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1. Introduction

In this work, we study the distribution of metastable supersymmetric and nonsupersym-

metric flux vacua in Calabi-Yau compactification of various string theories, along the lines

developed in the works [1]–[3]

The effect of turning on gauge field strengths (or “flux”) in string compactification

has been studied in many works, starting with [4]. Some recent examples include [5, 6].

Perhaps the most important qualitative effect of flux is that, since its contribution to the

energy depends on the moduli of the compactification manifold, minimizing this energy

will stabilize moduli, eliminating undesired massless fields. Since coupling constants in the

low energy theory depend on moduli, finding the values at which moduli can be stabilized

is an essential step in determining low energy predictions. It has also been suggested that

taking into account the large number of possible choices for the flux, will lead to a large

number of vacua with closely spaced values of the cosmological constant, and that some

of these will reproduce its small observed value just on statistical grounds [7]. Thus one

would like to know the distribution of cosmological constants, and how this depends on

the moduli and other parameters of the vacuum.

There are a lot of flux vacua, and finding each one explicitly is a lot of work. Further-

more, we are not entirely sure what properties we seek: there are many different scenarios

for string phenomenology, each requiring different properties of the vacuum. Thus, rather

than study individual vacua, we believe it is more interesting at this point to study the

overall distribution of vacua in moduli space, and the distribution of quantities such as

the cosmological constant and supersymmetry breaking scale. As discussed in [1, 8], such

statistical results can serve as a guide to string phenomenology, and provide a “stringy”

definition of naturalness. And, they are not much harder to get than results for individual

vacua, as was seen in [2, 3] and as we will demonstrate here.

A useful way to state these problems is as that of finding vacua in a specific ensemble

(or set) of N = 1 effective supergravity theories, for which the Kähler potential and

superpotential can be found explicitly. In principle, these theories are obtained by listing

all string/M theory compactifications in a certain class, and in each case integrating out all

but a finite number of fields, to obtain a Lagrangian valid at a low energy scale E. While

not all vacua can be described by effective field theory, since at energies studied so far our

universe seems to be described by effective field theory, this restriction seems adequate for

the basic physics we want.

One can certainly question whether this type of analysis captures all consistency con-

ditions which vacua must satisfy. Perhaps the most important examples would be stability

over cosmological time scales, and higher dimensional consistency conditions which are

not obvious after integrating out fields. It is entirely possible that there are others; a list

of speculations in this direction appears in [9], and these deserve study. Furthermore, it

might turn out that early cosmology selects or favors a subset of preferred vacua. Our

philosophy is not that we believe that none of this is important and thus can put absolute

trust in the vacuum counting results below. Rather, we believe that, even if we had this

additional information, it would not tell us which vacuum to consider a priori, and we
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would still need to make an analysis of the type made here to find the relevant vacua, with

the additional information taken into account as well. Thus the results we give should be

considered as formal developments, with suggestive implications for real physical models,

but which might be modified in light of better understanding.

While the techniques we will describe could be used for any explicit ensemble of ef-

fective supergravity theories, we work here with Calabi-Yau compactification in the large

volume, weak coupling limit, because good techniques for explicitly computing and work-

ing with the resulting supergravity Lagrangians exist at present only for this case. Indeed,

type IIB vacua on Calabi-Yau might turn out to be “representative” in the sense discussed

in [1, 8], on various grounds. First, known dualities relate many other nonperturbative

superpotentials to these cases, and it seems fair to say that all the structure in the poten-

tial which has been called on in model building so far, such as generation of exponentially

small scales, and spontaneous supersymmetry breaking, can be seen in flux superpotentials.

Second, dualities have been proposed which relate many of the other large classes of vacua

to these. A systematic way to study the hypothesis that (say) IIB on Calabi-Yau is repre-

sentative, would be to find statistics of vacua from two or more large sets of constructions;

if both were representative, clearly these statistics would have to be the same. The present

results are a necessary first step towards such a test, namely to find statistics for one large

set of constructions.

This concludes the justification of our approach. Our main discussion is somewhat

technical, so we devote the remainder of the introduction to a basic overview of the type

of results we will get.

1.1 Distributions of vacua

Our starting point is to imagine that we are given a list of effective supergravity theories

T1, T2, etc. all with the same configuration space (the space in which the chiral fields take

values). We consider here theories with no gauge sector, so a theory Ti is specified by a

Kahler potential Ki and superpotential Wi.

We then apply the standard N = 1 supergravity formula for the potential,

V = eK/M
2
p

(

gij̄DiWDj̄W
∗ − 3

M2
p

|W |2
)

+D2 , (1.1)

and look for solutions of ∂V/∂zi = ∂V/∂z̄ ī = 0. Here Mp is the four dimensional Planck

scale (which will shortly be set to 1).

Vacua come in various types. First, as is familiar, a supersymmetric vacuum is a

solution of

DiW (z) = ∂iW +
1

M2
p

(∂iK)W = 0 . (1.2)

We consider both Minkowski W = 0 and AdS W 6= 0 vacua.

Conceptually, the simplest distribution we could consider is the “density of supersym-

metric vacua,” defined as

dµs(z) =
∑

i

δz(DWi(z)) ,
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where δz(f) is a delta function at f = 0, with a normalization factor such that each solution

of f = 0 contributes unit weight in an integral
∫

d2nz. Thus, integrating this density over

a region in configuration space, gives the number of vacua which stabilize the moduli in

this region. A mathematically precise definition, and many explicit formulae which can be

adapted to the physical situation, can be found in [3].

In this case,

δz(DW (z)) ≡ δ(n)(DW (z))δ(n)(D̄W ∗(z̄))|detD2W (z)| ,

where the jacobian term is introduced to cancel the one arising from the change of variables

z → DW . The matrix D2W is a 2n× 2n matrix

D2W ≡
(

∂̄īDjW (z) ∂iDjW (z)

∂̄īD̄j̄W
∗(z) ∂iD̄j̄W

∗(z)

)

. (1.3)

Essentially, this is the fermionic mass matrix. Note that we could have replaced the partial

derivatives by covariant derivatives, as DiDjW = ∂iDjW when DW = 0.

With this definition, a vacuum with massless fermions counts as zero. There are better

definitions, discussed in [1], which would be appropriate if generic vacua had massless

fermions. However, since generic vacua in our problem are isolated and have no massless

fermions, this definition is fine.

We can also define joint distributions such as the distribution of supersymmetric vacua

with a given cosmological constant,

dµs(z,Λ) =
∑

i

δz(DWi(z))δ(Λ − (−3eKi |Wi(z)|2)) .

Below, we will define similar densities for nonsupersymmetric vacua of various types; at

this point the basic idea should be clear.

1.2 Approximate distributions of vacua

Now, if we have a finite list of supergravity theories Ti, and if in each the number of vacua is

finite, such a density will be a sum of delta functions. This is hard (though not impossible)

to study, and for many purposes one might be satisfied with a continuous approximation

to this density, a function ρ(z) whose integral over a region R,

∫

R
d2nzρ(z) , (1.4)

approximates the actual number of vacua in this region.

What does this mean and what good is it? To give the question some context, suppose

we had an explicit string theory construction of the Standard Model, and we were trying

to decide whether it could reproduce the gauge and Yukawa couplings. While in some

cases these are constrained by symmetry, this is not enough to determine the non-zero

couplings. In the vast majority of explicit models, these couplings depend on moduli of

the compactification (metric, bundle and brane moduli, etc.) and most results in this area

address the problem of finding the formula for the couplings in terms of moduli.

– 4 –
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Let us suppose we have such a formula. We could then use it to identify a region R

in moduli space, or a region in the joint space of moduli, cosmological constant and other

observables, such that any vacuum in this region would be guaranteed to produce couplings

which agreed with observation to the required precision (let us say such vacua “work”).

Thus the question would become, does the region R contain vacua, which can be obtained

by stabilizing moduli.

Now, suppose we had an approximation ρ(z,Λ) to the density of suitable vacua, with

suitably small cosmological constant. Integrating it over the region R, would produce an

approximation to the number of vacua which work. This starts to sound interesting, but

of course we do not really want an approximate answer. In the end, we want to know if

the approximation helps to answer the real question of finding a vacuum which works.

If the region is small, or the density of vacua is small, one might need to interpret

a result such as “approximately 10−20 vacua work.” For the results we will discuss, this

basically means that one expects that no vacua work, but it is possible that structure not re-

produced by the approximation or some chance fine tuning will nevertheless lead to the exis-

tence of vacua. If there are competing classes of vacua which work, this would start to be ev-

idence that vacua in the class under study do not work. To develop this hypothesis, the next

question would be, what more do we need to do to prove that this region contains no vacua.

If the region R is large enough to contain many vacua, there are two cases worth

distinguishing. In our present state of ignorance, what we can typically do is try to enforce

some but not all of the observational constraints on our model, and thus the number we

would get at this stage would just be one factor in a final result. In this case, the most

natural condition to put is that the integral eq. (1.4) should approximate the actual number

of vacua N(R) with an error much less than N(R).

Suppose we have solved the problem to the end, or we feel that the vacuum we have

found is particularly interesting, say because it realizes some property of interest or refutes

some conjecture in the literature. Then we would like to use our calculation of N(R)À 1

to prove that a vacuum for the original, unapproximated problem, indeed sits in R; for a

good approximation, this will be possible.

Of course, we might decide that N(R) is so large, that the original goal of the discus-

sion, say to test whether this class of vacua can reproduce the couplings in the Standard

Model, becomes pointless. One can of course still hope that the assumptions that went into

our choice of supergravity theories and definition of vacuum are false; however the compu-

tation of N(R) under these assumptions would have been good enough and one would not

need to improve that.

This covers the various possibilities. The main points we want to make here are the

following. First, what one wants to know next, and how one thinks about the problem,

depends very much on whether N(R) À 1, N(R) ∼ 1 or N(R) ¿ 1, which is thus as

important a question as finding particular vacua.

Second, given that we trust our definition of “vacuum,” it is actually less important

to know how a given vacuum is obtained (e.g. by which choice of flux) than to know that

it exists and stabilizes moduli (if the observables are controlled by the moduli, not by the

fluxes; of course the fluxes could appear explicitly in the observables as well).
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Having said all this, we defer the discussion of how one could proceed in these various

cases, to section 5 and to other work to appear.

1.3 Other types of vacuum

There are two types of nonsupersymmetric vacua we consider. The simpler possibility is

breaking due to non-flux effects. In other words, we still seek solutions of eq. (1.2), calling

upon other effects to break supersymmetry and lift the potential energy. This was invoked,

for example, in [10], which proposed to break supersymmetry by adding an anti D3-brane in

IIB compactification. Another possibility is to call on D term supersymmetry breaking, as

has been discussed in many works. Indeed, to the extent the breaking can be understood in

terms of effective N = 1 supergravity, this is the only possibility, and there are arguments

in the literature that supersymmetry breaking by adding antibranes or misaligned branes

is of this type [11]–[13]. Thus, we are going to refer to this as D-type breaking.

Before considering stability, the distribution of D-type vacua is the same as that for

supersymmetric vacua, up to a factor which expresses the fraction of vacua which allow

non-flux supersymmetry breaking. This might depend on the example at hand; we will

simply set it to 1 here.

Granting that in a given vacuum, adding the supersymmetry breaking term results in

zero cosmological constant, we would identify the supersymmetry breaking scale as

M4
susy = 3Λ̂ ,

where

Λ̂ = eK(z,z̄)|W (z)|2 (1.5)

is the norm of the superpotential for a vacuum stabilized at z. Of course, without the

supersymmetry breaking, the cosmological constant of the resulting vacuum would have

been ΛAdS = −3Λ̂, so we will often refer to Λ̂ as the “AdS cosmological constant.”

The other type of nonsupersymmetric vacuum is pure F type breaking; in other words

to find a solution of V ′ = 0 which is not a solution of eq. (1.2). The scale of this breaking

is given by

M4
susy = eKgij̄DiWDj̄W

∗

which for V = 0 is equal to the above. The density of these vacua is given by

dµF (z) =
∑

i

δz(V
′(z)) .

In general, one can have mixed D and F breaking. This is interesting only when both

D and F terms depend on the same fields, which can only come about from non-flux effects,

and is thus beyond our scope here.

In any case, the most interesting nonsupersymmetric vacua are the metastable (tachyon

free) vacua, with V ′′ positive definite. This constraint can be enforced formally by defini-

tions such as

dµF,metastable(z) =
∑

i

δz(V
′(z))θ(V ′′(z)) ,

– 6 –



J
H
E
P
0
5
(
2
0
0
4
)
0
7
2

where θ(V ′′) is 1 when the 2n × 2n real matrix of squared bosonic masses M = V ′′ is

positive definite. The derivatives of V appearing here are

∂aV = eK(DaDbWD̄bW̄ − 2DaWW̄ ) (1.6)

Da∂bV = eK(DaDbDcWD̄cW̄ −DaDbWW̄ ) (1.7)

D̄ā∂bV = eK(RdcābDdWD̄cW̄ + gbāDcWD̄cW̄ −DbWDāW̄ −
− 2gbāWW̄ +DbDcWD̄āD̄

cW̄ ) , (1.8)

where R is the curvature of the cotangent bundle, i.e. Rd
cab̄Xd ≡ [∇a, ∇̄b̄]Xc =

∂̄b̄(g
ēd∂agcē)Xd. Note that we could have replaced the covariant derivatives by ordinary

partial derivatives, because DdV = d2V when dV = 0.

