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1. Introduction

There has been a considerable amount of effort recently in trying to embed inflation within

the context of string theory. All these models are based on the simple realization that

moduli associated with the ingredients necessary to go from ten to four dimensions will be

seen as light fields in the four dimensional description. In this regard, we can distinguish

between two different origins for the would be inflaton.

On the one hand, compactifications mechanisms generate many moduli that come

from different components of the metric, the dilaton, or the different antisymmetric forms

present in the low energy description of string theory in ten dimensions. But these moduli

should be fixed today by their respective potentials, so one of the most simple frameworks

to get inflation would be to use these potentials to create a period of inflationary expansion.

This idea has been pursued within string theory for a long time [1] and has its most recent

incarnation in [2].

On the other hand, the discovery of D-branes has opened up a new opportunity to

get inflation within string theory [3 – 5]. The idea is that we can use the moduli that

parametrizes the distance between the branes along the compact directions as the inflaton

field. In [6] these type of models were discussed within the framework of compactification

with fluxes [7]. The authors argue that due to the potentials for the D-branes coming from

the background geometry, it would be natural to have this process of inflation happening

when the branes are located on a warped region of the internal manifold. These regions,

called throats can be thought as regularized deformations of the conifold singularity [8] on

a Calabi-Yau. In [9] the authors were able to find an exact solution of the supergravity

equations of motion that describe the geometry once some fluxes are turned on along the

cycles of the internal space. We will review this solution in section III of this paper since

it is important for our purposes.

– 1 –
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Brane inflation ends in these scenarios when the branes collide at the bottom of this

warped geometry. It has been suggested that brane annihilation would leave behind a

network of lower dimensional extended objects [10 – 13], which would be seen as strings

from the four dimensional point of view. This alternative has renewed the interest on the

possibility of observing cosmological consequences of cosmic strings, either fundamental

strings (F strings) or D1-branes (D strings).

On the other hand, many high energy extensions of the standard model predict that

our universe underwent a phase transition during which one dimensional topological de-

fects of the field theory in question could have been produced [14, 15]. These would be

the usual cosmic strings that have been extensively studied in the past in relation with

different cosmological and astrophysical observations [16, 17]. It is therefore interesting to

look for distinguishing features between these two types of cosmic string networks. Some

suggestions in this regard have been put forward in the literature [18 – 20].

Here we explore the possibility that these strings were able to propagate in the extra

dimensional part of the geometry. It is clear that this could have important consequences

for the evolution of the network of strings [20]. In this paper we demonstrate this fact by

finding stable solutions for 4-dimensional extended closed loops that wind around a circle

of the internal space. We show that even though the extra dimensional part of the internal

geometry in this region is a three sphere threaded with fluxes, the solutions remain stable

for some range of the parameters. On the other hand, these light degrees of freedom that

parametrize the position of the string on the compact space can also be thought of as

a neutral current flowing along the string. This current has a very peculiar equation of

state that could in principle help us to distinguish between fundamental versus field theory

cosmic strings.

The organization of the paper is the following. In section 2 we present the simple

solutions of strings propagating in M4 × S1, and discuss its connection to the supercon-

ducting string case. Section 3 discusses the embedding and stability of these solutions in

the deformed conifold geometry. Finally in the conclusions we elaborate on the possible

role that these solutions may play within the recently proposed scenarios of brane inflation.

2. Strings on M4 × S1

The Nambu-Goto action of a string propagating in D+1 dimensions is given by,

S = −T
∫ √−γ dσdt , (2.1)

where T = 1/2πα′ is the tension of the string, γab = gMN∂aX
M∂bX

N is the induced metric

on the worldsheet parametrized by the intrinsic coordinates, σ and t, and XM (σ, t) gives

the embedding of the string motion in the D+1-dimensional space-time. The equations of

motion in the conformal gauge for a string propagating in a spacetime with metric gMN

are [16],

ẌM − X ′′M + ΓM
NP (ẊN ẊP − X ′NX ′P ) = 0 (2.2)

– 2 –
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where X ′ and Ẋ denote the derivatives with respect to σ and t and ΓM
NP are the Christoffel

symbols for the background metric. On the other hand, in order to be in the conformal

gauge, we have to impose on the solutions the following constraints:

ẊMX ′
M = 0 , (2.3)

ẊM ẊM + X ′MX ′
M = 0 . (2.4)

