Journal of High Energy Physics

You may also like

High overtones of Schwarzschild-de-Sitter *Slsociatve exciation of molecular ions by

electron impact

q uaS| normal SpeCtru m A A Narits, K S Kislov and V S Lebedev

- Global solvability and stabilization to a

. . . . cancer invasion model with remodelling of
To cite this article: Roman A. Konoplya and Alexander Zhidenko JHEP06(2004)037 ECM

Chunhua Jin

- Spectroscopic and photometric studies of
a candidate pulsating star in an eclipsing
binary: V948 Her
Filiz Kahraman Alicavu

View the article online for updates and enhancements.

This content was downloaded from IP address 3.139.78.149 on 10/05/2024 at 02:28


https://doi.org/10.1088/1126-6708/2004/06/037
/article/10.1088/1361-6455/aba3a7
/article/10.1088/1361-6455/aba3a7
/article/10.1088/1361-6455/aba3a7
/article/10.1088/1361-6544/ab9249
/article/10.1088/1361-6544/ab9249
/article/10.1088/1361-6544/ab9249
/article/10.1088/1674-4527/18/7/87
/article/10.1088/1674-4527/18/7/87
/article/10.1088/1674-4527/18/7/87

PUBLISHED BY INSTITUTE OF PHYSICS PUBLISHING FOR SISSA /ISAS

RECEIVED: June 16, 200/
REVISED: June 19, 2004
ACCEPTED: June 19, 200/

I

High overtones of Schwarzschild-de-Sitter quasinormal
spectrum

Roman A. Konoplya and Alexander Zhidenko

Department of Physics, Dniepropetrovsk National University
St. Naukova 13, Dniepropetrovsk 49050, Ukraine
E-mail: konoplya_roma@yahoo.con|, Fhidenko®ff.dsu.dp.ua|

ABSTRACT: We find the high overtones of gravitational and electromagnetic quasinormal
spectrum of the Schwarzschild-de Sitter black hole. The calculations show that the real
parts of the electromagnetic modes asymptotically approach zero. The gravitational modes
show more peculiar behavior at large n: the real part oscillates as a function of imaginary
even for very high overtones and these oscillations settles to some “profile” which just
repeats itself with further increasing of the overtone number n. This lets us judge that
Rew is not a constant as n — oo but rather some oscillating function. The spacing for
imaginary part Imw,, 1 —Imw, for electromagnetic perturbations at high n slowly approach
ke as n — 00, where k. is the surface gravity. In addition we find the lower QN modes
for which the values obtained with numerical methods are in a very good agreement with
those obtained through the 6th order WKB technique.
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1. Introduction

Quasinormal (QN) modes of black holes are of considerable interest recently because of
their interpretation in ADS/CFT correspondence [[]-[f], and of possibility to detect grav-
itational waves from black holes [§]. Recently it has been observed that the quasinormal
modes can play a fundamental role in Loop Quantum Gravity (LQG) [f: for asymp-
totically flat black holes it has been found that the asymptotic value of the real part of
the quasinormal frequency (i.e. when the overtone approaches infinity) coincides with
the Barbero-Immirizi parameter, which must be fixed to predict the Bekenstein-Hawking
formula for entropy within the framework of LQG. All this stimulated development of dif-
ferent approaches to calculation of quasinormal modes [[[0]. In particular, the analytical
expression for asymptotically high QN modes of D-dimensional Schwarzschild black hole
was obtained in [[L1], [].

The asymptotic overtone quasinormal behavior was studied by Nollert [[3] for the
Schwarzschild black hole (see [[j]), and in [f] for the Schwarzschild anti-de Sitter black hole.
Yet there is no such study for Schwarzschild-de Sitter black hole (SdS BH), except for near
extremal case [[4]. By using the 6th order WKB technique the low lying modes of SdS
BH were estimated in [[J]. In the work [[[], the low lying QN modes for gravitational
perturbations of Schwarzschild-de Sitter black hole were obtained with the help of the
Leaver method [[[7]. In [L§] it was found the low lying QN modes for higher (> 4) dimen-
sional Schwarzschild black hole with different values of lambda term; this includes cases of
Schwarzschild, Schwarzschild-de Sitter, and Schwarzschild-anti-de Sitter black holes.



