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Abstract: We propose a model for lepton mass matrices based on the seesaw mechanism,

a complex scalar gauge singlet and a horizontal symmetry S3×Z2. In a suitable weak basis,

the charged-lepton mass matrix and the neutrino Dirac mass matrix are diagonal, but the

vacuum expectation value of the scalar gauge singlet renders the Majorana mass matrix

of the right-handed neutrinos non-diagonal, thereby generating lepton mixing. When the

symmetry S3 is not broken in the scalar potential, the effective light-neutrino Majorana

mass matrix enjoys µ-τ interchange symmetry, thus predicting maximal atmospheric neu-

trino mixing together with Ue3 = 0. A partial and less predictive form of µ-τ interchange

symmetry is obtained when the symmetry S3 is softly broken in the scalar potential. En-

larging the symmetry group S3 × Z2 by an additional discrete electron-number symmetry

Z
(e)
2 , a more predicitive model is obtained, which is in practice indistinguishable from a

previous one based on the group D4.
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1. Introduction

The very precise data now existing on neutrino mass-squared differences and on lepton mix-

ing [1], and the prospects of rapid experimental developments in this field, invite theorists

to construct models for the lepton mass matrices, in an effort to exploit and to understand

the symmetries and hierarchies suggested by the data. Among them, most prominent are

the possible maximality of the atmospheric neutrino mixing angle θ23 and the smallness of

the mixing-matrix element Ue3. Together, they suggest the existence of a µ-τ interchange

symmetry in the (effective) light-neutrino Majorana mass matrix Mν , taken in the basis

where the charged-lepton mass matrix is diagonal [2]. Such a symmetry, embodied in

Mν =







x y y

y z w

y w z






, (1.1)

automatically leads to, simultaneously, Ue3 = 0 and θ23 = π/4. Various authors have dwelt

on the matrix (1.1), and on generalizations thereof, in the past [3 – 6]; we, in particular,

have shown that it may be obtained either from a model based on family lepton-number

symmetries [7] or from a model based on the discrete eight-element group D4 [8].

We show in this letter that the matrix (1.1) may also be obtained from a model based

on the smaller discrete group S3, a group which has a long tradition in model building [9].

The model presented here also suggests a generalization of the matrix (1.1), wherein

M−1
ν =







r s s

s peiψ q

s q pe−iψ






. (1.2)

This generalization, while leading to neither Ue3 = 0 nor θ23 = π/4, seems interesting

in itself.
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We note that, in [4], the mass matrix (1.1) has been generalized in such a way that θ23

differs from π/4, while Ue3 = 0 remains intact; on the other hand, with matrix (1.2) — as

we shall see later — the deviation of Ue3 from zero is correlated with the deviation of θ23

from π/4.

2. The model

We work in the context of a non-supersymmetric SU(2)L × U(1) framework. The three

left-handed lepton SU(2)L doublets are denoted by De,µ,τ . The three right-handed charged-

lepton SU(2)L singlets are eR, µR and τR. We further introduce three SU(2)L singlet

right-handed neutrinos νeR, νµR and ντR, in order to enable the seesaw mechanism for

suppressing the light-neutrino masses [10]. In our model there are three Higgs SU(2)L

doublets φ1,2,3. In exact analogy to the D4 model [8], we introduce a symmetry

Z
(aux)
2 : νeR, νµR, ντR, φ1, eR change sign . (2.1)

Instead of two real neutral scalar SU(2)L singlets, as in [8], we use one complex neutral

scalar SU(2)L singlet, χ. Again in exact analogy to [8], we define a symmetry

Z
(tr)
2 : Dµ ↔ Dτ , µR ↔ τR , νµR ↔ ντR , χ → χ∗ , φ3 → −φ3 . (2.2)

This Z
(tr)
2 is the µ-τ interchange symmetry. The crucial difference between the D4 model [8]

and the present S3 one is that, while in the D4 model there was a symmetry Z
(τ)
2 which,

together with Z
(tr)
2 , generated a group D4, in the S3 model we introduce instead a symmetry

Z3 which, together with Z
(tr)
2 , generates a group S3 [11]. With ω ≡ exp (2iπ/3), we impose

Z3 :

Dµ → ωDµ , Dτ → ω2Dτ ,

µR → ωµR , τR → ω2τR ,

νµR → ωνµR, ντR → ω2ντR ,

χ → ωχ , χ∗ → ω2χ∗ .