For D breaking, positivity M > 0 can be analyzed as follows. First observe that in

general, if DW = 0,

M = H2 − 3Λ̂1/2H , (1.9)

where

H = 2 d2Λ̂1/2 . (1.10)

This follows directly from eq. (1.7) and eq. (1.8). Thus, to have M > 0, all eigenvalues λ

of H must satisfy λ < 0 or λ > 3Λ̂1/2. In particular, if W = 0 at the critical point, M is

automatically non-negative, and by continuity the same will be true for most susy vacua

with small Λ̂. On the other hand, small positive eigenvalues of H will lead to tachyons and

instability.

The actual computations of all of these densities will of course rely heavily on specific

details, but a general point worth keeping in mind is that any joint density

dµ(z, an) =
∑

i

δz(V
′(z)) δ(an −On(z))

of vacua in moduli space along with any observables On(z) defined in terms of the Taylor

series expansion of the effective Lagrangian about the vacuum (masses, couplings of moduli,

etc.) can be computed if we simply know the joint distribution of W (z), K(z, z̄) and a

finite number of their derivatives evaluated at the point z, in other words a finite number

of variables. Although obvious, this is very useful in structuring the problem, and is the

main reason why this class of problem is so much simpler than problems involving flows

on the moduli space.

1.4 Index densities

Finally, there is a quantity we call the “index density”. In the particular case of supersym-

metric vacua, it is

dIs(z) =
∑

i

(−1)F δz(DWi(z)) ,

where the index (−1)F of a vacuum stabilized at z is defined to be

(−1)F ≡ sgn det
i,j
D2W (z) (1.11)

with D2W (z) as defined in eq. (1.3).

– 7 –
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The simplest reason to consider this is that the index is precisely the sign of the

Jacobian which appeared in defining δz(DW ), so

(−1)F δz(DW (z)) ≡ δ(n)(DW (z))δ(n)(D̄W ∗(z̄)) detD2W (z)

with no absolute value signs. Thus it is easier to compute, and provides a lower bound

for the actual number of vacua. A formula for the index, and the explicit result for T 6/Z2

compactification, were given in [2].

There are also conceptual reasons to be interested in the supergravity index, as dis-

cussed in [14, 1]. To start, let us first comment on some differences between the problem

of finding vacua in supergravity, and the much better studied problem of finding vacua in

globally supersymmetric theories, satisfying

∂iW (z) = 0 . (1.12)

Of course, eq. (1.2) reduces to this upon taking the limit Mpl → ∞, or equivalently if all

structure in W is on scales much less than Mpl (assuming derivatives of K do not grow

with Mpl). On the other hand, we need the supergravity correction to interpolate between

different field theoretic limits. Of course, all hopes for getting a small cosmological constant

out of eq. (1.1) rest on the supergravity term −3|W |2 as well.

The problem of finding solutions of eq. (1.12) is holomorphic and therefore much easier

than for eq. (1.2). In particular, vacua cannot be created or destroyed under variation of

parameters, they can only move off to infinity or merge together. This makes it possible

to give topological formulae for the total number of vacua in global supersymmetry; the

possibility of vacua merging is accounted for by counting such vacua with multiplicity.

Can we do the same for supergravity vacua? Evidently not, because one can construct

a family of Kahler potentials Kt(z) such that varying t creates pairs of solutions of eq. (1.2).

One way to see this is to note that, in a region in which W 6= 0, eq. (1.2) is equivalent to

the condition that we are at a critical point of the function Λ̂ from eq. (1.5). Thus, where

W 6= 0, one can apply Morse theory to this problem, as discussed in [15]. It is well known

in this context that critical points can be created and destroyed in pairs.

Clearly we cannot hope for a topological formula for the total number of vacua, but

the above suggests using the Morse index for ΛAdS as a lower bound for the number of

vacua, which might admit a topological formula. However, this is not correct because

critical points of ΛAdS are not necessarily vacua; indeed every point with W = 0 (and K
nonsingular) is a critical point of ΛAdS .

The search for a topological formula runs into other difficulties as well. Most impor-

tantly, the configuration spaces which appear in known examples of effective supergravities

are not compact, and cannot be compactified. The prototypical example is the upper half

plane. This configuration space has a boundary, the real axis, and it is easy to see in ex-

amples that varying parameters (e.g. flux) can move vacua in and out of the configuration

space. Furthermore, different flux sectors can contain different numbers of vacua.1

1This statement is a bit imprecise; a more precise explanation taking duality into account is given in [2].
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Anyways, the correct generalization of the Morse index to this situation, as discussed

in [14, 3], is eq. (1.11). This agrees with the Morse index when W 6= 0, and is (−1)n when

W = 0.2

Since Λ̂ = eK|W |2 is a general (non-holomorphic) function, which away fromW = 0 can

be deformed fairly arbitrarily by deforming K, there is no obvious reason that one could

not deform it to remove all cancelling pairs of vacua.3 Thus, the index is the absolute

minimal number of vacua which could be obtained by deforming the Kähler potential.

Thus, one physical way to think about the index, is to say that the difference between

the actual number of vacua, and the index, in some sense measures the number of “Kähler

stabilized vacua,” vacua whose existence depends on both the superpotential and the Kähler

potential. We found in [3] and will find below that the actual density of vacua is typically

the index density times a bounded function greater than one, so in this precise sense, there

are many Kähler stabilized vacua.

Since the DD̄ terms in eq. (1.3) go away in the limit Mpl →∞, the index of a vacuum

which survives this limit, and thus is not “Kähler stabilized,” will necessarily be (−1)n (the

same as for W = 0). Conversely, one could say that the vacua with index of the opposite

sign are all Kähler stabilized, and would go away in this limit. One should realize however

that this limit is highly ambiguous (the results change under Kähler-Weyl transformation)

and that it may not in general make sense to say which particular vacua with index (−1)n
are Kähler stabilized or not.

1.5 Ensembles of flux vacua

We next discuss the set or ensemble of vacua we consider. General arguments have

been given to the effect that the large volume, weak coupling limit of compactification

of string/M theory on a Ricci-flat manifold M with flux, can be described by a d = 4

effective supergravity Lagrangian, whose configuration space C is the moduli space of com-

pactifications on M with no flux, the Kähler potential is taken to be the one for zero flux,

and whose superpotential is the Gukov-Vafa-Witten superpotential [16], which takes the

form

W =

∫

M
G ∧ Ω(z) , (1.13)

where z are the complex structure moduli, Ω(z) is an appropriate form (depending on the

theory and M), and G is the p-form gauge field strength, which we normalize to have

integral periods.

Although we will discuss flux compactification of various theories: F theory on four-

folds, heterotic string on CY3, and the (formally very similar) attractor description of black

hole entropies, we work mostly with the IIB flux compactifications on Calabi-Yau devel-

oped by Giddings, Kachru and Polchinski [17]. Then Ω is the holomorphic three-form on

2In [14, 2] we instead used a convention for the index which includes an extra factor of (−1)n, so that

Minkowski vacua always count +1. There are arguments in favor of both conventions, and one should be

careful to note which is in use.
3The function K must satisfy the constraint that ∂∂̄K is positive definite, but in one dimension this does

not seem to prevent deforming away pairs of vacua.
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the CY, and G is a sum of the NS and RR three-form gauge field strengths

G = FRR − τHNS ,

with F,H ∈ H3(M,Z), and τ = C (0) + ie−φ is the dilaton-axion.

The “ensemble of effective field theories” with flux is then the set of supergravity

theories with W given by eq. (1.13), with G satisfying the tadpole constraint
∫

FRR ∧HNS ≤ L∗ .

This is discussed in much more detail in [2].

We will leave out the Kähler moduli and forget about their contribution to the poten-

tial, again for the reasons discussed in [2]. We are going to derive many results relevant

for this part of the problem, and will discuss it a bit in the conclusions, but reserve most

of what we have to say about it to other work [18].

With the above definition of W , the F-term potential V is given by [17]:

V = 2T3e
K(DaWD̄aW̄ − 3WW̄ ) , (1.14)

where T3 = (2π)−3α′−2 is the D3-brane tension (in physical units). In subsequent sections

we set 2T3 → 1, not as a choice of units (since Mpl = 1), but rather by shifting K by a

constant.

Since M 2
P l,4 = V6M

8
P l,10, the dimensionless ratio V/M 4

P l,4 ∼ 1/V 2
6 , but this is only

because MP l,4 grows with V6. For orientation, in the traditional KK scenarios, V6 ∼ ls ∼
1/MP l,10 up to O(1) factors, so the natural energy scale of the flux potential is the string

scale, and we will want supersymmetry breaking at scales Msusyls < 1 or even ¿ 1. In a

“large extra dimensions” scenario, V6/l
6
s À 1, and we might accept Msusyls ∼ 1.

Our basic results are obtained by neglecting the quantization of flux. This is expected

to be a good approximation in the limit that the flux is large compared to other numbers

such as the number of cycles. We will discuss this limit, and the sense in which the smooth

distribution approximates the distributions of vacua at finite L, in section 5. Our tools for

doing this will be number theoretic theorems which state conditions on a “region in flux

space” which guarantee that its volume provides a good estimate for the number of lattice

points it contains.

2. Notations and some useful formulas

To avoid dragging along factors of eK in the calculations, we will slightly change notation

in what follows and denote the usual holomorphic superpotential by Ŵ and reserve W for

the Kähler invariant normalized but non-holomorphic superpotential:

W (z, z̄) = eK(z,z̄)/2W (z) . (2.1)

Similarly we write

Ω(z, z̄) = eK(z,z̄)/2Ω̂(z) (2.2)

for the normalized holomorphic form on the Calabi-Yau. We modify the definition of the

covariant derivative accordingly: DaW ≡ eK/2DaŴ , etc.
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Consider first a general F-theory flux compactification on an elliptically fibered Calabi-

Yau fourfold X. The Gukov-Vafa-Witten flux superpotential is

W =

∫

X
G4 ∧ Ω = NαΠα , (2.3)

where the Πα =
∫

Σα ∧ Ω are the periods of some basis {Σα} of H4(X,Z). We normalize

G4 such that G4 ∈ H4(X,Z),4 so N ∈ Zb4 . The flux has to satisfy the tadpole cancellation

condition

L ≡ 1

2

∫

X
G4 ∧G4 =

χ(X)

24
−ND3 , (2.4)

where ND3 is the number of D3 branes minus the number of anti-D3 branes transversal to

X. If we are looking for supersymmetric vacua, this gives an upper bound

L ≤ L∗ (2.5)

with L∗ = χ(X)/24. Allowing anti-D3 branes, L∗ can become bigger, but not indefinitely,

as a sufficient number of anti-D3 branes in a flux background will decay into a state with

flux and D3 branes only [20, 21].

The superpotential depends on the complex structure moduli za (a = 1, . . . , h3,1(X))

only. The metric on complex structure moduli space is the Weil-Petersson metric, derived

from the Kähler potential

K = − ln〈Ω̂, ˆ̄Ω〉 ≡ − ln

∫

X
Ω̂ ∧ ˆ̄Ω = − ln Π̂α(η

−1)αβ ˆ̄Πβ , (2.6)

where ηαβ is the intersection form with respect to the basis {Σα}.
We will often encounter intersection products of the covariant derivatives of the nor-

malized period vector (or holomorphic 4-form):

FA...B|C...D ≡ DA · · ·DBΠ η
−1DC · · ·DDΠ̄ = 〈DA · · ·DBΩ, DC · · ·DDΩ̄〉 (2.7)

F ′A...B|C...D ≡ DA · · ·DBΠ η
−1DC · · ·DDΠ = 〈DA · · ·DBΩ, DC · · ·DDΩ〉 , (2.8)

where the capital indices can be either holomorphic or anti-holomorphic. These are most

easily calculated by using identities of the form 〈DX,Y 〉 = D〈X,Y 〉 − 〈X,DY 〉, orthog-
onality of (4, 4 − k) and (4 − k′, 4)-forms with k′ 6= k, and commutation relations of D

and D̄, together with Griffiths transversality, i.e. acting with k derivatives on the (4, 0)-

form Ω gives a sum of (4 − q, q)-forms with q at most equal to k. In fact, DaΩ is pure

(3, 1) and DaDbΩ is pure (2, 2), which can be shown in similar fashion. As an exam-

ple, we have Fa|b̄ = 〈DaΩ, D̄b̄Ω̄〉 = Da〈Ω, D̄b̄Ω̄〉 − 〈Ω, DaD̄b̄Ω̄〉 = 0 − 〈Ω, gab̄Ω̄〉 = −gab̄.
Similarly, the absence of a (3,1)-part in DaDbΩ is follows from Fab|c̄ = 〈DaDbΩ, D̄c̄Ω̄〉 =
Da〈DbΩ, D̄c̄Ω̄〉 − 〈DbΩ, DaD̄c̄Ω̄〉 = −Dagbc̄ − 〈DbΩ, gac̄Ω̄〉 = 0. Thus, most lower order

4The flux quantization condition can actually be shifted by a nonintegral constant in some circum-

stances [19], but since we will make a continuum approximation for the fluxes anyway, we can ignore such

subtleties. Also, in F-theory, not all fluxes in H4(X,Z) are allowed: essentially, one leg should be on the

elliptic fiber [16].
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F -tensors vanish. Some nonzero ones are

Fa|b̄ = −gab̄ (2.9)

Fab|c̄d̄ = Rac̄bd̄ + gbd̄gac̄ + gad̄gbc̄ (2.10)

Fāb|cd̄ = gbāgcd̄ (2.11)

F ′ab|cd = eK
∫

X
Ω̂ ∧ ∂a∂b∂c∂dΩ̂ ≡ Fabcd. (2.12)

It should be noted that in general DaDbDcΩ is not pure (1,3); there can be a (2,2)-part,

since 〈DaDbDcΩ, D̄d̄D̄ēΩ̄〉 = DaFbc|d̄ē = DaRbd̄cē, which in general is nonvanishing.

