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Abstract: We first discuss the relationship between the SL(2;R)/U(1) supercoset and

N = 2 Liouville theory and make a precise correspondence between their representations.

We shall show that the discrete unitary representations of SL(2;R)/U(1) theory correspond

exactly to those massless representations of N = 2 Liouville theory which are closed under

modular transformations and studied in our previous work [18].

It is known that toroidal partition functions of SL(2;R)/U(1) theory (2D Black Hole)

contain two parts, continuous and discrete representations. The contribution of continuous

representations is proportional to the space-time volume and is divergent in the infinite-

volume limit while the part of discrete representations is volume-independent.

In order to see clearly the contribution of discrete representations we consider elliptic

genus which projects out the contributions of continuous representations: making use of

the SL(2;R)/U(1), we compute elliptic genera for various non-compact space-times such as

the conifold, ALE spaces, Calabi-Yau 3-folds with An singularities etc. We find that these

elliptic genera in general have a complex modular property and are not Jacobi forms as

opposed to the cases of compact Calabi-Yau manifolds.
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1. Introduction

Study of superstring vacua in irrational superconformal theories has been a challenging

problem. These theories describe superstrings propagating in non-compact curved space-

time often developing isolated singularities. Applications of the study of this subject include

the string theory on Calabi-Yau singularities and its holographic description, or the little

string theory on NS5-branes in the T-dual picture [1]–[13]. The analysis is also important

for backgrounds with non-trivial time dependence studied in the context of time-like Liou-

ville theory [14, 15, 16]. Much of the efforts of understanding irrational (super)conformal

theories have centered around the study of Liouville field theory. See, for instance, [17] for

a recent review including a detailed list of literature.

One of the outstanding difficulties in these non-compact models is the coexistence of

both discrete and continuous spectra of primary fields. Characters of these representa-

tions mix in a non-trivial manner under modular transformations in contrast with rational

theories.
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As an example, let us recall the superstring vacua of the type

Minkowski space-time ⊗N = 2 minimal⊗N = 2 Liouville .

Then, we had the following puzzle;1

1. These backgrounds correspond to isolated singularities in Calabi-Yau spaces [1, 2, 3,

4], and one expects the existence of massless excitations describing the deformation

of the singularities in the string spectra.

2. However, the modular invariant partition functions for such superconformal systems

(in the infinite-volume limit) contain only contributions from continuous representa-

tions which possess the mass gap and no discrete representations corresponding to

massless excitations occur, as was studied for instance in [7].

In our previous work [18] we have partially resolved this puzzle by showing that

3. Discrete massless modes representing non-trivial cycles appear in the open string

channels of cylinder amplitudes associated with supersymmetric boundary states.

We have obtained candidate Cardy boundary states which correspond to ZZ and

FZZT branes in the bosonic Liouville theory [19, 20, 21]. See also [22].

In this paper in order to further study these problems, we analyze the SL(2;R)k/U(1)

Kazama-Suzuki model [23], which is known to be T-dual (mirror) to the N = 2 Liouville

theory [24, 5, 25, 26]. After identifying the SL(2;R)k/U(1) conformal blocks (branching

functions) with the N = 2 characters, we perform the character expansion of the toroidal

partition function of the Kazama-Suzuki model in order to study its closed string spectrum.

We will follow the analysis given in [27] (see also [28, 29]) of the partition function of the

bosonic SL(2;R)/U(1)-model [30, 31]. It is well-known that the gauged WZW model for

SL(2;R)/U(1) describes the geometry of a 2-dimensional black hole [32].

We find an infra-red divergence in the partition function of the theory corresponding to

the infinite volume V of the geometry of 2D black hole. In the limit V →∞ the partition

function becomes simply the diagonal sum of continuous representations. When we suitably

regulate the IR divergence, however, we find a non-trivial weight function for the continuous

series and also a set of discrete representations with spin 1/2 ≤ j ≤ (k + 1)/2. We find

that these discrete series are exactly the massless representations in N = 2 Liouville theory

which are closed under modular transformations [18].

Discrete states are localized around the tip of the cigar in 2D black hole [33]. Thus they

are suppressed in the infinite-volume limit as compared with the continuous representations.

In order to see clearly identify the contributions of the discrete states not buried under

the continuous representations, we propose to study the elliptic genus of the theory [34]

to which the continuous representations do not contribute. We consider coupled supercon-

formal systems: SL(2;R)k/U(1) ⊗M, where M are various N = 2 RCFT’s. By taking

suitable choices for M we have computed elliptic genera for the conifold, ALE spaces,

1This issue was first raised in [9].
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Calabi-Yau 3-folds with An singularities etc. It turns out that in general elliptic genera

have a complicated modular property and are not Jacobi forms as in the case of compact

Calabi-Yau manifolds. They are instead expressed in terms of the Appell function which

features in the study of higher rank vector bundles over elliptic curves [35, 36].

While preparing this manuscript, we became aware of an interesting paper [37] on

the e-print Archive, where the authors studied the modular properties of the extended

characters in the bosonic SL(2;R)/U(1)-model defined in the similar manner as in [18],

and there are some overlaps with the present work.

2. Toroidal partition function for the SL(2; R)/ U(1) Kazama-Suzuki model

2.1 Preliminaries

The Kazama-Suzuki supercoset model [23] for SL(2;R)k/U(1) is defined as the coset CFT

SL(2;R)κ × SO(2)1
U(1)−(κ−2)

, (2.1)

which is an N = 2 SCFT with the central charge and level2

ĉ ≡ c

3
= 1 +

2

k
, k ≡ κ− 2 . (2.2)

More explicitly, the total world-sheet action is written as

S(g,A, ψ±, ψ̃±) = κSgWZW(g,A) + Sψ(ψ
±, ψ̃±, A) , (2.3)

κSgWZW(g,A) = κS
SL(2;R)
WZW (g) +

κ

π

∫

Σ
d2z

{
Tr
(σ2
2
g−1∂z̄g

)
Az +Tr

(σ2
2
∂zgg

−1
)
Az̄ +

+Tr
(σ2
2
g
σ2
2
g−1
)
Az̄Az +

1

2
Az̄Az

}
, (2.4)

S
SL(2;R)
WZW (g) = − 1

8π

∫

Σ
d2z Tr

(
∂αg

−1∂αg
)
+

i

12π

∫

B
Tr
(
(g−1dg)3

)
, (2.5)

Sψ(ψ
±, ψ̃±, A) =

1

2π

∫
d2z

{
ψ+(∂z̄ −Az̄)ψ− + ψ−(∂z̄ +Az̄)ψ

+ +

+ ψ̃+(∂z −Az)ψ̃− + ψ̃−(∂z +Az)ψ̃
+

}
, (2.6)

where the complex fermions ψ± (and ψ̃±) have charge ±1 with respect to the U(1)-

gauge group. The bosonic part κSgWZW(g,A) is the gauged WZW model for the coset

SL(2;R)κ/U(1)A [38, 30], where U(1)A indicates the gauging the axial U(1)-symmetry;

g → ΩgΩ, Ω(z, z̄) = eiu(z,z̄)σ2 (u(z, z̄) ∈ R, σ2 is the Pauli matrix.) It is well-known that

this model describes string theory on 2D euclidean black-hole with the cigar geometry [32].

The WZW action κS
SL(2;R)
WZW (g) is formally equal to −κSSU(2)

WZW(g), and has a negative sig-

nature in iσ2-direction. Since we have H3(SL(2;R)) = 0, the action κS
SL(2;R)
WZW (g) can be

rewritten as a purely two dimensional form and the level κ need not be an integer.

2Throughout this paper we denote the level of super SL(2;R) as k, and the level of bosonic SL(2;R) as

κ = k + 2.
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The chiral currents

jA(z) = κTr
(
TA∂zgg

−1
)
, j̃A(z̄) = −κTr

(
TAg−1∂z̄g

)
, (2.7)

T 3 =
1

2
σ2 , T± = ±1

2
(σ3 ± iσ1) (2.8)

satisfy the affine ŜL(2;R)κ current algebra (we write the left-mover only);





j3(z)j3(0) ∼ −κ/2
z2

j3(z)j±(0) ∼ ±1
z
j±(0)

j+(z)j−(0) ∼ κ

z2
− 2

z
j3(0)

(2.9)

and the pair of free fermions ψ+, ψ− satisfy the OPE’s ψ+(z)ψ−(0) ∼ 1/z, ψ±(z)ψ±(0) ∼ 0.

The explicit realization of N = 2 SCA is given by

T (z) =
1

k
ηABj

AjB +
1

k
J3J3 − 1

2
(ψ+∂ψ− − ∂ψ+ψ−) , (ηAB = diag(1, 1,−1)) ,

J = ψ+ψ− +
2

k
J3 , G± =

1√
k
ψ±j∓ , (2.10)

where we set J3 ≡ j3 + ψ+ψ−, which is the unique U(1)-current commuting with all

the generators of N = 2 SCA and hence defines the denominator of the SL(2;R)k/U(1)-

supercoset.

To close this preliminary subsection, we summarize irreducible representations of

ŜL(2;R)κ current algebra. We concentrate on the representations with conformal weights

bounded from below3 and corresponding to unitary representations of the zero-mode sub-

algebra {j30 , j±0 }. The parameter j is related to the conformal weight of vacuum states by

the well-known formula

h = −j(j − 1)

κ− 2
, (2.11)

in all cases.

1. continuous series: Ĉp,α (j = 1
2 + ip, p ∈ R≥0, 0 ≤ α < 1).

They are non-degenerate representations and all the states lie above the mass gap

h ≥ 1
4(κ−2) . The vacua have the j30 -spectrum; j30 = α + n, n ∈ Z. The character

formula is simply given by (q ≡ e2πiτ , y ≡ e2πiu);

χp,α(τ, u) =
q
p2

κ−2

η(τ)3

∑

n∈Z
yn+α . (2.12)

3We have more general representations constructed by the spectral flows;

j3m → j3m −
κ

2
nδm,0 , j±m → j±m±n , Lm → Lm + nj3m −

κ

4
n2δm,0 .

However, they generically have unbounded spectra of conformal weights.
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In the following arguments we often use formal identities such as

1

1− y +
y−1

1− y−1 =
∑

n∈Z
yn =

∑

m∈Z
δ(u+m) , (z ∈ R).

For a more rigorous treatment, one may consider the “regularized characters”

χξ(τ, u; ε) defined by replacing e2πi(n+α)u with e2πi(n+α)ue−|n|ε (ε > 0, n ∈ Z,

0 ≤ α < 1).

2. discrete series: D̂±j (j ∈ R>0).