(2.3)

Thus, (Dµ, Dτ ), (µR, τR), (νµR, ντR) and (χ, χ∗) are doublets of S3. The Higgs SU(2)L

doublet φ3 changes sign under the odd permutations of S3, but stays invariant under the

cyclic permutations.

The Yukawa lagrangian symmetric under S3 × Z
(aux)
2 is

LY = −
[

y1D̄eνeR + y2

(

D̄µνµR + D̄τντR

)]

φ̃1 −
−y3D̄eeRφ1 − y4

(

D̄µµR + D̄ττR

)

φ2 − y5

(

D̄µµR − D̄ττR

)

φ3 +

+y∗χ νT
eRC−1 (νµRχ∗ + ντRχ) +

z∗χ
2

(

νT
µRC−1νµRχ + νT

τRC−1ντRχ∗
)

+ H.c. , (2.4)

where φ̃1 ≡ iτ2φ
∗
1. There is also an S3 × Z

(aux)
2 -invariant Majorana mass term

LM =
m∗

2
νT

eRC−1νeR + m′∗νT
µRC−1ντR + H.c. . (2.5)

The second term in the right-hand side of (2.5) differs, in a crucial fashion, from the

analogous term in the D4 model — see equation (9) of [8].

– 2 –
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With vacuum expectation values (VEVs)
〈

0
∣

∣

∣φ0
j

∣

∣

∣ 0
〉

= vj for j = 1, 2, 3, one obtains

me = |y3v1| ,
mµ = |y4v2 + y5v3| ,
mτ = |y4v2 − y5v3| . (2.6)

The µ-τ interchange symmetry Z
(tr)
2 is spontaneously broken by the VEV of φ0

3, so that

the µ and τ charged leptons acquire different masses. The smallness of mµ relative to mτ

may be explained by requiring the model to be invariant under an additional, softly broken

symmetry [12].

The neutrino Dirac mass matrix is

MD = diag (a, b, b) , with a = y∗1v1 , b = y∗2v1 . (2.7)

When the singlet χ acquires a VEV 〈0 |χ| 0〉 = W , one obtains Majorana mass terms for

the right-handed neutrinos:

LMR
= −1

2
(ν̄eR, ν̄µR, ν̄τR)MR C







ν̄T
eR

ν̄T
µR

ν̄T
τR






+ H.c. , (2.8)

with

MR =







m yχW yχW ∗

yχW zχW ∗ m′

yχW ∗ m′ zχW






. (2.9)

We next perform a rephasing of the fields,

νµR → eiανµR , Dµ → eiαDµ , µR → eiαµR ,

ντR → e−iαντR , Dτ → e−iαDτ , τR → e−iατR , with α ≡ arg W , (2.10)

to obtain

MR =







m yχ |W | yχ |W |
yχ |W | zχ |W | e−3iα m′

yχ |W | m′ zχ |W | e3iα






. (2.11)

We see that the matrix MR has become µ-τ symmetric after the rephasing, provided W 3

is real (e3iα = ±1). We shall see shortly that it is indeed possible to enforce this. If MR

is µ-τ symmetric, and since MD also enjoys the µ-τ interchange symmetry, it follows, by

applying the seesaw mechanism,1 that

Mν = −MT
DM−1

R MD (2.12)

is µ-τ symmetric, i.e. it is of the form (1.1).