For the higher QN modes of the near extremal SdS BH, in [[4] it was shown that
in contrast to asymptotically flat SBH, the QN spectrum of SdS BH have oscillatory be-
havior: the real part oscillates as a function of imaginary. Recently there appeared a
lot of works using different numerical and analytical approaches devoted to near extremal
Schwarzschild-de-Sitter quasinormal spectrum [R0].

In this paper we make numerical investigation of the high overtones of Schwarzschild-
de-Sitter quasinormal spectrum. We show that at very high overtones the real parts of the
gravitational QN modes oscillates as a function of imaginary part. Thus the real part of
w does not go to any constant limit and, thereby, the interpretation of the asymptotic QN
frequency as those connected with the Barbero-Immirizi parameter in LQG is impossible.
We also show that the real part of the electromagnetic QN modes approaches zero as an
overtone number goes to infinity. At high overtones the QN spectrum shows rather peculiar
behavior of some periodic weaving. The numerical results at high overtones are in a very
good agreement with recent analytical (algebraic) equations which govern the asymptotic
behavior, while the lower overtones are in a good agreement with those obtained earlier
with the 6-th order WKB method.

The paper is organized as follows. In section P| there are basic formulas of SdS back-
ground for Nollert technique. Section [is devoted to the low (first ten) overtones. Section ff

deals with very high overtones which let us judge about overtone asymptotic behavior.

2. Basic equations

The Schwarzschild-de-Sitter black hole is described by the metric

2M 2
———A%g do® = db® + sin® 0dg? , (2.1)
r
where M is the black hole mass, A is the cosmological constant.
It is well known that the perturbation equations can be reduced to the Schrédinger

wave-like equation

d2 2 * *
<mw*WJ—v@)>ww):o, (2.2)
by using the so-called tortoise coordinate:
d
dr = = (2.3)

Under the choice of the positive sign of the real part of w, QNMs satisfy the following
boundary conditions

U(r*) ~ Cy exp(Liwr™), r — 400, (2.4)

corresponding to purely in-going waves at the event horizon and purely out-going waves at
the cosmological horizon.
The effective potential is given by

Vi) = 1)

where ¢ = 3 for gravitational perturbations and € = 0 for electromagnetic ones.

l(l:; 1) _2%6)7 (2.5)



The appropriate Frobenius series are

1 1\* /1 1\ /1 1\t /r—1/re \"
Uy =(=—— ——= = o S5 (2.6
") <7" re> (rc 7") (r * re—l—rc) ,;oa (1/rc— 1/re> (2:6)

where 7. is the event horizon, r. is the cosmological horizon, p, and p. are determined by

wre (1 1IN/ 1\ T (1 1\t
elwr - <_ - _> <_ - _> <_+ > ’ (2‘7)
r Te Te T T Te + Te

and one can find

T oM (1/re — 1/re) (1 (re + o) + /1) 7 2M (1/re — 1/1e) (1) (re + 1) + 1/10)

Substituting (2.6) into (R.2), we obtain the three-terms recurrent relation for a,,

Pe

Ap+100p + anﬁn + ap_1Yn = 0, n >0, Yo = 0, (28)
where the coefficients «, 3,7 have the form:

Te(re +2re)(1+n+2pe)?  2rere(1+n+2p.) .

Qp = 7“2 ¥ rore —1—7”3 + — W
2 2 1)(2r2 +2 —r2
ﬂn — _(n + pe)(n + 2p€ + )( Tc2+ Tcle Te) _ l(l + 1) + ;C(rc +Te) 5
Te +Trere +7¢ re+rere + 1
7"3 - 7“3 2
Tn= = (n+2p)2—1—¢6). (2.9)

T2 4 rere + 12
Following Leaver [[[7] we are searching QNMs as the most stable roots of
Qp—17n B QnYn+1

/Bn - /3 _ On—29Yn—1 - /3 _ An+17Yn+2
n—1 ﬁn—Q*an—S'Yn—Q/--- n+1 ﬁn+2*an+27n+3/---

(2.10)

The infinite continued fraction on the right side of the equation (R.10]) converges worse if the
imaginary part of w increases with respect to the real part. This problem was circumvented

by Nollert [LJ]. He considered
TN N

Ry = N = : (2.11)
AN — BNt1—aNt1YN+2/ P — anRy+1
Making use of the recurrence relation (P.11)) one can find for large N:
RN:CO+01N71/2+CQN71+C3N73/2... , (2.12)
where
N
re(re +2re)’
O — + 2r2r, + 5rer2 + 27“23— 2(r3 + r2)reiw — 4(re + re)r2reiw 7 Re(C); > 0.
T3+ Arere(re 4+ re)
etc.