The superscript + indicates that these are the lowest weight representations and

− does the highest weight ones. The spin parameter j is allowed to be continuous

despite the name “discrete series” (while, in the SL(2;R)/U(1)-coset theory j takes

discrete values). The vacua have the j30 -spectrum; j30 = ±(j + n), n ∈ Z≥0 for D̂±j
respectively. The character formula is written as

χ±j (τ, u) = ±i
q−

1
κ−2 (j−

1
2 )

2

y±(j−
1
2)

θ1(τ, u)
. (2.13)

3. identity representation.

This is the representation generated by the vacuum h = j30 = 0 corresponding to the

identity operator. Since this vacuum is both highest and lowest weight, the character

formula becomes

χ0(τ, u) = i
q
− 1

4(κ−2) y−1/2(1− y)
θ1(τ, u)

≡ q
− κ

8(κ−2)

∏∞
n=1(1− qn)(1− yqn)(1 − y−1qn)

. (2.14)

4. complementary representations: Êj,α (0 < j < 1
2 ,
∣∣j − 1

2

∣∣ <
∣∣α− 1

2

∣∣, 0 ≤ α < 1).

These are non-degenerate representations below the mass gap. The vacua again have

the j30 -spectrum; j30 = α+n, (n ∈ Z). The character formula has the same form as the

continuous series. The range of j comes from the unitarity of zero-mode subalgebra.

At the “boundary” of this range j = 0, α = 0, the representation with h = 0 becomes

reducible and is decomposed as

Êj=0,α=0
∼= (identity rep.)⊕ D̂+

j=1 ⊕ D̂−j=1 . (2.15)

2.2 Branching functions

We start our analysis by identifying the conformal blocks for the toroidal partition function

in the SL(2;R)k/U(1) Kazama-Suzuki model [23]. Although this task has been already

implicitly carried out in [39],4 it is helpful for our later analysis to provide the explicit for-

mulas of conformal blocks. It turns out that these blocks are identified with the irreducible

characters of N = 2 SCA. This fact will be the simplest evidence for T-duality with the

N = 2 Liouville theory.

4It is an easy exercise to show the equivalence of the “non-compact parafermion” approach (with a

compact boson added) used in [39] with the SL(2;R)/U(1) Kazama-Suzuki model. We can thus associate

all the branching functions of the Kazama-Suzuki model with unitary irreducible representations of N = 2

SCA based on the analysis given in [39]. See also [40].

– 5 –
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We focus on the NS-sector and the formulas for other spin structures are obtained

by using the 1/2-spectral flow. According to the standard treatment of coset CFT, the

conformal blocks are defined as the following branching functions;

χξ(τ, u)
θ3(τ, v)

η(τ)
=
∑

m

χ
(NS)
ξ,m (τ, z)

q−
m2

k e2πimw

η(τ)
. (2.16)

where ξ indicates each of the irreducible representations of ŜL(2;R)κ classified above. The

angle variables u, v, z, w are associated to the U(1)-currents j3, ψ+ψ−, J , J3 respectively,

and we can easily read off the relations among them as

u =
2

k
z + w , v = u+ z ≡ k + 2

k
z + w , (2.17)

from the definitions J 3 = j3 + ψ+ψ−, J = ψ+ψ− + 2
kJ

3. The summation of m runs over

the possible J3
0 -spectrum of representation ξ (tensored with the free fermion system ψ±)

The branching functions for continuous series (and the complementary representations)

are easily obtained due to the absence of null states;

χcon
(NS)
p,m (τ, z) = q

p2+m2

k e2πi
2m
k
z θ3(τ, z)

η(τ)3
≡ ch(NS)

(
h =

p2

k
+

1

4k
+
m2

k
,Q =

2m

k
; τ, z

)

(2.18)

Here ch(NS) denotes the N = 2 irreducible character for the massive (non-degenerate)

representation (B.1). We sometimes allow the pure imaginary values of p corresponding

to the branching functions for the complementary representations Êj,α (j = 1
2 + ip). The

unitarity condition [41] is derived from those for (the zero-mode parts of) Ĉp,α, Êj= 1
2
+ip,α;

p2 +

(
α− 1

2

)2

≥ 0 , α ≡ m (mod 1) , 0 ≤ α < 1 . (2.19)

Derivation of the branching functions for the discrete series is more non-trivial. We

will focus on D̂+
j because D̂−j is obtained by the spectral flow

q−
κ
4 e−2πi

κ
2
u χ+j (τ, u+ τ) = χ−κ

2
−j(τ, u) . (2.20)

The desired branching function is expressed as

χdis
(NS)
j,j+n(τ, z) ≡ q

(j+n)2

k

∫ 1

0
dw χ+j (τ, u)θ3(τ, v)e

−2πi(j+n)w . (2.21)

We first consider the following shifts of angular variables in (2.21) (or (2.16));

z 7−→ z + nτ , w 7−→ w − 2

k
nτ , (∀n ∈ Z) (2.22)

which leaves u invariant and causes v 7−→ v + nτ . Using the property θ3(τ, v + nτ) =

q−
n2

2 e−2πinvθ3(τ, v), we find the relation

q
ĉ
2
n2e2πiĉnz χdis

(NS)
j,j (τ, z + nτ) = χdis

(NS)
j,j+n(τ, z) ,

(
ĉ = 1 +

2

k

)
. (2.23)

– 6 –
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Therefore, it is enough to calculate χdis
(NS)
j,j (τ, z). The easiest way to evaluate it is to use

of the character relation

χ+j (τ, u) + q
κ
4
−je2πi

κ−2
2
uχ−κ

2
−j(τ, u) = χj,α=j(τ, u) . (2.24)

r.h.s. is the character of complementary representation Êj,α=j.
We act by q

j2

k

∫ 1
0 dwθ3(τ, v)e

−2πijw on both sides of (2.24). We also need the branching

relation for D̂−κ
2
−j ;

χdis
(NS)
j,j+n(τ, z) = q

(j− k2 +n)
2

k

∫ 1

0
dw χ−κ

2
−j(τ, u)θ3(τ, v)e

−2πi(j− k
2
+n)w , (2.25)

which is derived from (2.20) by making a shift w 7−→ w + τ with keeping z (that is,

u 7−→ u+ τ , v 7−→ v + τ) in (2.21). We then obtain

(1 + e2πizq1/2)χdis
(NS)
j,j (τ, z) = χcon

(NS)
j,m=j(τ, z) ≡ q

j
k
− 1

4k e2πi
2j
k
z θ3(τ, z)

η(τ)3
. (2.26)

This leads to the formula

χdis
(NS)
j,j (τ, z) =

q
j
k
− 1

4k e2πi
2j
k
z

1 + e2πizq1/2
θ3(τ, z)

η(τ)3
≡ ch

(NS)
M

(
Q =

2j

k
; τ, z

)
. (2.27)

Here ch
(NS)
M (Q; τ, z) is the massless matter character of N = 2 SCA for the chiral primary

states h = Q/2 > 0 (B.2). Since (2.23) is the proper relation for spectral flow of N = 2 SCA

(see (B.5)), we can identify χdis
(NS)
j,j+n(τ, z) with the flowed massless matter character (B.5);

χdis
(NS)
j,j+n(τ, z) = ch

(NS)
M

(
Q =

2j

k
, n; τ, z

)
≡ q

j+n2+2nj
k

− 1
4k e2πi

2(j+n)
k

z

1 + e2πizqn+1/2

θ3(τ, z)

η(τ)3
, (∀n ∈ Z)

(2.28)

One may check directly the validity of our branching relation

χ+j (τ, u)
θ3(τ, v)

η(τ)
=
∑

n∈Z

q
j+n2+2nj

k
− 1

4k e2πi
2(j+n)
k

z

1 + e2πizqn+1/2

θ3(τ, z)

η(τ)3
· q
− (j+n)2

k e2πi(j+n)w

η(τ)
, (2.29)

by comparing the residues at poles e2πiuqm = 1 (m ∈ Z) of both sides.

It is useful to note:

• n ≥ 0: The vacuum state of χdis
(NS)
j,j+n(τ, z) is (j+0 )n|j, j〉 ⊗ |0〉ψ, which possesses the

quantum numbers

h =
2j
(
n+ 1

2

)
+ n2

k
, Q =

2(j + n)

k
, (2.30)

• n < 0: The vacuum state is (j−−1)
|n|−1|j, j〉 ⊗ ψ−−1/2|0〉ψ, which has

h =
− (k − 2j)

(
n+ 1

2

)
+ n2

k
, Q =

2(j + n)

k
− 1 . (2.31)

– 7 –
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Especially, χdis
(NS)
j,j−1(τ, z) is the character of anti-chiral primary with h = −Q

2 = 1
k (

k+2
2 −j).

As is proved in [39], the unitarity bound for the Casimir parameter j is given as

0 < j <
κ

2

(
≡ k + 2

2

)
, (2.32)

which reproduces all the (spectrally flowed) massless matter representations of N = 2 SCA

lying on the “unitarity segments” given in [41].

Branching functions for the identity representation χdis
(NS)
j=0,m=0(τ, z) may be derived

in a similar manner with the help of (2.15). As one may expect, it is given by the graviton

representation h = Q = 0 (B.3) of N = 2 SCA. We find that

χdis
(NS)
0,0 (τ, z) = ch

(NS)
G (τ, z) = q−

1
4k

1− q
(1 + e2πizq1/2)(1 + e−2πizq1/2)

θ3(τ, z)

η(τ)3
(2.33)

Spectral-flowed version is given by

χdis
(NS)
0,n (τ, z) = ch

(NS)
G (n; τ, z) ≡ q−

1
4k

(1− q)q n
2

k
+n− 1

2 e2πi(
2n
k
+1)z

(
1 + e2πizqn+1/2

) (
1 + e2πizqn−1/2

) θ3(τ, z)
η(τ)3

(2.34)

The corresponding vacua are slightly non-trivial;

• n = 0: The vacuum is |0, 0〉 ⊗ |0〉ψ with h = Q = 0.