We can now particularize these equations to the case at hand, a 4+1 dimensional

spacetime with one of the spatial dimensions compactified on a circle. In this case, the

metric is:

ds2 = gMNdXMdXN = −dt2 + dxidxi + dθ2 . (2.5)

In this background, we can use the extra gauge freedom to choose X0 = t so that the

4-dimensional spatial vector XJ that parametrizes the position of the string satisfies the

following set of equations:

ẌJ = XJ ′′
, (2.6)

ẊJX ′
J = 0 , (2.7)

ẊJ ẊJ + X ′JX ′
J = 1 . (2.8)

We look for solutions of these equations that describe macroscopic strings extended

along the non compact 3+1 dimensional part of this spacetime and winding the transverse

circle, namely solutions of the following form,

x0(σ, t) = t , (2.9)

x(σ, t) = a(σ − t) , (2.10)

θ(σ, t) = σ + (σ − t)b , (2.11)

where a is an arbitrary vector function and b a constant. It is clear that this ansatz fulfills

the equations of motion, so we only have to impose the constraint equations which are also

fulfilled provided that,

b(b + 1) + |a′|2 = 0 . (2.12)

Note that we also have to choose b such that it respects the periodicity of θ.

This solution describes a wiggle of arbitrary shape propagating on a straight string

along the extra dimension. Solutions of this type have been known in the cosmic string

literature for quite some time [21] and generalize the solutions found in the circular case

in [22]. They have also been discussed recently within string theory in [23]. From the

4-dimensional perspective, this string looks like a loop of arbitrary form stabilized by the

backreaction on its worldsheet of the perturbations of the string along the extra dimen-

sion. In this regard, they are basically a compactified version of the wiggly cosmic string

model [24, 25].

– 3 –
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We can also think of these wiggles along the compactified directions as an induced

current on the worldsheet [26], and therefore consider these strings as a model of neutral

superconducting strings [27]. Hence, it is not so surprising that there are stable configura-

tions of string loops since states like this are well known in the context of superconducting

cosmic string models [28]. Also the arbitrary shape for the strings in this case is easily

understood due to the fact that the 4-dimensional string tension vanishes in those config-

urations [29, 30].

3. Strings on the deformed conifold

We now consider solutions of the type described in the previous section propagating in the

background of the warped deformed conifold of type IIB supergravity [9]. In this solution

the dilaton field is constant, eΦ = gs, and the line element, 3-form and self-dual 5-form

Ramond-Ramond field strengths, and the Kalb-Ramond 2-form are given by

ds2
10 = h−1/2(τ)dxµdxµ +

+
1

2
h1/2(τ)ε4/3K(τ)

[

1

3K3(τ)

(

dτ2 + g2
5

)

+

+ cosh2

(τ

2

)

(

g2
3 + g2

4

)

+ sinh2

(τ

2

)

(

g2
1 + g2

2

)

]

, (3.1)

F3 =
1

2
Mα′

{

g5 ∧ g3 ∧ g4 + d

[

sinh τ − τ

2 sinh τ
(g1 ∧ g3 + g2 ∧ g4)

]}

, (3.2)

F̃5 = F5 + ?F5 , F5 = B2 ∧ F3 , (3.3)

B2 = gsMα′ τ coth τ − 1

4 sinh τ
dτ ∧ ((cosh τ − 1)g1 ∧ g2 + (cosh τ + 1)g3 ∧ g4) , (3.4)

where

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3sinh τ
, (3.5)

h(τ) = (gsMα′)222/3ε−8/3

∫ ∞

τ
dx

x coth x − 1

sinh2x
(sinh(2x) − 2x)1/3 , (3.6)

and the 1-forms g1, . . . g5 are linear combinations of the Cartan 1-forms on the coset SU(2)×
SU(2)/U(1) [31], namely:

g1 =
1√
2
(e1 − e3) , g2 =

1√
2
(e2 − e4) , (3.7)

g3 =
1√
2
(e1 + e3) , g4 =

1√
2
(e2 + e4) , g5 = e5 , (3.8)

e1 = −sinθ1dφ1 , e2 = dθ1 , (3.9)

e3 = cosψsinθ2dφ2 − sinψdθ2 , (3.10)

e4 = sinψsinθ2dφ2 + cosψdθ2 , (3.11)

e5 = dψ + cosθ1dφ1 + cosθ2dφ2 . (3.12)