2.1 Orientifold limit

Things simplify considerably in orientifold limits of the F-theory compactification. Then

X = (T 2 × Y )/Z2 with Y a Calabi-Yau threefold, which is equivalent to type IIb on the

corresponding orientifold of Y with constant dilaton-axion τ .

There are n = h2,1− (Y ) complex structure moduli of Y surviving the orientifold projec-

tion, and 2h2,1− (Y ) + 2 fluxes can be turned on [22, 6].5 Let z0 = τ and zi (i = 1, . . . , n) be

the complex structure moduli of Y . Then

Ω̂4 = Ω̂1(t
0) ∧ Ω̂3(t

i) , (2.13)

so K = K1 + K3 with K1 = − ln(i〈Ω̂1,
ˆ̄Ω1〉) = − ln(2 Imτ) and K3 = − ln(i〈Ω̂3,

ˆ̄Ω3〉), and
the metric and curvature components mixing 0 and i all vanish. In general, there may

be other fourfold moduli as well, which take X away from the orientifold limit. These

correspond to D7-brane moduli from the IIb point of view. We will ignore them in what

follows.

As before, we define normalized holomorphic forms by Ωr = eKr/2Ω̂r. Using the same

methods as we used before to compute intersection products of derivatives of Ω4, one

obtains

D0Ω1 = F0Ω̄1, D0D0Ω1 = 0 (2.14)

with F0 ≡ i〈Ω1, D0Ω1〉 = ieK1〈Ω̂1, ∂0Ω̂1〉 = −1/(τ − τ̄), and

DiDjΩ3 = FijkD̄kΩ̄3 , (2.15)

with Fijk ≡ i〈Ω3, DiDjDkΩ3〉 = ieK3〈Ω̂3, ∂i∂j∂kΩ̂3〉. Therefore all components of Fab|c̄d̄
and Fabcd are zero, except

F0i|0̄j̄ = g00̄ gij̄ (2.16)

Fij|k̄l̄ = Fijm̄F̄m̄k̄l̄ (2.17)

F0ijk = F0Fijk . (2.18)

Note also that DiDjΩ4 = F0ijkD̄0D̄kΩ̄4.

5The minus sign refers to the part of the cohomology odd under the orientifold involution.
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The space of allowed fluxes H4
F (X) consists of harmonic 4-forms G4 = −α∧F3+β∧H3,

where {α, β} is a canonical basis of harmonic 1-forms on T 2 (such that Ω̂1 = β−τα) and F3

and H3 are harmonic 3-forms on Y (identified with type IIb R-R resp. NS-NS flux). The

main simplification occurs because Ω, DaΩ, D0DiΩ and their complex conjugates form

a Hodge-decomposition basis of H4
F (X). To see this, note that we have dimHF (X) =

2(2n + 2), which equals the number of vectors in the proposed basis set, and that linear

independence of this set follows from the intersection products computed earlier. The basis

can be turned into an orthonormal basis by introducing an orthonormal frame eaA for the

metric on moduli space, δAB̄ = eaAgab̄e
b̄
B̄
, where capital letters refer to the frame indices.6

We take e
0
0 = F0, so F0 = 1. The basis B = {Ω, DAΩ, D0DIΩ} ∪ {c.c.} now satisfies

〈B, B̄〉 = diag(1,−1n+1,1n, 1,−1n+1,1n) . (2.19)

Various physical quantities have a simple expression in terms of components with respect

to this basis. Writing

G4 = X̄Ω− Ȳ ADAΩ+ Z̄ID0DIΩ+ c.c., (2.20)

we get for example for the flux superpotential eq. (2.3) and its derivatives (transformed to

the orthonormal frame by DA · · ·DB ≡ eaA · · · ebB Da · · ·Db):

W = 〈G4,Ω〉 = X (2.21)

DAW = 〈G4, DAΩ〉 = YA (2.22)

D0D0W = 0 (2.23)

D0DIW = ZI (2.24)

DIDJW = FIJKZ̄K (2.25)

D0DIDJW = FIJK Ȳ K (2.26)

DIDJDKW = (DIFJKL)Z̄L + FIJK Ȳ 0 , (2.27)

for the potential

V = |Y |2 − 3|X|2 , (2.28)

and for the flux induced D3-charge tadpole

L =
1

2
NηN =

1

2
〈G4, G4〉 = |X|2 − |Y |2 + |Z|2 . (2.29)

3. Distributions of supersymmetric vacua

A supersymmetric flux vacuum is characterized by a choice of K flux quanta N α and a

solution to DW = 0. We wish to compute the total number of such flux vacua satisfying

the constraint L ≡ 1
2NηN ≤ L∗,

Nsusy(L ≤ L∗) =
∑

susy vac
θ(L− L∗) (3.1)

=
1

2πi

∫

C

dα

α
eαL∗N (α) , (3.2)

6For explicit numerical indices 0, 1, . . . we will underline frame indices, but only if confusion could arise.
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where C runs along the imaginary axis passing zero to the right, and where we introduced

the Laplace transformed “weighted number” of vacua

N (α) ≡
∑

vac

e−
α
2
NηN (3.3)

=
∑

N

∫

M
d2mz δ2m(DW ) |detD2W | (3.4)

≈
∫

M
d2mz

∫

dKN e−
α
2
NηN δ2m(DW ) |detD2W | . (3.5)

In the last step we approximated the sum over fluxes by an integral. By rescaling N →
N/
√
α, it is easy to see that eq. (3.5) scales simply as α−K/2, so in this approximation

eq. (3.2) gives:

Nsusy(L ≤ L∗) = θ(L∗)
L∗

K/2

(K/2)!
N (α = 1) . (3.6)

As discussed in the previous section, in the orientifold limit we have m = n+1 with n

the number of complex structure moduli of Y , and K = 4m. In this case, it is possible to

directly evaluate the gaussian integral by changing variables from N to (X,Y,Z, X̄ , Ȳ , Z̄),

related to each other by the Hodge decomposition eq. (2.20):

N = η−1(X̄Π− Ȳ ADAΠ + Z̄ID0DIΠ+ c.c.) . (3.7)

The jacobian for this change of variables is

J = 22m|detM | = 4m|det η|−1/2|det(M †ηM)|1/2 , (3.8)

where M = η−1(Π,−DAΠ, D0DIΠ, c.c.). The extra factor 22m accounts for the fact that

for complex variables we use the convention d2z = 1
2idz ∧ dz̄. Happily, because of the

orthonormality of our Hodge decomposition basis B, we have

M †ηM = diag(1,−1n+1,1n, 1,−1n+1,1n) , (3.9)

hence the Jacobian is simply J = 4m|det η|−1/2. Furthermore, from eq. (2.22), we get

δ2m(DaW ) = |det eAa |−2δ2m(DAW ) = (det g)−1δ2m(YA) (3.10)

and from eq. (2.21)–eq. (2.25) together with DaD̄b̄W = gab̄W :

(det g)−2 detD2W = det[(D0, DI , D̄0, D̄I)
t · (D̄0W̄ , D̄JW̄ ,D0W,DJW )] (3.11)

= det









X̄ 0 0 ZJ
0 δIJX̄ ZI FIJKZ̄K
0 Z̄J X 0

Z̄I F̄IJKZK 0 δIJX









(3.12)

= det









X̄ 0 0 ZJ
0 X Z̄J 0

0 ZI δIJX̄ FIJKZ̄K
Z̄I 0 F̄IJKZK δIJX









(3.13)

= |X|2 det
(

δIJX̄ − ZI Z̄J

X FIJKZ̄K
F̄IJKZK δIJX − Z̄IZJ

X̄

)

. (3.14)
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Putting everything together, we find for the total number of supersymmetric vacua:

N (L ≤ L∗) =
(2πL∗)

2m

(2m)!
|det η|−1/2

∫

M
d2mz det g ρ(z) , (3.15)

where

ρ(z) = π−2m
∫

d2Xd2nZ e−|X|
2−|Z|2 |X|2

∣

∣

∣

∣

det

(

δIJX̄ − ZI Z̄J

X FIJKZ̄K
F̄IJKZK δIJX − Z̄IZJ

X̄

)

.

∣

∣

∣

∣

. (3.16)

The function ρ measures the density of supersymmetric vacua per unit volume in moduli

space. It is specified entirely in terms of the special geometry data FIJK . In particular,

ρ has no dependence on the dilaton modulus τ , and therefore the integration over the

fundamental τ -domainMτ in eq. (3.15) simply contributes a factor vol(Mτ ) = π/12.

Similarly to ρ, we define the index density ρind, counting vacua with signs, by dropping

the absolute value signs from the determinant in eq. (3.16).

3.1 Computing densities

3.1.1 The case n = 1

The total susy vacuum number density for n = 1 can be computed explicitly from eq. (3.16):

ρ = π−4
∫

d2Xd2Z e−|X|
2−|Z|2 ||X|4 + |Z|4 − (2 + |F|2)|X|2|Z|2| (3.17)

= π−2
∫

drds e−r−s |r2 + s2 − (2 + |F|2)rs| (3.18)

= π−2

(

2− |F|2 + 2|F|3
√

4 + |F|2

)

. (3.19)

This can be obtained by splitting up the integration domain in three parts, separated by

the lines s/r = 1
2(2 + |F|2 ± |F|

√

4 + |F|2) on which the determinant changes sign. The

first two terms in this expression correspond to the index density:

ρind =
(2− |F|2)

π2
. (3.20)

In the large complex structure limit one has universally |F| = 2/
√
3 and, in the spe-

cial coordinate t, gtt̄ = −3/(t − t̄)2 (to verify the former, recall that F = (et1)
3Fttt =

(gtt̄)
−3/2eK3iΠ̂η−1∂3t Π̂, with eK3 = − i

k(t−t̄)3
and Π̂η−1∂3t Π̂ = 6k). So ρLCS = 2/π2 (and

ρind = ρ/3), and if we approximate the large complex structure region MLCS by the

standard fundamental domain in the upper half plane, we get
∫

Mτ

d2τgτ τ̄

∫

MLCS

d2tgtt̄ ρ ≈
1

12
× 3

12
× 2 =

1

24
. (3.21)

Near a conifold point (or more generally a discriminant locus), F blows up (see example

2 below). Note that in that case, up to a sign, the total number density equals the index

density. In fact this is true for any m: if all FIJK → ∞, the terms involving FIJK in

eq. (3.16) will dominate the determinant, so

detD2W ≈ (−1)n|X|2|detFIJKZ̄K |2 (3.22)

and putting the absolute value signs around D2W only removes the overall (−1)n.
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3.1.2 Index density

Computing the total density for n > 1 becomes hard. However, the index density can

be given a simple expression in terms of geometric quantities [2]. One way to do this is

to rewrite the determinant as a Gaussian over Grassmann variables, and then to perform

first the Gaussian over X and Z, and next the the Grassmann integral. Using RIJ̄KL̄ =

FIKM F̄MJL−δIJδKL−δILδJK (which follows e.g. from comparing eq. (2.10) with eq. (2.17))

and R0000 = −2, one gets after some manipulations

dµind = d2mz det g ρind = π−m det(R+ ω1) , (3.23)

with R the curvature form and ω the Kähler form onM. This is in agreement with earlier

results [2]. Note however that the index density does not factorize, det(R + ω1)T 2×Y 6=
det(R + ω1)T 2 ∧ det(R + ω1)Y , so the claim in v1 of [2] that adding the dilaton to the

moduli just multiplies the index by 1/12 was not correct. For example for n = 1, one has

dµind = π−2 det

(

R0 + ω0 + ω1 0

0 R1 + ω0 + ω1

)

(3.24)

= π−2(−ω0 + ω1) ∧ (R1 + ω0 + ω1) (3.25)

= −π−2ω0 ∧R1 . (3.26)

In this case, we therefore simply have
∫

M
dµind = − 1

12
χ(MY ) . (3.27)

3.1.3 Example 1: T 6

As a toy example, let us take Y to be the (T 2)3/Z2 orientifold with the T 6 and the

fluxes restricted to be diagonal and symmetric under permuations of the three T 2’s. Then

the complex structure moduli space is the fundamental domain in the upper half plane,

parametrizing the T 2 modulus, and eq. (3.21) is exact. The orientifold has 64 O3-planes,

so L∗ = 16. A basis for the symmetric fluxes is {Σα}α=1,···,4, with the Σα given by the

generating function
∑4

α=1 Σαt
α−1 =

∏3
k=1(αk + t βk). Here (αk, βk) is a canonical basis of

H1(Z) of the kth T 2. The nonvanishing intersection products on T 6 are 〈Σ1,Σ4〉 = 1 and

〈Σ2,Σ3〉 = 3. To avoid a subtlety with flux quantization involving discrete fluxes on the O3

planes [23], we will furthermore as in [24] restrict to even fluxes, i.e. we take as basis {2Σα}.
The corresponding intersection form on Y thus has as nonzero entries ηY14 = −ηY14 = 2 and

ηY23 = −ηY32 = 6. The intersection form η on T 2 × Y is the direct product of this with the

T 2 intersection form εij . Therefore |det η| = (24 × 9)2, and the total number of these flux

vacua is, according to eq. (3.15):

Nsusy =
(2π × 16)4

4!
× (24 × 9)−1 × 1

24
= 1231 . (3.28)

3.1.4 Example 2: conifold

Let Y be a Calabi-Yau manifold near a generic conifold degeneration. For simplicity we

only consider one modulus, namely the period of the vanishing cycle v =
∫

A Ω̂. Inclusion of
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more moduli does not change the essential features. The monodromy around v = 0 implies

that the period of the dual cycle is of the form
∫

B Ω̂ = − ln v
2πi v+ analytic terms. The metric

near v = 0 is then

gvv̄ ≈ c ln
µ2

|v|2 , (3.29)

where µ is some constant and c = eK0/2π with K0 the Kähler potential at v = 0. Further-

more

F = g
−3/2
vv̄ eK

(

i
∫

A Ω̂ ∂3v
∫

B Ω̂ + anal.