The series (R.19) converge for |w|/N < A < oo, so we can use this approximation
for Ry inside the continued fraction for some N > —Im(w) ~ n. In practice to find an
appropriate N we increase it until the result of the continued fraction calculations does not
change. If one is limited by the near extremal SdS black hole the imaginary part, being
proportional ro surface gravity, is still small in this limit, and, one can use the Frobenius
method without Nollert modification [[[4] which includes expansion in N. For non extremal
values of A the situation is more complex and we have to deal with Nollert technique as
described above.

3. Lower overtones

Here we present results of calculation for first ten overtones for different values of A and
[ (see Appendix in this paper). It turned out that the lower overtones obtained here with
the help of Leaver method are in a very good agreement with those obtained through the
6th order WKB method [R3]. Thus for example for A = 0.02 and [ = 2 gravitational
perturbations from the 6th order WKB approach we have for the fundamental overtone
(n =0) w = 0.3384 — 0.817i while from the continued fraction we obtain w = 0.33839143 —
0.08175645:. For electromagnetic perturbations with [ = 1 n = 0 we have w = 0.2259 —
0.0842¢ and w = 0.22594346 — 0.08410383¢ from the 6th order WKB formula and from
continued fractions respectively. Note that the pure imaginary algebraically special value
for | = 2 gravitational perturbations which corresponds to the 8th mode “move” to the
9th mode for A = 0.02 and to the higher mode for greater A. When the A is growing both
the real and the imaginary parts of w are decreasing, i.e. modes damp more slowly and
oscillates with greater real frequency. In the near extremal regime, i.e. when the A term is
close to its extremal value 1/9 (M = 1), the effective potential approaches the Poschl-Teller
potential and only several first modes are well described by the formula:

wb:—<n+%>¢+ 5(z+1)—i (3.1)

for scalar and electromagnetic perturbations, and by

1 1
wb:—<n+§>i+\/(l+2)(l—1)—1 (3.2)
for gravitational (axial) perturbations. Here

54 M3
b= 3M .
(re —3M)(ro + 6M)> ¢

Note that the gravitational perturbations can be divided into the two kinds which can
be treated separately: axial (symmetric with respect to the change ¢ — —¢) and polar.
In [R] it was shown both numerically and analytically that there is the isospectrality
between these two kinds of perturbations, i.e. they both induce the same QN spectrum.
That is why we treat here only the axial type of gravitational perturbations.



4. High overtones

Finding of very high overtones is a time consuming procedure since the “length” of the
continued fractions must be large enough. When we give for example the 100000th overtone
that does not mean that we found all the previous 99999 modes; that would require an
enormous amount of time. Yet we choose those modes to calculate which would characterize
the structure of the quasinormal spectrum at high overtones.

4.1 Gravitational perturbations

We state that gravitational quasinormal spectrum of SdS black hole at asymptotically high
overtones shows oscillatory behavior: the real part of w oscillates as a function of imaginary
part and thus does not approach any constant value. We have checked this for very high
overtones (see for example figure [ where computations performed up to n ~ 165000 ). The
same behavior for the real part of w was observed in the near extremal regime of A [[4].

The imaginary part of w is roughly proportional to n at large n and thereby can be
approximately described by the formula:

Im(w) =~ —k. <n + 5) i n,— 00, (4.1)

where k. is the surface gravity at the event horizon.
Yet, this formula is not exact even for asymptotically high overtones since the spacing
between nearby overtones Im(w;,+1) — Im(w,,) shows very peculiar dependence on n (see as

Re w
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Figure 1: Real part of w as a function of imaginary part for some values of n = 103,2-103,.... In

addition to this “large-scale” oscillation there is another sub-oscillations when considering nearby
overtones (see for example figure fl). (I = 2 gravitational modes, A = 0.02).
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Figure 2: Real part of w as a function of imaginary part (I = 2 gravitational modes, A = 0.02).
From the first sight these modes can be misunderstood as just a numerical noise. Yet if pictured in
a wider scale like on figure H they show strict periodic structure.
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Figure 3: Real part of w as a function of imaginary part (I = 1 electromagnetic modes, A = 0.02).