We thus find that it is possible to produce a neutrino mass matrix of the form (1.1),

which leads to Ue3 = 0 and θ23 = π/4, out of a model with symmetry S3 × Z
(aux)
2 with

1We assume that m, m′ and the VEV W are all of the same very large order of magnitude.
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three Higgs SU(2)L doublets — two of which are S3-invariant while the third one changes

sign under the odd permutations of S3. The charged-lepton mass matrix is automatically

diagonal, hence there are no flavour-changing neutral currents at tree level in the charged-

lepton sector — such interactions appear, though, already at the one-loop level [13].

3. The scalar potential

Because of the symmetry S3 × Z
(aux)
2 , the scalar potential is

V = µχ |χ|2 + λ |χ|4 +
3

∑

j=1

(

φ†
jφj

) (

µj + ajφ
†
jφj + bj |χ|2

)

+

+
∑

j<k

[

ajk

(

φ†
jφj

) (

φ†
kφk

)

+ bjk

(

φ†
jφk

) (

φ†
kφj

)

+ cjk

(

φ†
jφk

)2
+ c∗jk

(

φ†
kφj

)2
]

+

+mχ

(

χ3 + χ∗3
)

. (3.1)

Only the term in the last line of (3.1) feels the phase of χ. If its coefficient mχ is negative,

then the phase of the VEV W will adjust so that W 3 is real and positive, i.e. α will be

either 0 or ±2π/3; if mχ is positive, then α will be either π or ±π/3, in order that W 3

is real and negative. In any case, W 3 is real. This is precisely what is needed in order to

obtain a µ-τ -symmetric Mν .

The situation is modified if we allow the symmetry Z3 of (2.3) to be softly broken by

terms of dimension one, or one and two, while keeping both Z
(aux)
2 and Z

(tr)
2 unscathed.2

There are only two such terms, namely

µ′
χ

(

χ2 + χ∗2
)

+ M (χ + χ∗) , (3.2)

with real constants µ′
χ, M . These terms get added to V in (3.1), which does not change

otherwise. The phase of W becomes arbitrary. The matrix MR in (2.11) does not respect

µ-τ interchange symmetry any more, rather only a partial version thereof.

If one worries about cosmological domain walls, then one may want to eliminate from

the lagrangian all exact discrete symmetries. This one may do by breaking Z
(aux)
2 and Z

(tr)
2 ,

together with Z3, softly by terms of dimension two. This amounts to the addition, to the

scalar potential (3.1), of all terms φ†
jφk with j 6= k. (When Z

(tr)
2 is broken softly, the terms

of (3.2) also have to be generalized to µ′
χχ2 + Mχ + H.c. with complex µ′

χ, M .) However,

this soft breaking only affects the values of the vj and has no influence on the lepton mass

matrices. It is thus irrelevant for the following discussion.

4. Reproducing the D4 model

In the D4 model [8] there is an accidental symmetry

Z
(e)
2 : De, eR, νeR, χ change sign . (4.1)

2If we also allow the soft breaking of (2.3) by terms of dimension three, then Majorana mass terms

νT
eRC−1 (νµR + ντR) and νT

µRC−1νµR + νT
τRC−1ντR are also present in the lagrangian and, after χ gets a

VEV, the µ-τ interchange symmetry is destroyed altogether.
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In the context of the present S3 model, one may promote that symmetry to fundamental and

impose it on the lagrangian from the start. It enforces zχ = 0, hence (MR)22 = (MR)33 = 0;

since MR = −MDM−1
ν MT

D and MD is diagonal, this means the vanishing of the (µ, µ) and

(τ, τ) matrix elements of M−1
ν . The phase α of W is irrelevant when (MR)22 = (MR)33 = 0,

since it may be rephased away as in (2.10), and the model is automatically µ-τ symmetric.

Thus, in the S3 model with the extra Z
(e)
2 symmetry one has

M−1
ν =







r s s

s 0 q

s q 0






, (4.2)

i.e.
(

M−1
ν

)

µµ
=

(

M−1
ν

)

ττ
= 0.