• n ≥ 1: The vacuum is (j+−1)
n−1|0, 0〉 ⊗ ψ+

−1/2|0〉ψ, which has the quantum numbers

h =
n2

k
+ n− 1

2
, Q =

2n

k
+ 1 . (2.35)

• n ≤ −1: The vacuum is (j−−1)
|n|−1|0, 0〉⊗ψ−−1/2|0〉ψ, which has the quantum numbers

h =
n2

k
− n− 1

2
, Q =

2n

k
− 1 . (2.36)

We finally introduce the branching functions of other spin structures to fix the conven-

tion in this paper. Let χ
(NS)
∗,m (τ, z) be the abbreviated notations of the branching functions

considered above (m = J 3
0 ). We define

χ
(ÑS)
∗,m (τ, z) ≡ e−iπ

2m
k χ

(NS)
∗,m

(
τ, z +

1

2

)
,

χ
(R)

∗,m+ 1
2

(τ, z) ≡ q
k+2
8k eiπz

k+2
k χ

(NS)
∗,m

(
τ, z +

τ

2

)
,

χ
(R̃)

∗,m+ 1
2

(τ, z) ≡ e−iπ
2m
k q

k+2
8k eiπz

k+2
k χ

(NS)
∗,m

(
τ, z +

τ

2
+

1

2

)
. (2.37)
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2.3 Toroidal partition function

Let us analyze the toroidal partition function of SL(2;R)k/U(1) Kazama-Suzuki model. It

can be evaluated by the path-integral approach as described in [30, 31] for the bosonic 2D

black-hole model [32]. Here we present only the result and leave the detailed calculations

to appendix C. For the NS sector of the theory, we obtain

Z(NS)(τ) =

∫
D[g,A, ψ±, ψ̃±] e−κSgWZW(g,A)−Sψ(ψ

±,ψ̃±,A) (2.38)

= C

∫ 1

0
ds1

∫ 1

0
ds2

|θ3(τ, s1τ − s2)|2

|θ1(τ, s1τ − s2)|2
∑

w,m∈Z
exp

(
−πk
τ2
|(w + s1)τ − (m+ s2)|2

)
,

where C is a normalization constant to be fixed later. The partition functions for other spin

structures are obtained by simply replacing θ3(τ, s1τ − s2) with θ[σ](τ, s1τ − s2), defined as

θ[NS] = θ3, θ[ÑS]
= θ4, θ[R] = θ2 and θ[R̃] = iθ1. Assuming the diagonal modular invariant

for spin structures, we obtain the partition function

Z(τ) =
1

2

∑

σ

Z(σ)(τ) . (2.39)

Here u ≡ s1τ − s2 (0 ≤ s1, s2 ≤ 1) is the modulus of gauge field A. One can view the

sum over m,n as summing over the momentum and winding modes of a compact boson Y

which parameterizes the 2-dimensional gauge field A. Y has a radius
√
2k which is the size

of the asymptotic circle far from the tip of the cigar. With the canonical normalization

Y (z)Y (0) ∼ − ln z for the field Y , total anomaly free current defining the BRST charge

(see [38]) is given as

J3
tot ≡ j3 + ψ+ψ− +

√
k

2
i∂Y , J̃3

tot ≡ j̃3 + ψ̃+ψ̃− −
√
k

2
i∂̄Y . (2.40)

Of course, these currents have no singular OPE’s with the N = 2 SCA generators (2.10),

assuring their BRST-invariance.

The partition function (2.39) is modular invariant in a formal sense since the modulus

integral
∫
ds1ds2 is logarithmically divergent due to the double pole of 1/|θ1(τ, s1τ − s2)|2.

The appearance of divergence is not surprising since the target space has an infinite volume.

The evaluation of modulus integral with a suitable IR cut-off in (2.38) is quite useful in

determining the closed string spectrum, as shown in [27] for the bosonic SL(2;R)/U(1)

model. We turn to this analysis from now on.

2.4 Expansion into branching functions

We expand the toroidal partition function into branching functions of SL(2;R)k/U(1)

following the procedure of [27]. (See also [28, 29].) Although our result will be quite

similar to the bosonic case [27], we will present our analysis for the supersymmetric case

for the sake of completeness.
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We start with the partition function of NS sector (2.38). Using the Poisson resumma-

tion formula, we can rewrite it as;

Z(NS)(τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

√
τ2
k

∑

w,n∈Z

|θ3(τ, s1τ − s2)|2

|θ1(τ, s1τ − s2)|2
×

×e−2πτ2
(
n2

2k
+ k

2
(s1+w)2

)
−2πin((s1+w)τ1−s2) . (2.41)

The s2-integral is easily performed since s2 appears only linearly in the exponent. The

q-expansion of the theta function terms is expressed as the trace over the Hilbert space

of various oscillators. We introduce the oscillator levels N , Ñ and also the operators l, l̃

defined as

l ≡ ]{j+n , ψ+
r } − ]{j−n , ψ−r } , l̃ ≡ ]{j̃+n , ψ̃+

r } − ]{j̃−n , ψ̃−r } . (2.42)

The relevant Hilbert space is

H± ≡
[
F±SL(2) ⊗Fψ ⊗FY ⊗Fgh

]
L
⊗
[
F±SL(2) ⊗Fψ ⊗FY ⊗Fgh

]
R
, (2.43)

where F∗ denotes the Fock space of each sector. Especially, in the SL(2;R)-sector, F+
SL(2)

and F−SL(2) means respectively the ones associated to the lowest and highest weight repre-

sentations of zero-modes: namely we have

TrF±
SL(2)

(
qN−1/8e2πiul

)
=
±ie∓iπu
θ1(τ, u)

. (2.44)

We thus obtain

Z(NS)(τ) = C

∫ 1

0
ds1

√
τ2
k

∑

w,n∈Z
e
−2πτ2

(
n2

2k
+ kw2

2
+kws1+

k
2
s21

)
×

× TrH+

(
e−2πτ2(N+Ñ+(l+l̃+1)s1−

1
4 )+2πiτ1(N−Ñ−nw)

)
, (2.45)

where the trace is constrained by the condition l − l̃ = n imposed by the s2-integral.

The s1-integral is non-trivial since s1 appears quadratically in the exponent. Follow-

ing [28, 27], we linearize it by means of the Fourier transformation;

√
kτ2e

−2πτ2
k
2
s21 =

∫ ∞

−∞
dc e

− π
kτ2

c2−2πics1 . (2.46)

The s1-integral is then easy to compute and gives
∫ ∞

−∞
dc

∫ 1

0
ds1 e

− π
kτ2

c2−2πτ2
(
n2

2k
+ k

2
w2
)
−2πs1(ic+τ2(kw+l+l̃+1))

=

=

∫ ∞

−∞
dc

−e−
π
kτ2

c2−2πτ2
(
n2

2k
+ k

2
w2
)

2π
(
ic+ τ2(kw + l + l̃ + 1)

)
{
e−2π(ic+τ2(kw+l+l̃+1)) − 1

}
(2.47)

= − 1

2π

∫

C2

dp
e
−2πτ2

(
2 p

2

k
+n2

2k
+ k

2
(w+1)2+l+l̃+1

)

ip+ 1
2

(
k(w + 1) + l + l̃ + 1

) +
1

2π

∫

C1

dp
e
−2πτ2

(
2 p

2

k
+n2

2k
+ k

2
w2

)

ip+ 1
2

(
kw + l + l̃ + 1

) .
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In the last line we set c = 2τ2p − iτ2k in the first term, and set c = 2τ2p in the second

term. The integration contours are defined as C1 : Im p = 0, C2 : Im p = k/2.

To proceed further it is useful to make use of the spectral flow associated to the total

currents (2.40), defined symbolically as5

Un ≡ einΦ(0,0) , i∂Φ ≡ J3
tot , i∂̄Φ ≡ J̃3

tot , (n ∈ Z) . (2.48)

It is easy to see that U1 acts as

U−11 N U1 = N + l + 1
2 , U−11 Ñ U1 = Ñ + l̃ + 1

2 ,

U−11 lU1 = l + 1 , U−11 l̃U1 = l̃ + 1 ,

U−11 w U1 = w + 1 , U−11 nU1 = n , (2.49)

and maps the Fock space H+ to H−. We thus find that

∑

w,n∈Z
e
−2πτ2

(
n2

2k
+ k

2
(w+1)2

)
TrH+


e

−2πτ2(N+Ñ+l+l̃+1− 1
4 )+2πiτ1(N−Ñ−nw)

ip+ 1
2

(
k(w + 1) + l + l̃ + 1

)


 =

=
∑

w,n∈Z
e
−2πτ2

(
n2

2k
+ k

2
w2
)
TrH−


e

−2πτ2(N+Ñ− 1
4)+2πiτ1(N−Ñ−nw)

ip+ 1
2

(
kw + l + l̃ − 1

)


 . (2.50)

Substituting (2.47) and (2.50) to (2.45), we can show (ĉ ≡ (k + 2)/k)

Z(τ) =
C

2πk

∑

w,n∈Z

[∫

C1

dpe
−2πτ2

(
n2

2k + kw2

2 +2 p2+1/4
k − ĉ

4

)

TrH+

(
e−2πτ2(N+Ñ)+2πiτ1(N−Ñ−nw)

ip+ 1
2 (kw + l + l̃ + 1)

)
−(2.51)

−
∫

C2

dpe
−2πτ2

(
n2

2k + kw2

2 +2 p2+1/4
k − ĉ

4

)

TrH−

(
e−2πτ2(N+Ñ)+2πiτ1(N−Ñ−nw)

ip+ 1
2 (kw + l + l̃ − 1)

)]
.

As in [28, 27], let us perform the contour deformation; C2 → C1, which picks up extra

contributions from simple poles within the range 0 ≤ Im p ≤ k/2. The partition function

is now divided into two parts;

Z(NS)(τ) = Zcon
(NS)(τ) + Zdis

(NS)(τ) , (2.52)

where the first term includes the p-integration on the real axis (C1) and the second corre-

sponds to the sum of pole residues.

The first term Zcon
(NS)(τ) is rewritten as

Zcon
(NS)(τ) =

C

2πk

∑

w,n∈Z

∫ ∞

−∞
dp e

−2πτ2

(
n2

2k
+ kw2

2
+2

p2+1/4
k

− ĉ
4

)

×

×
[
TrH+

(
e−2πτ2(N+Ñ)+2πiτ1(N−Ñ−nw)

ip+ 1
2 (kw + l + l̃ + 1)

)
−

−TrH−

(
e−2πτ2(N+Ñ)+2πiτ1(N−Ñ−nw)

ip+ 1
2(kw + l + l̃ − 1)

)]
(2.53)

5This is different from the standard spectral flow of N = 2 SCA, defined in the same way referring to

the N = 2 U(1)-currents (see (B.4)). We note that the operators Un preserve the total current (2.40) and

hence make the BRST-charge invariant. Un also preserves the N = 2 SCA generators (2.10).
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Since the factor l + l̃ appears only in the denominators, the traces are logarithmically

divergent when one sums over the states of the form (j+0 j̃
+
0 )

r|ψ〉 ((j−0 j̃
−
0 )r|ψ〉) for TrH+

(TrH−). This divergence comes from the pole s1 = s2 = 0 in (2.38), that is, the infinite

volume effect. Since the exponent n2

2k + kw2

2 + 2p
2+1/4
k − ĉ

4 is the correct weights for the

continuous representations, it is natural to expect that Zcon
(NS)(τ) can be expressed in a

form

Zcon
(NS)(τ) =

C

k

∑

w,n∈Z

∫ ∞

0
dp ρ(p,w, n)χcon

(NS)
p,m (τ, 0)χcon

(NS)
p,m̃ (τ̄ , 0) , (2.54)

m ≡ n− kw
2

, m̃ ≡ −n+ kw

2
, (2.55)

with a suitable spectral density ρ(p,w, n). Here χcon
(NS)
p,m (τ, 0) is the branching function of

continuous series (2.18) and is an irreducible massive character of N = 2 SCA. Although

there appear some ambiguities in regulating the IR divergence, a candidate expression for

ρ(p,w, n) has been proposed in [28, 27].

