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1. Introduction and summary

The duality between open and closed strings is central to modern theoretical physics. It

underlies, among other things, the relation between large-N gauge theories and closed

strings [1]. Despite impressive progress, it is fair to say that we do not yet have a good

conceptual grasp of this correspondence. Even by physics standards, we are quite far from

a “proof” of AdS/CFT and related examples. We have little understanding of how general
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the gauge/gravity duality is, let alone how to generate the closed string dual of a given

gauge theory. With this general motivation in mind, it is clearly of interest to develop

exactly solvable models of open/closed duality. An important class of such models is

offered by topological string theories, the paradigmatic example being the duality between

Chern-Simons and the closed topological A-model [2].

Non-critical strings in low dimensions are another ideal context to sharpen our un-

derstanding of open/closed duality. Theories with c ≤ 1 are fully solvable through the

double-scaling limit of matrix models.1 Indeed, the double-scaled matrix model for c = 1

strings has recently been re-interpreted [7] as the “open string field theory” for an infinite

number of D0-branes. This provides another beautiful incarnation of exact open/closed

duality. The doubled-scaled matrix model arises [8] as the worldvolume theory of the lo-

calized Liouville branes. These are the so-called “ZZ branes” [9], the unstable Liouville

branes localized in the strong coupling region of the Liouville direction.2

Liouville theory admits also stable branes, the “FZZT” branes [14, 15], which are

extended in the Liouville direction. What is the worldvolume theory on such extended

branes?

Besides the well-known double-scaled matrix models, another, more mysterious, class

of matrix models makes its appearance in low-dimensional string theories. The prototype

of these models, which we shall collectively refer to as topological matrix models, is the

Kontsevich cubic matrix integral [16], which computes the exact generating function of

minimal (2, 2k+ 1) matter coupled to gravity. Several other examples exist [17], covering a

large class of c ≤ 1 string theories.3 These models deserve to be called topological because

they compute certain topological invariants associated with the moduli space of Riemann

surfaces [22, 16, 23 – 25, 21]. However, it must be noted that they actually contain all

the information of the physical theories which are reached from the “topological point” by

turning on deformations. As a result, any (p, q) bosonic string theory admits a polynomial

matrix model à la Kontsevich which completely encodes its exact solution. Topological

matrix models are treated in the usual ’t Hooft expansion, with no double-scaling limit.

The reader will have guessed our punchline. Our basic contention is that topological

matrix models generically arises in topological non-critical string theories as the open string

field theory on N extended (FZZT) Liouville branes (tensored with an appropriate matter

boundary state depending on the string theory under consideration). In this paper we

work out in detail the prototype of the Kontsevich model. It is easy to envision that

several generalizations should exist. We are going to argue that topological matrix models

are examples of exact open/closed duality in very much the same spirit as the AdS/CFT

correspondence. Perhaps the most interesting general lesson is that in this exactly solvable

context we will able to precisely describe the mechanism by which a Riemann surface

with boundaries is turned into a closed Riemann surface. Open string field theory [26]

1For reviews, see [3 – 6].
2A similar understanding is available for the double-scaled matrix models of c < 1 and ĉ ≤ 1 theories [10 –

12]. See [13] for recent related work.
3The Penner model [18], the W∞ model [19] and the normal matrix model [20] are particularly intriguing

examples, related to c = 1 at the self-dual radius (see [21] for a recent review).
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on an infinite number of D-branes is seen to play a crucial role. Essentially the same

mechanism is at work in the large-N transition for the topological A-model [27, 2, 28]. The

Kontsevich integral offers an even more tractable case-study. Very recently, an interesting

paper has appeared on the archive [29]. Building on previous work (e.g. [30]), these authors

interpret topological matrix models as describing the dynamics of non-compact branes in

the topological B-model for non-compact Calabi-Yau spaces. Although the language of [29]

is very different from ours, there are clearly deep correspondences as well. Understanding

in detail the relation between their point of view and ours should be an illuminating

enterprise. Since the subject of topological matrix model may not be very widely known,

and our explicit analysis will involve a few technicalities, in the rest of this introduction

we review some background material and summarize our main conceptual points.

1.1 From open to closed worldsheets

It may be useful to begin by recalling the classic analysis [1] of the large-N limit of a gauge

theory. In ’t Hooft’s double line notation, each gluon propagator becomes a strip, and

gauge theory Feynman diagrams take the aspect of “fatgraphs”, or open string Riemann

surfaces, classified by the genus g and the number h of holes (boundaries). The generating

functional for connected vacuum diagrams has then the familiar expansion (assuming all

fields are in the adjoint),

logZclose(gYM, t) =
∞∑

g=0

∞∑

h=2

(g2
YM)2g−2 th Fg,h , t ≡ g2

YMN . (1.1)

Nowadays we interpret this quite literally as the perturbative expansion of an open string

theory, either because the full open string theory is just equal to the gauge theory (as

e.g. for Chern-Simons theory [27]), or because we take an appropriate low-energy limit

(as e.g. for N = 4 SYM [31]). The general speculation [1] is that upon summing over

the number of holes, (1.1) can be recast as the genus expansion for some closed string

theory of coupling gs = g2
YM. This speculation is sometimes justified by appealing to the

intuition that diagrams with a larger and larger number of holes look more and more like

smooth closed Riemann surfaces. This intuition is perfectly appropriate for the double-

scaled matrix models, where the finite N theory is interpreted as a discretization of the

closed Riemann surface; to recover the continuum limit, one must send N →∞ and tune

t to the critical point tc where diagrams with a diverging number of holes dominate.

However, in AdS/CFT, or in the Gopakumar-Vafa duality [2], t is a free parameter,

corresponding on the closed string theory side to a geometric modulus. The intuition

described above clearly goes wrong here. A much more fitting way in which the open/closed

duality may come about in these cases is for each fatgraph of genus g and with h holes to

be replaced by a closed Riemann surface of the same genus g and with h punctures: each

hole is filled and replaced by a single closed string insertion. Very schematically, we may

write

t

∫
dρ ρL0 |B〉P ↔ tW(P ) . (1.2)
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Here the symbol |B〉P denotes the boundary state creating a hole of unit radius centered

around the point P on the Riemann surface. Upon integration over the length of the

boundary (indicated here by the modulus ρ), we can replace the boundary state with a

closed string insertion W located at P . This idea is based on a correspondence between

the moduli space of open surfaces and the moduli space of closed punctured surfaces which

can be made very precise (see section 2 of [16]).

Clearly the position P in (1.2) is a modulus to be integrated over. Moreover, summing

over the number of holes is equivalent to exponentiating the closed string insertion. As a

result, we obtain the operator ∼ exp(t
∫
d2zW(z)), which implements a finite deformation

of the closed string background. This is precisely what is required for the interpretation of

t as a geometric parameter.

We were led to this viewpoint about open/closed duality, which probably has a long

history (see e.g. [32, 33, 2, 28, 34 – 38]), by thinking about D-branes in imaginary time [36],

where the mechanism (1.2) of boundaries shrinking to punctures can be described exactly.4

In this paper we argue that topological matrix models are another very precise realization

of this idea.

1.2 Review of (2, 2k + 1) strings and the Kontsevich model

Minimal bosonic string theories are specified by a pair (p, q) of relatively prime integers.5 In

the continuum, they are formulated in the usual way by taking the total CFT = CFT(p,q)⊕
CFTLiouville ⊕ CFTghost. Here CFT(p,q) is a minimal (p, q) model [42], of central charge

cp,q = 1− 6
(p− q)2

pq
. (1.3)

The central charge of the Liouville CFT is of course chosen to be 26 − cp,q to cancel the

anomaly.

The (2, 2k + 1) theories will be the focus of this paper. Perhaps the most familiar

among these models is (2, 3), which is pure two-dimensional quantum gravity (c = 0), or

string theory embedded in one dimension. One way to find their complete solution is by the

double-scaling limit of the one-matrix model, with the potential tuned to the multicritical

point of order k + 2 [43]. Each of these theories has an infinite discrete set of physical

closed string states, conventionally labeled as {O2m+1}, m = 0, 1, 2, · · ·. Observables are

correlators of these operators, which is convenient to assemble in the following partition

function, summed over all genera g,

logZclosed(gs, tn) =
∞∑

g=0

g2g−2
s

〈
exp

( ∑

n odd

tnOn
)〉

g

. (1.4)

The partition functions for the different (2, 2k + 1) theories are connected to each other

by flows of the KdV hierarchy. This means that we simply need to expand Z closed(gs, tn)

4A closely related viewpoint has been explained very clearly by Ooguri and Vafa [28], using a linear

sigma-model perspective.
5See [3, 40, 39] for reviews and [41] for very recent progress in this subject.
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around different background values of the sources tn in order to obtain the correlators of the

different (2, 2k + 1) models. We choose our conventions so that {tn = 0 ,∀n} corresponds

to the (2, 1) theory. Then correlators for (2, 2k + 1) are found by perturbing around

tn = δn,3 − δn,2k+3.

As first conjectured by Witten [22], the (2, 1) model is equivalent to two-dimensional

topological gravity [44 – 46], superficially a completely different theory. Topological gravity

is a topological quantum field theory of cohomological type. In that context, the operators

O2n+1 are interpreted as Morita-Mumford-Miller classes, certain closed forms of degree 2n

on the moduli space of closed punctured Riemann surfaces; correlators 〈Ok1 · · · Okn〉g are

intersection numbers, topological invariants of this moduli space. An index theorem gives

the selection rule

k1 + · · ·+ kn = 6g − 6 + 3n (1.5)

in order for the correlator to receive a non-zero contribution at genus g.

