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1. Introduction

Many examples of conformal field theories are known in two dimensions and in four dimen-

sions. However, much less is known in three dimensions. From the perspective of AdS/CFT

one is particularly interested in conformally invariant gauge theories, where the rank of the

gauge group is related to the amount of flux in the dual AdS description. M theory admits

compactifications involving AdS4, the most symmetrical choice being AdS4 × S7 [1]. Ac-

cording to the AdS/CFT conjecture [2] this should be dual to a three-dimensional gauge

theory with the superconformal symmetry OSp(8|4). This gauge theory should have gauge

group U(N) if the dual M theory background has N units of flux through the seven-sphere.

The situation ought to be rather analogous to the case of type IIB superstring theory com-

pactified on AdS5 × S5, with N units of flux, for which the dual gauge theory is N = 4

supersymmetric Yang-Mills theory with a U(N) gauge group and the superconformal sym-

metry is PSU(4|2, 2). There are some significant differences, however. For one thing the

type IIB superstring background contains a constant dilaton field, whose value corresponds

to the Yang-Mills coupling constant. There is no analogous scalar field in the M theory

case. Therefore the dual three-dimensional CFT should not have an adjustable coupling,

and therefore it is expected to be strongly coupled. This makes it a logical possibility that

there is no explicit lagrangian description of this theory, but it does not imply that this

must be the case.
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The usual viewpoint, which surely is correct, is the following: The low-energy effective

world-volume theory on a collection of N coincident D2-branes of type IIA superstring

theory is a maximally supersymmetric U(N) Yang-Mills theory in three dimensions. This

theory, which is not conformal because the Yang-Mills coupling in three dimensions is

dimensionful, has an SO(7) R symmetry corresponding to rotations of the transverse di-

rections. In the flow to the infrared the gauge coupling increases, which corresponds to the

string coupling (the vev of the dilaton) increasing. This in turn corresponds to the radius of

the circular 11th dimension increasing. In the limit that the coupling becomes infinite, one

reaches the conformally-invariant fixed point theory that describes a collection of coincident

M2-branes in eleven dimensions. This theory should have an enhanced SO(8) R symmetry

corresponding to rotations of the eight transverse dimensions. One question that we wish

to explore in this paper is whether it is possible to find an alternative characterization of

this fixed-point theory with an explicit classical lagrangian.

One can anticipate the field content of these theories from the relation to M2-branes

(in the M theory case) and D3-branes (in the type IIB superstring theory case). The world-

volume field content of a single D3-brane contains a vector, six scalars, and four Majorana

spinors. To describeN coincident D3-branes (at low energy) it is just a matter of promoting

these to N × N hermitean matrices and constructing an interacting superconformal field

theory with U(N) gauge symmetry. This is achieved by N = 4 SYM theory, of course. In

the case of an M2-brane, the physical world-volume field content consists of eight scalars

and eight (two-component) Majorana spinors. So a natural guess is that these should be

made into N×N matrices and the U(N) global symmetry should be gauged. However, this

is not entirely obvious, because unlike the case of D-branes, there is no simple interpretation

in terms of strings stretched between the branes. When viewed in terms of the maximally

supersymmetric SYM theory that flows to the desired fixed-point theory one sees this field

content except that one of the matrix scalars is replaced by a propagating gauge field. In

the abelian case these can be related by a duality transformation, but in the nonabelian

case there is no simple way of doing that. Rather than trying to carry out such a duality

transformation, we will start with the postulated field content, which is clearly required

for exhibiting the desired Spin(8) R symmetry.

The U(N) gauge theory should have N = 8 super-Poincaré symmetry and scale invari-

ance, which together ought to imply the full OSp(8|4) superconformal symmetry.1 If one

succeeds in constructing such a theory, then it would be reasonable to expect that quantum

corrections do not destroy the scale invariance, like in the case of N = 4 SYM theory.

The scalars and spinors in the proposed three-dimensional CFT give an equal number

of physical bosonic and fermionic degrees of freedom. Therefore, to maintain supersymme-

try when U(N) gauge fields are added, the number of bosonic degrees of freedom should

not change. This should be contrasted with the case of N = 4 SYM theory, where the

transverse polarizations of the gauge fields are required to achieve an equal number of

bosonic and fermionic degrees of freedom. Starting from the free theory with global U(N)

1Usually, but not always, Poincaré invariance together with scale invariance implies conformal invariance.