)

≈ i
(

c ln
µ2

|v|2
)−3/2 c

v
, (3.30)

so as announced earlier, we see that F →∞ when v → 0. The same is true for ρ ≈ |F|2/π2.
However, the density integrated over the fundamental τ -domain and |z| < R remains finite.

For small R:
∫

d2τgτ τ̄

∫

d2v gvv̄ ρ ≈
1

12 ln µ2

R2

. (3.31)

Note that the constant c has dropped out of this expression. Plugging this in eq. (3.15),

we get for the number of susy vacua with L ≤ L∗ and |v| ≤ R:

Nvac =
π4L4

∗

18 ln µ2

R2

. (3.32)

The logarithmic dependence on R implies that a substantial fraction of vacua are extremely

close to the conifold point. For example when L∗ = 100 and µ = 1, there are still about

one million susy vacua with |v| < 10−100. Interestingly, vacua very close to conifold degen-

erations are precisely the desired ones in the context of phenomenological model building,

as they provide a natural mechanism for generating large scale hierarchies [17], and may

enable controlled constructions of de Sitter vacua by adding anti-D3 branes, as proposed

by KKLT [10]. However, for the latter it is also necessary that the mass matrix at the

critical point is positive, and as we will see below, this condition dramatically reduces the

number of candidate vacua.

3.1.5 Example 3: mirror quintic

The mirror quintic is given by a quotient of the hypersurface x51 + x52 + x53 + x54 + x55+ =

5ψ x1x2x3x4x5 in CP 4. It has one complex structure modulus, ψ, whose fundamental

domainMY is the wedge −π/5 < argψ < π/5. Its periods are well known [25] and can be

expressed as Meijer G-functions, which makes it possible to study this case numerically.

Figure 1 shows a plot of π
12 ρgψψ̄ , i.e. the susy vacuum number density per unit ψ

coordinate volume, on the real ψ-axis (the factor π/12 comes from integrating over τ).

The drop for |ψ| > 1 is due to a similar drop in gψψ̄ ; ρ itself tends to the large complex

structure value 2/π2 when ψ → ∞. The divergence at ψ = 1 is due to the presence of a

conifold singularity there. In the notation of example 2, the parameters specifying g and

F near the conifold are µ = 8.94 and c = 1.26 × 10−2 (with v ≈ −4π25−3/2 (ψ − 1)).
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Figure 1: The susy vacuum number density per unit ψ coordinate volume, πρgψψ̄/12, on the real

ψ-axis, for the mirror quintic.

We numerically computed7 the integrated susy vacuum number density. We found:

∫

M
dµ = 5.46 × 10−2 . (3.33)

This can be compared with an estimate of the large complex structure contribution, ob-

tained similar to eq. (3.21) by using the LCS expressions for g and ρ, but now cutting off

the integral say at Imt = 2. (Here t defined by 5ψ ≡ e−2πit/5, and the conifold point is

located at Imt|ψ=1 = 2π/5 ln 5 = 1.28.) The result is 1/16π = 1.99 × 10−2. The exact

numerical result for this region is almost the same: 1.97 × 10−2. Thus for orientifolds of

the mirror quintic, about 36% of all susy flux vacua are at Imt > 2 (and this fraction is

proportional to one over the lower bound on Imt). On the other hand, using eq. (3.31),

we get that the fraction of vacua with |ψ − 1| < S ¿ 1 equals 0.486/ ln(6.41/S 2). For

S = 10−3, this is about 3 %, and for S = 10−10 still 1%.

For the integrated index density, we found

∫

dµind = −1.666 × 10−2 ≈ − 1

60
. (3.34)

Combined with eq. (3.27), this indicates that χ(MY ) = 1/5. Indeed, this can be verified

analytically. The integral of the Euler class can be written as a sum of boundary contour

7This was done as follows. First, we divided the moduli space in patches, since different regions have

different suitable coordinates and special care is required near singularities. In each patch, the periods and

their derivatives were evaluated on a dense grid of points, and an approximation of these functions was

constructed by interpolation (because direct evaluation of Meijer functions is much too time-consuming).

Finally from this data the various desired quantities were constructed and integrated.
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integrals as follows:

χ =
i

2π

∫

MY

∂̄∂ ln gψψ̄ (3.35)

=
i

2π × 5

∫

C
∂̄∂ ln gψψ̄ (3.36)

=
i

10π

(

∮

∞
∂ ln gψψ̄ −

5
∑

i=1

∮

Pi

∂ ln gψψ̄

)

, (3.37)

where the Pi are the 5 copies of the conifold point in the ψ-plane. For ψ → ∞ we have

gψψ̄ = 3/4|ψ|2 ln2 |ψ|, so

∂ ln gψψ̄ = − 1

ψ

(

1 +
1

ln |ψ|

)

dψ (3.38)

and the corresponding contour integral produces a contribution (i/10π)× (−2πi) = 1/5 to

eq. (3.37). On the other hand, near the conifold point ψ = 1, gψψ̄ = c ln(µ2/|ψ − 1|2), and

∂ ln gψψ̄ = − 1

ln µ̂2

|ψ−1|2

1

ψ − 1
dψ, (3.39)

so the corresponding contour integral is zero. Adding up all contributions, we thus see that

χ = 1/5.

Numerical integration of the volume of M gives 5vol(M) = 3.1416 ≈ π. Again, this

can be understood topologically, using

ω =
i

2
∂∂̄K =

i

2
∂̄∂ ln i〈Ω̂, ¯̂Ω〉 , (3.40)

plus the fact that if Ω̂ is normalized such that K is regular at ψ = 0, we have 〈Ω̂, ¯̂Ω〉 ∼
1/|ψ|2 ln3 |ψ| for ψ →∞. Writing the volume integral as a sum over contours, again only

the ψ =∞ contour contributes, and this contribution equals π, as expected.

3.1.6 d2|W | signature distribution
For some applications, such as the RG flow interpretation of domain wall flows, one needs

to know whether the critical point of W is a maximum, a minimum, or a saddle point of

|W |. This corresponds to a positive, negative or indefinite Hessian d2|W | ≡ (∂a, ∂̄ā)
t ·

(∂̄b̄|W |, ∂b|W |). At a critical point, one has ∂a∂b|W | = 1
2
W̄
|W |DaDbW and ∂a∂̄b|W | =

1
2
W
|W |DaD̄b̄W̄ , so from eq. (3.12) we see that we have to investigate the eigenvalues of

d2|W | = 1

2|X|









|X|2 0 0 X̄Z

0 |X|2 X̄Z FX̄Z̄
0 XZ̄ |X|2 0

XZ̄ F̄XZ 0 |X|2









. (3.41)

Clearly the sum of the eigenvalues trd2|W | ≥ 0, so there are no maxima (this is true in

general, since ∂a∂̄b̄|W | ∼ gab̄|W | and trg > 0). In general, a matrix is positive definite iff

all upper left submatrices have positive determinant. In the case at hand, this implies the

– 19 –



J
H
E
P
0
5
(
2
0
0
4
)
0
7
2

conditions |X|4 + |Z|4 − (2 + |F|2)|X|2|Z|2 > 0 and |X|2 − |Z|2 > 0. This restricts the

integration domain of eq. (3.18) to one of its three segments, and thus the density of susy

vacua which are minima of |W | is

ρ++++ =
1

2π2
(2− |F|2 + |F|3

√

4 + |F|2
) . (3.42)

More information can be obtained by looking directly at the eigenvalues. We just quote

the results: ρ++−− = ρ++++, and

ρ+++− =
1

π2
|F|3

√

4 + |F|2
. (3.43)

In the large complex structure limit one has, rather democratically, ρ++++ = ρ+++− =

ρ++−− = ρ/3. In the conifold limit on the other hand, ρ+++− = ρ and ρ++++ = ρ++−− =

0.

3.2 Number of susy vacua with positive bosonic mass matrix

Due to the properties of AdS, supersymmetric vacua are always perturbatively stable, even

if the critical point of the potential V is not a minimum. Obviously, this is no longer true

if supersymmetry is broken and the cosmological constant is lifted to a positive value. In

particular, if as in the KKLT scenario supersymmetry is broken by adding an anti-D3 brane

to a supersymmetric AdS vacuum, thus shifting the potential up by a constant8 such that

the critical point of the potential becomes positive, the original AdS critical point should

be a minimum in order for the lifted vacuum to be perturbatively stable. It is therefore

important to compute the number of supersymmetric vacua which are local minima of V .

A critical point is a minimum if the mass matrix d2V ≡ (∂, ∂̄)t · (∂̄V, ∂V ) is positive

definite. Using eq. (1.6)–eq. (1.8) and eq. (2.21)–eq. (2.27), we get, at a supersymmetric

critical point (i.e. Y = 0):

D0∂0V = 0 (3.44)

DI∂0V = −ZIX̄ (3.45)

D0∂JV = −ZJX̄ (3.46)

DI∂JV = −FIJKZ̄KX̄ (3.47)

D0∂̄0V = −2|X|2 + |ZI |2 (3.48)

DI ∂̄0V = FIKLZ̄KZ̄L (3.49)

D0∂̄JV = F̄JKLZKZL (3.50)

DI ∂̄JV = −2|X|2 + ZIZ̄J + FIKM F̄MJLZ̄
KZL . (3.51)

We can use covariant derivatives of V here instead of ordinary derivatives because dV = 0

implies DdV = d2V .

8constant in the complex structure deformation directions
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Let us work out the case n = 1, which has

d2V =









|Z|2 − 2|X|2 F̄Z2 0 −X̄Z
FZ̄2 (1 + |F|2)|Z|2 − 2|X|2 −X̄Z −FX̄Z̄
0 −XZ̄ |Z|2 − 2|X|2 FZ̄2

−XZ̄ −F̄XZ F̄Z2 (1 + |F|2)|Z|2 − 2|X|2









.

(3.52)

A matrix is positive definite iff all its upper left subdeterminants are positive. With r ≡
|X|2, s ≡ |Z|2, this gives the following conditions:

s− 2r > 0 (3.53)

4 r2 − 2
(

2 + |F|2
)

r s+ s2 > 0 (3.54)

(s− 2 r)
(

4 r2 −
(

5 + 2 |F|2
)

r s+ s2
)

> 0 (3.55)
(

16 r2 − 4
(

2 + |F|2
)

r s+ s2
) (

r2 −
(

2 + |F|2
)

r s+ s2
)

> 0 . (3.56)

A straightforward analysis of these inequalities shows that they boil down to simply

|Z|2
|X|2 =

s

r
> 4 + 2|F|2 + 2|F|

√

4 + |F|2 . (3.57)

To compute the number density of susy vacua with positive mass matrix, we should there-

fore evaluate the integral eq. (3.18) with (r, s) restricted to the region satisfying this con-

dition. This gives

ρM>0 =
98 + 179 |F|2 + 42 |F|4 + 96 |F|

√

4 + |F|2 + 42 |F|3
√

4 + |F|2
(

5 + 2 |F|2 + 2 |F|
√

4 + |F|2
)3
π2

(3.58)

as shown in figure 2. At F = 0, the relative fraction of susy vacua with positive mass matrix

is approximately 39% and maximal. In the large complex structure limit F = 2/
√
3 the

fraction is about 19%, and in the conifold limit it is zero. Indeed, while the total density ρ

grows quadratically with |F| when F →∞, the density ρM>0 decreases quadratically with

|F|. This means that very near a conifold point, though there are many susy vacua, only

an extremely small fraction has positive mass matrix!

Let us make this more precise. In the notation of our example 2 in the previous section,

we have for small v:

ρM>0 ≈
21 c2

6π2

(

ln
µ2

|v|2
)4

|v|2. (3.59)

Integrated over τ and |v| < R, this gives

∫

d2τgτ τ̄

∫

d2v gvv̄ ρM>0 =
7c2

256
(3 + 6γ + 6γ2 + 4γ3 + 2γ4)R4 , (3.60)

where γ(R) = ln µ2

R2 . Because of the R4 dependence, this rapidly goes to zero with R.

If we take the parameters of the mirror quintic conifold for example, i.e. µ = 8.94 and

c = 1.26 × 10−2, and we take L∗ = 100, then the expected number of susy vacua with

M > 0 drops below 1 for |v| < 0.02, or |ψ − 1| < 0.004. Increasing L∗ to 1000, these
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Figure 2: The upper curve shows the total susy vacuum density as a function of |F|, the lower

curve the density of susy vacua with positive mass matrix.

numbers become just one order of magnitude smaller. Thus, for n = 1 and with reasonable

parameter values, at most only a modest hierarchy of scales can be generated through the

conifold throat mechanism of [17], if we insist on having a positive mass matrix.

On the other hand, if a near-conifold vacuum has positive mass matrix, eq. (3.57)

together with |X|2 + |Z|2 = L ≤ L∗ shows that it automatically has a small value for

|W | = |X|, and therefore a small cosmological constant. We will make this more precise in

the next section.

The positivity properties of M = d2V for susy vacua can also be analyzed as follows.