The remarkable equivalence of the (2, 1) string theory with topological gravity was

proved by Kontsevich [16], who found a combinatorial procedure to compute these intersec-

tion numbers. Kontsevich further recognized that his result for the partition function (1.4)

could be efficiently summarized by the following matrix integral,6

Zclosed(gs, t) = ρ(Z)−1

∫
[dX] exp

(
− 1

gs
Tr

[
1

2
ZX2 +

1

3
X3

])
,

ρ(Z) ≡
∫

[dX] exp

(
− 1

2gs
TrZX2

)
. (1.6)

The integration is over the N × N hermitian matrix X. The matrix Z appearing in the

quadratic term is another N ×N hermitian matrix which encodes the dependence on the

sources tk through the dictionary

tk =
gs
k

TrZ−k =
gs
k

N∑

n=1

1

zkn
(k odd) , (1.7)

where {zn} are the N eigenvalues of Z.

The Kontsevich integral works in a

i

j
i

j

k
2 gs

������������������
zi + zj

1
�������
gs

Figure 1: Feynman rules for the Kontsevich

model.

way which is truly miraculous — but

which may also strike a familiar chord.

The basic idea is an n-point closed string

correlator

〈Ok1 · · · Okn〉g (1.8)

is extracted from the genus g vacuum am-

plitude with n holes. One can proceed

perturbatively, using the obvious Feyn-

man rules that follow from (1.6) (figure 1).

6Of course, as written, the integral diverges. Analytic continuation X → iX makes the integral conver-

gent for Z negative definite.
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i

j k

i

j k

Figure 2: The two fatgraphs with g = 0 and h = 3. The indices i, j, k are Chan-Paton labels

ranging from 1 to N . The sum of the two graphs is gs/(zizjzk). Upon summing over the Chan-

Paton labels, this gives t31/(6g
2
s) −→ 〈O1O1O1〉g=0 = 1.

Let us define Γg,n,N to be the set of all connected fatgraphs of genus g, n holes, and a

choice of a Chan-Paton index ranging from 1 to N for each hole (see examples in figure 2).

The connected vacuum amplitude at genus g and with n holes is then

Fg,n,N = g2g−2+n
s

∑

γ∈Γg,n,N

1

# Aut(γ)

∏

(i,j)∈γ

2

zi + zj
. (1.9)

Individual Feynman diagrams give complicated rational expressions in the parameters

{zi}, but remarkably the total answer can always be expressed as

Fg,n,N = g2g−2
s

ki odd∑

{k1···kn}

C{k1···kn}
# Aut(k1 · · · kn)

n∏

i=1

gs
TrZ−ki

ki
. (1.10)

We see from the definition (1.7) that the parameters tk play the role of generalized ’t Hooft

couplings. From (1.4), we recognize

〈Ok1 · · · Okn〉g = C{k1···kn} . (1.11)

The selection rule (1.5) is a simple consequence of Euler’s theorem,

3(2− 2g) = 3(#V −#P + n) = −#P + 3n = −
∑

i

ki + 3n , (1.12)

where #V and #P are the numbers of vertexes and propagators, and we used that

2(#P ) = 3(#V ). Notice that the selection rule (1.5) implies that at genus zero, all

two-point correlators vanish. This gives a way to understand the prefactor ρ(Z)−1 in

the Kontsevich integral, which amounts to removing the fatgraphs with g = 0, h = 2 (the

annuli) from the vacuum partition function of the matrix model.

In computing specific correlators using the Kontsevich integral, the rank N can be kept

generic, as long as it is big enough to guarantee that the traces TrZ−k are functionally

independent (otherwise the expression (1.10) is not uniquely defined); N > max({ki})/2
suffices. If instead we are interested in the full partition function Z closed(gs, tk) for some

fixed values of the infinitely many sources {tk}, it is necessary to send N → ∞ in order

for the relation (1.7) to be invertible. So in particular we need infinite N to compute the

– 6 –
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correlators of the higher (2, 2k + 1) models, k > 0. Nevertheless, it makes perfect sense to

keep N finite; the finite N Kontsevich model covers an N -dimensional submanifold in the

moduli space of the closed string theory.

1.3 The Kontsevich model is cubic open string field theory

As we have just reviewed, the correlator of n closed string operators at genus g is computed

in the Kontsevich model by the fatgraph vacuum amplitude of genus g and n boundaries.

We propose that this is an exact open/closed duality: the Kontsevich model is to be

interpreted as an open string field theory, dual to the (2, 1) bosonic closed string theory.

The Kontsevich integral is to (2, 1) string theory as N = 4 SYM is7 to IIB on AdS5 × S5.

The duality works just as explained in section 1.1. The closed string partition function

Zclosed(gs, {tn}) is identified with the vacuum partition function Z close(gs, {zi}) of the open

string field theory. Each hole in the open description is replaced by the insertion of a

closed string puncture, indeed, as we have emphasized in our review of the Kontsevich

model, powers of the generalized ’t Hooft couplings tk count insertions of the closed string

operator Ok.
The reasoning that led Kontsevich to (1.6) uses the decomposition of the moduli space

of Riemann surfaces [18, 47 – 50] that arises naturally in open string field theory [26]

(OSFT), but so far this had not been given a direct physical interpretation. Here we

are saying that in the Kontsevich model is OSFT. With the advantage of modern insight

into the physics of D-branes, we can give a string theory “proof” of Kontsevich result. The

logic is summarized by the following claims:

1. One can construct a family of stable D-branes in the (2, 1) string theory, labeled by

a continuous parameter z.

2. Insertion of the boundary state |B(z)〉 for any one such brane in a string amplitude is

fully equivalent to the insertion of a closed string puncture, as in (1.2). In this case,

the precise correspondence is

∫
dρ ρL0 |B(z)〉P ↔

∑

k odd

Ok(P )

k zk
. (1.13)

3. The full cubic OSFT [26] on a collection of N of these D-branes, reduces precisely to

the Kontsevich action (1.6). The parameters labeling the branes, {zi}, i = 1, . . . , N ,

are the same as the parameters appearing in the quadratic term of the matrix integral.

These claims are sufficient to establish Kontsevich result. We just have to evaluate the

string theory vacuum amplitude Z in the presence ofN branes. We do this in two equivalent

ways. Evaluating Z in the open channel, we have (claim 3) the sum of vacuum amplitudes

7An apparent difference is that in AdS/CFT the SYM theory is obtained only in the low-energy limit

of the theory on the D3 branes in flat space, whereas the Kontsevich model is the full open string field

theory. We take this as a small hint that a better way to understand AdS/CFT should exist, where the

SYM theory is the full open string field theory of some appropriate branes. See section 7.
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of the Kontsevich integral, Zclose(gs, {zi}). Evaluating Z in the closed channel, we can

replace each hole by a sum of closed string operators (claim 2), and obtain the generating

function Zclosed(gs, {tn}) of closed string correlators. This identifies the vacuum amplitude

of the Kontsevich integral with the closed string partition function,

Zclosed(gs, {tn}) ≡ Zclose(gs, {zi}) , (1.14)

which is what Kontsevich showed by more abstract and rigorous methods. The dictio-

nary (1.2) between the “open parameters” {zk} and the “closed parameters” {tk} has its

microscopic explanation in the rule (1.13) to replace a boundary with a specific closed

string operator.8

1.4 Extended Liouville D-branes in topological string theory

Our goal is now to justify these claims by standard worldsheet methods. The (2, 1) string

theory is strictly speaking outside the range of the definition given at the beginning of

section 1.2, since the Kac table is empty and there is no (2, 1) “minimal” model. A possible

definition is formal analytic continuation to k → 0 of the double-scaling results [43], but

this is unsatisfactory for our purposes. Fortunately, there are several other more intrinsic

formulations, appearing to all yield the same results. Since c2,1 = −2, the simplest choice

for the matter CFT is a pair of free, Grassmann odd scalars Θ1 and Θ2. This provides a

continuum definition of the (2, 1) model as c = −2 matter coupled to c = 28 Liouville, and

it is the set-up that we shall use in this paper. Sitting at the point {tk = 0} corresponds

in particular to taking the bulk cosmological constant µ ≡ t1 = 0.9

Claim 1 is established by taking Dirichlet boundary conditions for the Θα and FZZT

boundary conditions in the Liouville direction. The FZZT boundary state depends on a

continuous parameter µB , the boundary cosmological constant, which can be thought of

as the vev of the open string tachyon living on the brane. We identify µB = z. The full

boundary state is then

|B(z)〉 = |BDirichlet
Θ 〉 ⊗ |FZZT(µB = z)⊗ |Bghost〉 . (1.15)

FZZT boundary conditions are closely related to the notion of macroscopic loop operator

w(`) in two-dimensional quantum gravity [52, 53]. w(`) is the operator that creates a hole

of length ` in the Riemann surface, where the length is measured with the metric obtained

by taking the Liouville field as the conformal factor. Then10

∫
dρ ρL0 |B(z)〉 ∼

∫ ∞

0

d`

`
e−` z w(`) . (1.16)

8It makes sense to consider open string vacuum amplitudes at fixed values of {zi} because these are

superselection parameters that do not fluctuate. This statement is dual to the statement that the closed

string background {tk} is superselected [51].
9It may be useful to recall that in this theory (unlike the generic (p, q) model, q 6= 1) amplitudes depend

analytically on µ and it makes sense to treat µ perturbatively.
10Here we are just tensoring the well-known relation between FZZT branes and macroscopic loops [52,

53, 14] with the (trivial) Dirichlet b.c. for the Θα.
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To obtain claim 2, we appeal to a standard bit of lore in non-critical string theory [52].