(See [3] and references therein.)
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symmetry in three dimensions there are three alternative ways to introduce the gauge fields

that one might consider: (1) Add gauge field couplings to make the global U(N) symmetry

local, but do not introduce kinetic terms for the gauge fields. (2) Add gauge field cou-

plings to make the global U(N) symmetry local and add F 2 kinetic terms for the gauge

fields. (3) Add gauge field couplings to make the global U(N) symmetry local and add a

Chern-Simons term for the gauge fields. We claim that choice number (1) is inconsistent

with supersymmetry, because the gauge fields would give rise to constraints that would

effectively subtract bosonic degrees of freedom. Similarly, choice number (2) is unaccept-

able, because the gauge fields would add bosonic degrees of freedom. Also F 2 is dimension

4, and scale invariance of the classical theory only allows dimension 3 terms. This leaves

choice (3), which I claim is exactly right. The Chern-Simons term is dimension 3 and its

inclusion does not lead to either an increase or a decrease in the number of propagating

bosonic degrees of freedom, so it is conceivable that supersymmetry can be achieved.

To be honest, it is quite mysterious how a Chern-Simons term could be generated in

the IR flow of the SYM theory discussed earlier. This is especially a concern since the

SYM theory that flows to the fixed point in question is parity conserving. So how could

the theory be parity violating at the fixed point? In the end, we will not find such an

N = 8 theory, and maybe this is one of the reasons why.

As we have said, the problem that we would most like to solve is the explicit construc-

tion of a lagrangian for the three-dimensional CFT that has maximal supersymmetry and

is dual to M theory on AdS4 × S
7. However, most of this paper will address more modest

goals: the construction of three-dimensional gauge theories with N = 1 and N = 2 super-

symmetry and classical scale invariance. This will provide a framework for explaining why

an N = 8 super Chern-Simons theory cannot be constructed. However, it is conceivable

that one could construct a lagrangian description of the desired OSp(8|4) superconformal

theory by modifying one or more of our assumptions.

2. Supersymmetry of Chern-Simons theories

Pure Chern-Simons theory has a lagrangian that is proportional to

LCS = tr

[

εµνρ
(

Aµ∂νAρ +
2i

3
AµAνAρ

)]

. (2.1)

It gives the classical field equation

Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] = 0 . (2.2)

A curious fact about this theory is that it has any desired amount of supersymmetry, if one

simply decrees that Aµ is invariant under each of the supersymmetry transformations. The

reason this is possible is that this theory has no propagating on-shell degrees of freedom.

To prove this assertion one needs to verify the super-Poincaré algebra, especially that the

commutator of two supersymmetry transformations is a translation. Since the supersym-

metry transformation is trivial, this means that the translation symmetry transformation

should also be trivial.
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Since Aµ by itself is certainly not a complete off-shell supermultiplet, the supersym-

metry algebra should only hold on-shell. This means that in verifying the closure of the

algebra, one is allowed to use the field equation Fµν = 0. This is a familiar situation; many

of the nicest supersymmetric theories, such as N = 4 super Yang-Mills theory, do not have

a straightforward formulation in terms of off-shell supermultiplets of the full supersymme-

try algebra. So the proof of the assertion that we are making is simply to show that an

infinitesimal translation by a constant amount aρ is trivial modulo a gauge transformation

and the equations of motion. This is the case because an infinitesimal translation shifts

Aµ by aρ∂ρAµ, which differs from aρFρµ by an infinitesimal gauge transformation

δAµ = ∇µΛ = ∂µΛ+ i[Aµ,Λ] (2.3)

for the choice Λ = aρAρ. This then vanishes by the equations of motion. Of course, this

triviality of translation invariance is not a big surprise since Chern-Simons is a topological

theory.

We will be interested in coupling the Chern-Simons gauge field to other fields. For

this purpose it is convenient to have complete off-shell supermultiplets. This enables one

to combine supersymmetric expressions without substantial modification of the supersym-

metry transformation formulas, as we will see. Pure Chern-Simons theories with off-shell

supersymmetry were constructed in [5] for N = 1, 2, 4. That work did not discuss coupling

these supermultiplets to other matter supermultiplets.