an example figure fl). From the first sight at figures P] and [ one could conclude that we
have with numerical noise, yet if drawing the difference Im(w;,11) —Im(w,,) as a function of
n in a greater scale (figure f), we see that Im(w,, ;1) —Im(w,,) shows quite ordered repeated



structures thus the behavior is periodic. It is important that these periodic weaves do not
have tendency of damping, i.e. the spacing does not approach k. however the average value
of spacing over sufficiently large number of modes equals k.:

n=Ns
1 —1
E (Im(wn1) = Im(wn)) ~ ke, n is large. (4.2)
Ny — Ny
n=N1

That is why the approximate formula (f.1]) is valid. The true asymptotic formula, appar-
ently, must have the form:

Im(w) ~ —i <<n + %) ke + f(n)> . n— oo, (4.3)

where f(n) is some analytically unknown part consisting of small deviations from k. similar
to those shown on the figure . The average value of f(n) in the sense of the formula (|L.2)
equals zero.

The oscillations of real part of w as a function of imaginary part have very complicated
form: the nearby overtones suffer from violate oscillations with lots of maximums and
minimums similar to those shown on figure Pl These peaks form a larger wavy line like
that shown on figure . Thus there is little hope to find a simple analytical expression
which could describe these oscillations.

An important question is how we can judge whether the computed overtones are high
enough to reflect the true asymptotic behavior?. We are sure that at a sufficiently large n
the oscillations have a stable “profile” which just repeats itself with further increase of n.
We can see the approaching of such a “final” profile on figure [i}

4.2 Electromagnetic perturbations

Electromagnetic perturbations show rather different behavior at high overtones: also there
are oscillations of real part as a function of imaginary part, these oscillations damp when
increasing the overtone number (see figure [ as an example). Thus the real part of w
asymptotically approaches zero. We have checked already that at n ~ 5000 real part of w
is vanishing and we have not found QN modes with non-vanishing real part at higher n at
all.

The imaginary part of electromagnetic QN modes shows the same behavior at high
overtones as the gravitational modes do. That is, even though the imaginary part of w is

roughly proportional to n at large n, the spacing weaves as a function of n with average

n=Na (Im(wp+1)—Im(wn))
value ) "~ N e

On contrary to gravitational perturbations, these weaves of the spacing of Im(w) damp and

~ ke, (n is large) over sufficiently large quantity of modes.
for very high n it is approaching the equidistant spectrum:

Im(w) = —ke <n + %) i, n—oo. (4.4)



o
o HIEN
43 - o
153 =1
< o
S ] o
s}
o —
- ®
©
| o
-4 ©
o
o
43 |
o
o
4 ©
| o
5 |
4 <
©
) o
4 <
o
o
4 |
©
o
| BN
o
o |
=4 S
©
IS
g g >
e e e S T S T I I I
< [To) ™ Te} N [T} — 3
®» & 9§ 4N e & & & 9 d
N . N ~ . P P . ~
. o . o . (=} o I} I
o o =} S S S

Figure 4: The spacing Im(w,+1) — Im(w,,) as a function of n for gravitational perturbations,
(A =0.02, M = 1,1 = 2) for large n. The spacing shows peculiar behavior which is NOT a
numerical noise, since it is strictly periodic (continued).
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5. Comparison with analytic formulas

After the first version of this work has been appeared [R5, V. Cardoso, J. Natarrio and
R. Schiappa [Rf] managed to find an analytical expression for n — oo QN behavior. They
found that the gravitational modes must obey the following algebraic equation

cosh <E - E) + 3 cosh <E + E) =0

ke ke ke ke (5:1)

takes place for the asymptotically high (n — oo) gravitational modes (k. is the surface
gravity at the cosmological horizon.). While for electromagnetic modes they obtained the

1 1
w:i<n+§>ke or w:i<n—|—§>kzc.

First of all the numerical data shown on figure [I] are in a good agreement with the above

two possibilities

(5.2)

asymptotic formula for gravitational perturbations and the more n the closer numerical
values to its analytical values, and, thereby, the better the QN modes obey the algebraic

equations (p.1]).
asymptotical. Yet the formula (p.J]) does not predict the asymptotic behavior of imaginary

The difference is quite understood, since complete coincidence is only
part as a function of overtone number. It only connects the real and imaginary parts
within one algebraic equation. From the approximate relation ({.2), one could expect that
at some very high n one could observe the equdistant spectrum like w = i(n + 1/2)k.. We
have not observed any signs of it, since the weaves of the spacing of imaginary part do not
show any tendency to damping.