Under rather general conditions, the macroscopic loop operators can be expanded as `→ 0

as a sum of local closed string operators,

w(`) ∼
∑

`xk Ok , (1.17)

where xk ≥ 0. A simple argument based on conservation of the Liouville momentum

(section 3.1), fixes the exponents to be xk = 2k + 1. The ` → 0 expansion of w(`)

translates after Laplace transform (1.16) into a z → ∞ expansion of |B(z)〉 as a sum of

terms ∼ z−2k−1Ok. This gives claim 2, modulo fixing the precise normalization of the

operators Ok. In principle these normalization coefficients could be obtained by a very

careful analysis of the boundary state, but it it easiest to determine them indirectly by

consistency, as we explain in section 5. This replacement of a boundary with a sum of

closed string insertions is a generic fact in low-dimensional string theory, and does not

appear to depend on the topological nature of the (2, 1) model.

By contrast, claim 3 is based on a mechanism of topological localization, similar in

spirit to the reduction of the open topological A-model on T ∗(S3) to Chern-Simons theory

on S3 [27]. The worldsheet boundary CFT admits a nilpotent scalar supercharge QS [54],

anti-commuting with the usual BRST operator QB. The open string (first-quantized)

hamiltonian is a QS anti-commutator, so it can be rescaled by an overall constant without

changing the physics. As in the case of [27], the only contributions to open string amplitudes

come from the region of moduli space where the Riemann surfaces degenerate to ordinary

Feynman graphs. In the usual OSFT decomposition of moduli space in terms of trivalent

vertices and propagators (strips) of length t(α), this is the limit in which each t(α) → ∞.

In this limit, the full cubic OSFT collapses to a cubic matrix integral for the open string

“tachyon”. A detailed analysis of Liouville BCFT correlators (section 4.3 and appendix)

shows that this matrix integral is exactly the Kontsevich model, provided we identify the

boundary cosmological constants {µiB}, i = 1, · · · , N , with the parameters {zi}.
The discussion has been phrased so far in terms of worldsheet ideas. An alternative

powerful viewpoint is the use of “spacetime” Ward identities, which we briefly outline in

section 5 of the paper. Finally the whole contruction admits an instructive generalization

to non-zero bulk cosmological constant µ, as described in section 6.

2. Closed bosonic strings in D = −2

We define the (2, 1) closed string theory by choosing the total worldsheet action to be

S = Sc=−2
matter + Sc=28

Liou + Sc=−26
ghost . (2.1)

The matter CFT is that of a pair of real, Grassmann odd scalar fields Θ1(z, z̄) and Θ2(z, z̄),

with the free action

Sc=−2
matter =

1

2π

∫
d2z εαβ∂Θα∂̄Θβ , α, β = 1, 2 . (2.2)

– 9 –
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There is some freedom as to which CFT with c = −2 one should pick. Another possibil-

ity [54] would be to take the more familiar ξη ghost system, related to the Θα system as

follows:

η(z) = ∂Θ2(z, z̄) , ξ(z) + ξ(z̄) = Θ1(z, z̄) . (2.3)

The two theories differ only in the treatment of the zero-modes. Θ1(z, z̄) has only one

non-chiral zero-mode (the same is true for Θ2(z, z̄)), so the mode expansion reads

Θα(z, z̄) = θα0 +
1

2
dα0 ln |z|2 +

1√
2

∞∑

n=−∞
n6=0

(
dαn
nzn

+
d̄αn
nz̄n

)
. (2.4)

This is a rather subtle difference, but we believe that the choice of the Θα is the correct one.

First, this is the most obvious choice to describe “strings in minus two dimensions”. It is

indeed the choice singled out by defining the theory from double-scaling of a matrix model

for random surfaces embedded in minus two dimensions [55 – 59]. Second, the treatment of

closed string correlators is simpler, as unlike the ξη system, the Θα system does not require

the introduction of screening charges. We come back to this point in the next subsection.

Finally, this is the choice that will naturally lead to the Kontsevich model.

The Θα system has of course properties very similar to those of a pair of free bosons,

one need only keep track of Grassmann minus signs. The OPE reads

Θ1(z, z̄)Θ2(0) ∼ −1

2
log |z|2 , (2.5)

and the stress tensor is

TΘ = εαβ∂Θα∂Θβ . (2.6)

(Note that in this paper we set α′ = 1). The Θα CFT as an obvious global SL(2) invariance

that rotates the fields. This symmetry does not extend to an affine symmetry but to a W3

algebra [60].

It is amusing to check the modular invariance of the Θα system. The vacuum amplitude

on the torus can be easily found by explicit computation of the trace,11

Tr
[
(−1)F θ1

0θ
2
0 q

L0+1/12 q̄L̄0+1/12
]

= 2πτ2 |q|1/6
∞∏

n=1

|1− qn|4 = 2πτ2 |η(τ)|4 , (2.7)

and is indeed modular invariant. The unusual factor of τ2 is a consequence of the zero-mode

insertions, while the (−1)F factor follows from odd-Grassmanality. As it should be, this

is the inverse of the torus vacuum amplitude for two free bosons. We should also mention

that (orbifolds of) Θα systems have been studied in detail [60] as prototypes of logarithmic

CFTs [61, 62]. Liouville CFT has been well-understood in recent years (see e.g. [15, 14, 9]

and references therein), and it is largely thanks to this progress that we shall be able to

carry our analysis. We collect here some standard formulas:

SLiou =
1

2π

∫
d2z

(
∂φ∂̄φ+QRφ+ µ e2bφ

)
(2.8)

11To obtain a non-zero amplitude, we must of course insert the two zero modes θ1
0 and θ2

0 .
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cLiou ≡ 1 + 6Q2 , Q = b+
1

b
(2.9)

φ(z, z̄)φ(0) ∼ −1

2
log |z|2 (2.10)

TLiou = −∂φ∂φ+Q∂2φ (2.11)

Vα ≡ e2αφ , hα = α(Q− α) . (2.12)

Specializing to cLiou = 28, we have Q = 3/
√

2, b = 1/
√

2. We shall keep the symbol b in

many formulas to facilitate future generalizations; unless otherwise stated, it is understood

that b ≡ 1/
√

2.

2.1 Remarks on closed string observables

In this subsection we offer some side remarks about closed string amplitudes. Our main

interest is in the open string sector, indeed the essential point is that one can bypass

the closed string theory altogether and compute everything using open string field theory

(the Kontsevich model), which is structurally much simpler. The subject of closed string

amplitudes in topological gravity is notoriously subtle [22, 46, 63 – 66]. Here we attempt to

make contact with some of the previous work and suggest that the action (2.1), (2.2) may

offer a different and simpler starting point.

A model very similar to (2.1), (2.2) (but with the ξη system instead of the Θα system)

was considered by Distler, who observed that by an elegant change of variables (see (3.12)

below) the bosonic (2, 1) theory could be formally related to the topological gravity for-

mulation of [44]. This is one of the several [22, 46, 63 – 66] (closely related) field-theoretic

formulations of topological gravity (see [67, 68] for reviews). They all have in common a

sophisticated BRST machinery extending the ordinary moduli space to a (non-standard)

super-moduli space, which in essence is just the space of differential forms over the bosonic

moduli space. These formulations (as particularly transparent in Verlinde’s set-up [46])

make it manifest that closed string amplitudes are intersection numbers on the moduli

space. In this paper we will carry our analysis in the context of the bosonic (2, 1) theory,

but we believe that an analogous derivation of the Kontsevich model must be possible in

the BRST formulations of topological gravity.

A potential worry is the claim by Distler and Nelson [65] that the bosonic (2, 1) model

(with the ξη system) does not correctly reproduce the topological gravity results, and that

the full BRST machinery is necessary to obtain the correct measure of integration over

the moduli space. It is quite difficult to compute topological gravity amplitudes from first

principles using standard worldsheet methods, in any of the field-theoretic formulations.

The difficulty stems from the very nature of the observables: amplitudes are naively zero

before integration over the moduli space, and receive contributions only from “contact

terms” (degenerations of the punctured surface). This is related to the fact that there are

no non-trivial closed string states in the absolute BRST cohomology, the only observables

being in the semi-relative cohomology.

However, the different zero-mode structure of the Θα system does certainly affect the

calculation of these contact terms. We believe that a careful analysis using the action (2.2)
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would fully account for the correct contact term algebra. This is very plausible in light

of the fact that using this worldsheet action we will obtain the Kontsevich model. More

concretely, our derivation of the Kontsevich model suggests a “canonical” form for the

closed string vertex operators,

O2k+1 = e2(1−k)bφ Pk(∂Θα, ∂̄Θβ) cc̄ . (2.13)

Here Pk(∂Θα, ∂̄Θβ) is a primary of dimension
(
k(k+1)

2 , k(k+1)
2

)
, and it should be invariant

under the SL(2) symmetry. This follows from the fact that the D-branes which we use to

obtain the Kontsevich model are SL(2) invariant. It turns out that there is a unique such

operator in the Θα CFT. This can be seen from the results in [60]. In that paper it is

proved that (in each chiral half of the theory), for each j ∈ N/2, there is exactly one spin-j

SL(2) multiplet of primaries, of conformal dimension j(2j+1). Since there is only one way

to combine the chiral and antichiral fields into an SL(2) singlet, this shows the uniqueness

of Pk(∂Θα, ∂̄Θβ).