On the other hand, in the D4 model [8] one has
(

M−1
ν

)

µτ
= 0 but

(

M−1
ν

)

µµ
=

(

M−1
ν

)

ττ
6= 0. We shall demonstrate now that the matrix (4.2) is equivalent to the mass

matrix of the D4 model.

In general, Mν is diagonalized as

UTMνU = diag (m1, m2, m3) , (4.3)

where U is the lepton mixing matrix and the mj are the (real and non-negative) neutrino

masses. Equivalently,

M−1
ν = U diag

(

m−1
1 , m−1

2 , m−1
3

)

UT . (4.4)

The unitary U is parametrized as

U = diag
(

eiϑ1 , eiϑ2 , eiϑ3

)

×







c13c12 c13s12 s13e
−iδ

−c23s12 − s23s13c12e
iδ c23c12 − s23s13s12e

iδ s23c13

−s23s12 + c23s13c12e
iδ s23c12 + c23s13s12e

iδ −c23c13






×

× diag
(

ei∆/2, 1, eiΩ/2
)

, (4.5)

where cij ≡ cos θij , sij ≡ sin θij and θ12 is the solar mixing angle. The phases ϑi are

unphysical; physical are only the Dirac phase δ and the Majorana phases ∆ and Ω. In

the case of µ-τ symmetric M−1
ν , one has — see for instance [14] — ϑ2 = ϑ3, θ13 = 0

and θ23 = π/4; the vanishing of θ13 allows one to write the non-diagonal matrix on the

right-hand side of (4.5) as a product U23U12, where U23 and U12 are responsible for the

mixing in the atmospheric and solar neutrino sector, respectively.

Now we turn to the matrix (4.2), which we can transform according to

TM−1
ν T =







r s s

s q 0

s 0 q






, with T =







1 0 0

0 u u∗

0 u∗ u






and u =

eiπ/4

√
2

. (4.6)

Thus, TM−1
ν T has precisely the form of the mass matrix of the D4 model, and from (4.4)

it is clear that it can be diagonalized by a U appropriate for a µ-τ symmetric matrix. Since

– 5 –



J
H
E
P
0
8
(
2
0
0
5
)
0
1
3

ϑ2 = ϑ3, in the diagonalization of TM−1
ν T the product TU23 occurs. Now,

TU23 = U23 diag (1, 1, i) , where U23 =







1 0 0

0 ρ ρ

0 ρ −ρ






and ρ =

1√
2

. (4.7)

The matrix U12 commutes with diag (1, 1, i). Therefore, the difference between the D4

model and the S3 × Z
(aux)
2 × Z

(e)
2 model amounts to the modification Ω → Ω + π. Since Ω

is a free parameter, the two models are in practice equivalent.

Just as in the D4 model [8], the zero in the matrix (4.2), or — equivalently — the zero

in TM−1
ν T of (4.6), leads to

s2
12 ei∆

m1
+

c2
12

m2
+

eiΩ

m3
= 0 . (4.8)

As we have shown in [8], the constraint (4.8) implies, given the known experimental values,

a normal mass spectrum m1 < m2 < m3, with m1 either in the range 3 to 9×10−3 eV,

or larger than 14×10−3 eV; these numbers hold for the best-fit values of the mass-squared

differences as given in [1]. A further prediction is |〈m〉| = m1m2/m3, where |〈m〉| is the

effective mass relevant for neutrinoless ββ decay.

5. Generalization of the µ-τ interchange symmetry

We now abandon the symmetry Z
(e)
2 and return to the general MR of the S3 model, given

in (2.11). Since M−1
ν = −M−1

D MRMT
D
−1

, and since MD = diag (a, b, b) is diagonal, one

obtains M−1
ν of the form (1.2).

In general, the symmetric matrix M−1
ν contains nine parameters: the six moduli of

its matrix elements and three rephasing-invariant phases, because one may independently

rephase the three left-handed neutrinos, thereby eliminating three phases in Mν , or equiv-

alently in M−1
ν . To those nine parameters correspond nine observables: the three neutrino

masses m1,2,3, the three mixing angles θ12,13,23, the Dirac phase δ and the Majorana phases

∆ and Ω.