As to electromagnetic perturbations we observed that the asymptotic formula w =
i(n + 1/2)k. is really true. That is, the greater n the closer QN modes to the values
w =1i(n+ 1/2)k.. This is difficult to see for not very high overtones, but the coincidence

Numerical result Asymptotical formula

0.039314 — 9783.906062:
0.038492 — 10228.6244221
0.037073 — 20012.4255744
0.037659 — 20457.144537:
0.038318 — 29351.5070864
0.039824 — 30240.9433031
0.039026 — 38245.8692484
0.040054 — 38912.9461621
0.041107 — 40024.7403684
0.041214 — 40247.099158:
0.041326 — 40691.8167164
0.041329 — 40914.1754911
0.041299 — 41136.5342674

0.037864 — 9783.907040¢
0.037008 — 10228.625519:
0.036309 — 20012.426688:
0.037042 — 20457.1455671
0.037857 — 29351.5078661
0.039382 — 30240.943943:
0.038636 — 38245.8698691
0.039657 — 38912.9467031
0.040668 — 40024.7408241
0.040764 — 40247.0996027
0.040852 — 40691.8171413
0.040843 — 40914.175908:
0.040800 — 41136.5346761

Table 1: Comparison of numerical results shown on figure ﬂ with the algebraic equation of (@)

,10,




Numerical result Asymptotical formula
A =0.02
analytical numerical
0 — 2223.590486¢(n = 10000) 0 — 2223.5905861
0 — 4447.180971i(n = 20000) 0 — 4447.181020¢
0 — 44471.809715i(n = 200000) 0 — 44471.8097201
A =0.05
0 — 1761.123825i(n = 10000) 0—1761.123919;
0 — 3522.247649i(n = 20000) 0 — 3522.247699:
0 — 35222.476494i(n = 200000) 0 — 35222.476499:

Table 2: Comparison of numerical results for electromagnetic [ = 1 modes with the algebraic
equation of @

of numerical and analytical results is very accurate for sufficiently high overtones. An
instance of this approaching asymptotic regime is demonstrated on the table [

At the same time we have not found any QN modes close to w = i(n + 1/2)k. at high
n. This agrees with alternative choise of either w = i(n + 1/2)k. or w = i(n + 1/2)k.
predictions.

Thus our numerical data confirm the analytic results very well. This agreement be-
tween numerical and analytical results also stated in the paper [P6].

6. Conclusion

We have shown that even at very large overtone number the real part of the gravitational
quasinormal frequency of SdS black hole oscillates as a function of imaginary part and these
oscillations do not have any tendency to damping, i.e. the real part of w asymptotically
does not approach any constant value. On contrary to gravitational modes, real part of
electromagnetic modes oscillates as well but these oscillations are damping with the growing
of the overtone number and the real part asymptotically approaches zero.

In the case of Schwarzschild black hole the interpretation of the asymptotic value
for quasinormal frequency is known [B]: the real part of it coincides with the Barbero-
Immirizi parameter. We see that such a direct correspondence should be impossible for
Schwarzschild de Sitter background, since the asymptotic value for quasinormal frequency
is not a constant. Thus the possible connection of the QN frequency with the Barbero-
Immirizi parameter in LQG is still an open question for Schwarzschild de Sitter black
hole.
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A. Lower overtones for electromagnetic and gravitational perturbations

QNMs (electromagnetic)

wM (AM?=10.02,1=1)

wM (AM? =0.02, [ = 2)

© 0 DU W= OS

—
o

0.22594346 — 0.084103831
0.19922380 — 0.26307549:
0.16431511 — 0.466815874%
0.13802472 — 0.685342321
0.11984831 — 0.908080564
0.10660509 — 1.131660673
0.09637285 — 1.35538999:
0.08827708 — 1.57881240:
0.08124026 — 1.80213441:
0.07574049 — 2.025431703
0.07054630 — 2.247953384

0.41502231 — 0.08614382:
0.39900686 — 0.262009741
0.37040634 — 0.448525164
0.33705175 — 0.649535541
0.30647368 — 0.862423261
0.28135476 — 1.082054131
0.26123915 — 1.304842845
0.24497392 — 1.52897807:
0.23156338 — 1.75362819:
0.22028242 — 1.97841759;
0.21062074 — 2.20317743:

wM (AM? =0.04,1=1)

wM (AM? =0.04, ] = 2)