The operators (2.13) differ from the ones considered by Distler [54], which are not

SL(2) invariant. In [54] a further operation of “picture changing” was necessary in or-

der to obtain non-zero correlators. In that language, the operators (2.13) are already in

the correct picture and in principle their correlators can be evaluated without any ex-

tra screening insertions. The only selection rule comes from anomalous conservation of

Liouville momentum, and it is precisely (1.5).

3. Open string theory on stable branes

We now turn to the open string sector of the (2, 1) theory. The natural boundary conditions

for the Θα system are either Neumann or Dirichlet. Boundary conditions for the Liouville

CFT are either ZZ (unstable, localized at φ → ∞) or FZZT (stable, extended in the

Liouville direction). The choice leading to the Kontsevich model is to combine Dirichlet

b.c. for Θα and FZZT b.c. for Liouville,12

i(∂φ− ∂̄φ)|∂ = 4πµB e
bφ , Θα|∂ = 0 . (3.1)

The FZZT boundary conditions are generated by the adding to the Liouville action the

boundary term

µB

∫

∂
ebφ . (3.2)

One of the basic ingredients of our construction is the claim that amplitudes with

boundaries can be reduced to amplitudes where each boundary is replaced by a specific

closed string insertion. The same phenomenon was demonstrated for D-branes in imagi-

nary time [36] through a precise CFT analysis in the usual framework of (critical) string

theory. In the present case it is easiest to use instead the language of two-dimensional quan-

tum gravity (or non-critical string theory). This language gives a very useful geometric

understanding of the FZZT boundary state, which we now review.

12Another interesting choice is Neumann for Θα and ZZ for Liouville, related to the double-scaled matrix

model, see section 7.1.
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3.1 Macroscopic loops

In critical string theory, we are instructed to integrate the appropriate CFT amplitudes

over the moduli space of Riemann surfaces. In quantum gravity, we integrate over the

two-dimensional metric (modulo diffeomorphisms). Of course the two points of view are

completely equivalent, as the integral over metrics can be replaced by the Liouville path-

integral followed by integration over the moduli. Schematically,

∫
[Dgab]
Diff

∫
[DX] (O1 · · · On)↔

∫

Mg,n

[dm]

∫
[DX] [Dφ] [Db] [Dc] (O1 · · · On) . (3.3)

HereMg,n denotes the moduli space of closed Riemann surfaces of genus g and n punctures,

φ the Liouville field, X a collective label for the matter fields, and {Ok} a generic assortment

of local operators. To compute amplitudes in the presence of h boundaries, in the language

of critical string theory we would of course integrate over the moduli space of Mg,n,h

of Riemann surfaces with h holes, specifying appropriate boundary conditions for all the

fields. In the language of quantum gravity, FZZT boundary conditions have the simple

interpretation of introducing a “weight” for each boundary length `i [52, 14],

∫
[Dgab]
Diff

e−
∑h
i=1 µ

i
B `i[g]

∫
[DX] (· · ·) ≡

〈∏

i

[∫
d`i
`i
e−µ

i
B`iw(`i)

]
· · ·
〉
. (3.4)

Here on the r.h.s. we have introduced the definition of the macroscopic loop operator w(`),

which is the operator creating a boundary of length ` in the two-dimensional universe.

Note that we have also left implicit a choice of boundary conditions for the matter fields

X. Another standard object is the Laplace transform of w(`),

W (µB) ≡
∫
d`

`
e−µB`w(`) . (3.5)

In the presence of three or more boundaries, each loop operator w(`) can be expanded in

non-negative powers of ` [52], or equivalently, W (µB) can be expanded in inverse powers

of µB [52]. Each term in this expansion represents a local disturbance of the surface, and

is thus equivalent to the insertion of a local operator.

In our case, the expansion will take the general form

WDirichlet(µB) = gs

∞∑

k

ck
Ok
µxkB

. (3.6)

The superscript on W is a reminder that we are imposing Dirichlet boundary conditions

for the matter fields Θα. The operators {O2k+1} are the matter primaries, appropriately

dressed by the Liouville field,

Ok = e2(1−k)bφPk(∂Θα, ∂̄Θβ) . (3.7)

To write this expression, we are using the information that the set of matter primaries
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{Pk(∂Θα, ∂̄Θβ)} of the Θα system have dimensions
(
k(k+1)

2 , k(k+1)
2

)
. Their explicit ex-

pressions can be found in [60].13 The value of the Liouville dressing follows as usual by

requiring that the total dimension be (1, 1).

Recall also that we are taking the bulk cosmological constant µ = 0. (For µ 6= 0, di-

mensional analysis would dictate the coefficients ck to be replaced by functions ck(µ
2
B/µ).)

It is immediate to determine the powers of µB in (3.6) by conservation of the Liouville

momentum. One has to recall that each boundary carries a Liouville momentum Q/2, and

that each factor of µB carries momentum b/2. This fixes xk = 2k + 1. The normalization

coefficients ck could also be computed with some effort, but we shall ignore this here. Con-

sistency of the contact term algebra (section 5) will be an easier route to fix normalizations.

Although this logic seems perfectly satisfactory, it would be nice to have a derivation of the

same result using the language of critical string theory, treating the Liouville theory as an

ordinary CFT, in the same spirit as the argument given for branes in imaginary time [36].

The FZZT boundary state can be written as an integral over the continuum spectrum of

Liouville momenta Q
2 + iP of appropriate Ishibashi states,

|FZZT(µB)〉 =

∫ ∞

0
dP Ψ(µB , P ) |Q

2
+ iP 〉 . (3.8)

It is conceivable that the analyticity properties of the theory in the complex P plane may

allow a contour deformation that would pick up only the poles corresponding to on-shell

states in b0
L0

(|FZZT(µB)〉 ⊗ |matter〉 ⊗ |ghost〉). This should reduce the boundary state

to the same sum of on-shell closed string insertions expected from the quantum gravity

argument.

3.2 Boundary CFT

The next logical step is to determine the spectrum of open strings living on these stable

branes.

In the open sector of the Θα system with Dirichlet boundary conditions, chiral and

antichiral oscillators dn and d̄n are identified, and we find a single copy of the chiral current

∂Θ1 (the same for ∂Θ2) without any zero modes.14 It is amusing to check this statement

by a modular transformation of the annulus partition function. For this purpose we write

the boundary state,

∣∣∣BDirichlet
Θ

〉
= exp

( ∞∑

n=1

1

n
εαβd

α
−nd̄

β
−n

)
θ1

0θ
2
0 |0〉 . (3.9)

The annulus amplitude can be swiftly evaluated,
〈
BDirichlet

Θ

∣∣∣ qL0+1/12 q̄L̄0+1/12
∣∣∣BDirichlet

Θ

〉
= 2πt̃ η(t̃)2 , qq̄ ≡ e−2πt̃ . (3.10)

13There is in fact a whole SL(2) multiplet of primaries of dimension k(k+1)
2

in each chiral half of the theory.

However the Θα boundary state is an SL(2) singlet (see (3.9)), and this fixes uniquely Pk(∂Θα, ∂̄Θβ) for

each k, as remarked in section 2.1.
14Had we defined the (2, 1) string theory using a ξη system, a zero mode for ξ would survive on the

boundary (ξ0 ≡ ξ̄0, but one zero mode is still there). This would spoil our construction.
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Modular transformation gives η(t)2, which is indeed the same result obtained by tracing

over the open string spectrum described above,

Trclose

[
(−1)F e−2πt(L0+1/12)

]
= η2(t) . (3.11)

The open string spectrum of the Liouville BCFT for FZZT boundary conditions is

known to have the usual primaries {eαφ}, of dimension hα = α(Q− α) (note the factor of

two difference with respect to the bulk primaries (2.12)). As usual in Liouville field theory,

the continuum spectrum α = Q/2 + iP corresponds to delta-function normalizable states,

while real exponents α ≤ Q/2 correspond to local operators and are used in the dressing

of the matter primaries.

A crucial observation, due to Distler [54], is that Liouville and c = −2 matter can be

formally combined into a βγ bosonic ghost system of conformal dimensions (2,−1),

β = ∂Θ1ebφ , γ = ∂Θ2e−bφ . (3.12)

(Recall that for cLiou = 28 the parameter b ≡ 1/
√

2). Distler applied this construction to

each chiral half of the closed theory, where the Liouville CFT was taken to be a free linear

dilaton (µ = 0). The validity of the bosonization formulas (3.12) is then a simple conse-

quence of the free OPEs. This commuting βγ system has conformal dimensions (2,−1), the

same dimensions of the usual anticommuting bc ghost system. This makes the topological

nature of the theory intuitively clear. In any open string vacuum amplitude, the oscillator

parts of the bc and βγ path-integrals will exactly cancel each other, and we should expect

the only surviving contributions to arise from classical configurations. This expectation will

be made more precise below. A basic ingredient is the scalar supersymmetry, or topological

charge,

QS ≡
∮
JS(z) , JS(z) ≡ b(z)γ(z) =

∮
b(z)∂Θ2(z)e−bφ(z) , (3.13)

which obeys

Q2
S = 0 . (3.14)

The usual BRST operator of the bosonic string theory,

QB =

∮
c(z)

(
Tmatter(z) + T Liou(z) +

1

2
T ghost(z)

)
, (3.15)

turns out to be QS-exact,

QB =

{
QS ,

∮
1

2
β(z)c(z)∂c(z)

}
. (3.16)

Turning on the bulk Liouville interaction (µ 6= 0) is expected to preserve the topological

nature of the theory, since the Liouville term is QS-closed. Here we keep µ = 0 and leave

a discussion of the more general case µ 6= 0 to section 6 of the paper.