3. N = 1 models

3.1 The gauge multiplet

One of the nice things about the N = 1 theories in three dimensions that we want to con-

struct is that it is easy to implement supersymmetry by using superfields. The Grassmann

coordinates of N = 1 superspace consist just of a two-component Majorana spinor. There

are two kinds of multiplets that we will be interested in: gauge multiplets and scalar multi-

plets. In this section we discuss the gauge multiplet. This superfield is a spinor. However,

in this case we find it convenient to work with the component fields that survive in the

three-dimensional analog of Wess–Zumino gauge. These are the gauge field Aµ and a Ma-

jorana two-component spinor χ. Both of these are in the adjoint representation of the Lie

algebra and can be represented as hermitean matrices in some convenient representation,

which will be specified later when they are coupled to scalar supermultiplets.

Since we are mainly interested in classical considerations in this paper, we will not

specify the overall normalization of the action at this time. This would need to be con-

sidered carefully in defining the quantum theory, of course. With this understanding we

choose the N = 1 Chern-Simons lagrangian to be

LCS = tr

[

εµνρ
(

Aµ∂νAρ +
2i

3
AµAνAρ

)

− χ̄χ

]

. (3.1)

This theory differs from the pure Chern-Simons theory discussed in the preceding section

only by the addition of the auxiliary fermi field χ. Note that the lagrangian has dimension

three for the choices dim A = 1 and dim χ = 3/2, and then the action is scale invariant.

– 4 –



J
H
E
P
1
1
(
2
0
0
4
)
0
7
8

To get off-shell closure of the supersymmetry algebra, one needs to have an equal

number of off-shell bosonic and fermionic degrees of freedom. In fact, taking account of

gauge invariance, Aµ and χ both have two off-shell modes. This ensures off-shell closure of

the supersymmetry algebra without use of equations of motion.

The infinitesimal supersymmetry transformations that leave LCS invariant (up to a

total derivative) are2

δAµ = iε̄γµχ (3.2)

and

δχ =
1

2
γµνFµν ε . (3.3)

The commutator of two supersymmetry transformations [δ1, δ2] gives the sum of a spacetime

translation by aρ = 2iε̄1γ
ρε2 and a gauge transformation by Λ = −aρAρ.

3.2 The matter theory

Let us now turn to the scalar supermultiplets, which we write in terms of superfields as

follows:

Φ = φ+ θ̄ψ +
1

2
θ̄θC . (3.4)

Let us take Φa, a = 1, 2, . . . ,dimR, to belong to a representation R of the gauge group

G. We may assume without loss of generality that R is real. Then there is no need to

make a distinction between upper and lower indices. In this section we will formulate a

scale invariant theory of the scalar superfields with global G symmetry. In the next section

we will couple this theory to the gauge supermultiplet, so as to achieve local G symmetry

while retaining global N = 1 supersymmetry.

To achieve scale invariance we assign dimension 1/2 to Φ. This implies that dim

φ = 1/2, dim ψ = 1, and dim C = 3/2. Then the most general scale-invariant theory is

given by the θ̄θ component of a dimension two superfield expression. The only possibilities

are a kinetic term of the form D̄ΦaDΦa, where D is the usual supercovariant derivative,

and an interaction term of the form W = tabcdΦ
aΦbΦcΦd. The dimensionless symmetric

tensor tabcd is restricted by the requirement of G invariance. In terms of component fields

we obtain the matter lagrangian

L0
m =

1

2
∂µφ

a∂µφa +
i

2
ψ̄aγµ∂µψ

a +
1

2
CaCa + tabcdφ

aφb
(

1

3
φcCd −

1

2
ψ̄cψd

)

. (3.5)

Note that elimination of the auxiliary field C would give a term of the structure φ6.

The supersymmetry transformations that leave this lagrangian invariant (up to a total

derivative) are

δφa = ε̄ψa = ψ̄aε (3.6)

δψa = −iγµε∂µφ
a + Caε (3.7)

δCa = −iε̄γµ∂µψ
a = i∂µψ̄

aγµε . (3.8)

2For the most part, we follow the conventions of ref. [4]. The metric has signature +−− and χ̄ = χT γ0.

(The transpose here only acts on the spinor components and not on the Lie algebra matrix.) A possible

choice of the Dirac matrices in terms of standard Pauli matrices is γ0 = σ2, γ
1 = iσ3, and γ

2 = iσ1. Note

that then γµνρ = −iεµνρ and γµν = −iεµνργρ.
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This algebra also has off-shell closure giving a translation with the same parameter as in

the case of the gauge supermultiplet.