First observe that in general, if DW = 0,

M = H2 − 3|W |H , (3.61)

where

H = 2 d2|W | . (3.62)

This follows directly from eq. (1.7)–(1.8). Thus, to have M > 0, all eigenvalues λ of H

must satisfy λ < 0 or λ > 3|W |. In particular, if W = 0 at the critical point, M is

automatically non-negative, and by continuity the same will be true for most susy vacua

with small W . The suppression of vacua with M > 0 near a conifold point (for n = 1) can

now be seen in the following way. According to eq. (3.41), the matrix H can be written as

H = |X|1+∆H, with

∆H =

(

0 S

S̄ 0

)

, S =
X̄

|X|

(

0 Z

Z FZ̄

)

. (3.63)

The eigenvalues of ∆H are (±λ1,±λ2), with λ21λ
2
2 = det∆H = |Z|4 and 2(λ21 + λ22) =

tr(∆H)2 = 2(|F|2 + 2)|Z|2. When F → ∞, the eigenvalues of ∆H are therefore approxi-

mately given by ±|F|±1|Z|, and the eigenvalues of H by λ = |X|±|F|±1|Z|. The condition
on λ to have M > 0 translates to |Z| > 2|F||X|, in agreement with what we found earlier.
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Figure 3: The number density of susy vacua with positive mass matrix, per unit coordinate volume,

on the real ψ-axis, for the mirror quintic. Compare to fig. 1.

Note that the “dangerous” eigenvectors (the eigenvectors of ∆H with eigenvalues ∼
1/|F|) are approximately aligned with the dilaton direction, i.e. (1, O[1/F ], 1, O[1/F ]). In

a sense, the special form of the matrix eq. (3.63) leads to a sort of “seesaw” mixing with

the dilaton, and the small eigenvalue. This may be specific to n = 1; a similar analysis for

n > 1 suugests that there is no longer suppression of M > 0 vacua near generic points of

the discriminant locus.

As an example, a plot of the number density of M > 0 vacua per unit coordinate

volume is shown in fig. 3 for the mirror quintic, on the real ψ-axis. The sharp dip near

ψ = 1 is due to the conifold singularity. For the integrated density we find

∫

M
dµM>0 = 5.12 × 10−3 . (3.64)

Comparing this to eq. (3.33), we thus see that about 9% of all susy vacua has positive mass

matrix. This is not too far from the naive guess 1/16 based on the fact that there are four

mass eigenvalues, with each a 50% chance to be positive.

3.3 Distribution of cosmological constants

The cosmological constant in a supersymmetric vacuum is V = −3|W |2 (in 2T3 ≡ 1 units).

We wish to count the number of susy vacua with L ≤ L∗ and V ≥ V∗ ≡ −3λ∗, i.e. with
|W |2 ≤ λ∗. Analogous to eq. (3.2),9 we have

Nsusy(L ≤ L∗, |W |2 ≤ λ∗) =
∫

M
d2mz

∫ λ∗

0
dλ

1

2πi

∫

dα

α
eαL∗ν(z, α, λ) , (3.65)

9We could also have implemented the |W |2 ≤ λ∗ inequality by a similar Laplace transform, but here it

is slightly easier to solve the constraints directly.
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where

ν(z, α, λ) =

∫

dKN e−αL δ(|W |2 − λ) δ2m(DW ) |detD2W | (3.66)

= α1−K/2
∫

dKN e−L δ(|W |2 − αλ) δ2m(DW ) |detD2W | , . (3.67)

Parallel to eq. (3.15), we can write eq. (3.65) also in the form

Nsusy(L ≤ L∗, |W |2 ≤ λ∗) =
(2πL∗)

K/2

(K/2)!
|det η|−1/2

∫

M
d2mz g

∫ λ∗

0
dλ ρ(λ, z) . (3.68)

The quantity dλ ρ(λ, z)/ρ(z) then gives the fraction of vacua at z with |W |2 in a width dλ

interval around λ.

Specializing again to the orientifold limit, so K = 4m = 4(n+1), we make the change

of variables from N to (X,Y,Z). In these variables the additional constraint in eq. (3.67) is

simply |X|2 = αλ, which we can solve by putting X =
√
αλ, since the integral is invariant

under an overall phase transformation of (X,Y,Z). Thus we find, similar to eq. (3.16) (but

with the additional constraint):

ν(z, α, λ) =
22mπg√
η α2m−1

∫

d2nZ e−αλ−|Z|
2

∣

∣

∣

∣

∣

∣

∣

∣

det









√
αλ 0 0 ZJ
0 δIJ

√
αλ ZI FIJKZ̄K

0 Z̄J
√
αλ 0

Z̄I F̄IJKZK 0 δIJ
√
αλ









∣

∣

∣

∣

∣

∣

∣

∣

=
22mπg√
η α2m−1

e−αλ
∫

d2nZ e−|Z|
2

∣

∣

∣

∣

∣

m
∑

k=0

Ck(Z, Z̄)(αλ)
k

∣

∣

∣

∣

∣

, (3.69)

where g ≡ det g, η = |det η| and the Ck(Z, Z̄) are homogeneous polynomial functions

obtained by expanding the determinant. For example in the n = 1 case,

ν(z, α, λ) =
16πg√
η α3

e−αλ
∫

d2Z e−|Z|
2 |(αλ)2 − (2 + |F|2)|Z|2αλ+ |Z|4| . (3.70)

3.3.1 Density at zero cosmological constant

For physical applications, the most interesting quantity is the number of vacua at very

small cosmological constant, i.e. the case λ∗ ¿ L∗. To a good approximation, we can then

neglect the higher order terms in eq. (3.69) and simply compute the density at λ = 0. The

integral becomes

I(F) =
∫

d2nZ e−|Z|
2

∣

∣

∣

∣

det

(

0 ZJ
ZI FIJKZ̄K

)∣

∣

∣

∣

2

. (3.71)

This is a significant simplification compared to eq. (3.69), as this can be evaluated using

Wick’s theorem or by rewriting the determinant as a Grassmann integral and then doing

the integral over Z, similar to what was done to obtain eq. (3.23). Doing the integral over

α in eq. (3.65) now gives

ρ|λ=0 =
2πm

π2mL∗
I(F) . (3.72)
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Figure 4: Left: Vacuum number densities (true and absolute value of index) in the large complex

structure limit (F = 2/
√
3), as a function of cosmological constant value. Right: Same near the

conifold limit (F = 100 for this example). Note that despite appearances, ρ is non-zero at λ = 0 as

expressed in eq. (3.73); it just does not receive the conifold enhancement there.

Note that for n = 1, this is independent of F and therefore of z: ρ0 = 8/π2L∗. Applying

this to the example of the mirror quintic, for which vol(Mτ ×Mψ) =
π
12 × π

5 , we get for

small λ∗:

N (L ≤ L∗, |W |2 ≤ λ∗) =
4π4L4

∗

45

λ∗
L∗

. (3.73)

For L∗ = 100, this becomes ∼ 107λ∗, so the expected smallest possible cosmological con-

stant is |Λ| ∼ 10−7T3. For L∗ = 1000, this is three orders of magnitude smaller.

3.3.2 Index density

The distribution for arbitrary cosmological constants is harder to compute, mainly because

of the absolute value signs in eq. (3.69). Let us therefore drop these for now, so we count

vacua with signs. Then after integration over Z, we will still have a polynomial in α:

νind(z, α, λ) =
22mπmg√

η
e−αλ

m
∑

k=0

ckλ
kαk−2m+1 (3.74)

and therefore, by comparing eq. (3.65) and eq. (3.68),

ρind(z, λ) =
(2m)!

(2πL∗)2mg

1

2πi

∫

dα

α
eαL∗νind(z, α, λ) (3.75)

= θ(L∗ − λ)
(2m)!

πmL∗

m
∑

k=0

ck
(2m− 1− k)!

(

λ

L∗

)k(

1− λ

L∗

)2m−1−k

. (3.76)

In the case n = 1, we thus get for the cosmological constant density counted with signs

ρind(z, λ) =
4

L∗π2
(1− x)(2− (10 + 3|F|2)x+ (14 + 3|F|2)x2) θ(1− x) , (3.77)

where we wrote x ≡ λ
L∗

. As noted above, the density at λ = 0 equals 8/L∗π
2. In the large

complex structure limit F → 2/
√
3, ρind = 8(1−x)(1−7x+9x2)/L∗π

2 and in the conifold

limit F →∞, for x not too small, ρind/|F|2 = −12(1 − x)2x/L∗π2.
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3.3.3 Total density

Let us now turn to the true density. The absolute value signs in eq. (3.69) make the integral

hard to evaluate in general, but for n = 1 one gets something of the form

ν(z, α, λ) = P0(αλ)e
−αλ + P−(αλ)e

−b−αλ + P+(αλ)e
−b+αλ (3.78)

with the Pi polynomials and b−, b+ some F -dependent coefficients (see below). Doing the

α-contour integral, this then gives, explicitly:

L∗π
2 ρ(z, λ) = L∗π

2ρind(z, λ)+P (x)(θ(1−b−x)−θ(1−b+x))+Q(x)(θ(1−b−x)+θ(1−b+x)) ,
(3.79)

where

P (x) = −4 + 6(4 + |F|2)x− 12(4 + |F|2)x2 + (32 − 6|F|4 − |F|6)x3 (3.80)

Q(x) = (4 + |F|2)3/2F 3x3 (3.81)

b± =
1

2

√

4 + |F|2(
√

4 + |F|2 ± |F|) . (3.82)

In the large complex structure limit

L∗π
2ρ(z, λ) = L∗π

2ρind(z, λ)+16(1−4x)2 θ(1−4x)+ 16

27
(16x−3)(3−4x)2 θ(3−4x) , (3.83)

and in the conifold limit, for x not too small,

ρ(z, λ)

|F|2 → 12(1 − x)2 x

L∗π2
= −ρind(λ, z) . (3.84)

This is not immediately obvious from the above expressions, but can be seen from eq. (3.70):

the middle term dominates, and the absolute value just removes the minus sign. As dis-

cussed before, the convergence of index density and true density can be expected to hold

more generally near degenerations where FIJK →∞ (see also below).

These considerations are illustrated for the large complex structure and conifold limits

in figure 4. Note that the approximation of the true density by the index density is perfect

near the conifold, and near the extremities of λ, and qualitatively still not bad away from

those.

3.3.4 Some general observations

A few simple observations can be made about the general case. It is obvious that the

cosmological constant always satisfies |W |2 < L∗. This is because |W |2+ |Z|2 = L ≤ L∗ by
construction. The density at λ = L∗ is zero for the same reason; in fact, the index density

near that point is suppressed by (L− λ∗)m−1, as follows from eq. (3.75). By contrast, the

density at λ = 0 is always nonvanishing. Note however that in case all FIJK → ∞, this

value is much smaller than the total density ρ(z) (compare eq. (3.71) to eq. (3.22)). In

general, for large m, the distribution can be expected to peak at a small value of λ, because

of the suppression factor (L−λ∗)m−1. More intuitively, the lower |W |2 is, the more “room”

there is for Z to satisfy |W |2 + |Z|2 ≤ L∗.
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Finally, in the limit where FIJK → ∞, we can compute ρ(z, λ) more explicitly, since

then, for λ not too small,

ρ(z, λ) ≈ (2m)!

(πL∗)2m
1

2πi

∫

dα

α
eαL∗

π

α2m−1

∫

d2nZ e−αλ−|Z|
2

αλ|det(FIJKZ̄K)|2 (3.85)

= Ax (1− x)2m−2 , (3.86)

where x = λ/L∗, and A = 2m(2m−1)
π2m−1L∗

∫

d2nZ e−|Z|
2 |det(FIJKZ̄K)|2. This distribution has

mean µ = 〈x〉 = 2/(2m + 1) and standard deviation σ2 = 〈(x − µ)2〉 = (2m − 1)/(m +

1)(2m + 1)2, so for large m, most susy vacua in this limit have a cosmological constant Λ

of order −T3L∗/m. This should be compared to the string scale energy density, which in

Einstein frame is T 2
F = gs(2πα

′)−2 = 2πgsT3. Therefore in this limit vacua with |Λ| well
below the string scale are comparatively rare, unless mÀ L∗/gs.

3.3.5 Distribution restricted to vacua with positive mass matrix

If we restrict to vacua with positive mass matrix, eq. (3.57) together with |Z|2 + |X|2 =

L ≤ L∗, implies the cutoff λ ≤ L∗/(5 + 2|F|2 + 2|F|
√

4 + |F|2). In the large complex

structure limit, this is λ ≤ L∗/13, and near the conifold limit, λ ≤ L∗/4|F|2. Therefore,

positive M vacua near the conifold point automatically have small cosmological constant

(small compared to the string scale). Recall however that positive M vacua are suppressed

near the conifold point. We saw earlier that for the parameter values of the mirror quintic

and L∗ = 100, no positive M vacua are expected below v ∼ 10−2. At this point F ∼ 20

and thus λ < 10−3L∗ = 0.1, hence the cosmological constant cutoff is not much below the

string scale. Increasing L∗ to 1000 decreases the λ cutoff with just one order of magnitude.

Thus, for n = 1, the positive M vacua closest to the conifold point are not expected to be

close enough to force the cosmological constant to be hierarchically smaller than the string

scale.

This does not mean of course that there are no M > 0 vacua with very small cosmo-

logical constant; in fact, the vacuum density at λ∗ = 0 is the same for M > 0-vacua as

for vacua without constraints on M , since if X = 0, the M > 0 condition eq. (3.57) is

automatically satisfied. Most vacua with very small λ will therefore have a positive mass

matrix. This is actually true for any supergravity theory, as follows from eq. (1.9).