ρ(p,w, n) =
1

2π
2 log ε+

1

2πi

d

2dp
log

Γ
(
−ip+ 1

2 −m
)
Γ
(
−ip+ 1

2 + m̃
)

Γ
(
+ip+ 1

2 −m
)
Γ
(
+ip+ 1

2 + m̃
) , (2.56)

where ε > 0, ε ≈ 0 is the IR cut-off. The first term in (2.56) is interpreted as the volume

factor. The second term has a non-trivial momentum dependence and is related to the

reflection amplitudes of Liouville theory as is discussed in [28].

On the other hand, the pole contributions yield the sum over the branching functions

of discrete series (2.27) (and (2.28)). We take the identification j = −ip + 1/2 for the

spin parameter j so that we have e−2πτ2
p2

k = e2πτ2
1
k (j−

1
2 )

2

(with this identification relevant

poles are located in the region j ≥ 0). The pole occurs in the 2nd term of (2.51) at

j =
1

2
(kw + l + l̃)

(
=

1

2
(kw − n+ 2l) =

1

2
(kw + n+ 2l̃)

)
. (2.57)

Since only the poles located on the interval between C1 and C2 can contribute, we must

impose

1

2
≤ j ≤ k + 1

2

(
=
κ− 1

2

)
. (2.58)

Note that this range (2.58) coincides with the one derived in the bosonic model [27] (with

respect to κ) and is strictly smaller than the unitarity bound (2.32) [39] for generic values of

k. This bound also coincides with the one required by the analysis of reflection coefficients

(two point functions on sphere) [5], and also with that obtained from the no-ghost theorem

for the parent SL(2;R) theory [42] (see also [43, 44, 45]).

We also would like to emphasize that the restricted range (2.58) agrees exactly with the

range of massless matter representations Ch
(NS)
M (r, s) of N = 2 Liouville theory discussed

in [18]. In fact under the correspondence of notations

j =
s

2K
, k =

N

K
(2.59)
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the range 1/2 ≤ j ≤ (k + 1)/2 maps to

K ≤ s ≤ N +K (2.60)

which is exactly the range of massless representations closed under modular transforma-

tions.

Recalling the branching relation (2.25), the desired character expansion is obtained as

Zdis
(NS)(τ) =

C

k

∑

w,n∈Z

∑

j∈Jw,n

a(j)χdis
(NS)
κ
2
−j,m+ k

2

(τ, 0)χdis
(NS)
κ
2
−j,m̃+ k

2

(τ̄ , 0) , (2.61)

Jw,n ≡
[
1

2
,
k + 1

2

]
∩
(
kw − n

2
+ Z

)
, (2.62)

a(j) ≡
{

1 (12 < j < k+1
2 )

1
2 (j = 1

2 ,
k+1
2 )

(2.63)

where m and m̃ are defined as above (2.55). The factor a(j) is necessary to give a correct

weight to the poles on the boundary, j = 1/2 and (k+1)/2.6 We choose the normalization

constant C = k.

We finally make a comment with respect to the modular invariance. The regularized

partition function is written as

Z(τ ; ε) =
1

2

∑

σ

∑

w,n

[∫ ∞

0
dp ρ(p,w, n; ε)χcon

(σ)
p,m(τ, 0)χcon

(σ)
p,m̃(τ̄ , 0) +

+
∑

j∈Jw,n

a(j)χdis
(σ)
κ
2
−j,m+ k

2

(τ, 0)χdis
(σ)
κ
2
−j,m̃+ k

2

(τ̄ , 0)

]
, (2.64)

where we have indicated the dependence on IR cut-off ε explicitly. Strictly speaking this

expression is not modular invariant because of the non-trivial p-dependence of the spec-

tral density ρ(p,w, n; ε) (2.56), even though the original formula coming from the path-

integral (2.38) appears modular invariant. In fact, the IR regularization would spoil the

modular invariance, as we often face in general non-compact curved backgrounds. In order

6One may object to a fractional factor 1/2 in the weight of discrete representations in the partition

function. However, there exists a character identity

χdis
(NS)
1
2
, 1
2
+n

(τ, z) + χdis
(NS)
k+1
2
, k+1

2
+n

(τ, z) = χcon
(NS)
j= 1

2
,m= 1

2
+n

(τ, z)

≡ ch(NS)
(
h =

1

2k
+
n+ n2

k
,Q =

2n + 1

k
; τ, z

)
.

which enables us to write (2.61) in a form (set C = k)

Zdis
(NS)(τ ) =

∑

w,n∈Z

∑

j∈J ′w,n

χdis
(NS)
κ
2
−j,m+ k

2

(τ, 0)χdis
(NS)
κ
2
−j,m̃+ k

2

(τ̄ , 0) + (terms including continuous rep.)

J ′w,n ≡

(
1

2
,
k + 1

2

]
∩

(
kw − n

2
+ Z

)
.
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to recover invariance, the best one can do is to consider the partition function per unit

volume;

Z(τ) ≡ lim
ε→+0

Z(τ ; ε)

2 1
2π log ε

=
1

2

∑

σ

∑

w,n

∫ ∞

0
dpχcon

(σ)
p,m(τ, 0)χcon

(σ)
p,m̃(τ̄ , 0) . (2.65)

The modular invariance of (2.65) follows from that of a free compact boson with a radius

R =
√
2k.

To summarize, the partition function is decomposed into two parts: (1) the continuous

part Zcon(τ), and (2) the discrete part Zdis(τ). The continuous part Zcon(τ) includes

dominant contributions proportional to the volume factor, and correspond to the modes

freely propagating in the bulk. Its precise definition depends on the regularization scheme.

On the other hand, the discrete part Zdis(τ) only contains representations of

(anti-)chiral primaries and their spectral flows within the range (2.58). They describe

excitations localized around the tip of 2D black-hole that could be identified as the bound

states [33] (see also [46]). The absence of IR divergence in Zdis(τ) is in accord with this

expectation. The part of discrete representations is universal: insensitive to the choice of

regularization scheme and stable under marginal deformations preserving N = 2 SUSY.

We will make use of this piece to compute elliptic genus in the next section which captures

the geometrical information of the singular space-time.

It seems that a strictly modular invariant partition function is obtained only after

dividing by the infinite volume factor, which inevitably contains only the continuous rep-

resentations. All the states appearing in this partition function (2.64) lie above the mass

gap h ≥ 1/(4k), which corresponds to the decoupling of gravity in such a space-time.

3. Coupling to RCFT’s

In this section we investigate the type-II string vacua of the forms;

R
d−1,1 ⊗M⊗ SL(2;R)/U(1) , (3.1)

where M is an arbitrary rational N = 2 SCFT with ĉ = ĉM. The criticality condition is

d

2
+ ĉM +

k + 2

k
= 5 , (3.2)

and we assume d is even. We expect that the superconformal system M⊗ SL(2;R)/U(1)

describes a non-compact CYn with n = 5 − d/2. We assume a modular invariant of M-

sector with conformal blocks FI as

ZM(τ, z) =
1

2

∑

σ

Z
(σ)
M (τ, z) ≡ e

−2πĉM
(Im z)2

τ2
1

2

∑

σ

∑

I,Ĩ

NI,ĨF
(σ)
I (τ, z)F̃

(σ)

Ĩ
(τ̄ , z̄) , (3.3)

where z is the angle associated to the U(1)-charge of N = 2 SCA and σ denotes the spin
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structures as before. In this paper we use the conventions;

F
(ÑS)
I (τ, z) ≡ e−iπQ(I)F

(NS)
I

(
τ, z +

1

2

)
,

F
(R)
I (τ, z) ≡ q

ĉM
8 eiπĉMzF

(NS)
I

(
τ, z +

τ

2

)
,

F
(R̃)
I (τ, z) ≡ e−iπQ(I)q

ĉM
8 eiπĉMzF

(NS)
I

(
τ, z +

τ

2
+

1

2

)
, (3.4)

where Q(I) is the U(1)-charge of vacuum state of the conformal block F
(NS)
I (τ, z). (Note

that the U(1)-charge for F
(R)
I (τ, z) is equal Q(I)+ ĉM/2.) Because of the rationality ofM

there exists a finite periodicity in integral spectral flows. We assume N0 ∈ Z>0 to be the

minimal integer such that

q
ĉM
2
m2
e2πiĉMmzF

(NS)
I (τ, z +mτ + n) = F

(NS)
I (τ, z) , (∀I , ∀m, ∀n ∈ N0Z) . (3.5)

Then we have ĉM = M/N0 with some positive integer M . Recalling the criticality condi-

tion (3.2), we find that

k =
N

K
, N = N0 or 2N0 ,

(
ĉSL(2;R)/U(1) = 1 +

2K

N
, 1 +

2K

N
+
M

N0
= n

)
, (3.6)

with some positive integer K.7 Throughout this section we shall assume (3.6) with fixed

positive integers N , K in the SL(2;R)/U(1)-sector.