Crucially for our purposes, an FZZT brane with Dirichlet b.c. for the Θα will preserve

the total charge QS + Q̄S. This is obvious for zero boundary cosmological constant, and

holds also for µB 6= 0 since the boundary interaction is killed by Qboundary
S . Here we are

defining an operator Qboundary
S acting on boundary vertex operators by integrating the

current JS + J̄S on a semicircle around the boundary operator.
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We devote the rest of this section to the computation of the cohomology of Qboundary
S , a

technical ingredient that we shall need in our analysis of the open string field theory. There

is a slight complication due to the fact that for non-zero boundary cosmological constant

µB , the BCFT is interacting and the action of Qboundary
S is non-trivial.

Let us first consider the case µB = 0. Then the action of Qboundary
S is just the same as

for the chiral QS operator (3.13) and the cohomology may be readily evaluated. The task

is simplified by the realization that the cohomology must lie in the kernel of L0 and of J0,

the zero-mode of an appropriately defined current J(z). Consider the current15

J(z) ≡ JLiou(z)− Jbc(z) =
1

b
∂φ+ : b(z)c(z) : . (3.17)

JLiou is an anomalous current that counts the Liouville momentum in units of b, for example

ebφ has J0 charge one. The linear combination J(z) is non-anomalous and it is QS-exact,

J(z) = {QS , c(z)β(z)} . (3.18)

This implies that the cohomology of QS is contained in the kernel of J0. Indeed QS is

invertible outside this kernel. Similarly, the total energy momentum tensor is QS exact.

Indeed using (3.16)

T (z) = {QB , b(z)} = {QS , G(z)} , G(z) ≡ 2β(z)∂c(z) − ∂β(z)c(z) . (3.19)

Hence the cohomology of QS is in the kernel of L0. These two facts readily allow to identify

the cohomology of QS as the states

enbφ(0)c(0)∂c(0) · · · ∂nc(0)|0〉 , e−nbφ(0)b(0)∂b(0) · · · ∂nb(0)|0〉 . (3.20)

When we turn on µB the BCFT becomes interacting and the action of Qboundary
S more

complicated. Luckily the operator e−bφ(z) that appears in QS is a degenerate field of level

two for the Liouville CFT, and its OPEs truncate to two terms,

[e−bφ] [eαφ] = [e(α−b)φ] + C−[e(α+b)φ] . (3.21)

Hence we can write

Qboundary
S = Q

(0)
S + µ2

BQ
(2)
S . (3.22)

Note that for µB 6= 0, Qboundary
S does not have definite J0 charge, but it is a sum of the

original charge zero term Q
(0)
S plus a deformation of charge two Q

(2)
S . (Q

(2)
S has charge two

under J0 because it has ghost number minus one and shifts the Liouville momentum of

+b). This is a mild deformation of Q
(0)
S . Nihilpotency of the total Qboundary

S for any µB
implies

(Q
(0)
S )2 = 0 {Q(2)

S , Q
(0)
S } = 0 , (Q

(2)
S )2 = 0 . (3.23)

As the J0 charge of Q
(2)
S is nonzero, this implies that Q

(2)
S = {Q(0)

S , · · ·} and hence it acts

trivially on Q0
S cohomology.

15No confusion should arise between the parameter b ≡ 1/
√

2 and the antighost field b(z)!
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We conclude that the cohomology of Qboundary
S = Q

(0)
S + µ2

BQ
(2)
S has the same di-

mensionality as the one of Q
(0)
S : one operator for each ghost number. We will mainly be

interested in the ghost number one operator, the open string “tachyon” ebφ(0)c1|0〉. It is

immediate to check that this state is in the cohomology for any µB . We can repeat the

same reasoning also to the BCFT with different boundary cosmological constants µiB and

µjB at the two endpoints of the open string. The only states of ghost number one in the

cohomology of Qboundary
S are the open tachyons between brane i and brane j,

ebφ(0)c1|0〉ij . (3.24)

4. Open string field theory and the Kontsevich model

It is our prejudice that open string field theory (OSFT) [26] must play a fundamental role in

the understanding of open/closed duality. The Kontsevich model provides the prototypical

example. In this section we construct the OSFT on N of the stable branes of the (2, 1)

string theory, and show how it reduces to the Kontsevich matrix integral.

4.1 Generalities

The OSFT on N D-branes takes quite generally the familiar form

S[Ψ] = − 1

gs


1

2

∑

ij

〈Ψij , QBΨji〉+
1

3

∑

ijk

〈Ψij ,Ψjk,Ψki〉


 . (4.1)

Let us briefly review the basic ingredients of this action, referring to [72] for background

material. The string field |Ψij〉, i, j = 1, · · ·N , is an element of the open string state

space Hij between D-brane i and D-brane j. This is the full state-space of the matter +

Liouville + ghost BCFT. In classical OSFT, we restrict |Ψij〉 to have ghost number one

(in the convention that the SL(2,R) vacuum |0〉 has ghost number zero). In the BCFT

language, which is the most natural for our purposes, one uses the state-operator map to

represent string fields as boundary vertex operators. The string field |Ψij〉 can be expanded

as a sum over a complete set of vertex operators,

|Ψij〉 =
∑

α

cαVαij(0)|0〉 . (4.2)

Here Vαij(0) is a vertex operator inserted at the origin of the upper half plane, with boundary

conditions for brane i on the negative real axis, and boundary conditions for brane j on

the positive real axis.

The 2-point and 3-point vertices are then defined in terms of BCFT correlators on the

boundary (real axis) of the upper half-plane,

〈A,B〉 ≡ 〈I ◦A(0)B(0)〉UHP , I(z) ≡ −1

z
〈A,B,C〉 ≡ 〈f1 ◦A(0) f2 ◦ B(0) f3 ◦ C(0)〉UHP . (4.3)
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Here f ◦ A(0) denotes the conformal transform of the operator A(0) by the complex map

f . The precise form of the maps fi(z), which implement the midpoint gluing of the three

open strings, can be found in many places and will not be important for us.

We also recall that the string field obeys the reality condition

|Ψij〉∗ = |Ψji〉 , (4.4)

where the ∗ involution is defined to be [73]

∗ = bpz−1 ◦ hc = hc−1 ◦ bpz . (4.5)

The operation ‘hc’ is hermitian conjugation of the state (it sends bras into a kets, with com-

plex conjugation of the coefficients). The operation ‘bpz’ sends a bra into a ket according

to the rule

bpz(V(0)|0〉) = 〈0|I ◦ V(0) . (4.6)

Definition of the quantum theory requires gauge-fixing. This is customarily accomplished

by imposing Siegel gauge b0|Ψ〉 = 0. One must introduce Fadeev-Popov ghosts for this

gauge fixing, and in fact, since the gauge symmetry is reducible, one needs ghosts for

ghosts, and ghosts for ghosts for ghosts, ad infinitum. It is a famous miracle [74] that the

full second-quantized gauge-fixed action + ghosts can be written in the form

SSiegel = − 1

gs


1

2

∑

ij

〈Ψij , c0L0Ψji〉+
1

3

∑

ijk

〈Ψij ,Ψjk,Ψki〉


 , (4.7)

where |Ψij〉 is now a string field of unrestricted ghost number, obeying

b0|Ψij〉 = 0 . (4.8)

The propagator
b0
L0

=

∫ ∞

0
b0 dt e

−t L0 (4.9)

has the geometric interpretation of building worldsheet strips of canonical width π and

length t. The Feynman diagrams are fatgraphs built joining these flat strips at triva-

lent vertices (with the curvature concentrated at the common midpoint of the three open

strings). This gives the famous decomposition of the moduli space of open Riemann sur-

faces [18, 47 – 50] which plays a crucial role in Kontsevich construction as well.

4.2 Topological localization

The general OSFT action (4.7) is a very complicated object. In the critical bosonic string,

explicit calculations are available for some simple perturbative amplitudes. Off-shell, non-

perturbative calculations in the classical theory have so far been possible only using nu-

merical methods (level truncation). In the present case, a drastic simplification occurs

thanks to a mechanism of topological localization. A precedent of this phenomenon was

discovered by Witten for the topological open A-model on the cotangent bundle T ∗(M),

which reduces to Chern-Simons on the three-dimensional manifold M .
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The localization works in the way familiar for topological theories of cohomological

type. The nilpotent supersymmetry Qboundary
S (henceforth simply QS) induces a pairing

of the states of the theory, such that in a vacuum amplitudes almost all states cancel

pairwise; only unpaired states (the cohomology of QS) give a non-zero contribution. Let

us demonstrate this in a more formal way. We are going to prove that QS is a symmetry of

the gauge-fixed OSFT action (4.7); moreover the action is almost entirely QS-exact, except

for the terms involving only the open string tachyons between the N branes. This reduces

the OSFT action to an N ×N matrix integral.

The topological symmetry is defined as

δS |Ψ〉 = QS |Ψ〉 , (4.10)

and it is an invariance of the gauge-fixed action.

δS SSiegel = 0 . (4.11)

The formal properties that ensure this invariance are

〈V2|
(
Q

(1)
S +Q

(2)
S

)
= 0

〈V3|
(
Q

(1)
S +Q

(2)
S +Q

(3)
S

)
= 0 . (4.12)

Here we are regarding the 2-point and 3-point vertices as elements of H∗ ⊗H∗ and H∗ ⊗
H∗ ⊗H∗, i.e., as bilinear and trilinear functionals on the state space H = ⊕ijHij. These

properties are an immediate consequence of the fact that QS is the zero-mode of a conserved

current. They are easily proved by contour deformations on the 2- and 3-punctured disks

that define the vertices (see e.g. [70]).