3.4 Counting attractor points

The techniques we used to count supersymmetric flux vacua can also be used to count

supersymmetric black holes, or attractor points, in type IIB theory compactified on a

Calabi-Yau X. More precisely, we wish to count the number of duality inequivalent, regular,

spherically symmetric, BPS black holes with entropy S less than S∗. The charge of a black

hole is given by an element Q = NαΣα of H3(X,Z). The central charge Z = 〈Q,Ω3〉 plays
a role similar to the (normalized) superpotential W : the moduli at the horizon are always

fixed at a critical point of |Z|, i.e. DZ = (∂ + ∂K)Z = 0. The entropy is then given by

S = A/4 = π|Z|2, evaluated at the critical point. For a given Q, critical points may or

may not exist, may or may not be located in the fundamental domainM, and may or may
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not be unique, but clearly we can label all equivalence classes of black holes by a charge

vector N and a critical point within the fundamental domain. Thus our desired number

is, in a continuum approximation (valid for large S∗) similar to what we had before:

NBH(S ≤ S∗) =
1

2πi

∫

dα

α
eαS∗/π

∫

dKN

∫

M
d2nz e−α|Z|

2

δ2n(DZ) |detD2Z| . (3.87)

Here K is the number of flux components and n the number of complex structure moduli,

K = 2n + 2. After rescaling N → N/
√
α, doing the α integral becomes straightforward,

and we get

NBH(S ≤ S∗) =
(2S∗)

n+1

(n+ 1)!

∫

M
d2nz det g ρ(z) , (3.88)

where

ρ(z) =
1

(2π)n+1 det g

∫

d2n+2N e−|Z|
2

δ2n(DZ) |detD2Z| . (3.89)

To evaluate this integral, we change variables to a Hodge-decomposition basis of H 3(X),

similar to eq. (2.20):

Q = iX̄Ω− iȲ IDIΩ+ c.c., (3.90)

so Z = 〈Q,Ω〉 = X and DIZ = 〈Q,DIZ〉 = YI . Capital indices again refer to an

orthonormal frame. The Jacobian for the change of variables from N to (X,Y, X̄, Ȳ ) can

be computed in a way analogous to what we did for flux vacua; the result is J = 2n+1|η|−1/2,
where |η| is the determinant of the intersection form (equal to 1 if we sum over the full

charge lattice). Furthermore, using the special geometry identity DIDJZ = FIJKY K , we

get that at a critical point (where Y = 0):

det

(

DID̄J Z̄ DIDJZ
D̄ID̄J Z̄ D̄IDJZ

)

= det

(

δIJX̄ 0

0 δIJX

)

= |X|2n . (3.91)

Plugging this in eq. (3.89) gives

ρ =
1

πn|η|1/2
∫

d2X

∫

d2nY e−|X|
2

δ2n(Y ) |X|2n (3.92)

=
n!

πn|η|1/2 . (3.93)

The factor det g dropped out because of the change from coordinate to orthonormal frame.

Note that this expression for ρ is independent of z. This means that attractor points are

uniformly distributed over moduli space. Our final result is, for large S∗:

NBH(S ≤ S∗) =
2n+1 vol(M)

(n+ 1)πn |η|1/2 S∗
n+1 . (3.94)

For the mirror quintic, n = 1 and vol(M) = π/5, hence

NBH(S ≤ S∗) =
2

5
S∗

2 . (3.95)

The problem of counting the number of duality inequivalent black holes with given

entropy was studied in [26] using number theory techniques. In particular, for Y = T 2×K3,

this was shown to be related to class numbers and the number of inequivalent embeddings

of a given two-dimensional lattice into the charge lattice.
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To compare to our results, we restrict to algebraic K3’s, as the complex structure

moduli moduli space of a generic K3 is not Hausdorff, so the volume factor in eq. (3.94)

would not make any sense. An algebraic K3 has moduli space

MK3 = O(Λ) \ O(2, k)/O(2) ×O(k) ,

where Λ is the charge lattice, which is the orthogonal complement of the Picard lattice and

has signature (2, k). This space is Hausdorff and has complex dimension k. A black hole

charge is specified by two charge vectors p, q ∈ Λ.

In this case, counting black holes with given entropy, or more precisely with given

“discriminant” D = (S/π)2 (which is always an integer for K3 × T 2), amounts roughly

to computing the number of inequivalent lattice embeddings in Λ of lattices spanned by q

and p with determinant D.10 This number can in principle be obtained from the Smith-

Minkowski “mass formula”, which was used in [26] to derive an estimate for the asymptotic

growth of the number N(D) of inequivalent black holes with discriminant D. The result

is N(D) ∼ Dk/2 and consequently the number of black holes with D ≤ D∗ will grow as

D
1+k/2
∗ .

To compare with eq. (3.94), note that n = k + 1, so we get

NBH(D ≤ D∗) =
2k+2π

k + 2
vol(MT 2)vol(MK3)D

1+k/2
∗ , (3.96)

which agrees with the growth given above, but is a bit more precise. Turning things around,

this formula should give a predicition for the asymptotic behavior of the Smith-Minkowski

mass formula.

4. Distributions of nonsupersymmetric vacua

A general flux vacuum, supersymmetric or not, is characterized by a flux vector and a

critical point of the corresponding potential V , which for now we do not require to be a

local minimum. For nonsupersymmetric vacua, the condition L ≤ L∗ is no longer sufficient

to guarantee a finite volume of allowed fluxes. Physically, it is reasonable to put also a

bound on the supersymmetry breaking parameter: |DW | = |Y | ≤ F∗. Such a bound,

together with the bound on L = |X|2 − |Y |2 + |Z|2, is indeed precisely what we need to

make the volume of allowed fluxes finite.

In our approximation, the total number of flux vacua satisfying these bounds is then

given by

N (L ≤ L∗, |DW | ≤ F∗) = (4.1)

= 22m
∫

d2mz

∫

d2Xd2mY d2nZ θ(L∗ − L) θ(F∗ − |Y |) δ2m(dV ) |det d2V |

10We thank Greg Moore for explaining this to us.
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where d2V = (∂, ∂̄)t · (∂̄V, ∂V ), and using eq. (1.6)–(1.8) and eq. (2.21)–(2.27):

∂0V = ZI Ȳ
I − 2Y0X̄ (4.2)

∂IV = ZI Ȳ
0 + FIJK Ȳ J Z̄K − 2YIX̄ (4.3)

D0∂0V = 0 (4.4)

DI∂0V = FIKLȲ K Ȳ L − ZIX̄ (4.5)

D0∂JV = FJKLȲ K Ȳ L − ZJX̄ (4.6)

DI∂JV = 2FIJK Ȳ 0Ȳ K −FIJKZ̄KX̄ +DIFJKLZ̄LȲ K (4.7)

D0∂̄0V = −2|X|2 − 2|Y0|2 + |YI |2 + |ZI |2 (4.8)

DI ∂̄0V = −YI Ȳ0 + FIKLZ̄KZ̄L (4.9)

D0∂̄JV = −Y0ȲJ + F̄JKLZKZL (4.10)

DI ∂̄JV = −2|X|2 + |Y0|2 − 2YI ȲJ + ZIZ̄J + FIKM F̄MJL(Ȳ
KY L + Z̄KZL) . (4.11)

We can use covariant derivatives of V in the integral instead of ordinary derivatives because

if dV = 0, then DdV = d2V .

4.1 Supersymmetric and anti-supersymmetric branches

The main complication arises because the constraint dV = 0 is quadratic. It defines a

cone in Cm, which has several branches. One obvious branch is YA = 0, with X and

ZI arbitrary. This corresponds to the supersymmetric vacua discussed in the previous

sections. Another obvious one is X = ZI = 0. As we will see, the vacua on this branch

behave in a way as “anti-supersymmetric” vacua. For example, while susy vacua have

imaginary self-dual fluxes, these have imaginary anti-self-dual fluxes. There are more

complicated “intermediate” branches too, which arise when the constraints considered as

linear equations in (X,Z) (or in Y ) are degenerate.

On the supersymmetric branch, we have δ2m(dV ) = |detM |−1δ2m(Y ), with M =

(∂Y , ∂̄Ȳ )
t · (∂V, ∂̄V ). This threatens to make the integral divergent when detM → 0,

but note that by the chain rule and because Y = 0, d2V |Y=0 = (∂, ∂̄)t · (∂̄V, ∂V ) =

(∂, ∂̄)t · (Ȳ , Y ) · (∂̄Ȳ , ∂Y )t · (∂̄V, ∂V ) = D2W ·M̄ , so the factor detM cancels out of eq. (4.1)

and we are left with the integral we had before for the supersymmetric case, as we should

of course.

Similarly, on the branch X = Z = 0, we have δ2m(dV ) = |detM |−1δ2m(X,Z), with

M = (∂X , ∂Z , ∂̄X̄ , ∂̄Z̄)
t · (∂V, ∂̄V ). Again detM cancels out, because d2V |X=Z=0 = A · M̄ ,

with

A = (D0, DI , D̄0, D̄I)
t · (W̄ , D̄0D̄JW̄ ,W,D0DJW ) (4.12)

=









0 ȲJ Y0 0

0 δIJ Ȳ0 YI FIJK Ȳ K

Ȳ0 0 0 YJ
ȲI FIJKY K 0 δIJY0









, (4.13)

so the remaining determinant factor in eq. (4.1) is

detA = |Y0|2 det
(

δIJ Ȳ0 − YI ȲJ
Y0

FIJK Ȳ K

F̄IJKY K δIJY0 − ȲIYJ
Ȳ0

)

, (4.14)
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which is identical to the detD2W factor eq. (3.14) of the supersymmetric case, after

substitution X → Y0, ZI → YI . If we moreover replace the supersymmetric constraint

L = |X|2 + |Z|2 ≤ L∗ by |Y |2 ≤ L∗ (or, since now L = −|Y |2, by L ≥ −L∗), the inte-

gral for this nonsupersymmetric branch is therefore formally the same as the one for the

supersymmetric branch! Thus

NX=Z=0(|DW | ≤ F∗) = Nsusy(L ≤ F 2
∗ ) . (4.15)

In fact this can be understood directly from the defining equations. If (F3,H3, τ, z
i) with

Imτ > 0 solves F3 − τH3 = i ∗ (F3 − τH3), which is the condition for a supersymmetric

vacuum, then (F ′3,H
′
3, τ
′, z′i) = (−F3,H3,−τ̄ , zi) has Imτ ′ > 0 and solves F ′3−τ ′H ′3 = −i∗

(F ′3 − τ ′H ′3), which is the condition for a nonsupersymmetric vacuum on the branch under

consideration. An equivalent way to see this map is to observe that D0(NRR + τNNS) ∼
−NRR − τ̄NNS together with the fact that the action of D0 and D̄0 interchanges (X,Z)

and Y . Note however that this is not a map between vacua with the same topological data,

since it maps L→ −L; the susy vacua have positive and the nonsusy vacua negative L.

The cosmological constant of these nonsupersymmetric vacua is Λ = 2T3|DW |2 =

−2LT3. Since L is quantized, this is always at least of the order of the string scale energy

density T 2
F = 2πgsT3, so actually the field theory approximation on which this analysis is

based cannot be trusted, and the existence of these vacua in the full theory is doubtful.

4.2 Intermediate branches

The anti-supersymmetric branch X = Z = 0 of the constraint cone dV = 0 is parametrized

by the values of the F-terms YA. For generic values of the YA, the unique solution to

dV = 0 is indeed X = Z = 0, since it is just a generic, complete system of linear equations

in (X,Z). However, for some values of Y the linear system can become degenerate, namely

when detM = 0 where M is as before given by M = (∂X , ∂Z , ∂̄X̄ , ∂̄Z̄)
t · (∂V, ∂̄V ). This

happens at the intersection with other branches.

We will only analyze the case n = 1 here. Then

∂0V = Z1Ȳ1 − 2Y0X̄ (4.16)

∂1V = Z1Ȳ0 + F Ȳ1Z̄1 − 2Y1X̄ (4.17)

and detM = −4(|Y0|4 + |Y1|4 − (2 + |F|2)|Y0|2|Y1|2). The equation detM = 0 has two

branches of solutions:

|Y1|2 = λ2±|Y0|2, with λ± = − 1

λ∓
=

1

2
(|F| ±

√

4 + |F|2) . (4.18)

These branches can be parametrized for example by (Y0, Z1). The explicit solutions of the

constraints dV = 0 are then, for generic (Y0, Z1):

Y1 = λ± e
i(arg F−2 argZ1) Y0 (4.19)

X =
1

2
λ± e

i(argF−2 argZ1+2 arg Y0) Z̄1 . (4.20)
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Solving the constraint in this way, the delta-function δ4(dV ) produces a factor |det M̃ |−1
with M̃ = (∂Y1 , ∂X , ∂̄Ȳ1

, ∂̄X̄ )t · (∂V, ∂̄V ). On both branches we have

|det M̃ | = 4|F|
√

4 + |F|2 |Y0|2|Z1|2. (4.21)

Furthermore, in general,

d2V =

(

R S

S̄ R̄

)

, (4.22)

where for n = 1

R=

( |Z1|2−2|X|2−2|Y0|2+|Y1|2 F̄Z2
1−Y0Ȳ1

FZ̄2
1−Ȳ0Y1 |Z1|2 − 2|X|2+|Y0|2−2|Y1|2+|F|2(|Y1|2 + |Z1|2)

)

S =

(

0 F Ȳ 2
1 −X̄Z1

F Ȳ 2
1 −X̄Z1 F(2Ȳ0Ȳ1 − X̄Z̄1)+D1F Ȳ1Z̄1

)

.