When this system is coupled to the gauge supermultiplet, so as to achieve local G

symmetry and global supersymmetry, the supersymmetry transformations of the gauge

supermultiplet are unchanged and the supersymmetry transformations of the matter mul-

tiplets get a few additional terms (described in the next section) that are required for

them to be covariant. Then the commutator of two supersymmetry transformations of the

matter fields gives rise to a gauge transformation as well as a translation, with the same

parameters as in the case of the gauge supermultiplet discussed earlier.

3.3 The gauged theory

We can now put the ingredients together to define the most general gauge-invariant N = 1

theory that has classical scale invariance. For this purpose it is convenient to represent

the gauge fields by matrices (Aµ)
a
b and χab in the representation R of the Lie algebra.

The total lagrangian is L = LCS + Lm, where LCS is given in eq. (3.1) and Lm is eq. (3.5)

embellished by couplings to the gauge supermultiplet. The gauged matter lagrangian takes

the form

Lm =
1

2
(∇µφ)

a(∇µφ)a+
i

2
ψ̄aγµ(∇µψ)

a+
1

2
CaCa+iφaχ̄abψb+tabcdφ

aφb
[

1

3
φcCd −

1

2
ψ̄cψd

]

,

(3.9)

where ∇µΦ
a = ∂µΦ

a + i(Aµ)
abΦb.

The supersymmetry transformations of the combined system are

δAµ = iε̄γµχ (3.10)

δχ =
1

2
γµνFµν ε (3.11)

δφa = ε̄ψa (3.12)

δψa = −iγµε(∇µφ)
a + Caε (3.13)

δCa = −iε̄γµ(∇µψ)
a + iε̄χabφb . (3.14)

The only change from before is the replacement of ordinary derivatives by covariant deriva-

tives and the addition of the second term in δCa.

4. N = 2 models

Let us now try to find models that have N = 2 supersymmetry. Since N = 2 in three

dimensions is closely related to N = 1 in four dimensions, and also has a U(1) R symmetry,

a complex notation is convenient. For previous related work see [6]–[8].

4.1 The gauge multiplet

The Chern-Simons part of the action is constructed out of a vector supermultiplet that can

be obtained by dimensional reduction of a four-dimensional N = 1 supermultiplet. In four

dimensions the multiplet contains a gauge field Aµ, a four-component Majorana spinor χ,

– 6 –
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and a real scalar D. On reduction to three dimensions, the gauge field gives a three-vector

gauge field Aµ and a scalar σ, corresponding to the component A3 in four dimensions. The

spinor can be recast as a two-component Dirac spinor χ, and we still have the scalar D.

Off-shell there are four bosonic and four fermionic degrees of freedom. In the Chern-Simons

theory that we will construct, there are no propagating on-shell degrees of freedom.

Note that the dimension of Aµ and σ is 1, the dimension of χ is 3/2, and the dimension

of D is 2. In terms of an infinitesimal Dirac spinor ε, the supersymmetry transformations

for a nonabelian gauge multiplet are the following

δAµ =
i

2
(ε̄γµχ− χ̄γµε) (4.1)

δσ =
i

2
(ε̄χ− χ̄ε) (4.2)

δD =
1

2
(ε̄γµ∇µχ+∇µχ̄γ

µε) +
i

2
(ε̄[χ, σ] + [χ̄, σ]ε) (4.3)

δχ =

(

1

2
γµνFµν − iD − γ

µ∇µσ

)

ε . (4.4)

The hermitean conjugate of the last formula is

δχ̄ = ε̄

(

−
1

2
γµνFµν + iD − γµ∇µσ

)

. (4.5)

The commutator of two supersymmetry transformations gives a translation by an amount

aρ = i(ε̄1γ
ρε2 − ε̄2γ

ρε1) (4.6)

and a gauge transformation with parameter

Λ = −aρAρ + i(ε̄1ε2 − ε̄2ε1)σ. (4.7)

We can now construct a supersymmetric Chern-Simons action out of this supermulti-

plet. The result is

LCS = tr

[

εµνρ
(

Aµ∂νAρ +
2i

3
AµAνAρ

)

− χ̄χ+ 2Dσ

]

. (4.8)

Note that each of the terms is dimension three.

4.2 The matter theory

The notation now is that the index for the matter representation R of the gauge group

G is not displayed explicitly, but another index A labelling repetitions of R is displayed.