In this parametrization, 0 ≤ θi < π, 0 ≤ φi < 2π, 0 ≤ ψ < 4π for i = 1, 2.
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We are interested in the dynamics of strings near the bottom of the conifold, thus we

consider the τ → 0 limit of the supergravity solution. The metric becomes (choosing the

deformation parameter ε = 121/4)

ds2
10 = k−1

(

1 +
τ2

a064/3

)

dxµdxµ +

+k

[

1

2

(

1 +

(

1

5
− 1

a064/3

)

τ2

)

(

dτ2 + g2
5

)

+

+

(

1 +

(

3

20
− 1

a064/3

)

τ2

)

(

g2
3 + g2

4

)

+
τ2

4

(

g2
1 + g2

2

)

]

+ O(τ3) , (3.13)

where k = a
1/2

0
6−1/3gsMα′ and a0 ≈ 0.718.

At τ = 0 the angular part of the conifold degenerates to a round three- sphere of radius

k1/2,

dΩ2
3 =

1

2
g2
5 + g2

3 + g2
4 , (3.14)

plus a collapsed two-sphere,

dΩ2
2 = g2

1 + g2
2 . (3.15)

The stability group of the SU(2)× SU(2) symmetric solution of the conifold defining equa-

tions is enhanced from U(1) to a full SU(2) at τ = 0 [8] which we use to set θ2 = φ2 = 0.

Therefore, it is easy to see that (3.14) is indeed the metric on a round three-sphere as

dΩ2
3

= Tr dT †dT/2 for the SU(2) matrix

T =

(

cos θ1

2
ei

ψ+φ1
2 sin θ1

2
ei

−ψ+φ1
2

−sin θ1

2
ei

ψ−φ1
2 cos θ1

2
e−i

ψ+φ1
2

)

(3.16)

and (3.15) is just dθ2
1 + sin2θ1dφ2

1.

We want to study strings propagating in this background which form closed loops in

IR3,1 and wind around a maximal circle on the blown-up three-sphere. We parametrize the

string by target space coordinates (x0, . . . , x3, τ, θ1, ψ, φ1, θ2, φ2) and we use the worldsheet

gauge freedom to fix X0 = t and (X1/X2) = tan σ. Within this gauge we take the following

ansatz:

XM = (t, r(t) sinσ, r(t) cosσ, z0, τ, 0, 2nψσ + ϕ(t), nφσ + ϕ(t), 0, 0) , (3.17)

where nψ and nφ are integers labeling the winding in the ψ and φ directions respectively

(for 0 ≤ σ < 2π, 2nψσ runs nψ times over the range of ψ). Let us mention that circular

string solutions winding around transverse spheres are known [32, 33] albeit not for the

case of the warped background considered here.

In what follows we will focus on solutions with fixed radius r and find the conditions

for their stability for the case of both a fundamental string and a D-string.

– 5 –
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3.1 F-string

We consider the Nambu-Goto action for the bosonic sector of the F-string:

S = −T
∫

dσdt
√−γ + µ

∫

B2 , (3.18)

where the charge µ = T and B2 stands for the Kalb-Ramond two form. Two conserved

quantities follow from the energy momentum tensor namely,1

E = 2πα′k

(

δL
δẊI

ẊI − L
)

=
r2 + 1

2
k2s′2

√

(1 − ṙ2)
(

r2 + 1

2
k2s′2

)

− 1

2
k2r2ṡ2

, (3.19)

` = 2πα′k
δL
δẊI

(XI)′ =
1

2
k2s′ṡr2

√

(1 − ṙ2)
(

r2 + 1

2
k2s′2

)

− 1

2
k2r2ṡ2

, (3.20)

where the index I labels the eight coordinates not fixed by the gauge choice and we have

defined for convenience2 s ≡ ψ + φ1. The r.h.s. of (3.19) and (3.20) are obtained by

specializing to the ansatz (3.17). These two conserved quantities imply that the circular

orbits have radius r =
√

` and transverse angular velocity ϕ̇ = 1/
√

2k for any non vanishing

winding numbers nψ, nφ. It is clear that these solutions are stable with respect to 4-

dimensional radial perturbations due to the fact that they are basically the static solution

of a 1-dimensional analogous problem on the minimum of its potential.