We can now apply the general formal arguments given in section 5 of [71] to conclude

that the path-integral localizes over the fixed locus of QS, that is, over the subspace of

states in the cohomology of QS. A more lengthy derivation is as follows. We can write

〈V2| = 〈V2|QS coho + 〈W2|
(
Q

(1)
S +Q

(2)
S

)
, (4.13)

〈V3| = 〈V3|QS coho + 〈W3|
(
Q

(1)
S +Q

(2)
S +Q

(3)
S

)
. (4.14)

Here we have defined a cohomology problem for QS in the spaces H∗⊗H∗ andH∗⊗H∗⊗H∗
in the natural way. Eq. (4.13) is simply the statement that since the 2-point and 3-point

vertices are QS closed (4.12), they can be written as a sum of a term in the QS cohomology

plus a QS-exact term. By Künneth formula the cohomology in the tensor product space

is the tensor product of the cohomology. Thus, dropping QS-exact terms, we can restrict

the whole OSFT action to the string fields in the cohomology of QS .

The cohomology of QS was computed in section 3.2 and consists of the states

enbφ(0)c(0)∂c(0) · · · ∂nc(0)|0〉ij , e−nbφ(0)b(0)∂b(0) · · · ∂nb(0)|0〉ij . (4.15)

Of these states, only the ones with bc ghost number ≥ 1 satisfy the Siegel gauge condition.

Among them, only the open string “tachyons”

|Tij〉 ≡ ebφc1|0〉ij (4.16)
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can give a contribution to the action, since all the other fields do not saturate the conser-

vation of bc ghost number, which must add up to three. This concludes the argument that

the OSFT action reduces to the terms containing only the open string tachyons.

4.3 Liouville BCFT and the matrix model

Writing the string field |Ψij〉 as

|Ψij〉 = Xij |Tij〉+ · · · (4.17)

for some coefficient Xij , i, j = 1, · · ·N , the OSFT reduces to a matrix model for the N ×N
matrix X. The reality condition (4.4) for the string field implies that X is hermitian. The

action for the matrix integral is

S[X] = −Volume

gs

(
1

2
XjiXij 〈Tji, c0L0Tij〉+

1

3
XijXjkXki 〈Tij , Tjk, Tki〉

)
. (4.18)

Here we are normalizing the inner products so that

〈c1, c0c1〉 = 1 , (4.19)

and correspondingly we have extracted a factor of the (divergent) volume of the brane

coming from the integration over the zero mode of the Liouville field.16 It only remains

to evaluate the 2- and 3-point vertices for the open string tachyons, which define the

coefficients in this matrix action.

The structure of the result can be understood by a simple reasoning. It turns out that

for the specific values of Liouville momenta that we are interested in, the effect of µB can

be treated perturbatively. The Liouville anomaly on the disk is Q = 3b. A correlator in

which the total Liouville momentum adds to three (in units of b) should then not get any

correction from the presence of a boundary cosmological constant. Since the open string

tachyon has Liouville momentum one, we expect that the cubic vertex can be evaluated as

a free BCFT correlator,

〈Tij , Tjk, Tki〉 = 1 . (4.20)

Notice that the local coordinates fi(z) play no role since these are on-shell primary vertex

operators. On the other hand, in the kinetic term we expect to need one insertion of the

boundary cosmological constant to saturate the anomaly. This contribution can come from

either side of the strip, so it is reasonable to guess

〈Tij , c0L0Tij〉 ∼ µ(i)
B + µ

(j)
B . (4.21)

With these values for the coefficients the OSFT action would then become

S[X] = − 1

gs

(
1

2
XijXji(µ

(i)
B + µ

(j)
B ) +

1

3
XijXjkXki

)
(4.22)

This is the Kontsevich model (1.6), after the identification µ
(i)
B ≡ zi.

16This overall factor is present also in all the closed string correlation functions of the the Ok operators,

and it will consistenly cancel out in all formulas.
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One may raise an immediate objection to this reasoning: the kinetic term should actu-

ally be zero, since the open tachyon has conformal dimension zero and is thus apparently

killed by L0. Exactly at cLiou = 28 there is a loophole in this objection, because the scalar

product 〈Tij , c0Tji〉 is divergent. A more careful analysis is then called for, involving the

full machinery of Liouville BCFT.

To regulate the divergence in the tachyon 2-point function, we can go slightly off-shell,

considering the state e(b+ε)φc1|0〉ij . As we show in the appendix, the 2-point function in

boundary (FZZT) Liouville theory has a pole as ε→ 0, precisely with the expected residue,

〈e(b+ε)φe(b+ε)φ〉1,2 ∼
µ

(1)
B + µ

(2)
B

ε
. (4.23)

This pole cancels the zero from the action of L0,

L0 e
αφc1|0〉 = (α− b)(α − 2b)eαφc1|0〉 = ε (−b) eαφc1|0〉 , (4.24)

giving the desired result. The careful computation of the 3-point function (see the ap-

pendix) is rather uneventful and confirms (4.20). This resonant behavior of Liouville field

theory correlators is related to the fact that the critical exponent γstr ≡ 1−1/b2 equals mi-

nus one. In general, a similar resonant behavior occurs when γstr is a negative integer [56].

The corresponding values of the central charge cLiou = 1 + 6(p+ 1)2/p, with integer p ≥ 2,

are precisely the ones needed to dress the matter minimal models (p, 1). These are also

the models where the string theory is known to be topological and a matrix model à la

Kontsevich exists.

4.4 Discussion

We have seen that only on-shell fields (the open string tachyons) give non-zero contri-

butions. This can be given a geometric interpretation: the whole vacuum amplitude has

support on the region of moduli space where all propagator lengths in the fatgraph diverge.

The localization on such singular Riemann surfaces is again familiar from the Chern-Simons

example [27]. In the language of [27], we can say that there are no ordinary instantons, and

only virtual instantons at infinity contribute. It is well-known that in topological gravity

closed string amplitudes are localized on singular surfaces [22, 46]. Here we are seeing this

phenomenon in the open channel. While in the closed channel contact terms are quite

intricate, the open string moduli space is structurally much simpler, and open string con-

tact terms arise only when boundaries touch each other or pinch. This geometric intuition

could be used to streamline the combinatorial proofs [75, 76] of the Virasoro constraints

for the Kontsevich model.

5. Open/closed duality and Ward identities

The main conclusion to draw is that in this theory, the effect of D-branes can be completely

accounted for by turning on a simple source term for the closed strings,

Zclose(gs, {zi}) = Zclosed

(
gs,

{
tk = gs

∑

i

1

k zki

})
. (5.1)
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Ok

Ok
Ok

Figure 3: Degeneration of the Riemann surface as the closed string operator Ok approaches the

boundary. The shadowed region represents the hole. As the short neck pinches, the surface factorizes

into two surfaces, each with the extra insertion of an open string tachyon, indicated by a cross.

This conclusion can be strengthened by considering the partition function of the theory in

the presence of both a D-brane and a non-trivial closed string background.17 Recall that

in the closed string theory, the partition function is completely determined by the Virasoro

Ward identities [46, 80]

∂

∂t1
Z = L−2Z ≡

t21
2g2
s

Z +

∞∑

k=0

(2k + 3)t2k+3
∂Z

∂t2k+1

∂

∂t3
Z = L0Z ≡

1

8
Z +

∞∑

k=0

(2k + 1)t2k+1
∂Z

∂t2k+1

∂

∂t2n+5
Z = L2n+2Z ≡

∞∑

k=0

(2k + 1)t2k+1
∂Z

∂t2k+2n+1
+
g2
s

2

n∑

k=0

∂2Z
∂t2k+1∂t2n−2k+1

. (5.2)

Each of these equations details how a specific Ok operator, when integrated over the Rie-

mann surface, picks contributions from collision with other operators or with nodes of the

surface [46, 80]. The second term in the L−2 and L0 equations, and the first term in the

L2n+2 equation, represent the collision of two operators. The last term in the L2n+2 equa-

tion represents the collision between an operator and a node. (The first term in the L−2

equation accounts for the conformal Killing vectors of the sphere, and similarly the first

term in the L0 equation accounts for the CKV of the torus.) The structure of these equa-

tions is strongly constrained by self-consistency; it is only because the L2n form (half) a

Virasoro algebra that these equations have a solution. To find the partition function when

both D-brane sources and closed string sources are turned on, we will now extend these

Ward identities by adding the contact terms that arise from the new ways the surface can

degenerate: when an operator Ok collides with a boundary; and when a boundary collides

with a node. The collision of an operator with a boundary has the schematic aspect shown

in figure 3.

17After submitting the first version of this paper, we learnt that a similar approach as the one outlined

in this section was already developed in the “old” days of matrix models in the interesting works [77, 78]

(see also the recent paper [79]). We thank C. Johnson for pointing out these references to us.
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The short neck of the pinching surface is conformally equivalent to the insertion of

a very long open string propagator; the collision leaves behind an open string tachyon

insertion, with a power of z fixed by conservation of the Liouville momentum. This piece

of knowledge, together with the requirement that we still have a Virasoro algebra, uniquely

fixes the open + closed Ward identities. Considering for simplicity the case of a single D-

brane with parameter z, they have the following form:

∂

∂t1
Z = L̃(z)

−2Z ≡ L−2Z +

(
t1
zgs

+
1

2z2

)
Z − 1

z

∂Z
∂z

∂

∂t3
Z = L̃(z)

0 Z ≡ L0Z − z
∂Z
∂z

∂

∂t2n+5
Z = L̃(z)

2n+2Z ≡ L2n+2Z − z2n+1 ∂Z
∂z
− gs

n∑

k=0

z2k+1 ∂Z
∂t2n−2k+1

. (5.3)

The terms involving ∂Z
∂z represent the collision of an operator with a boundary. The last

term in the L̃(z)
2n+2 equation represents the collision of a boundary and a node. Finally

the second term in the L̃(z)
−2 equation accounts for the CKV of the disk with two closed

punctures and of the annulus with one closed puncture.