If the matter representation R is complex, let us use the notation (ΦA)? = ΦA to distin-

guish holomorphic fields and their antiholomorphic conjugates. These can be identified as

three-dimensional counterparts of chiral and antichiral superfields in four dimensions. The

multiplet contains a complex scalar φA of dimension 1/2, a Dirac two-component spinor

ψA of dimension 1, and a complex auxiliary scalar F of dimension 3/2. We also have the

following R charge assignments: φA has R charge 1/2, ψA has R charge −1/2, and FA

– 7 –
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has R charge −3/2. (The conjugates take the negatives of these values, of course.) These

conventions correspond to the holomorphic superspace coordinate θ having R charge 1,

and the supersymmetry parameter ε having R charge −1.

We can now write down the supersymmetry transformations for this multiplet. They

are

δφA = ε̄ψA (4.9)

δψA = −iγµ∂µφ
Aε+ FAε? (4.10)

δFA = −iε̄?γµ∂µψ
A . (4.11)

These formulas are determined, up to coefficients, by dimensional analysis and R symmetry.

One can verify that the supersymmetry algebra closes off-shell giving the same translation

parameter as for the gauge multiplet.

The N = 2 supersymmetric matter lagrangian takes the form

Lm = ∂µφA∂
µφA + iψ̄Aγ

µ∂µψ
A + FAF

A +WF +W ?
F . (4.12)

Here WF and W ?
F represent superpotential F-terms, which need to be quartic for scale

invariance. As before, they give terms of the form φ2ψ2 and φ3F . The overall normalization

of the lagrangian is arbitrary.

4.3 The gauged theory

In the gauged theory the supersymmetry transformations of the matter supermultiplet take

the form

δφA = ε̄ψA (4.13)

δψA = (−iγµ∇µφ
A − σφA)ε+ FAε? (4.14)

δFA = ε̄?(−iγµ∇µψ
A + iχφA + σψA) . (4.15)

For these rules the commutator of two supersymmetry transformations gives a translation

and a gauge transformation with the same parameters as for the gauge supermultiplet.

The matter lagrangian that is invariant (up to a total derivative) under these trans-

formations is

Lm = (∇µφ)A(∇
µφ)A + iψ̄Aγ

µ(∇µψ)
A + FAF

A −

−φAσ
2φA + φADφ

A − ψ̄Aσψ
A + iφAχ̄ψ

A − iψ̄Aχφ
A +WF +W ?

F . (4.16)

Combining this with the Chern-Simons terms in eq. (4.8), it is straightforward to eliminate

the auxiliary fields σ, D, χ, and F . This gives rise to various φ2ψ2 and φ6 terms.

5. The N = 8 theory?

The free U(1) theory that is the low-energy effective world-sheet theory of an M2-brane

in 11 dimensions is well-known [9, 10]. The matter field content consists of scalars φI in

the 8v representation of Spin(8) and Majorana spinors ψA in the 8s representation. The

– 8 –
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eight supersymmetries belong to the 8c representation, and the parameters can be denoted

εȦ. The assignment of these representations is arbitrary, because of triality symmetry.

However, the association of the scalars with the vector representation is a natural choice,

because they describe excitations of the M2-brane in the eight transverse directions. If

one were to add a decoupled U(1) gauge field described by a Chern-Simons action, this

would be rather inconsequential, since it has no propagating degrees of freedom and is

supersymmetric by itself, as was explained in section 2.

The free matter lagrangian is

Lm = ∂µφ
I∂µφI + iψ̄Aγµ∂µψ

A . (5.1)

This is invariant (up to total derivatives) under the supersymmetry transformations

δφI = ε̄ȦΓI
ȦA
ψA (5.2)

δψA = −iΓI
AȦ
γµ∂µφ

IεȦ , (5.3)

where ΓI
ȦA

and its transpose are invariant tensors that describe the coupling of the three

8s of Spin(8). This is the same structure as in the two-dimensional light-cone gauge world-

sheet action for the type IIB superstring in the GS formalism. (The IIA theory uses

different representations for left-movers and right-movers.)

The problem now is to find the three-dimensional theory that describes N coincident

M2-branes and is the CFT dual of M theory on AdS4 × S7 with N units of flux through

the seven-sphere. By analogy with the duality between N = 4 SYM theory and type

IIB superstring theory on AdS5 × S5, it is natural to expect that we need a U(N) gauge

theory (in which the U(1) component decouples) with the matter fields in the adjoint

representation. This would be consistent with the idea that they are part of the same

supermultiplet as the gauge fields. In that case, it is convenient to represent them by

N × N hermitean matrices. There are reasons for concern, however. One is that the

number of degrees of freedom should scale as N 3/2 for large N [11], whereas the type of

construction we are contemplating would appear to give an N 2 scaling. Another concern

is the parity-conservation issue described in the introduction. We proceed nonetheless

with the justification that the existence or nonexistence of an N = 8 U(N) Chern-Simons

theory with the indicated field content is of intrinsic interest irrespective of any possible

applications.