Unlike the case of the previous section, in which the stability of the winding in the

transverse direction is topological, the solutions obtained above are classically stable due

to the dynamics in the transverse directions. They turn out to be stable if the radius r

of the string is large enough. From the expansion (3.13) it is not difficult to see that the

solution is stable under a small deviation in the τ direction, δτ(t), from the bottom of

the conifold (τ = 0). δτ contributes positive definite kinetic and potential energies to the

action. Turning on a small perturbation δθ in the coordinate θ, introduces a perturbation

in the action (to second order in δθ) proportional to

(

` +
1

2
k2(2nψ + nφ)2

)

δ̇θ
2 − 1

2k2

(

` − 1

2
k2(2nψ + nφ)2

)

δθ2 , (3.21)

with no mixing with the τ perturbations (whose lowest order is quadratic). We also notice

that there is no contribution to this order from perturbations in the other transverse

directions.3 Therefore, the solution is stable as long as

` >
k2(2nψ + nφ)2

2
. (3.22)

1Note that B2 vanishes at the bottom of the conifold.
2The fact that s/2 plays the role of the angular coordinate on the S1 case, and therefore that the solution

should be periodic in this variable, implies that only even nφ should be considered.
3The decoupling of the fluctuations in the τ , φ2, θ2 from the directions on the 3−sphere to quadratic

order is, a priori, nontrivial. Therefore, the stability analysis here performed could not have been inferred

from the one of [32, 33] even though we arrive at similar results.

– 6 –
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Before we end this subsection, let us mention that a σ dependence on the fluctuations

considered does not change the result. Indeed, by considering

δθ(σ, t) =
∑

n

einσfn(t) , fn = f−n , (3.23)

leads to an increase in the potential energy contribution of the n-th mode proportional to

n2, therefore improving the stability.

3.2 D-string

The action for a D-string is the sum of the Born-Infeld and Chern-Simons terms which, in

the absence of a world-sheet gauge field, reads

S = −T
∫

dσdt e−Φ
√

−det[γ + B2] + µ

∫

C2 , (3.24)

where the charge is related to the tension as |µ| = T and C2 stands for the Ramond-Ramond

two form. In the ansatz (3.17) for τ = 0 the equations of motion coincide with those of

the F-string since the contribution from the F3 form vanishes in this case. However, the

Chern-Simons term alters the stability condition under small θ fluctuations. It becomes:

` >
1

2
k2

[

(2nψ + nφ)2 ± (2n2
ψ − n2

φ)
]

, (3.25)

where ± = µ/|µ|; while the stability under τ fluctuations is guaranteed for any choice of

parameters as in the F-string case.

3.3 Generalizations

We expect the ansatz (3.17) to belong to wider class of stable classical string solutions

propagating at the bottom of the conifold geometry. In particular, we can also find solutions

for the equations of motion for F and D strings with arbitrary four dimensional shape if

we wind the string along a maximal circle of the S3. In order to see that, it is sufficient to

look at the general equations of motion in the conformal gauge for a string in the τ → 0

limit of our geometry. Also it is more convenient to use the familiar parametrization of the

sphere, namely

ds2 = k−1dxµdxµ + k
(

dχ2 + sin2 χ(dθ2 + sin2 θdφ2)
)

. (3.26)

If we now restrict ourselves to an ansatz of the form, (t, xi, 0, π/2, π/2, φ, 0, 0) then

we see that the equations of motion (2.2) for the F and D string in this background are

identical to the solutions found for the M4 ×S1 case and therefore allow for any shape for

the string in four dimensions. The stability of these solutions with respect to perturbations

along the sphere follows from the arguments on previous sections.

– 7 –
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4. Concluding remarks

We have found stable solutions for loops of F and D strings extended along the uncompact-

ified four dimensional space and winding a circle of the transverse 3-sphere at the bottom

of the warped deformed conifold. The reason for its stability from the four dimensional

point of view is the modification of the string dynamics due to the massless degrees of

freedom present on the string associated with the excitations along the transverse direc-

tions. This is reminiscent of what happens in the case of superconducting cosmic string

case, where solutions of this type are known to exist, the so called vorton solutions [28].

In fact, we can regard the strings propagating at the tip of this geometry as neutral su-

perconducting strings, as long as the extra dimensional manifold there remains a 3-sphere.

If this was the case on a realistic model of brane inflation, we should carefully study the

cosmological implications of our findings. The existence of these stable loops that would

not decay by gravitational radiation, would impose important constraints on the string

network evolution [34].
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