© 00 DU W~ oS

[t
(]

0.20061096 — 0.07472608:
0.18121373 — 0.230128343
0.15204473 — 0.403812124
0.12839123 — 0.591464164
0.11182397 — 0.783988184
0.09989826 — 0.976951411
0.09013754 — 1.17106475%
0.08368248 — 1.36405979¢
0.07599793 — 1.557181534
0.07240721 — 1.75138650:
0.06703704 — 1.94219038:

0.36722808 — 0.076238761
0.35602130 — 0.230646064
0.33469636 — 0.391451123
0.30755559 — 0.56281639:
0.28092911 — 0.744631941
0.25829220 — 0.933180154
0.23991905 — 1.12512639:¢
0.22500213 — 1.31861131:
0.21269507 — 1.51274409:
0.20235705 — 1.707104445
0.19350620 — 1.90149978:

wM (AM? =0.06, 1 =1)

wM (AM? =0.06, | = 2)

© 00 DU W= OS

—_
o

0.17089050 — 0.063809121
0.15891839 — 0.19374672¢
0.13694710 — 0.334390451
0.11659604 — 0.487680531%
0.10180201 — 0.64613954:
0.09084565 — 0.805998621
0.08218828 — 0.966054173
0.07497191 — 1.12581591%
0.06886092 — 1.28497681:
0.06398420 — 1.443448501
0.06059324 — 1.601676221

0.31181526 — 0.064778184
0.30497404 — 0.195150601
0.29124711 — 0.32841879:
0.27176423 — 0.467631057
0.25033424 — 0.61479838:
0.23083347 — 0.768434561
0.21454829 — 0.92579233:
0.20119758 — 1.08497949:
0.19016038 — 1.245006141
0.18088812 — 1.405388431
0.17296716 — 1.565890084

- 12 —




wM (AM? =0.09, [ = 1)

wM (AM? =0.09, | = 2)

© 00 U W~ O3

[t
(]

0.11053646 — 0.04153633:
0.10759439 — 0.124783864
0.10125456 — 0.20875361:
0.09045512 — 0.295249911
0.07890420 — 0.39018591%
0.07225731 — 0.48374011%
0.06380747 — 0.58344049:
0.06207673 — 0.677268784
0.05339164 — 0.77726919:
0.05559083 — 0.871871441
0.04543452 — 0.968877221

0.20085020 — 0.041803061
0.19907499 — 0.12548885:
0.19544199 — 0.209441617
0.18978198 — 0.293953621
0.18187205 — 0.379582301
0.17175342 — 0.467450821
0.16090315 — 0.558815941
0.15106524 — 0.652645764
0.14249130 — 0.74847390:
0.13546731 — 0.844577773
0.12914704 — 0.94185889:

wM (AM?=0.11,1=1)

wM (AM? =0.11, [ = 2)

© 00 DU AW NN = OS

—_
o

0.02545378 — 0.00961749¢
0.02542082 — 0.028852551
0.02535465 — 0.048087874%
0.02525473 — 0.06732363:
0.02512026 — 0.086560064¢
0.02495008 — 0.10579737:
0.02474268 — 0.125035864
0.02449607 — 0.14427589:
0.02420768 — 0.163517884
0.02387424 — 0.182762441
0.02349147 — 0.202010364

0.04614431 — 0.009620731
0.04612347 — 0.028862231
0.04608172 — 0.048103864
0.04601892 — 0.06734573:
0.04593488 — 0.086587931
0.04582932 — 0.10583057:
0.04570190 — 0.12507377:
0.04555216 — 0.144317643
0.04537960 — 0.163562331
0.04518356 — 0.182808001
0.04496330 — 0.202054831

QNMs (gravitational)

wM (AM? =0.02, 1 =2)

wM (AM? =0.02, | = 3)

© 00 DU W N~ OS

[t
(]

0.33839143 — 0.08175645:
0.31875867 — 0.249196631
0.28273218 — 0.42948412;
0.24054151 — 0.62819192:
0.20194822 — 0.841009664
0.16891621 — 1.060959941
0.13944328 — 1.284171534
0.11044868 — 1.509355421
0.07677592 — 1.73728467:
0.00000000 — 1.984035664
0.05371227 — 2.270387621