A possible approach for constructing the interacting N = 8 theory is to specialize

the N = 2 results obtained above to the case where the representation R consists of

four complex copies of the adjoint representation. This gives the right field content, and

it allows us to make an SU(4) global symmetry (in addition to the U(1) R symmetry)

manifest. Once this is achieved, we can try to establish the full N = 8 structure with its

Spin(8) R symmetry. This approach is analogous to formulating N = 4 SYM theory in

terms of N = 1 superfields. In that formulation only a U(1) × SU(3) subgroup of the full

SU(4) R symmetry is manifest.

In the N = 4 SYM construction there is a superpotential W = λ εABC tr(ΦAΦBΦC).

When the coefficient λ is given the appropriate value, the manifest SU(3)×U(1) symmetry

extends to SU(4), and one obtains N = 4 SYM. In the present problem it seems reasonable

– 9 –
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to expect an analogous story in which the manifest SU(4) × U(1) symmetry extends to

Spin(8). The superpotential is constructed out of four superfields in the 4 of SU(4). So the

analogous superpotential would seem to be λ εABCD tr(ΦAΦBΦCΦD). Unfortunately, this

vanishes due to the conflicting symmetries of the trace and the epsilon symbol.

The only nonzero possibility appears to be εABCD tr(ΦA) tr(ΦBΦCΦD). Such a formula

would imply that the singlet component of the U(N) fields couples nontrivially. This

conflicts with the structure of the rest of the theory, as well as with all expectations.

Thus it appears that there cannot be a superpotential. However, without a superpotential

contribution, the rest of the theory does not have the desired SO(8) symmetry. This

argument constitutes rather strong evidence against the existence of an N = 8 theory, at

least within the general framework that is being considered here. However, as a check, the

problem was also analyzed in terms of component fields with the same conclusion.

6. Discussion

We have constructed a class of scale-invariant three-dimensional gauge theories with N = 1

and N = 2 supersymmetry, which may be of some interest. For example, gauge theories

with three-dimensional conformal invariance could have condensed matter applications [12].

However, our main goal, the construction of scale-invariant gauge theories with N = 8

supersymmetry, has not been achieved. There should be a superconformal dual to M

theory on AdS4×S
7, but since the desired properties are only required at strong coupling,

realized as a nontrivial IR fixed point [13]–[15], there need not be a classical lagrangian

description.

If N = 8 theories of the type that were sought had been shown to exist, there are some

interesting questions concerning the AdS/CFT duality that would have arisen. One is

the parity issue discussed in the introduction: Chern-Simons theories are parity violating,

whereas the super Yang-Mills theory which is supposed to flow to the desired conformal

field theory in the IR is not parity violating. Also, M theory is parity conserving. Another

concerns the level of the quantum Chern-Simons theory. The N = 8 gauge theory would be

characterized by two integers: N (the rank of the gauge group) and k (the Chern-Simons

level). The level k is expected to be an integer, because the boundary of the Euclideanized

M theory geometry is a three-sphere. The gauge coupling would be g2 ∼ 1/k. There would

be no other continuous parameters. However, two integers is already more than is expected,

because the dual geometry is characterized entirely by one integer, the flux through the

seven-sphere.

An interesting possibility is that superconformal Chern-Simons theories of the type

described here could be dual to AdS4×K compactifications of the massive (Romans) variant

of type IIA superstring theory [16].3 The quantized Romans’ mass should correspond to the

Chern-Simons level. AdS4×K solutions of massive type IIA supergravity with N = 1, 2, 4

supersymmetry are described in [17, 18]. To pursue this one would also want to study the

superconformal symmetry of any proposed dual Chern-Simons theories at the quantum

level. (For references on renormalization properties of Chern-Simons theories see [19]–[21].)

3I am grateful to Nikita Nekrasov and Greg Moore for this suggestion.
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In conclusion, we have constructed large classes of N = 1 and N = 2 classical super-

conformal Chern-Simons theories, which may be of some interest, but there is no classical

N = 8 lagrangian of this type. Moreover, it seems reasonable that there should be no

classical lagrangian description of the conformal field theory that is dual to M theory on

an AdS4 × S
7 background.
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