These identities are sufficient to completely determine the open + closed partition

function Zopen+closed(gs, {tk}, {zi}). Not surprisingly, one can easily verify that the solu-

tion is

Zopen+closed(gs, {tk} , {zi}) = Zclosed

(
gs,

{
tk + gs

∑

i

1

k zki

})
. (5.4)

This shows that even when there are non-trivial closed string sources to begin with, D-

branes can still be re-absorbed into a shift of these sources. This argument also fixes

the overall normalization in the relation between tk and
∑

i z
−k
i . The closed operators

Ok have an intrinsic normalization fixed by the algebra of closed contact terms. The

algebra of open/closed contact terms can then be used to fix the coefficients of these

canonically normalized Ok in the expansion of the boundary state. This ties a loose end

in our derivation of the Kontsevich model.

We can also define an open partition function in a non-trivial closed background by

subtracting the purely closed amplitudes,

Zclose(gs, zi | tk) =
Zopen+closed(gs, tk, zi)

Zclosed(gs, tk)
. (5.5)

An interesting question is whether this open partition function is computed by an appro-

priate generalization of the Kontsevich matrix model. In the next section we provide the

answer for the background with µ = t1 6= 0 and tk = 0, k > 1.

6. Non-zero bulk cosmological constant

As shown in the appendix, the matrix model obtained by topological localization of the

OSFT action depends only on the boundary cosmological constants {µiB} and not on µ.
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Clearly however the open + closed string partition function Z open+closed(gs, {tk = µδ1,k} |zi)
has a non-trivial µ dependence. The resolution of this apparent contradiction is that as we

turn on µ 6= 0, we must change the dictionary between the open moduli (the values of the

boundary cosmological constants {µiB}) and the closed moduli {tk}. Indeed, the relation

used so far is based on the expansion (3.6) of the boundary state, which - as written - is

valid only for µ = 0.

As we turn on µ 6= 0, we use conventions where the parameters {zi} are related to the

sources {tk} just as before,

tk =
gs
k

N∑

n=1

1

znk
, (6.1)

but we do not identify anymore z with µB , rather z = f(µ, µB) for some function f which

we now proceed to determine.

To this end, we use the Ward identities derived in the previous section. The free energy

F(gs, µ, {zi}) ≡ log(Zopen+closed(gs, {tk = µδ1,k} | {zi})) (6.2)

satisfies
∂

∂µ
F +

∑

i

1

zi

∂F
∂zi

=
µ2

2g2
s

+
∑

i

µ

zigs
+
∑

i,j

1

2zizj
. (6.3)

This equation can be readily integrated. One finds

F(gs, µ, zi) =
µ3

6g2
s

+
∑

i

1

gs

[
1

3
(z2
i − 2µ)

3
2 − z3

i

3
+ µzi

]
+

1

2

∑

i,j

log
zi + zj

(z2
i−2µ)

1
2 + (z2

j−2µ)
1
2

+

+F
(
gs, 0, (z

2
i − 2µ)

1
2

)
. (6.4)

The first three terms in this expression represent respectively the changes of the sphere, disk

and annulus amplitudes as we turn on µ. The last term is the sum of all vacuum diagrams

with at least two holes, given as usual by the Kontsevich matrix integral (1.6), but with

the replacement z → (z2 − 2µ)
1
2 . From the analysis in the appendix we know that the

kinetic term in the Kontsevich integral is to be identified with the boundary cosmological

constant even for µ 6= 0, hence we learn µB = (z2 − 2µ)
1
2 , which gives the sought relation

z = (µ2
B + 2µ)

1
2 . (6.5)

So far we have argued that consistency of the theory demands this new relation between

open and closed moduli, which is forced upon us by the open/closed integrable structure.

Now we wish to give an independent check of this logic, and in the process obtain a more

physical interpretation.

We start with the Kontsevich representation of the partition function,

Z(gs, 0, (z
2
i − 2µ)

1
2 ) ≡ exp

(
F
(
gs, 0, (z

2
i − 2µ)

1
2

))
(6.6)

= ρ
(

(Z2 − 2µ)
1
2

)−1
∫

[dX] exp

(
1

gs
Tr

[
−1

2
(Z2 − 2µ)

1
2X2 +

1

6
X3

])
,
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and perform the shift X → X + (Z2 − 2µ)
1
2 − Z in the integration variable. This gives

Z
(
gs, 0, (z

2
i − 2µ)

1
2

)
= exp(−FD2

) · ρ
(

(Z2 − 2µ)
1
2

)−1
×

×
∫

[dX] exp

(
1

gs
Tr

[
−1

2
ZX2 +

1

6
X3 + µX

])
, (6.7)

where FD2 ≡
[

1
3 (z2

i − 2µ)
3
2 − z3

i
3 + µzi

]
is exactly the second term in (6.4). We observe

that all the terms conspire to give a simple expression for the full open/closed partition

function,18

Z(gs, µ, zi) = exp

(
µ3

6g2
s

)
· ρ(Z)−1

∫
[dX] exp

(
1

gs
Tr

[
−1

2
ZX2 +

1

6
X3 + µX

])
. (6.8)

This final equation has a transparent interpretation. Apart from the purely closed con-

tribution exp
(
µ3/6g2

s

)
coming from the sphere, the partition function is computed by the

OSFT in the trivial background µ = 0 (i.e., with the usual kinetic term), but with the

addition on an extra linear term µX.

This is precisely what we would expect if the effect of deforming the closed string

background to µ 6= 0 was captured by an open/closed vertex linear in the open string

field. In fact, it is well-known that OSFT can reproduce amplitudes with closed string

insertions and at least a boundary by adding to the action an appropriate open-closed

vertex [81], a linear term coupling the closed string vertex operators to the open string

fields. Since the cosmological constant operator is QS-closed, the open-closed vertex does

not ruin the topological localization, and reduces exactly to µ
gs

TrX in the matrix inte-

gral! In more complicated string theories, we would not expect in general to be able to

exponentiate a finite defomation of the closed string background by simply adding this

linear term, but evidently this procedure is justified here. In particular cosmological con-

stant operator O1 does not have contact terms with itself which would obstruct a naive

exponentiation.

We see here what may well be the simplest illustration of background independence

in string field theory. We can either start from the trivial background µ = 0 and shift µ

through the open/closed vertex, as in (6.8), or formulate directly the theory in the new

background with µ 6= 0, as in (6.6). Background indipendence dictates that the two forms

of the action must be related by a field redefinition, which in this case is just a linear shift

of the “string field” X. Is it possible to turn on other sources tk using the same procedure?

For t3, corresponding to the dilaton operator O3, the Ward identity can be integrated in a

similar way and it simply gives an appropriate rescaling of the relation between µB and z.

This is equivalently expressed by adding to the matrix action the simple open-closed vertex
3t3
gs

TrZ2X, just as expected. This procedure is not expected to work as easily for higher

tk’s, as the operators now have a non-trivial algebra of contact terms. Rather one may

anticipate a complicated matrix action containing multi-trace interactions.

18Notice that the third term in (6.4) is precisely taken into account by the ρ prefactors.
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Finally we should briefly outline how the analysis of this section could be recast in the

language of integrable hierarchies. Turning on µ corresponds to moving in the “small phase

space” (which for the (2,1) model contains only the operator O1). The relation between

the KP times tk and the coordinates {zi} changes according to well-known formulas (see

e.g. sections 4.2–4.3 of [40]) which could have been used to deduce the relation (6.5). Here

we have phrased the discussion in a perhaps more intuitive physical language.

7. Future directions

There are many interesting directions in which the work of this paper may be continued.

In this section we mention some of them.

7.1 Relation with discretized random surface in D = −2

In this paper we have focused on the Kontsevich model for the (2, 1) string theory. There

is also a double-scaled matrix model for this closed string theory, defined in terms of a

matrix M(θ1, θ2) that depends of two Grassmann-odd coordinates [55 – 59]. This model

has a rich structure with many intriguing properties.

In the continuum limit, the coordinates θ1 and θ2 become precisely our fields Θα. This

is one of the reasons why one should prefer the Θα system to the ξη system. Following the

philosophy of [7], this doubled-scaled matrix model should be understood as the open string

field theory on unstable D-branes of the theory. Indeed, if one considers in the continuum

(2, 1) string theory ZZ boundary conditions for the Liouville direction, and Neumann b.c.

for the Θα system, one finds that the tachyon dynamics is captured by a matrix M(θ1
0, θ

2
0),

where θα0 are the zero-modes of Θα living on the Neumann boundary.

In [58], macroscopic loop operators for this matrix model are considered. The opera-

tors of topological gravity appear to be related to loop operators with Dirichlet boundary

conditions on the θα. This seems to agree with our construction, and it would be nice to

understand this connection in detail.