A typical example is the Gepner model [47];

M =Mn1 ⊗ · · · ⊗Mnr , ĉM =

r∑

i=1

ni
ni + 2

, (3.7)

where Mn is the level n N = 2 minimal model. The relevant conformal blocks are the

products of minimal characters (A.6)

F
(NS)
I (τ, z) =

r∏

i=1

ch
(NS)
`i,mi

(τ, z) , (I ≡ ((`1,m1), . . . , (`r,mr))) , (3.8)

and clearly we have N0 = L.C.M{ni + 2}.
We also assume the symmetry under spectral flow of the coefficients of the modular

invariant NI,Ĩ ;

Ns(I),s(Ĩ) = NI,Ĩ , (3.9)

where s : I → s(I) denotes the action of spectral flow

F
(NS)
s(I) (τ, z) = q

ĉM
2 e2πiĉMz F

(NS)
I (τ, z + τ) . (3.10)

7Note that both of the pairs N0, M and N , K are not necessarily relatively prime. For example, in the

case

R
3,1 ⊗M2n ⊗ SL(2;R)/U(1) , (n ∈ Z≥0)

we find N0 = N = 2n + 2, M = 2n, K = n + 2. Therefore, N0, M are not relatively prime for any n, and

N , K are also not for even n.
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3.1 Modular invariant partition functions per unit volume

We first consider the modular invariant partition function for the coupled system M⊗
SL(2;R)/U(1) with ĉ = n. We assume N and K are relatively prime for the time being.

Let us recall the partition function of the SL(2;R)k/U(1)-sector defined by dividing by

the volume factor (2.65). Now in the case of a rational level k = N/K, the partition

function (2.65) can be rewritten in terms of the extended characters

Z(τ) =
1

2

∑

σ

∑

w0∈Z2K

∑

n0∈ZN

∫ ∞

0
dpχcon

(σ)(p,Kn0 −Nw0; τ, 0) ×

×χcon
(σ)(p,−Kn0 −Nw0; τ̄ , 0) , (3.11)

χcon
(NS)(p,m; τ, z) ≡

∑

n∈NZ
χcon

(NS)
p, m

2K
+n(τ, z) ≡ q

Kp2

N Θm,NK

(
τ,

2z

N

)
θ3(τ, z)

η(τ)3

(3.12)

This function is identified with the extended massive character (B.6) introduced in [18];

χcon
(NS)(p,m; τ, z) = Ch(NS)

(
h =

Kp2

N
+
m2 +K2

4NK
,Q =

m

N
; τ, z

)

(3.13)

(3.11) is derived from the identity

∑

w,n∈Z
q
1
4

(√
K
N
n−
√
N
K
w

)2

q̄
1
4

(√
K
N
n+
√
N
K
w

)2

=

=
∑

w0∈Z2K

∑

n0∈ZN
ΘKn0−Nw0,NK(τ, 0)Θ−Kn0−Nw0,NK(τ̄ , 0) , (3.14)

and the modular invariant has the same form as the level NK theta system given in [48].

ZN -periodicity under integral spectral flows is easy to see;

q
ĉ
2
r2e2πiĉrzχcon

(NS)(p,m; τ, z + rτ + n) = χcon
(NS)(p,m; τ, z) ,

∀r, ∀n ∈ NZ ,

(
ĉ = 1 +

2K

N

)
. (3.15)

χcon
(σ)(p,m; τ, z) for other spin structures are defined by the 1/2-spectral flows in the same

way as (2.37).

Now, the task we have to carry out is the chiral projection onto integral U(1)-charges

as in the Gepner models [47] while taking account of the twisted sectors generated by

integral spectral flows (see [49]). Because of the periodicities (3.5), (3.15), this is reduced

to a ZN -orbifoldization. The desired conformal blocks are thus defined as the flow invariant
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orbits [49]8

F (NS)
I,p,w0

(τ, z) =
1

N

∑

a,b∈ZN
q
n
2
a2e2πinza F

(NS)
I (τ, z + aτ + b)×

× χcon
(NS)(p,KnI −Nw0; τ, z + aτ + b) ,

F̃ (NS)

Ĩ,p,w0
(τ̄ , z̄) =

1

N

∑

a,b∈ZN
q
n
2
a2e2πinz̄a F̃

(NS)

Ĩ
(τ̄ , z̄ + aτ̄ + b)×

× χcon
(NS)(p,−KnI −Nw0; τ̄ ,−z̄ − aτ̄ − b) , (3.16)

where nI ∈ ZN is the solution of the condition

KnI
N

+Q(I) ∈ Z ,
KnI
N

+Q(Ĩ) ∈ Z , NI,Ĩ 6= 0 , (3.17)

which uniquely exist for each I, Ĩ with NI,Ĩ 6= 0 such that Q(I)−Q(Ĩ) ∈ Z, since we have

Q(I), Q(Ĩ) ∈ 1
NZ, (∀I, ∀Ĩ) and N and K are assumed to be relatively prime. Especially,

the solutions of (3.17) always exist if we assume the diagonal modular invariant in the

M-sector. We define F (NS)
I,p,w0

≡ 0 if the solution nI of (3.17) does not exist. The conformal

blocks for other spin structures are defined by the 1/2-spectral flows9

F (ÑS)
I,p,w0

(τ, z) ≡ F (NS)
I,p,w0

(
τ, z +

1

2

)
,

F (R)
I,p,w0

(τ, z) ≡ q
n
8 e2πi

n
2
z F (NS)

I,p,w0

(
τ, z +

τ

2

)
,

F (R̃)
I,p,w0

(τ, z) ≡ q
n
8 e2πi

n
2
z F (NS)

I,p,w0

(
τ, z +

τ

2
+

1

2

)
. (3.18)

Let us next consider the cases when N and K are not relatively prime. We set

G.C.D {N, K} = ν , N = N̄ν , K = K̄ν . (3.19)

Then the solutions of the condition (3.17) exist only if Q(I), Q(Ĩ) ∈ ν
NZ, and are not

unique: we must sum over the mod N̄ spectral flows nI + 2N̄µ (µ ∈ Zν). Namely, (3.16)

has to be replaced with

F (NS)
I,p,w0

(τ, z) =
1

N

∑

a,b∈ZN
q
n
2
a2e2πinza F

(NS)
I (τ, z + aτ + b)×

×
∑

µ∈Zν
χcon

(NS)
(N,K)(p,K(nI + 2N̄µ)−Nw0; τ, z + aτ + b)

8In our convention the N = 2 U(1)-current in right-mover has been defined to be

J̃ = −ψ̃+ψ̃− −
2

k
J̃3 ,

and the minus sign of z̄ in (3.16) reflects this fact. This convention is natural because the winding/KK-

momentum w, n of the compact boson Y are correctly reinterpreted as those of the N = 2 U(1)-currents

J , J̃ by using the BRST-invariance. (See (2.40).)
9We here adopt a somewhat unusual definitions of ÑS, R̃-conformal blocks omitting some phase factors.

As an advantage, the supersymmetric conformal blocks (3.24) become simpler forms.
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=
1

N

∑

a,b∈ZN
q
n
2
a2e2πinza F

(NS)
I (τ, z + aτ + b)×

× χcon
(NS)

(N̄,K̄)
(p, K̄nI − N̄w0; τ, z + aτ + b) , (3.20)

where we have indicated explicitly the N , K dependence of the extended characters.

The modular invariant partition function (as the σ-model on CYn) is obtained as

Z(τ, z) = e
−2πn (Im z)2

τ2
1

2

∑

σ

∑

w0∈Z2K

1

N

∑

I,Ĩ

∫ ∞

0
dpNI,ĨF

(σ)
I,p,w0

(τ, z)F (σ)

Ĩ ,p,w0
(τ̄ , z̄) . (3.21)

We note the invariance (up to phase) under spectral flow of the conformal blocks F (σ)
I,p,w0

q
n
2
a2e2πinaz F (σ)

I,p,w0
(τ, z) = εa,b(σ)F (σ)

I,p,w0
(τ, z + aτ + b) , (∀a, b ∈ Z) , (3.22)

εa,b(NS) = 1 , εa,b(ÑS) = (−1)na , εa,b(R) = (−1)nb , εa,b(R̃) = (−1)n(a+b) , (3.23)

and recall the assumption (3.9). Then the factor 1/N in (3.21) is necessary to remove the

N -fold overcounting of states.

Incorporating the R
d−1,1-sector (d2 +n = 5), the supersymmetric conformal blocks are

constructed as

1

2

1

τ
d−2
4

2 η(τ)d−2

∑

σ

ε(σ)

(
θ[σ](τ, z)

η(τ)

) d−2
2 (

F (σ)
I,p,w0

(τ, z) + F (σ)
I,p,w0

(τ,−z)
)
, (3.24)

where θ[σ] again denotes θ3, θ4, θ2, iθ1 for σ = NS, ÑS,R, R̃ respectively, and we set

ε(NS) = ε(R̃) = +1, ε(ÑS) = ε(R) = −1. The conformal blocks (3.24) actually vanish for

arbitrary τ , z [50], as is consistent with the space-time SUSY. It is not difficult to confirm

that the conformal blocks (3.24) reproduce the results obtained in [7] for the special cases

M =Mn−2. (Precisely speaking, in the d = 4 case we need some further orbifoldization in

the SL(2;R)/U(1)-sector to reproduce the formula of [7].)

3.2 Elliptic genera

Let us next study the discrete spectrum of the theory which carries geometrical information

of the target space geometry. As we have seen in the previous section, contributions of

continuous representations dominate the partition functions and it is difficult to isolate

the contributions of discrete states of the theory by inspecting the partition functions. We

thus propose to study the elliptic genera from which continuous series decouple and one

can clearly see the contents of discrete states in the theory.

We first recall that the elliptic genera are defined by the partition functions in the R̃

sector of the theory [34, 51],

Z(τ, z) = Tr
H

(R)
L ⊗H

(R)
R

(−1)F e2πizJ0qL0− ĉ
8 q̄L̃0−

ĉ
8 , (3.25)

where F ≡ FL −FR denotes the world-sheet fermion number. When one sets z = 0 above,

elliptic genus is reduced to the Witten index.
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It is well-known that, in any rational N = 2 SCFT the elliptic genus is a good su-

persymmetric index stable under arbitrary chiral marginal deformations. Furthermore, it

possesses simple modular and spectral flow properties. It is identified as a (weak) Jacobi

form [52] in mathematical terminology (see, e.g. [34, 53]).

As we shall see in the following, in the case of singular non-compact manifolds elliptic

genera are no longer Jacobi forms and have some complicated modular properties: they

are in general described by Appell functions which feature in the study of vector bundles

of higher rank over elliptic curves [35, 36].