4.2.1 Large complex structure limit

The general expression for det d2V is obviously very complicated, but at large complex

structure, where F = 2/
√
3 and DF = 0, things simplify considerably. In this case, we get

for the integration measure on the first branch, with r ≡ |Y0|2, s ≡ |Z1|2:

|det d2V |
|det M̃ |

=
1

12
|(12r − 5s)(8r − 3s)| (4.23)

and on the second branch

|det d2V |
|det M̃ |

=
25

972
|(24r − 7s)(4r + 3s)| . (4.24)

The flux number L, susy breaking parameter |Y | and cosmological constant V for the first

branch is (still in the large complex structure limit)

L = −4r + 7 s

4
(4.25)

|Y |2 = 4r (4.26)

V = 4r − 9 s

4
(4.27)

and for the second one

L = −4 r

3
+

13 s

12
(4.28)

|Y |2 =
4 r

3
(4.29)

V =
4 r

3
− s

4
. (4.30)

It is most convenient to implement the constraint on L in eq. (4.1) by doing a Laplace

transform, and the one on |Y |2 by constraining r directly. The result for arbitrary F∗
and L∗ is a bit complicated and not very instructive — it involves several polynomials
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multiplied by different step-functions — but for L∗ positive and F∗ not too large, the step

functions are unimportant, and we get a simple polynomial. On branch 1, for x ≡ F 2
∗ /L∗ <

6:

N1,lcs(L ≤ L∗, |DW | ≤ F∗) = x (3.07 − 0.499x + 0.0256x2 + 1.04x3)V L4
∗ , (4.31)

where V = vol(Mτ ×Mlcs) = (π/12)vol(Mlcs). On branch 2, for x < 42/25:

N2,lcs(L ≤ L∗, |DW | ≤ F∗) = x (5.59 + 0.416x − 2.31x2 + 1.88x3)V L4
∗ . (4.32)

This can be compared to the number of supersymmetric flux vacua at large complex struc-

ture,

Nsusy(L ≤ L∗) =
(2πL∗)

4

24

2

π2
V = 13.2V L4

∗ . (4.33)

We still have to investigate if the vacua are perturbatively stable. For vacua with positive

cosmological constant, this is the case if and only if d2V is positive definite. A matrix is

positive iff all upper left subdeterminants are positive, which here translates in the condi-

tions

2 r − s > 0 (4.34)

−(12 r − 7 s)(4 r − 3 s) > 0 (4.35)

−(2 r − s)(96 r2 − 68 r s+ 15 s2) > 0 (4.36)

r s (12 r − 5 s)(8 r − 3 s) > 0 (4.37)

on branch 1 and similar conditions on branch 2. Straightforward analysis of these systems

of inequalities shows that they have no solutions, on either branch. Alternatively, we

could have computed the eigenvalues of d2V . For the first branch for example, these

are
{

4 r, 4 r − 5 s

3
,−2 s

3
,−8 r + 3 s

}

. (4.38)

Again we see it is impossible to have only positive eigenvalues. Thus we find, somewhat

surprisingly, that there are no meta-stable de Sitter vacua at large complex structure on

these branches.

4.2.2 Conifold limit

In the conifold limit, we have, as in eq. (3.30):

F =
i

c1/2γ3/2v
≡ 1

ε
. (4.39)

where γ = ln µ2

|v|2
. Now DF is no longer zero:

DvF =
∂v|F|2
g1/2F̄ = − i(1− 3/γ)

c γ2 v2
=
i(γ − 3)

ε2
. (4.40)

However DF turns out to drop out of all relevant quantities to leading order in ε.
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From eq. (4.19), it follows that on branch 1, to leading order, |Y1| = |Y0|/|ε| and
|X| = |Z1|/2|ε|, and similarly but with opposite power of ε on branch 2. On branch 1, we

thus have, to leading order:

L =
(|Z1|2/4− |Y0|2)

|ε|2 ≡ |z|2/4− |y|2 (4.41)

|Y |2 =
|Y0|2
|ε|2 = |y|2 (4.42)

V = |y|2 − 3
|z|2
4
. (4.43)

Since the constraints in eq. (4.1) keep L and |Y | finite, Z1 and Y0 are of order ε, and

the rescaled variables y, z are of order 1. In these variables the integration measure is, to

leading order in ε:

d2Y0 d
2Z1

∣

∣

∣

∣

det d2V

det M̃

∣

∣

∣

∣

= d2y d2z
|y|2|z|2
16|ε|2 . (4.44)

Doing the integral over y and z (implementing the constraints as before) yields for eq. (4.1)

N1,con =
2π2

3

(

L4
∗θ(L∗)− (L∗ − 3F 2

∗ )(L∗ + F 2
∗ )

3θ(L∗ + F 2
∗ )
)

∫

d2τ d2v
det g

|ε|2 . (4.45)

Apart from the L∗-dependent bracket, this is the same as the expression for the number of

near-conifold supersymmetric vacua, so using eq. (3.32) we immediately get for the number

of nonsusy critical points on branch 1 with |v| < R, L < L∗ and |Y | < F∗:

N1,con =
π4

18 ln µ2

R2

(

L4
∗θ(L∗)− (L∗ − 3F 2

∗ )(L∗ + F 2
∗ )

3θ(L∗ + F 2
∗ )
)

. (4.46)

For L∗ positive, the L∗-dependent bracket reduces to 6L2
∗F

4
∗ + 8L∗F

6
∗ + 3F 8

∗ .

The same computation can be done for branch 2. To leading order in ε:

L = |Z1|2 − |Y0|2 ≡ |z|2 − |y|2 (4.47)

|Y |2 = |y|2 (4.48)

V = |y|2 − 3|ε|2 |z|
2

4
(4.49)

d2Y0 d
2Z1

∣

∣

∣

∣

det d2V

det M̃

∣

∣

∣

∣

= d2y d2z
|y|2|z|2
|ε|2 . (4.50)

The final result is identical, N1,con = N2,con.

Do these near-conifold nonsusy critical points have positive mass matrix? On the first

branch, the first subdet condition is 2 r − s > 0 (again with r ≡ |y|2 and s ≡ |z|2), and
using this, the third condition becomes

(16 +O[ε2]) r2 +

(

2

|ε|2 +O[ε0]

)

r s+ (1 +O[ε2]) s2 < 0 . (4.51)

For small ε, this is obviously false, so d2V can never be positive definite on this branch

in the near-conifold region; N1,con,M>0 = 0. For the second branch on the other hand,

the positivity conditions are, after some simplifications and dropping terms which are
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negligible11 for all r, s at sufficiently small ε:

s

r
> 4/|ε|2 (4.52)

−γ2 s2 + 4 r s

|ε|2 + γ sin θ r−1/2s5/2|ε| > 0, (4.53)

where θ = argF + arg Y1 − argZ1 and γ as under eq. (4.39). With s/r ≡ 4u2/|ε|2, this
becomes

u− 1 > 0 (4.54)

p(u) ≡ γ sin θ u3 − γ2 u2 + 1 > 0. (4.55)

The polynomial p(u) has three real roots ui. We have p′(0) = 0, p′′(0) = −2γ2 < 0,

p(0) = 1 > 0 and p(1) < 0. Therefore, if sin θ < 0, then u1 < u2 < 0 < u3 < 1 and p(u) < 0

for u > 1, so the system of inequalities has no solutions. When sin θ < 0 on the other hand,

we have u1 < 0 < u2 < 1 < u3, so the above system of inequalities boils down to

u > u3 ≈
γ

sin θ
. (4.56)

The latter approximation becomes exact in the extreme conifold limit γ → ∞, but is

already very good for γ > 4 (error less than 0.5 %). This inequality together with the

constraint L < L∗ implies |y|2 = r < ε2L∗ sin2 θ
4γ2 , so the supersymmetry-breaking parameter

F = |Y | is automatically less than ε
√
L∗/2γ. If we take the susy breaking cutoff F∗ greater

than this number, the integral eq. (4.1) becomes independent of F∗ and is given by

N2,con,M>0 =

∫

d2τ d2v det g ν(v), (4.57)

ν(v) =
16π

2|ε|2
∫ π

0
dθ

∫ ε2L∗ sin2 θ

4γ2

0
dr

∫ L∗

4γ2r

ε2 sin2 θ

ds rs (4.58)

=
3π2L4

∗ε
2

128 γ4
. (4.59)

Up to logarithmic factors, this has the same dependence on v as the number of supersym-

metric near-conifold vacua with M > 0, which according to eq. (3.58) is given by

νsusy(v) =
7π2L4

∗ε
2

8
. (4.60)

Nonsusy near-conifold vacua with M > 0 are sparser than their susy counterparts; their

density ratio is 1/14γ4 ¿ 1.

11This includes putting γ + O[1] ≈ γ. It is possible to keep terms of lower order in γ, but this only

complicates the formulas without changing the essential features.
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4.2.3 Distribution of cosmological constants in conifold limit

The distribution of cosmological constants for M > 0 vacua near the conifold point is

obtained by adding δ(V −Λ) to the integrand of eq. (4.58), with V as given by eq. (4.49):

ν(v,Λ) =
16π

2|ε|2
∫ π

0
dθ

∫ ε2L∗ sin2 θ

4γ2

0
dr

∫ L∗

4γ2r

ε2 sin2 θ

ds rs δ

(

r − 3ε2

4
s− Λ

)

(4.61)

=
16π

2ε2

(

4

3ε2

)2 ∫ π

0
dθ

∫ M

0
dr r(r − Λ) , (4.62)

where M = min(−Λ sin2 θ
3γ2 , 3ε

2L∗
4 +Λ, ε

2L∗ sin2 θ
4γ2 ). The first two entries in min(. . .) come from

the integration boundaries of s. Since s > 0, M has to positive, and we get the following

condition on Λ to get a nonzero result:

− 3ε2L∗
4

< Λ < 0 . (4.63)

In particular we see that the cosmological constant can only be negative for these vacua,

so there are no meta-stable de Sitter vacua in the conifold region either. This is because

the M > 0 condition forces the positive term in V to be smaller than the negative one.

Under these conditions on Λ, we have in fact that M = −Λsin2 θ
3γ2 , except in a very small

interval (width of order 1/γ2 relative to eq. (4.63)) near the lower bound on Λ. Outside

that interval, the integral is therefore straightforward to compute and equal to

ν(v,Λ) =
8π2

27γ4

(

Λ

ε2

)3

. (4.64)

Inside the small boundary interval, the density quickly drops to zero.

5. Finding vacua with quantized flux

So far, we have been discussing the problem of finding the volume of the region in “flux

space” which contains vacua, not the problem of counting physical vacua with quantized

flux. This approximation was necessary at a very early stage, when we solved the conditions

DW (z) = 0 or V ′(z) = 0 for some of the fluxes in terms of the others, as at a generic point

z in moduli space these conditions will have no solution with integer fluxes.

Nevertheless, we can get results for the problem with quantized fluxes using these

techniques. The approach will be to consider a region R in moduli space, and character-

ize the corresponding region SL in the “space of fluxes” RK which contains vacua with

NηN/2 ≤ L. Since the number of flux vacua in this region of moduli space is the number

of points with integral coordinates, i.e. points in SL ∩ ZK , we need ways to estimate this

number from facts about the geometry of SL.

The region S containing supersymmetric vacua is not hard to describe [2]. At a given

point (z, τ) in moduli space, the 2n + 2 = K/2 conditions 0 = N α<DiΠ
α = Nα=DiΠ

α

pick out a subspace Sz,τ ∼= RK/2 of the space of fluxes. The region S is then the union of

the individual Sz,τ for all values of moduli (z, τ) ∈ R. One can show that the subspaces
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vary transversally (the “non-degeneracy condition” of [2]) and thus this will fill out a K-

dimensional region. Finally, the subset SL ⊂ S is obtained by imposing the additional

constraint NηN ≤ /2L.
It is clear that S is a cone; in other words λS ∼=

S’

S

Figure 5: Two possible regions S

and S′ containing supersymmetric

vacua in a K = 2 flux space. S

contains many fewer quantized flux

points at small L than its volume,

while S′ contains many more.

S. Furthermore, for a small region R, the constraints

DW = 0 will not vary much, so one can think of

S as roughly a cone over the product of a K/2 − 1-

dimensional sphere (at fixed radius in RK/2) with a

K/2-dimensional ball. Over a small region, the con-

straint NηN/2 ≤ L is not very different from a posi-

tive definite quadratic constraint, so SL is roughly the

r ≤
√
L part of this cone.12 For example, for K = 2,

one can have regions SL as pictured in figure 5.

Having characterized SL, our goal is to count how

many lattice points it contains. The most basic esti-

mate is of course that, if we make L sufficiently large,

this number of lattice points will be well approximated

by the volume of SL. Furthermore, it is intuitively clear (see [27], 2.iv for more precise

statements) that the leading correction to this is proportional to the surface area of the

boundary of SL, so for large L

N(L) = LK/2V (S1) + LK/2−1/2A(S1) +O(LK/2−1/2−ε) (5.1)

where V (S1) and A(S1) are the volume and surface area at L = 1.

How big need L be to reach this scaling regime? In addition to the condition LK/2V (S1)

À 1 for the region to contain many lattice points, one clearly needs

√
LÀ A(S1)

V (S1)
(5.2)

as well.

To illustrate what happens for smaller values of L, consider the case of K = 2, and the

two cones S and S ′ illustrated in figure 5. Cone S, misaligned with the lattice, does not

contain any lattice points near the origin. On the other hand, cone S ′, aligned with the

lattice, contains roughly r =
√
L (positive) lattice points within a small distance r from

the origin, far more than its volume V ∼ r2θ/2 (where θ is the opening angle).

This phenomenon persists all the way out to rθ ∼ 1, at which point the two dimensional

nature of the cones starts to be visible, and the estimate eq. (5.1) becomes valid. This leads

to the condition r > 1/θ. Since V (S1) = θ/2 while A(S1) ∼ 2, this is the same as eq. (5.2).

Now the quantity V (S1) is just the integrated vacuum density over the region R, and

the quantity A(S1) can be computed as an integral over moduli space using the same

techniques. In the approximation that the vacuum density is just the volume form on

moduli space, the surface area of the boundary will just be the surface area of the boundary

in moduli space. Taking the region R to be a sphere in moduli space of radius r, we find

A(S1)

V (S1)
∼
√
K

r
12SL is however not convex, and the theorems of Minkowski and Mordell called upon in v1 of this paper

are not applicable.
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so the condition eq. (5.2) becomes

L >
K

r2
. (5.3)

Thus, if we consider a large enough region, or the entire moduli space in order to find

the total number of vacua, the condition for the asymptotic vacuum counting formulas we

have discussed in this work to hold is L > cK with some order one coefficient. But if we

subdivide the region into subregions which do not satisfy eq. (5.3), we will find that the

number of vacua in each subregion will show oscillations around this central scaling. In

fact, most regions will contain a smaller number of vacua (like S above), while a few should

have anomalously large numbers (like S ′ above), averaging out to eq. (5.1).