0.54311488 — 0.084495721
0.53074425 — 0.25536311%
0.50701532 — 0.432058841
0.47483507 — 0.618394521
0.43911708 — 0.816240201
0.40465171 — 1.024296584
0.37401137 — 1.23949553:
0.34769654 — 1.459002641
0.32524173 — 1.680920841
0.30595356 — 1.90413890:
0.28919474 — 2.12803551%
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wM (AM? =0.04, 1 = 2)

wM (AM? =0.04, | = 3)

© 00 U W~ O3

[t
(]

0.29889472 — 0.07329668:
0.28584094 — 0.221724153
0.25999193 — 0.37709218:
0.22627597 — 0.545582611%
0.19342155 — 0.726905411%
0.16520278 — 0.915580174%
0.14087547 — 1.107577334
0.11886442 — 1.301354031
0.09700714 — 1.49561599:
0.07243555 — 1.69317330:
0.03639911 — 1.889913831

0.48005752 — 0.07514635:¢
0.47165827 — 0.226394841
0.45501064 — 0.38077311:
0.43107569 — 0.540986041
0.40254385 — 0.709462301
0.37329553 — 0.88660299¢
0.34628879 — 1.070597584
0.32264813 — 1.259055401
0.30231712 — 1.450134473
0.28481977 — 1.642681827
0.26963306 — 1.836029241

wM (AM? =0.06, [ = 2)

wM (AM? =0.06, | = 3)

© 00 DU AW NN = OS

—_
o

0.25328922 — 0.063042531
0.24574200 — 0.189791041
0.23007644 — 0.319157254
0.20669673 — 0.45518321:
0.18068220 — 0.60121128:
0.15723866 — 0.754771564
0.13729735 — 0.91211670:
0.11998413 — 1.071144164
0.10425546 — 1.230892384
0.08916814 — 1.390919821
0.07372448 — 1.551042551

0.40717516 — 0.064139564
0.40217056 — 0.19280739¢
0.39205277 — 0.322769331
0.37678925 — 0.455329361
0.35698877 — 0.59230260:
0.33460484 — 0.735270723
0.31232419 — 0.88423367:
0.29197277 — 1.03775443:
0.27412339 — 1.194200064
0.25865044 — 1.35237729:
0.24520634 — 1.511544813

wM (AM? =0.09, | = 2)

wM (AM? =0.09, | = 3)

© 00 U Ww N~ oS

[t
(]

0.16261045 — 0.04136653:
0.16078859 — 0.124152164
0.15704232 — 0.207117245
0.15114075 — 0.290474813
0.14267788 — 0.374690821
0.13118467 — 0.46102913:
0.11824166 — 0.552188931
0.10767572 — 0.645718731
0.09695736 — 0.741790664
0.09027189 — 0.83757283:
0.08075778 — 0.93460601:

0.26184253 — 0.04164389:7
0.26057158 — 0.124968811
0.25799755 — 0.208411943
0.25405408 — 0.292077611%
0.24863818 — 0.376119401
0.24161615 — 0.460788051%
0.23287254 — 0.546518591
0.22251601 — 0.634026241
0.21132493 — 0.724045101
0.20044112 — 0.816431843
0.19042690 — 0.91065927:

- 14 —




n| wM (AM?=011,1=2) wM (AM?=0.11,1=3)
0 | 0.03726995 — 0.00961565¢z 0.06009145 — 0.00961888%
1| 0.03724934 — 0.02884698:; 0.06007662 — 0.02885667¢
2 | 0.03720806 — 0.04807839: 0.06004694 — 0.048094521
3 | 0.03714597 — 0.06730994: 0.06000235 — 0.06733248:
4 | 0.03706293 — 0.08654169: 0.05994279 — 0.08657059:
5 | 0.03695863 — 0.10577369: 0.05986815 — 0.10580890:
6 | 0.03683275 — 0.12500602: 0.05977830 — 0.12504745¢
7 | 0.03668489 — 0.14423876: 0.05967310 — 0.144286311
8 | 0.03651456 — 0.16347198; 0.05955236 — 0.16352551%
9 | 0.03632114 — 0.18270578:; 0.05941586 — 0.18276513%
10 | 0.03610395 — 0.20194028:; 0.05926336 — 0.20200521%
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