More generally, it is of interest to see whether our approach can shed some light on

open/closed duality [7] for the double-scaled matrix models. In the “old” approach, the

doubled-scaled matrix model is thought of as a trick to discretize the Riemann surface, and

it is essential to send N to infinity and t→ tc to recover the continuum theory. The modern

approach starts instead from considering the worldvolume theory of a finite number N of

ZZ branes in the continuum string theory. The precise relation between the old and the

new approach is still quite unclear, as one cannot directly identify the finite N matrix

model before double-scaling limit with the finite N open string field theory of the ZZ

branes. The OSFT of N ZZ branes, with N finite, is presumably a unique and consistent

continuum quantum theory, while the finite N matrix model has non-universal features,

like the precise form of the potential. The OSFT on N ZZ branes may be expected [83] to

be dual to a subsector of the full continuum closed string theory. This is in analogy with

the finite N Kontsevich model.19

19We thank Ashoke Sen for pointing out this analogy.
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7.2 Generalizations

The most obvious generalization of this work that comes to mind is to the other (p, q)

minimal string theories. (p, q) theories are solved by double-scaling of the (p − 1)-matrix

chain, where again q labels the order of criticality. (p, 1) models represent the “topological

points”, from which the (p, q) models with q > 1 are obtained by flows of the p-KdV

hierarchy. There is a Kontsevich model for any (p, 1) theory, it is a one-matrix integral

with a potential of order p+ 1. Our logic leads us to believe that the OSFT on the stable

branes of the (p, 1) theory will localize topologically to a matrix integral. Since OSFT is

cubic, this process will lead to a cubic matrix integral involving several matrices (a matrix

for each open topological primary). The simplest guess is that such cubic models are related

to the known polynomial Kontsevich models by integrating out all matrices but one. A

formulation in terms of a cubic multi-matrix integral may have the advantage of making

more transparent the relation with a decomposition of moduli space, which has not been

completly understood for the intersection numbers associated to the (p, 1) models. Work

is in progress along these lines.

Several other generalizations can be contemplated. ĉ < 1 theories admit topological

points and to the best of our knowledge there is no known topological matrix model de-

scription; our procedure should give one. The case of c = 1 at the self-dual radius should

also be attacked.

8. Conclusions

In this paper we have described an example of exact open/closed duality that should

represent the simplest paradigm for a large class of similar dualities. The worldsheet

picture of holes shrinking to punctures is not, we believe, an artifact of the simplicity of

the model, and the same mechanism may be at work in more physical situations. We

have found that at least in this example, open string field theory on an infinite number

of branes is capable of describing the full string theory. This may contain a more general

lesson.20 Although here we have stressed the importance of open string field theory as a

tool to understand open/closed duality, one of our original motivations was to learn about

the structure of OSFT itself in the solvable context of low-dimensional string theories. The

Kontsevich model is arguably the simplest imaginable OSFT. It is still a good question

whether this and related examples can be used to sharpen our understanding of OSFT. We

would like to conclude with a speculation about how open/closed duality may come about

in AdS/CFT. The example of the Kontsevich model suggests that the natural starting

point is the closed string theory dual to free SYM (’t Hooft parameter t = 0). At the

point t = 0, which in some sense must correspond to an infinitely curved AdS space, the

closed string theory is expected to have an infinite dimensional symmetry group. This is

analogous to the statement that {tk = 0} is the topological point of the Kontsevich model.

If a a concrete description of this closed string theory were available, one may also hope to

20Open string field theory on an infinite number of branes has been conjectured [82] to be relevant for

the issue of background independence in string theory.
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define D-branes. D-branes of a peculiar nature may exist, such that: 1) The open string

field theory on these D-branes is precisely the SYM theory, with no extra massive open

string modes. 2)When considered in the closed string channel, the presence of the D-brane

can be completely re-adsorbed in a shift of the closed string background. Adding D-branes

would then be equivalent to turning on a finite t, that is, to recovering a smooth AdS

space. Statement 1) is analogous to the topological localization that we have described

for the Kontsevich model, while statement 2) is the by now familiar mantra of replacing

boundaries with punctures. This scenario would offer a derivation of AdS/CFT orthogonal

to the usual one [31] that begins with D-branes in flat space and proceeds by “dropping

the one” in the harmonic function.
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A. Liouville BCFT correlators

In this appendix we give the technical details of the computation of 2- and 3-point vertices

of open string tachyons.

We need the explicit expressions of 2- and 3-point functions of boundary primary

operators in Liouville BCFT (with FZZT boundary conditions). The relevant formulas

can be found in [14, 69]. We use the notations of [14]. The variable s is conventionally

introduced21

µB√
µ

= cosh bπs . (A.1)

Here µ is the bulk cosmological constant. We are interested in the limit µ→ 0, since this

is the point {tk = 0}. Interestingly, the results for 2- and 3-point correlators of open string

tachyon turn out to be independent of µ. An important ingredient is the special function

Gb(x) defined in [14]. This function is entire-analytic and has zeros for x = −nb −m/b,
with m,n = 0, 1, 2, . . .; it is symmetric under b↔ 1/b. A convenient combination of Gb’s

is the function Sb(x) = Gb(Q− x)/Gb(x), which obeys the shift relation

Sb(x+ b) = 2 sin(πbx)Sb(x) . (A.2)

21The FZZT BCFT shows an interesting monodromy in the complex µB plane [84]. The physics is instead

entire-analytic in terms of s.
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The 2-point function of boundary primary fields is then [14]

d(α, µ
(1)
B , µ

(2)
B , µ) ≡ 〈eαφeαφ〉

=

(
π√
2
µγ

(
1

2

)) 3
2
−
√

2α

× (A.3)

×
G 1√

2

(
−2α+ 3√

2

)
S 1√

2

(
3√
2

+ i (s1+s2)
2 − α

)
S 1√

2

(
3√
2

+ i (s1−s2)
2 − α

)

G 1√
2

(
− 3√

2
+ 2α

)
S 1√

2

(
i (s1+s2)

2 + α
)
S 1√

2

(
i (s1−s2)

2 + α
) .

We now take α = b + ε. As ε → 0 there is a pole arising from the zero of the first Gb in

the denominator. The interesting residue is contained in the part of the expression, finite

for α→ b = 1√
2
, that contains the four S 1√

2
functions,

S 1√
2

(
2√
2

+ i (s1+s2)
2

)
S 1√

2

(
2√
2

+ (s1−s2)
2

)

S 1√
2

(
i (s1+s2)

2 + 1√
2

)
S 1√

2

(
i (s1−s2)

2 + 1√
2

) =

= 4 sin

(
π

2
+

iπ

2
√

2
(s1 + s2)

)
sin

(
π

2
+

iπ

2
√

2
(−s1 + s2)

)

= 2 cosh

(
π√
2
s1

)
+ 2 cosh

(
π√
2
s2

)
= 2

µ
(1)
B + µ

(2)
B√

µ
. (A.4)

The factor of 1/
√
µ cancels against the

√
µ in the prefactor of (A.3). This proves the

claim (4.23). The three point function simplifies when one takes the three Liouville mo-

menta to be equal to b. For generic b, this 3-point function is proportional to a rational

function of µ, µB and the “dual” cosmological constant µ̃B [69],

〈ebφ ebφ ebφ〉 ∼
µ̃

(1)
B

(
µ

(2)
B − µ

(3)
B

)
+ µ̃

(2)
B

(
µ

(3)
B − µ

(1)
B

)
+ µ̃

(3)
B

(
µ

(1)
B − µ

(2)
B

)

(
µ

(2)
B − µ

(3)
B

)(
µ

(3)
B − µ

(1)
B

)(
µ

(1)
B − µ

(2)
B

) . (A.5)

For cLiou = 28, the dual cosmological constant obeys

µ̃
(i)
B ∼

(
2(µ

(i)
B )2 − µ

)
(A.6)

and the tachyon 3-point function is just a constant independent of µ and µiB.

Here we have computed the Liouville correlators using analytic continuation in the

Liouville momentum. (Equally well, we could have use analytic continuation in b to regulate

the expressions that become singular as b → 1/
√

2. Indeed one of the achievements of

the past few years has been the recognition that Liouville correlators have nice analytic

properties with respect to all the parameters.) If one insists in working strictly at b = 1/
√

2

and with the on-shell vertex operators ebφ, an alternative way to phrase the results is the

language of logarithmic CFT [61]. For generic b, the two operators eαφ and e(Q−α)φ are

identified as

eαφ = d
(
α, µ

(1)
B , µ

(2)
B , µ

)
e(Q−α)φ . (A.7)
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The reflection coefficient d(α, µ
(1)
B , µ

(2)
B , µ) has poles for Q − 2α = nb + m/b. For these

cases, the identification becomes ill-defined. One way around this is that for these resonant

values α̃ we modify the identification as

(L0 − hα̃) eα̃φ =

[
lim
α→α̃

(
(hα − hα̃)d

(
α, µ

(1)
B , µ

(2)
B , µ

))]
e(Q−α̃)φ . (A.8)

Notice that the term is in square brackets is just a finite coefficient. L0 cannot be diago-

nalized in the subspace spanned by eα̃φ and e(Q−α̃)φ, which forms a non-trivial Jordan cell.

In other terms, the two operators are a logarithmic pair. In our case, α̃ = b. Working at b

strictly equal to 1/
√

2, we can write

L0 e
φ(0)/

√
2c1|0〉ij =

(
µ

(i)
B + µ

(j)
B

)
e
√

2φ(0)c1|0〉ij . (A.9)

This gives an alternative way to understand why the tachyon kinetic term in the OSFT

action is (µ
(i)
B + µ

(j)
B ).
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