The evaluation of elliptic genus is almost parallel to the previous analysis of the

modular invariant partition functions: we just replace the continuous extended charac-

ters χcon
(σ)(p,m; τ, z) (3.12) by the discrete ones χdis

(σ)(s,m; τ, z) (m ∈ Z2NK) defined

by

χdis
(NS)(s, s+ 2Kr; τ, z) ≡

∑

n∈NZ
χdis

(NS)
s
2K

, s
2K

+r+n(τ, z) ≡ Ch
(NS)
M (r, s; τ, z) (r ∈ ZN )

χdis
(NS)(s,m; τ, z) ≡ 0 , m 6≡ s (mod 2K)

(3.26)

In this definition χdis
(NS)
j,m (τ, z) are the branching functions for discrete series (2.28) and

identified with the N = 2 massless matter characters. Ch
(NS)
M (r, s; τ, z) is the massless

extended character introduced in [18], given explicitly in (B.7). The extended characters

of other spin structures are again defined by the spectral flows. We note that χdis
(R)(s,m)

(and χdis
(R̃)(s,m)) can take non-zero values only if m ≡ s + K (mod2K). The discrete

part of partition function (2.61) can be rewritten in terms of the extended characters

χdis
(σ)(s,m; τ, z) in the same way as (3.11);

Zdis(τ) =
1

2

∑

σ

∑

w0∈Z2K

∑

n0∈ZN

N+K∑

s=K

a(s)χdis
(σ)(s,Kn0 −Nw0; τ, 0) ×

× χdis
(σ)(s,−Kn0 −Nw0; τ̄ , 0) , (3.27)

a(s) ≡
{

1 K + 1 ≤ s ≤ N +K − 1
1
2 s = K, N +K .

(3.28)

In the following let us assume that K and N are relatively prime for the sake of

simplicity. Performing the ZN -orbifoldization, we can construct the conformal blocks in

the same way as (3.16);

G(NS)
I,s,w0

(τ, z) =
1

N

∑

a,b∈ZN
q
n
2
a2e2πinza F

(NS)
I (τ, z + aτ + b)×

× χdis
(NS)
(N,K)(s,KnI −Nw0; τ, z + aτ + b) ,

G̃(NS)

Ĩ,s,w0
(τ̄ , z̄) =

1

N

∑

a,b∈ZN
q
n
2
a2e2πinz̄a F̃

(NS)

Ĩ
(τ̄ , z̄ + aτ̄ + b)×

× χdis
(NS)
(N,K)(s,−KnI −Nw0; τ̄ ,−z̄ − aτ̄ − b) , (3.29)
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where we again assumed (3.19). The desired R̃-parts G(R̃)
I,s,w0

(τ, z), G̃(R̃)

Ĩ,s,w0
(τ̄ , z̄) are defined

by the 1/2-spectral flow as in (3.18). Writing the Witten indices as

lim
z̄→0

G̃(R̃)

Ĩ,s,w0
(τ̄ , z̄) = IĨ,s,w0

, (3.30)

we obtain the general formula of elliptic genus

Z(τ, z) = 1

N

∑

I,Ĩ

N+K∑

s=K

∑

w0∈Z2K

a(s)NI,ĨIĨ,s,w0
G(R̃)
I,s,w0

(τ, z) . (3.31)

For our later calculations it is useful to note the formula of Witten index (B.11), that is,

lim
z→0

χdis
(R̃)
(N,K)(s,m; τ, z) = −δ(2NK)

m,s−K . (3.32)

It is also useful to introduce

ZN,K(τ, z) ≡ −
N+K∑

s=K

a(s)χdis
(R̃)
(N,K)(s, s−K; τ, z) , (3.33)

which describes the SL(2;R)/U(1)-part of elliptic genera in the prescription of ZN -orbifol-

dization. With the help of (B.10) we can further rewrite it as

ZN,K(τ, z) = −
N+K∑

s=K

∑

n∈Z
a(s)

(
e2πizqNn

) s−K
N

1− e2πizqNn eiπ4KnzqNKn
2 iθ1(τ, z)

η(τ)3

= −
∑

n∈Z

eiπ4KnzqNKn
2

1− e 2πi
N
zqn

iθ1(τ, z)

η(τ)3
+

1

2
Θ0,NK

(
τ,

2z

N

)
iθ1(τ, z)

η(τ)3

≡ −
[
K2NK

(
τ,
z

N
, 0
)
− 1

2
Θ0,NK

(
τ,

2z

N

)]
iθ1(τ, z)

η(τ)3
, (3.34)

where K`(τ, ν, µ) is the “level ` Appell function” [35, 36] defined by

K`(τ, ν, µ) ≡
∑

m∈Z

eiπm
2`τ+2πim`ν

1− e2πi(ν+µ+mτ) . (3.35)

We present examples of concrete calculations:

Example 1. Conifold (N = K = 1, M is trivial, n = 3): this is the simplest

example and should be identified with the deformed conifold (under the T-duality to N = 2

Liouville) [1]. The elliptic genus (3.31) has a simple form

Zconifold(τ, z) = Z1,1(τ, z) = −
1

2

(
χdis

(R̃)
(1,1)(1, 0; τ, z) + χdis

(R̃)
(1,1)(2, 1; τ, z)

)
. (3.36)

We only have the boundary terms of the range (2.58). The following identity is presented

in [54] and quite useful;

Ch
(NS)
M (Q = ±1; τ, z) ≡

∑

n∈Z

qn
2−n+1/4e±2πi(2n−1)z

1 + e±2πizqn−1/2
θ3(τ, z)

η(τ)3
(3.37)

= ±1

2

(
Θ1,3/2(τ, 2z)

η(τ)
− Θ−1,3/2(τ, 2z)

η(τ)

)
+

1

2
Θ1,1(τ, 2z)

θ3(τ, z)

η(τ)3
,
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where Ch
(NS)
M (Q; τ, z) is the characters of ĉ = 3 extended chiral algebra [54, 49] (we use the

notation given in appendix C of [18]). Applying the 1/2-spectral flow z → z + τ
2 + 1

2 to

both sides of (3.37), we obtain the identity (see also [36])

χdis
(R̃)
(1,1)(1, 0; τ, z)

(
≡ χdis

(R̃)
(1,1)(2, 1; τ,−z)

)
≡

≡ K2(τ, z, 0)
iθ1(τ, z)

η(τ)3

= −1

2

1

η(τ)

(
Θ̃−1/2,3/2(τ, 2z) + Θ̃1/2,3/2(τ, 2z)

)
+

1

2
Θ0,1(τ, 2z)

iθ1(τ, z)

η(τ)3

= −1

2

θ1(τ, 2z)

θ1(τ, z)
+

1

2
Θ0,1(τ, 2z)

iθ1(τ, z)

η(τ)3
. (3.38)

To derive the last line we used the Watson’s quintuple product identity (A.7) (see e.g. [55].)

In this way we obtain the simple formula

Zconifold(τ, z) =
1

2

θ1(τ, 2z)

θ1(τ, z)
.

(3.39)

It may be worthwhile to point out the following fact: The elliptic genus for the level

n− 2 N = 2 minimal model was calculated in [51] by using the free field method in N = 2

Landau-Ginzburg theory with superpotential W (X) = Xn. The result is expressed as

ZMn−2(τ, z) =
n−2∑

`=0

ch
(R̃)
`,`+1(τ, z) = −

n−2∑

`=0

ch
(R̃)
`,−(`+1)(τ, z) =

θ1(τ,
n−1
n z)

θ1(τ,
1
nz)

, (3.40)

where ch
(R̃)
`,m(τ, z) is the character of minimal model Mn−2 (A.6). It is curious to see

that the “analytic continuation” of this formula to the inverse power potential W (X) =

X−1 (n = −1), which is often used to describe the conformal system of conifold [1], correctly

reproduces our result (3.39) (up to normalization).

Example 2. ALE(An−1) (M = Mn−2, N = n, K = 1, n = 2): this is the conformal

system first analyzed in [2] and is considered to describe the ALE space obtained by

deforming the An−1-type singularity (in the case of the diagonal modular invariants in

Mn−2). The formula (3.31) gives us

ZALE(An−1)(τ, z) =
n−2∑

`=0

∑

m∈Z2n
`+m≡1 (mod 2)

ch
(R̃)
`,m(τ, z)χdis

(R̃)
(n,1)(`+ 2,−m; τ, z)

(3.41)

Note that only the representations with 2 ≤ s(≡ ` + 2) ≤ n contributes in this case, and

thus we do not have the boundary terms in contrast with the Example 1. The Witten

index is evaluated as

lim
z→0

ZALE(An−1)(τ, z) = n− 1 , (3.42)
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which reproduces the correct number of non-contractable 2-cycles. In the special case of

Eguchi-Hanson space ALE(A1) the formula (3.41) is reduced to

ZALE(A1)(τ, z) = χdis
(R̃)
(2,1)(2,−1; τ, z) − χdis

(R̃)
(2,1)(2, 1; τ, z)

= −chN=4 (R̃)
0 (` = 0; τ, z)

≡ −
∑

n∈Z

(−1)nq 1
2
n(n+1)e2πi(n+

1
2)z

1− e2πizqn
iθ1(τ, z)

η(τ)3
, (3.43)

where ch
N=4 (R̃)
0 (`; τ, z) denotes the level 1 N = 4 massless character of spin `(= 0, 1/2)

(related with ch
N=4 (NS)
0 (1/2 − `; τ, z) by the spectral flow) [56].

Using the formulas (3.34) and (3.40), we can also rewrite (3.41) in the form that makes

the orbifold structure manifest as in [53];

ZALE(An−1)(τ, z) =
1

n

∑

a,b∈Zn
qa

2
ei4πaz ZMn−2(τ, z)Zn,1(τ, z)

= − 1

n

∑

a,b∈Zn
(−1)a+bq a

2

2 ei2πaz
θ1
(
τ, n−1n (z + aτ + b)

)

θ1
(
τ, 1n(z + aτ + b)

) ×

×K2n

(
τ,

1

n
(z + aτ + b), 0

)
iθ1(τ, z)

η(τ)3

(3.44)

Here we used the relation θ1(τ, z + aτ + b) = (−1)a+bq−a2

2 e−i2πaz θ1(τ, z). Note that the

theta function term in (3.34) is eliminated by the ZN -orbifoldization.