In the case of (full) µ-τ interchange symmetry, i.e. when eiψ = ±1 in (1.2), three

observables are predicted: θ23 = π/4, θ13 = 0 and the Dirac phase is meaningless be-

cause θ13 = 0. To those three predicted observables correspond three rephasing-invariant

relations among the parameters of Mν , or of M−1
ν :

∣

∣

∣

(

M−1
ν

)

eµ

∣

∣

∣
=

∣

∣

(

M−1
ν

)

eτ

∣

∣ , (5.1)
∣

∣

∣

(

M−1
ν

)

µµ

∣

∣

∣
=

∣

∣

(

M−1
ν

)

ττ

∣

∣ , (5.2)

arg

{

[

(

M−1
ν

)

eµ

]2
(

M−1
ν

)

ττ

}

= arg
{

[(

M−1
ν

)

eτ

]2 (

M−1
ν

)

µµ

}

. (5.3)

In the case of the matrix (1.2), the condition (5.3) does not apply. One has an in-

complete µ-τ interchange symmetry, wherein conditions (5.1) and (5.2) apply, but not

condition (5.3). The matrix (1.2) has seven real physical parameters. As we will see, ψ 6= 0

– 6 –



J
H
E
P
0
8
(
2
0
0
5
)
0
1
3

leads both cos 2θ23 and s13 to be non-zero, and in general there will also be a non-zero

Dirac phase δ. Since the matrix (1.2) has only one parameter more than matrix (1.1), it

must predict two relations: two of the observables cos 2θ23, s13 and δ must be functions

of the third one and of the remaining observables, which are m1,2,3, θ12, ∆ and Ω. Since

the Majorana phases are hardly accessible by experiment, our aim is to derive observable

consequences of incomplete µ-τ interchange symmetry which do not involve those phases.

It is convenient to use the facts that, from experiment, it is known that the atmospheric

mixing angle θ23 is close to π/4 and that θ13 is small. Thus we define the parameters

ν ≡ cos 2θ23 , (5.4)

ε ≡ s13e
iδ , (5.5)

the latter of which is complex. Experimentally [1], |ν| < 0.28 at 90% confidence level and

|ε| < 0.22 at 3σ level. In the case of full µ-τ interchange symmetry, ν = ε = 0 and there

are no restrictions on all other observables, i.e. on m1,2,3, θ12, ∆ and Ω. In the case of

incomplete µ-τ interchange symmetry, ν and ε in general do not vanish and, when they are

non-zero, some restrictions may apply on the other observables.

Adding (5.1) and (5.2) and using (4.4), one finds that

0 =
∣

∣

∣

(

M−1
ν

)

eµ

∣

∣

∣

2
+

∣

∣

∣

(

M−1
ν

)

µµ

∣

∣

∣

2
−

∣

∣

(

M−1
ν

)

eτ

∣

∣

2 −
∣

∣

(

M−1
ν

)

ττ

∣

∣

2
(5.6)

=
(

M−1
ν M−1

ν
∗
)

µµ
−

(

M−1
ν M−1

ν
∗
)

ττ
(5.7)

=

3
∑

j=1

|Uµj |2 − |Uτj |2
m2

j

(5.8)

=
(

c2
23 − s2

23

)

(

s2
12 − s2

13c
2
12

m2
1

+
c2
12 − s2

13s
2
12

m2
2

− c2
13

m2
3

)

+

+4

(

1

m2
1

− 1

m2
2

)

c23s23s13c12s12 cos δ . (5.9)

This condition is particularly useful since it does not involve the Majorana phases. It

translates into
(

s2
12 − |ε|2 c2

12

m2
1

+
c2
12 − |ε|2 s2

12

m2
2

+
|ε|2 − 1

m2
3

)

ν + 2

(

1

m2
1

− 1

m2
2

)

c12s12

√

1 − ν2 Re ε = 0 .

