|MSYM have been determined for l ≤ 3. Our

new result for the three-loop form factor F3 in eq. (3.7) and for coefficient G3 in eq. (3.12)

puts us in a position to check this part of ref. [19] and thereby provide further evidence on

the procedure of ref. [37].

The only transcendental numbers entering the results for the form factor are the values

ζn of Riemann’s zeta function. Hence the procedure of ref. [37] implies that, at each order in

αs, one keeps only the highest terms ζn and ζi ζj with i+j = n. After the SYM identification

CA = CF = nc (terms with nf do not contribute at the highest transcendentality), eqs. (3.8)

and (3.9) lead to

A1

∣

∣

∣

MSYM
= 4nc , A2

∣

∣

∣

MSYM
= −8 ζ2n

2
c , A3

∣

∣

∣

MSYM
=

176

5
ζ 2
2 n3

c . (4.5)

Correspondingly, eqs. (3.10)–(3.12) result in

G1

∣

∣

∣

MSYM
= 0 , G2

∣

∣

∣

MSYM
= −4 ζ3n

2
c , G3

∣

∣

∣

MSYM
=

80

3
ζ2ζ3n

3
c + 32 ζ5n

3
c . (4.6)

Both relations agree with the results of ref. [19], and hence with the prescription of ref. [37].
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5. Summary

We have derived new higher-order QCD results for the electromagnetic form factor of

on-shell massless quarks. Specifically, we have extracted all third-order 1/ε pole terms

in dimensional regularization from our recent computation of the three-loop coefficient

functions for inclusive deep-inelastic scattering [15], supplemented by a higher-ε extension of

the two-loop contributions. These results, together with our extension of the resummation

of the form factor to the next-to-next-to-leading contributions, fix the six highest 1/ε poles

to all orders. As an example, we have provided the explicit expression for the coefficients

of ε−8 . . . ε−3 at four loops.

While the pole terms of the form factor alone are not sufficient for use in other three-

loop calculations like e+e− → 2 jets, they do have immediate theoretical applications both

for the infrared structure of higher-order QCD amplitudes and for other gauge theories

such as QED and N = 4 Super-Yang-Mills theory, where our results confirm a recent

corresponding calculation in ref. [19]. Moreover, our present results are sufficient (up

to a numerically irrelevant uncertainty due to the unknown four-loop cusp anomalous

dimension) for extending the finite absolute ratio of the time-like and space-like form

factors, which directly enters the description of the Drell-Yan process, to the fourth order

in αs.

We close by noting that the computation of the finite part of the three-loop quark form

factor F3 by an extension of the techniques employed in this article is feasible.

Note added in proof. Shortly after submission of the present article, ref. [49] appeared.

In that paper the two-loop quark and gluon form factors are calculated in dimensional

regularisation, and explicit expressions to all orders in ε are presented. This calculation

confirms our result for F2 in eqs. (3.6) and (B.1).
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A. Integrals for form factor resummation

Here we give some details for the determination of the loop-expanded form factor from

eq. (2.10). Useful auxiliary relations are

1

(1 − x)n−ε
=

∞
∑

i=0

Γ(n − ε + i)

Γ(n − ε)

x i

i!
, (A.1)

lnk(1 − x)

(1 − x)n−ε
=

(

∂

∂ε

)k 1

(1 − x)n−ε
, (A.2)
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where eq. (A.1) holds for |x| < 1. The expansion of the Gamma function in powers of ε for

positive integers n reads

Γ(n + 1 + ε)

n! Γ(1 + ε)
= 1 + εS1(n) + ε2(S1,1(n) − S2(n)) + ε3(S1,1,1(n) − S1,2(n)) − S2,1(n) +

+S3(n) + ε4(S1,1,1,1(n) − S1,1,2(n) − S1,2,1(n) + S1,3(n) − S2,1,1(n) +

+ S2,2(n) + S3,1(n) − S4(n)) + O(ε5) , (A.3)

with Sm1,...,mk
(N) denoting the harmonic sums [26]. Finally integrals of the following types

occur:
∫

dλ

λ
λ−nε = −

1

nε
λ−nε , (A.4)