One can also perform similar calculations in the cases of CY4-singularity of An−1-type

(N = n, K = n+ 1). We obtain

ZCY4 (An−1)(τ, z) =

n−2∑

`=0

∑

m∈Z2n
`+m≡1 (mod 2)

ch
(R̃)
`,m(τ, z)χdis

(R̃)
(n,n+1)(`+ n+ 2,−m; τ, z)

= − 1

n

∑

a,b∈Zn
(−1)a+bq 3a2

2 ei6πaz
θ1
(
τ, n−1n (z + aτ + b)

)

θ1
(
τ, 1n(z + aτ + b)

)

×K2n(n+1)

(
τ,

1

n
(z + aτ + b), 0

)
iθ1(τ, z)

η(τ)3

(3.45)

Example 3. General cases of non-compact CY3: lastly we consider the general

models of n = 3, where M is an arbitrary N = 2 RCFT with ĉM < 2. We make a natural

assumption of the “charge conjugation symmetry” in the M-sector. Namely, we postulate

Nc(I),c(Ĩ) = NI,Ĩ , (3.46)

where the charge conjugation c : I → c(I) is defined by

F
(NS)
c(I) (τ, z) ≡ F

(NS)
I (τ,−z) . (3.47)
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Rather surprisingly we can show that the elliptic genera for these models have a simple

and universal form;

Z(τ, z) = χ

2

(
Θ̃−1/2,3/2(τ, 2z)

η(τ)
+

Θ̃1/2,3/2(τ, 2z)

η(τ)

)
≡ χ

2

θ1(τ, 2z)

θ1(τ, z)

(3.48)

where χ ≡ limz→0 Z(τ, z) is the Witten index that counts the Ramond ground states in

the total system.

We sketch how one can derive this formula. Thanks to the above assumption (3.46), the

elliptic genus is found to have only contributions of the symmetrized forms G (R̃)
I,s,w0

(τ, z) +

G(R̃)
I,s,w0

(τ,−z). Furthermore, because of the U(1)-projection the NS conformal blocks G (NS)
I,s,w0

should be expanded with positive integer coefficients by the characters of the ĉ = 3 extended

algebra [54]: Ch
(NS)
M (Q = 1; τ, z), Ch

(NS)
M (Q = −1; τ, z), and massive characters

Ch(NS)(h,Q = 0; τ, z) ≡ qh−1/4Θ0,1(τ, 2z)
θ3(τ, z)

η(τ)3
,

Ch(NS)(h, |Q| = 1; τ, z) ≡ qh−1/2Θ1,1(τ, 2z)
θ3(τ, z)

η(τ)3
. (3.49)

(We again use the notations given in appendix C of [18].) Note that the graviton repre-

sentation (h = Q = 0) cannot occur owing to the constraint K ≤ s ≤ N +K (or (2.58)).

Consequently, recalling the identity (3.37), (3.38), one can find

G(R̃)
I,s,w0

(τ, z) = (integer)× 1

2

(
Θ̃−1/2,3/2(τ, 2z)

η(τ)
+

Θ̃1/2,3/2(τ, 2z)

η(τ)

)
+(massive part) . (3.50)

The massive part is generically an infinite sum of the terms of the forms q∗Θ0 (1),1(τ, 2z)×
iθ1(τ, z)/η(τ)

3 and hence odd functions of z. It does not contribute because of the above

remark. In this way we arrive at the general formula (3.48).

It has been shown in [53] that the elliptic genera for arbitrary Gepner models (or the

LG-orbifolds) of compact CY3 can be written in the form

ZGepner(τ, z) = (h1,2 − h1,1)
(
Θ̃−1/2,3/2(τ, 2z)

η(τ)
+

Θ̃1/2,3/2(τ, 2z)

η(τ)

)
, (3.51)

where h1,2, h1,1 are the numbers of (c, c), (c, a)-type chiral primaries of h = h̃ = 1/2

respectively, which should be identified with the Hodge numbers of CY3. Our result (3.48)

is the generalization of this formula to the non-compact models. Note that χ = 2(h1,2−h1,1)
is an even number for any compact CY3, while χ in (3.48) is allowed to be odd. Recall the

conifold case, Example 1.

A few remarks are in order:

1. The elliptic genus includes contributions of Ramond ground states that are naively

supposed to describe massless excitations in string theory. However, to identify them
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with the massless spectrum we must take account of the GSO condition for spin

structures. The simplest way to do so is to look for the corresponding NS (anti-

)chiral states with h = 1
2 |Q| = 1

2 . For example, in the ALE(An−1) case (Example 2),

we have n− 1 Ramond ground states and all of them correspond to massless string

states. They are identified as each of normalizable deformations of An−1-singularity

(“moduli”). However, even though the An−1-model of the Calabi-Yau 4-fold n = 4

(N = n, K = n+1) still has the Witten index Z(τ, 0) = n−1, they cannot define NS

massless states at all. This feature has its origin in the restriction K ≤ s ≤ N +K.

We thus find the inequality

h ≡ s

2N
≥ K

2N
≡ 1

2
+

1

2n
>

1

2
, (3.52)

for the chiral primary states in the SL(2;R)/U(1)-sector, implying no massless states

appear in the superstring spectrum. These missing massless states would be as-

sociated to the non-normalizable deformations of An−1-singularity (“coupling con-

stants”). In the Calabi-Yau 3-fold n = 3 case the aspect of massless states is more

complex: the half of them appears as massless states in the closed string spectrum

and the remaining ones are missing. These aspects of marginal fields in singular CYn

have been discussed in [57, 58, 4, 6].

2. As we already mentioned, the elliptic genera of N = 2 RCFT’s for compact CYn are

known to be the (weak) Jacobi form with weight 0 and index n/2. This means that

the elliptic genera have the following properties;

q
n
2
a2e2πinaz Z(τ, z + aτ + b) = (−1)n(a+b) Z(τ, z) , (∀a, b ∈ Z) , (3.53)

Z(τ + 1, z) = Z(τ, z) , (3.54)

Z
(
−1

τ
,
z

τ

)
= eiπn

z2

τ Z(τ, z) . (3.55)

It is easy to confirm that our elliptic genera for non-compact models (3.31) sat-

isfy (3.53) and (3.54). However, the third condition for the S-transformation is not

necessarily obeyed. For the n = 3 cases, (3.55) is also satisfied because of the general

formula (3.48). However, in the n = 2, 4 cases, the elliptic genera are proportional to

the Appell function which transforms as [36]

K`
(
−1

τ
,
ν

τ
,
µ

τ

)
= τeiπ`

ν2−µ2

τ K`(τ, ν, µ) +

+τ
`−1∑

a=0

eiπ
`
τ
(ν+ a

`
τ)2Φ(`τ, `µ− aτ)θ3(`τ, `ν + aτ) (3.56)

where

Φ(τ, µ) = − i

2
√
−iτ −

1

2

∫ ∞

−∞
dx e−πx

2 sinh(πx
√
−iτ(1 + 2µτ ))

sinh(πx
√
−iτ) (3.57)

The above transformation law corresponds to the mixing of discrete and continuous

representations in N = 2 Liouville theory [56, 54, 59, 18] (see appendix B). Appell
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functions (3.35) are interpreted as sections of higher rank vector bundles over elliptic

curves as opposed to theta-functions which are sections of line bundles [35]. It is

interesting to see if one can achieve a precise geometrical interpretation of the elliptic

genera in the non-compact space-time.

4. Summary

In this paper we have confirmed the correspondence between SL(2;R)k/U(1) supercoset

and N = 2 Liouville theory and computed the elliptic genera for various singular space-

times. We summarize the main ingredients of this paper.

1. Partition functions of SL(2;R)k/U(1) theories are decomposed into two pieces: (1)

the part consisting of continuous (massive) representations and (2) the part consisting

of discrete (massless matter) representations.

2. The continuous part is proportional to the volume factor, since it describes the prop-

agating modes in the bulk, and gives the leading contribution to the partition func-

tion. It seems that strictly modular invariant partition functions are obtained after

the division by the infinite volume factor. Then they contain only the continuous rep-

resentations (massive modes), and reproduce the results obtained previously in [7].

3. The discrete part describes excitations localized around the tip of cigar [33] and thus

appears without the volume factor. Embedded in superstring vacua it could be inter-

preted as contributions from massless matter fields corresponding to the deformations

of Calabi-Yau singularities.

4. Continuous representations do not contribute to the elliptic genera and thus elliptic

genus clearly exhibits the contributions of the discrete states. In generic cases (of

ĉtot = 2, 4) the elliptic genera possess complex modular behaviors, and they are not

Jacobi forms (section of line bundles) but sections of higher rank vector bundles. On

the other hand, in models with ĉtot = 3 the elliptic genera behave in the same way

as rational conformal theories.

5. When embedded in superstring vacua by means of the Gepner-like method, the ex-

tended characters defined in [18] emerges quite naturally in continuous and discrete

series (see (3.12), (3.26)). We have also confirmed that discrete representations in

N = 2 Liouville theory closed under modular transformations are mapped to unitary

discrete representations in the range 1/2 ≤ j ≤ (k + 1)/2 which appear in the regu-

larized partition function of SL(2,R)k/U(1) theory. This justifies our Ansatz for the

basis of Ishibashi states of N = 2 Liouville theory we have proposed in [18].

6. It appears quite likely that N = 2 Liouville and SL(2,R)k/U(1) theories are in

fact exactly mapped into each other (T-duality) and will essentially be one and the

same theory with identical physical contents. This is gratifying since in the Liouville

approach it has been extremely difficult to incorporate the effects of the Liouville po-

tential terms non-perturbatively into the theory. We note that in the SL(2,R)k/U(1)
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supercoset theory, on the other hand, the space-time is curved into a 2D black hole

but the (cosmological constant) parameter µ does not appear explicitly. Thus it seems

that SL(2,R)k/U(1) theory has deformed the space-time by absorbing the Liouville

potential terms. Agreement of our Liouville results [18] with those of SL(2,R)k/U(1)

theory is encouraging and indicates that we have incorporated properly the effects of

Liouville potential terms in the analysis.
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A. Notations and some useful formulas

A.1 Theta functions

We here summarize our notations of theta functions. We set q ≡ e2πiτ and y ≡ e2πiz ,

θ1(τ, z) = i
∞∑

n=−∞

(−1)nq(n−1/2)2/2yn−1/2

≡ 2 sin(πz)q1/8
∞∏

m=1

(1− qm)(1− yqm)(1 − y−1qm),

θ2(τ, z) =

∞∑

n=−∞

q(n−1/2)
2/2yn−1/2

≡ 2 cos(πz)q1/8
∞∏

m=1

(1− qm)(1 + yqm)(1 + y−1qm) ,

θ3(τ, z) =
∞∑

n=−∞

qn
2/2yn

≡
∞∏

m=1

(1− qm)(1 + yqm−1/2)(1 + y−1qm−1/2) ,

θ4(τ, z) =

∞∑

n=−∞

(−1)nqn2/2yn

≡
∞∏

m=1

(1− qm)(1 − yqm−1/2)(1− y−1qm−1/2) , (A.1)

Θm,k(τ, z) =

∞∑

n=−∞

qk(n+
m
2k

)2yk(n+
m
2k

) ,

Θ̃m,k(τ, z) =

∞∑

n=−∞

(−1)nqk(n+m
2k

)2yk(n+
m
2k

) .