(5.10)

Numerically, we shall use (5.10) to determine ν as a function of ε, for various values of the

neutrino masses and of the mixing angle θ12. Since |ε|2 and ν2 are in any case rather small,

(5.10) is an almost linear relationship between ν and Re ε.

We next consider the constraint (5.1) by itself alone. It is equivalent to the existence

of a phase ϕ such that

0 =
(

M−1
ν

)

eµ
− eiϕ

(

M−1
ν

)

eτ
(5.11)

=
3

∑

j=1

Uej

(

Uµj − eiϕUτj

)

mj
. (5.12)

– 7 –
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This is the equation of a triangle in the complex plane — it states that the sum of three

complex numbers vanishes, i.e. that those three numbers form a triangle in the complex

plane. The triangle (5.12) involves the Majorana phases. It is convenient to remove those

phases, since they are in practice very difficult to observe experimentally. One does this

by considering the inequality, which follows from (5.12),3

3
∑

j=1

∣

∣Uej

(

Uµj − eiϕUτj

)∣

∣

4

m4
j

−2
∑

j<k

∣

∣Uej

(

Uµj − eiϕUτj

)∣

∣

2 ∣

∣Uek

(

Uµk − eiϕUτk

)∣

∣

2

m2
jm

2
k

≤ 0 . (5.13)

Notice that, using (4.5), one has

∣

∣Ue1

(

Uµ1 − eiϕUτ1

)∣

∣

2

c2
13

= c2
12s

2
12

(

1 −
√

1 − ν2 cos φ
)

+ c4
12 |ε|2

(

1 +
√

1 − ν2 cos φ
)

+

+2c3
12s12 (ν Re ε cos φ − Im ε sinφ) , (5.14)

∣

∣Ue2

(

Uµ2 − eiϕUτ2

)∣

∣

2

c2
13

= c2
12s

2
12

(

1 −
√

1 − ν2 cos φ
)

+ s4
12 |ε|2

(

1 +
√

1 − ν2 cos φ
)

−

−2c12s
3
12 (ν Re ε cos φ − Im ε sinφ) , (5.15)

∣

∣Ue3

(

Uµ3 − eiϕUτ3

)∣

∣

2

c2
13

= |ε|2
(

1 +
√

1 − ν2 cos φ
)

, (5.16)

where φ ≡ ϕ + ϑ3 − ϑ2.

Numerically, we use (5.10) to determine ν as a function of ε, for various values of

the neutrino masses and of the mixing angle θ12. Afterwards, we check whether there

is any phase ϕ for which the inequality (5.13) is satisfied. If there is, then those values

of the neutrino masses, mixing angles and Dirac phase are compatible with incomplete

µ-τ interchange symmetry; otherwise they are not. For simplicity we keep θ12 = 33◦,

m2
2−m2

1 = 8.1×10−5 eV2 and
∣

∣m2
3 − m2

1

∣

∣ = 2.2×10−3 eV2 fixed at their best-fit values [1].

It is important to remark that (5.14)–(5.16), just as (5.10), are symmetric under ν →
−ν, Re ε → −Re ε. This means that one only has to study the region of positive Re ε. Also,

(5.14)–(5.16) are invariant under Im ε → − Im ε, sinφ → − sinφ. This means that we only

have to consider positive values of Im ε, provided we test all possible values of φ.

In the case where m2
3 −m2

1 < 0, the situation is rather simple and it is aptly described

by figure 1. The parameter ν has the same sign as Re ε but it is much smaller in absolute

value; the atmospheric mixing angle is, for all practical purposes, maximal; in the limit of

very small m3 the relation θ23 = 45◦ becomes exact — see (5.10) and figure 1. The exact

value of Im ε is practically immaterial in the determination of ν as a function of Re ε. The

inequality (5.13) is always satisfied, hence it has no bearing on the overall picture.

3It is possible to construct a triangle with sides of (real, non-negative) lengths a, b and c if and only if

a ≤ b + c , b ≤ a + c and c ≤ a + b .