5.1 Flux vacua on rigid Calabi-Yau

As an illustration of this, consider the following toy problem withK = 4, studied in [2]. The

configuration space is simply the fundamental region of the upper half plane, parameterized

by τ . The flux superpotentials are taken to be

W = Aτ +B

with A = a1 + ia2 and B = b1 + ib2 each taking

-0.5 0.5

1

2

3

Figure 6: Values of τ for rigid CY

flux vacua with Lmax = 150.

values in Z+ iZ. This would be obtained if we consid-

ered flux vacua on a rigid Calabi-Yau, with no complex

structure moduli, b3 = 2, and the periods Π1 = 1 and

Π2 = i. The tadpole condition NηN/2 ≤ L becomes

=A∗B ≤ L . (5.4)

One then has

DW = 0↔ τ̄ = −B
A
. (5.5)

Thus, it is very easy to find all the vacua and the value

of τ at which they are stabilized in this problem. We

first enumerate all choices of A and B satisfying the

bound eq. (5.4), taking one representative of each orbit

of the SL(2,Z) duality group. As discussed in [2], this

can be done by taking a2 = 0, 0 ≤ b1 < a1 and a1b2 ≤
L. Then, for each choice of flux, we take the value of τ

from eq. (5.5) and map it into the fundamental region

by an SL(2,Z) transformation. The resulting plot for

L = 150 is shown in figure 6.

A striking feature of the figure is the presence of

holes around points such as τ = ni with n ∈ Z. At the center of such holes, there is

moreover a big degeneracy of vacua. For example there are 240 vacua at τ = 2i. This

clearly illustrates the phenomena discussed above. Starting with a tiny disk D around

τ = 2i, the corresponding cone in flux space is very narrow, but aligned with the lattice
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so it captures 240 points. For a somewhat displaced disk, the cone is not aligned with the

lattice and captures no points. Increasing the radius of the disk makes the cone wider, and

at a certain radius new lattice points enter.

Despite the intricate structure of the finite L result, it is true that a disc of sufficiently

large area A will contain approximately 2πAL2 vacua. This is illustrated for L = 150

in figure 7, where estimated and real numbers of vacua are compared in discs around

τ = 2i of stepwise increasing radius. Note that the first additional vacua enter the circle

at a coordinate radius R ∼ 0.12, and that just beyond that radius, at R ∼ 0.15, the

approximation becomes good. The corresponding radius in the proper metric is r ∼ 0.04.

Since the holes around the integers clearly correspond to the worst case scenario for the

estimate, we can thus conclude empirically that for L = 150, our estimate will be good

when r > 0.04. Moreover, by comparing the results for different values of L, we found that

the radii of the holes scale precisely as 1/
√
L. Thus, our empirical result for the reliability

of the approximation is

r >
0.5√
L
,

which is compatible with eq. (5.3).

6. Conclusions

We gave general results for the distribution of supersymmetric and nonsupersymmetric flux

vacua in type IIB string theory, and studied examples with one complex structure modulus

in detail. Let us conclude with a brief summary of the results, some comparisons to what

one might expect intuitively, and questions for further work.

A simplified picture of the results is that one can define an “average density of vacua”

in the moduli space, which can be integrated over a region of interest and then multiplied

by a “total number of allowed choices of flux,” to estimate the total number of vacua which

0.1 0.2 0.3

500

1000

1500

2000

2500

Figure 7: Number of vacua in a circle of coordinate radius R around τ = 2i, with R increasing in

steps dR = 0.01. Pink bars give the estimated value, green bars the actual value.
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stabilize moduli in that region. This estimate becomes exact in the limit of large flux,

and should be good for flux satisfying the bounds discussed in section 5, say eq. (5.3) for

supersymmetric vacua.

The zeroth approximation for the average density of vacua is the volume form on

moduli space constructed from the metric which would appear in the effective supergravity

kinetic term; explicitly if this is

Smoduli =

∫

d4xGij(z)∂z
i∂zj ,

then we find

dµ(z) ∼ vol =
(2πL)K/2

(K/2)!

1

(πM2
p )
n

√

detG(z)d2nz

in F theory and IIB flux compactification, with K ∼ B4 fluxes and tadpole bound L.

Of course, the actual results we obtained were of course more complicated, depending

not just on the metric but on curvatures and its derivatives. However it is still useful

to think of this “zeroth approximation” as the basic estimate, because in most of moduli

space the curvatures are proportional to the metric up to O(1) coefficients. In any case,

this is the simplest distribution one can suggest which uses no data other than the effective

theory itself, and is thus the “null hypothesis” in this class of problem.

In comparing our actual results to this, perhaps the most striking difference is the

growth of vacuum density in regions of large curvature, for example near conifold points.

The simple physical explanation in this case is that we know that the structure of the

potential, or equivalently the dual gauge theory description of the physics, can produce a

hierarchically small scale Λ. Since the average spacing between vacua is expected to be Λ,

we can fit more vacua into such a region.

To make this quantitative, we need to understand the physics (or math) which makes

the number of vacua finite. Here it is the tadpole condition, schematically AB = L where

A, B are two conjugate types of flux, in dual terms controlling (say) the rank of the gauge

group and the gauge coupling. A constraint AB = L translates a distribution dAdB into

a scale invariant distribution L dA/A.

In the large complex structure limit, the superpotential goes schematically as A+Bτ k

for some power k = 1, 2, 3. This leads to vacua at τ k ∼ A/B, and the distribution

dA/A translates into d2τ/=τ 2, taking into account supersymmetry which brings in the

complexified modulus. Such a measure is naively scale invariant, and would lead to a

diverging number of vacua. But, it is important that the integration region for <τ is [0, 1),

so in fact the distribution falls off for large =τ and is integrable; the total number of vacua

with |τ | > T goes as 1/T . One can also understand this as a consequence of duality acting

on the other fluxes, which leaves finitely many inequivalent choices (as in the toy example

worked out in [2]).

Near a conifold, while the flux distribution is again roughly L dA/A, the dual gauge

theory-type superpotential W = Az + Bz log z leads to vacua at log z ∼ A/B which have

a |d log log z|2 ∼ d2z/|z log z|2 distribution. In fact, the distribution is rather similar to the

previous one, with the identification τ = − log z. Whether this has deep significance is not
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clear to us; the large complex structure limit and conifold limit are not dual and in other

ways are not similar. But it means that the number of vacua N with a small scale z < e−T ,

has a similar slow falloff, N ∼ 1/T .

In some sense, many vacua are “Kähler stabilized” — if the Kähler potential were

different, they would not exist. An illustration can be found in figure 4. As usual, this is

less true for small eK|W |2.
In section 5, we discussed the nature of the finite L distribution of vacua. Because

of flux quantization, this is far more complicated than the smooth distributions which we

have been computing. On the other hand, one can say a lot about it using the smooth

distributions and the methods we discussed. The basic idea is to think of the smooth

distribution as computing a the volume of a region in flux space which supports vacua.

Physical flux vacua satisfying flux quantization are lattice points in this region. While

the volume of the region controls the large L asymptotics, its other characteristics and in

particular its surface area control the corrections to these asymptotics.

In particular, the smooth distribution will always approximate the finite L distribution

for sufficiently large L. However, the mimimal L for this to be true depends on the size

of the region in moduli space in which one is counting vacua, and can be estimated as

L ∼ K/r2 for a ball of radius r. Thus, the number of vacua in a small region can deviate

from the large L distribution and even the LK/2 asymptotic for the total number of vacua,

until L becomes quite large.

Another way to say this is that at finite L, to get a smooth density, one must average

the number of vacua over regions in moduli space of size r ∼
√

K/L. The actual number

of vacua in smaller regions will show oscillations, with most regions having many fewer

vacua, and a few having many more vacua to make up for this. We discussed the simplest

example in section 5, and a one complex modulus example is discussed in [28].

It is not inconceivable that these considerations could significantly decrease the total

number of vacua in interesting examples with many cycles, if the geometric factors such

as total volumes of Calabi-Yau moduli spaces were sufficiently small. Work on computing

these volumes is in progress.

Let us move on to consider the results for specific types of vacua. First, we give the

“null hypotheses” or simplest pictures which one might expect. First, F-type nonsuper-

symmetric vacua should be comparable in number to the supersymmetric vacua (given our

definitions, this is obvious for the D-type), up to factors like 2n where n is the number

of moduli. A heuristic argument for this is that the potential V (z) is quadratic in W (z),

so if W had been a polynomial of degree d, leading to (d − 1)n vacua, then V would be

a polynomial of degree 2d, suggesting (2d − 1)n vacua. On reflection, the main problem

with this argument is that the equations V ′ = 0 are real equations which typically have

fewer than (2d − 1)n solutions. Work on zeroes of randomly distributed polynomials with

natural geometric distributions [29] suggests that in some cases, most zeroes are real, while

in others there are many fewer real zeroes, so this is inconclusive. Finally, the metasta-

bility condition might be expected to be weak, in the sense that if the masses of bosons

are distributed symmetrically about zero, the the fraction of tachyon free vacua would be

2−2n.
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In general, these expectations do hold, and the number of non-supersymmetric vacua

is comparable to the supersymmetric vacua. However, the number of metastable nonsuper-

symmetric vacua falls off drastically near conifold points, or more generally if the curvature

on moduli space becomes large. This is rather surprising as naively the curvature contri-

bution to the mass matrix eq. (1.8) goes the other way; the conifold point has positive

curvature which raises the masses. The explanation for the D type vacua is not compli-

cated; it has to do with the special form of the mass matrix which leads to a “mixing” with

the dilaton-axion which forces a mode tachyonic, as explained in 3.1. Some experimenting

with multimodulus models suggests that this phenomenon is specific to one modulus and

the detailed form of this potential, again in the D breaking case. We observed the same

phenomenon for the F breaking; it may have a similar explanation.

We found in section 3.3 that the distribution of values of eK|W |2 or “AdS cosmological

constants” is typically uniform near zero, so that the fraction of vacua with |Λ| < Λ∗
behaves as Λ∗/LT3. A simple argument for this was mentioned in [8]: for a given value of

moduli, the magnitude of W is a single direction in “flux space,” so the condition that it

be small can be accomplished by one tuning of fluxes.

However, the fact that this tuning can be made independent of the choice of moduli

is non-trivial. In problems such as the attractor mechanism with only one type of flux or

charge for each cycle, it is not true. The heterotic string also has one type of flux per cycle

and is formally very similar; one cannot get small AdS cosmological constant just from

fluxes in this case. Of course, there are many more variables having to do with the gauge

fields, which might make small cosmological constant possible in this problem.

The simple argument also misses a good deal of structure in the distribution; a good

example is the behavior near the conifold point displayed in figure 4.

The heuristic argument that “nonsupersymmetric vacua are as common as supersym-

metric” actually has a precise realization here, in the existence of vacua with W = D2W =

0. Since W = 0 these are probably of limited physical interest, in particular it is hard

to see how to stabilize their volume moduli. Other nonsupersymmetric vacua exist and

are also roughly comparable in number. Strangely enough, the conditions of metastability

and positive effective cosmological constant were incompatible, at least in the conifold and

large structure limits. If this were generally true, and true in multi-modulus models, it

would appear quite important.

Of course, all this was only a first cut at an actual counting of vacua. At this point

it seems quite possible that many of the nonsupersymmetric vacua which are stable under

variations of the moduli, have more subtle instabilities or inconsistencies. This would

obviously be important to understand.

The scenario in which the numbers we are computing would be most meaningful would

be one in which such effects drastically reduced the number of vacua, but in a way which

was more or less uncorrelated to the distributions we studied. If we grant this, certain

physical expectations would result. First, one finds that a high scale of supersymmetry

breaking is favored (of course, this could be the scale in a hidden sector). This is already

true in the D breaking vacua, for which at best the scaleM 4
susy is uniformly distributed, and

in some cases (e.g. near conifold points) even disfavors small values. While we did not find
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F breaking vacua with positive cosmological constant, this may be an artifact of the one

modulus case (or of the special limits we considered). But a high susy breaking scale would

be even more favored for F breaking vacua in models with many moduli, as one expects

the many supersymmetry breaking parameters Fi = DiW to be roughly independent and

uniformly distributed.

The expectation that a high scale of supersymmetry breaking would lead to problems

in tuning away the cosmological constant, favoring a low scale of breaking, is probably

not true for these vacua. The point is that the contribution to the energy which does

this tuning, the −3eK|W |2 term or “AdS cosmological constant,” gets contributions from

many sectors of the theory, including sectors with unbroken supersymmetry, and has no a

priori correlation to the supersymmetry breaking scale. Given a particular supersymmetry

breaking scale, this contribution is then set by the requirement that Λ ∼ 0, but since in

general vacua exist with a uniform distribution of this parameter, this condition in itself

does not favor any particular scale.

Thus, these distributions seem to favor “moduli dominated gravity mediated super-

symmetry breaking,” in the terminology of [30]. One has a general prediction of a large

gravitino mass, and risks the common problems of supergravity mediated breaking, such

as non-universal soft breaking terms. Perhaps this is less of a problem in the D breaking

models.

Finally, the moduli space measure (the metric on the space of metrics) heavily disfavors

large complex structure and large volume in the many modulus models, as we will discuss

in more depth in [31].
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