∫

dλ

λ

(

λ−ε − 1
)n

= −
1

ε
(−1)n

n
∑

j=1

(−1)j

j

(

λ−ε − 1
)j

−
1

ε
(−1)n

n
∑

j=1

(

n

j

)

(−1)j

j
+ (−1)n ln λ , (A.5)

∫

dλ

λ
λ−ε

(

λ−ε − 1
)n

= −
1

ε

1

n + 1

(

λ−ε − 1
)n+1

, (A.6)

∫

dλ

λ
λ−2ε

(

λ−ε − 1
)n

= −
1

ε

(

1

n + 1
+ λ−ε

)

1

n + 2

(

λ−ε − 1
)n+1

, (A.7)

and so on, where n > 0. The integration over λ and ξ in eq. (2.10) leads to double sums

which are readily evaluated to any finite order in αs. Also all-order analytical results for

the exponent, cf. ref. [10], can be obtained along these lines by employing the algorithms

for the evaluation of nested sums [27].

B. Feynman diagrams for two-loop form factor

Finally we present the results for the individual Feynman diagrams, displayed in figure 1,

which contribute to the two-loop form factor in the approach (and notation) of refs. [5, 6].

The diagrams add up to the bare quark form factor in eq. (3.6) according to

F2 = 2S + QL + GL + 2QV + 2GV + C + L . (B.1)

Note that both the normalization in eq. (2.13), where we have pulled out the factor

(Q2/µ2)−2ε, and our convention for ε are different from those in ref. [6]. The results

for the individual diagrams to order ε2 are given by

S = C 2
F

{

1

ε3
+

7

2

1

ε2
+

1

ε

(

53

4
− ζ2

)

+
355

8
−

7

2
ζ2 −

32

3
ζ3 +

+ ε

(

2281

16
−

53

4
ζ2 −

112

3
ζ3 −

57

10
ζ 2
2

)

+ ε2

(

14299

32
−

355

8
ζ2 −

424

3
ζ3 −

399

20
ζ 2
2 +

32

3
ζ2ζ3 −

272

5
ζ5

)}

, (B.2)
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Figure 1: The Feynman diagrams contributing to the two-loop quark form factor in the notation

of ref. [6].

QL = CF nf

{

1

3

1

ε3
+

14

9

1

ε2
+
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, (B.3)

GL = CF CA
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, (B.5)

GV = CF CA
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−
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−
5093
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, (B.6)

C = CF (CF −
CA

2
)

{

1
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4
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1
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(
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2
ζ 2
2 +
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(
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3
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5
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3
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5
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)

+
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(
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2
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2
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3
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5
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3
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−
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5
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ζ 3
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9
ζ 2
3

)}

, (B.7)

L = C 2
F

{

1
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2

ε3
+

1
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(
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2
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)
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1

ε

(

101

4
− 2ζ2 +

46

3
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)

+

+
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−
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(
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3
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5
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)

+

+ ε2

(
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−
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8
ζ2 +
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6
ζ3 +
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ζ 2
2 −
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3
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+
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5
ζ5 +
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ζ 3
2 −
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9
ζ 2
3

)}

. (B.8)

The loop integrations have been reduced with integration-by-parts identities [44, 45] to

so-called master integrals. This step has been automatized in ref. [46]. All master integrals

except the basic non-planar triangle can be expressed in terms of Gamma functions, thus

they can be readily expanded to any order in ε. The non-planar triangle (see, e.g., ref. [47])

can be written as a double sum over Gamma functions. After expansion, the sums can be

solved in terms of the Riemann zeta function to any order in ε using the algorithms for

harmonic sums [26] coded, as all our symbolic manipulations, in Form [48].
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[20] J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in

four-fermion electroweak processes at high energy, Nucl. Phys. B 616 (2001) 286

[hep-ph/0106298], erratum ibid. B468 (2003) 455.
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