It is easily shown that this set of three inequalities is equivalent to the sole inequality [15]

a
4 + b

4 + c
4
− 2

`

a
2
b
2 + a

2
c
2 + b

2
c
2
´

≤ 0 .
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0 0.05 0.1 0.15 0.2
Re ε

0

0.002

0.004

0.006

0.008

ν

Figure 1: ν as a function of Re ε in the case m3 < m1,2. The figure corresponds to a vanishing

Im ε, but it would be practically identical for any Im ε of order 0.1 or smaller. The full line is for

m2

3
= 10−1 eV2, the dotted line for m2

3
= 10−2 eV2, the dashed line for m2

3
= 10−3 eV2 and the

dashed-dotted line for m2

3
= 10−4 eV2.

0 0.05 0.1 0.15 0.2
Re ε

-0.25

-0.2

-0.15

-0.1

-0.05

0

 ν

Figure 2: ν as a function of Re ε in the case m3 > m1,2 and with Im ε = 0.1 (a smaller Im ε yields

practically the same curves, except for the exclusion zones depicted in figure 3). The full line is for

m2

1
= 10−6 eV2, the dotted line for m2

1
= 10−5 eV2, the small-dashed line for m2

1
= 10−4 eV2, the

large-dashed line for m2

1
= 10−3 eV2 and the dashed-dotted line for m2

1
= 10−2 eV2.

In the case where m2
3 − m2

1 > 0 the situation is different. The parameters ν and Re ε

have opposite signs and ν is not necessarily small. On the other hand, the determination of

ν as a function of Re ε is, once again, largely insensitive to the exact value of Im ε. Typical

values are displayed in figure 2.

When m2
3 − m2

1 > 0, inequality (5.13) introduces a complication because in this case

there are values of the pair (ν, ε) for which that inequality is satisfied by no phase ϕ at

– 9 –
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-0.2

-0.15

-0.1

-0.05

0

 ν

Figure 3: In the case m3 > m1,2, the region in the ν-Re ε plane inside the full line is excluded

by (5.13) when Im ε = 10−4. The region inside the dotted line is excluded when Im ε = 5 × 10−3.

For Im ε larger than 10−2 there is no excluded region any more.

all. With ν and Re ε obeying the relation (5.10), this happens when Im ε . 0.01 and

m1 ∼ 10−2 eV. For Im ε = 10−4 and 5 × 10−3, the corresponding excluded regions in the

(ν, Re ε) plane are depicted in figure 3. That figure should be superimposed on figure 2

in order to see which curves or which parts of the curves in that figure are excluded

and to find out the range of values of m2
1 for which an excluded region arises.4 Of the

curves depicted in figure 2, only the small-dashed line, referring to m1 = 10−2 eV, is

affected: for Im ε = 10−4 that line is almost completely excluded, whereas for Im ε =

5 × 10−3 it is excluded if Re ε & 0.08. Explicitly, we have found that, when Im ε vanishes,

excluded values of ν and Re ε arise for 7.80 × 10−3 eV < m1 < 1.28 × 10−2 eV; when

Im ε = 5 × 10−3, excluded values of Re ε arise only for m1 in between 8.49 × 10−3 eV and

1.16 × 10−2 eV.

The excluded regions in the (ν, Re ε) plane can be translated into lower bounds for

the CP -violating phase δ. These lower bounds are functions of m1 and of s13. Taking

m1 = 0.01 eV, i.e. m1 in the center of the range where excluded regions occur, we numer-

ically find δ & 2.44◦ for s13 = 0.2, δ & 3.34◦ for s13 = 0.1, δ & 3.52◦ for s13 = 0.01, and

δ & 3.83◦ for s13 = 0.001. (We have confined ourselves to δ in the first quadrant, i.e. to the

real and imaginary part of ε being both positive. The bounds on δ in the first quadrant

get transferred into the other quadrants by using the symmetries Re ε → −Re ε, ν → −ν

and Im ε → − Im ε, sinφ → − sinφ referred to earlier.) One sees that the excluded

domain is hardly significant in terms of δ. For s13 & 0.1, this is qualitatively under-

standable from the fact that for Im ε = s13 sin δ & 0.01 there is no exclusion region any-

more.

4In this comparison we use the fact that the curves in figure 2 are practically independent of the value

of Im ε, provided Im ε . 0.1.
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6. Conclusions

In this paper we have considered an extension of the Standard Model based on the hori-

zontal symmetry group S3 ×Z2, the seesaw mechanism and a complex scalar gauge singlet

χ. Though S3 is a time-honoured symmetry, the new feature here is the use of the complex

scalar gauge singlet, with (χ, χ∗) transforming as a two-dimensional irreducible represen-

tation of S3 — see (2.2) and (2.3). The gauge multiplets of our extension are those of the

Standard Model, supplemented by two additional Higgs doublets, the scalar singlet and

three right-handed neutrino singlets for the seesaw mechanism. The horizontal symmetry

enforces diagonal charged-lepton and neutrino Dirac mass matrices. Our model has some

freedom with regard to the realization of the symmetry S3×Z2, and this freedom affects the

Majorana mass matrix of the right-handed neutrinos. In this way, we are able to recover

two mass matrices already found in the literature, derived from different horizontal sym-

metries, and also the mass matrix (1.2), a generalization thereof; we regard this flexibility

as the distinguishing feature of the S3 × Z2 model. In terms of the inverted light-neutrino

mass matrix (1.2), our results can be described in the following way:

1. Imposing the additional discrete electron number Z
(e)
2 of (4.1), one obtains ψ = 0

and q = 0; one thus recovers a mass matrix originally derived in [8] from a horizontal

symmetry group D4.

2. Without Z
(e)
2 and with exact S3 × Z2 symmetry of the lagrangian, one gets ψ = 0,

i.e. the µ-τ symmetric mass matrix originally obtained in [7] in a framework of softly

broken lepton numbers.

3. Breaking S3 ×Z2 softly in the scalar potential, one obtains the matrix (1.2) without

further restrictions.

The first and second realizations have a µ-τ symmetric mass matrix, with the well-known

predictions of maximal atmospheric neutrino mixing and vanishing mixing-matrix element

Ue3. If, in addition, q = 0 holds, then the model becomes much more predictive: it requires

a normal neutrino mass ordering m1 < m2 < m3, and the effective mass in neutrinoless

ββ decay is a simple function of the neutrino masses alone [8]. Below the seesaw scale,

the first and second realizations cannot be distinguished from the models in [8] and [7],

respectively.

With ψ 6= 0, the mass matrix (1.2) has seven physical parameters and partially breaks

the µ-τ interchange symmetry; the matrix of the absolute values of the elements of the

inverted neutrino mass matrix (1.2) is still µ-τ symmetric.5 In contrast to full µ-τ in-

terchange symmetry, this partial symmetry induces non-zero cos 2θ23 and s13, and CP

violation in neutrino mixing via the Dirac phase δ. These three quantities are functions of

ψ. Fixing the neutrino masses and the solar mixing angle, there is an almost linear rela-

tion (5.10) between cos 2θ23 and s13 cos δ, which is not obfuscated by the Majorana phases.

This relation differs substantially depending on the type of neutrino mass spectrum: in

5Any mass matrix with that property can be transformed into (1.2) by a phase transformation.
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the inverted case, atmospheric mixing is always maximal for all practical purposes, even

when s13 is close to its experimental upper bound; in the normal case, a large s13 cos δ is

correlated with a large cos 2θ23 with an opposite sign.

Finally, as an additional virtue, we mention that, for a normal neutrino mass spectrum,

leptogenesis can naturally be accommodated in the present model with the µ-τ symmetric

mass matrices [14]; at least for small s13, the same must hold with partial µ-τ interchange

symmetry.
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