η(τ) = q1/24
∞∏

n=1

(1− qn) . (A.2)
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A.2 Character formulas for the N = 2 minimal models

The easiest way to represent the character formulas of the level k N = 2 minimal model

(ĉ = k/(k + 2)) is to use its realization as the coset SU(2)k×SO(2)1
U(1)k+2

. We then have the

following branching relation;

χ
(k)
` (τ, w)Θs,2(τ, w − z) =

∑

m∈Z2(k+2)

`+m+s∈2Z

χ`,sm (τ, z)Θm,k+2(τ, w − 2z/(k + 2)) ,

χ`,sm (τ, z) ≡ 0 , for `+m+ s ∈ 2Z + 1 , (A.3)

where χ
(k)
` (τ, z) is the spin `/2 character of SU(2)k;

χ
(k)
` (τ, z) =

Θ`+1,k+2(τ, z)−Θ−`−1,k+2(τ, z)

Θ1,2(τ, z)−Θ−1,2(τ, z)
≡
∑

m∈Z2k

c
(k)
`,m(τ)Θm,k(τ, z) . (A.4)

The branching function χ`,sm (τ, z) is explicitly calculated as follows;

χ`,sm (τ, z) =
∑

r∈Zk
c
(k)
`,m−s+4r(τ)Θ2m+(k+2)(−s+4r),2k(k+2)(τ, z/(k + 2)) . (A.5)

Then, the desired character formulas are written as

ch
(NS)
`,m (τ, z) = χ`,0m (τ, z) + χ`,2m (τ, z) ,

ch
(ÑS)
`,m (τ, z) = χ`,0m (τ, z) − χ`,2m (τ, z) ≡ e−iπ

m
k+2 ch

(NS)
`,m

(
τ, z +

1

2

)
,

ch
(R)
`,m(τ, z) = χ`,1m (τ, z) + χ`,3m (τ, z) ≡ q

k
8(k+2) y

k
2(k+2) ch

(NS)
`,m+1

(
τ, z +

τ

2

)
, (A.6)

ch
(R̃)
`,m(τ, z) = χ`,1m (τ, z) − χ`,3m (τ, z) ≡ −e−iπ

m+1
k+2 q

k
8(k+2) y

k
2(k+2) ch

(NS)
`,m+1

(
τ, z +

1

2
+
τ

2

)
.

By definition, we restrict to `+m ∈ 2Z in NS and ÑS sectors, and to `+m ∈ 2Z+1 in R

and R̃ sectors.

A.3 Useful identity

∞∏

n=1

(1− qn)(1− yqn)(1− y−1qn−1)(1 − y2q2n−1)(1 − y−2q2n−1) =

=
∑

m∈Z

(
y3m − y−3m−1

)
q
1
2
m(3m+1),

⇐⇒ 1

η(τ)

(
Θ̃1/2,3/2(τ, 2z) + Θ̃−1/2,3/2(τ, 2z)

)
=
θ1(τ, 2z)

θ1(τ, z)
(A.7)

(Watson’s quintuple product identity).

The following identity is often useful in checking the modular invariance
(
Im
(
u
τ

))2

Im
(
− 1
τ

) =
(Imu)2

Im τ
+ i

u2

2τ
− i ū

2

2τ̄
. (A.8)

We also note that the combination |u|2/τ2 is modular invariant.
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B. N = 2 (extended) character formulas for ĉ > 1

We denote the conformal weight and U(1)-charge of the highest weight state as h, Q and

again set q ≡ e2πiτ , y ≡ e2πiz . The irreducible characters of N = 2 SCA with ĉ > 1 are

summarized as follows [60];

1. Massive representations:

ch(NS)(h,Q; τ, z) = qh−(ĉ−1)/8 yQ
θ3(τ, z)

η(τ)3
, (h > |Q|/2, 0 ≤ |Q| < ĉ− 1) . (B.1)

2. Massless matter representations:

ch
(NS)
M (Q; τ, z) = q

|Q|
2
−(ĉ−1)/8yQ

1

1 + ysgn(Q)q1/2
θ3(τ, z)

η(τ)3
. (B.2)

They correspond to the (anti-)chiral primary state with h = |Q|/2, (0 < |Q| < ĉ).

3. Graviton representation:

ch
(NS)
G (τ, z) = q−(ĉ−1)/8

1− q
(1 + yq1/2)(1 + y−1q1/2)

θ3(τ, z)

η(τ)3
. (B.3)

They correspond to the vacuum h = Q = 0, which is the unique state being both

chiral and anti-chiral primary.

More general unitary representations are generated by the integral spectral flows and

classified in [41]. The spectral flow generator Uη with a real parameter η is defined by

U−1η LmUη = Lm + ηJm +
ĉ

2
η2δm,0 ,

U−1η JmUη = Jm + ĉηδm,0 ,

U−1η G±r Uη = G±r±η . (B.4)

Half-integral spectral flows η ∈ 1
2 +Z intertwine the NS and R sector characters, while the

integral spectral flows η = n ∈ Z keep the spin structure. The spectrally flowed characters

are given by

ch
(NS)
∗ (∗, n; τ, z) ≡ q

ĉ
2
n2yĉn ch

(NS)
∗ (∗; τ, z + nτ) , (n ∈ Z) , (B.5)

where ch
(NS)
∗ (∗; τ, z) is the abbreviated notation of (B.1)–(B.3).

For the theory of ĉ = 1 + 2K/N (N,K ∈ Z>0), we introduce the “extended charac-

ters” [18] which should be the characters of unitary representations of the extended chiral

algebra defined by adding the spectral flow generators U±N [56, 54, 49, 50].

Ch(NS)(h, α; τ, z) =
∑

n∈r+NZ
q
ĉ
2
n2yĉn ch(NS)

(
h0, Q =

α0
N

; τ, z + nτ
)

≡ qp
2/2Θα,NK

(
τ,

2z

N

)
θ3(τ, z)

η(τ)3
, (B.6)

– 28 –



J
H
E
P
0
5
(
2
0
0
4
)
0
1
4

(
h ≡ h0 +

rα0
N

+
Kr2

N
≡ p2

2
+
α2 +K2

4NK
, α ≡ α0 + 2Kr

)
,

Ch
(NS)
M (r, s; τ, z) =

∑

n∈r+NZ
q
ĉ
2
n2yĉn ch

(NS)
M

(
Q =

s

N
; τ, z + nτ

)
,

≡
∑

m∈Z

(
yqN(m+ 2r+1

2N )
) s−K

N

1 + yqN(m+ 2r+1
2N )

y2K(m+ 2r+1
2N )qNK(m+ 2r+1

2N )
2 θ3(τ, z)

η(τ)3
, (B.7)

Ch
(NS)
G (r; τ, z) =

∑

n∈r+NZ
q
ĉ
2
n2yĉn ch

(NS)
G (τ, z + nτ) ,

≡ q−
K
4N

∑

m∈Z
qNK(m+ r

N )
2
+N(m+ 2r−1

2N )y2K(m+ r
N )+1 ×

× 1− q(
1 + yqN(m+ 2r+1

2N )
)(

1 + yqN(m+ 2r−1
2N )

) θ3(τ, z)
η(τ)3

, (B.8)

where the ranges of parameters r, α, s are given as

r ∈ ZN , α ∈ Z2NK , 1 ≤ s ≤ N + 2K − 1 , (s ∈ Z) . (B.9)

In the calculations of elliptic genera, we use the following formula (r ∈ 1
2 + ZN )

Ch
(R̃)
M (r, s; τ, z) ≡ e−iπ

s+K(2r−1)
N q

ĉ
8 y

ĉ
2 Ch

(NS)
M

(
r − 1

2
, s; τ, z +

τ

2
+

1

2

)

=
∑

m∈Z

(
yqN(m+ 2r+1

2N )
) s−K

N

1− yqN(m+ 2r+1
2N )

y2K(m+ 2r+1
2N )qNK(m+ 2r+1

2N )
2 iθ1(τ, z)

η(τ)3
, (B.10)

which yields the Witten index

lim
z→0

Ch
(R̃)
M (r, s; τ, z) = −δ(N)

r,−1/2 . (B.11)

For convenience of readers we also present the modular transformation formulas given
in [18] in terms of the new notations (3.12), (3.26). They are written as

χcon
(NS)

(
p,m;− 1

τ
,
z

τ

)
= eiπĉ

z2

τ
2

N

∑

m′∈Z2NK

e−2πimm′

2NK ×

×
∫ ∞

0

dp′ cos

(
2π

2K

N
pp′
)
χcon

(NS)(p′,m′; τ, z) , (B.12)

χdis
(NS)

(
s,m;− 1

τ
,
z

τ

)
= eiπĉ

z2

τ

[
1

N

∑

m′∈Z2NK

e−2πimm′

2NK ×

×
∫ ∞

0

dp′
cosh(2πN−(s−K)

N
p′) + e2πi

m′

2K cosh(2π s−K
N

p′)

2
∣∣coshπ

(
p′ + im

′

2K

)∣∣2 ×

× χcon
(NS)(p′,m′; τ, z) +

+
i

N

N+K−1∑

s′=K+1

∑

m′∈Z2NK

e2πi
(s−K)(s′−K)−mm′

2NK χdis
(NS)(s′,m′; τ, z) +
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+
i

2N

∑

m′∈Z2NK

e−2πimm′

2NK

{
χdis

(NS)(K,m′; τ, z)− (B.13)

− χdis
(NS)(N +K,m′ +N ; τ, z)

}]
.

C. Explicit calculation of partition function

In this appendix we present the explicit derivation of (2.38) by the path-integration. This

is almost parallel to the analysis of the bosonic models given in [30, 31]. We define the

world-sheet torus by the identifications (w, w̄) ∼ (w + 2π, w̄ + 2π) ∼ (w + 2πτ, w̄ + 2πτ̄ )

(τ ≡ τ1+ iτ2, τ2 > 0, and use the convention z = eiw, z̄ = e−iw̄). We call the cycles defined

by these two identifications as the α and β-cycles as usual.

The desired partition function is written as

Z(τ) =

∫
D[g,A, ψ±, ψ̃±] e−κSgWZW(g,A)−Sψ(ψ

±,ψ̃±,A)
. (C.1)

Although the euclidean 2D BH is manifestly positive definite (since the time-like U(1) is

gauged away), the calculation of partition function could be subtle due to the lorentzian

signature in the parent SL(2;R) theory. Therefore, it is better to start with the Wick

rotated model H+
3 /R, where H+

3
∼= SL(2;C)/SU(2) is the euclidean AdS3. The Wick

rotation is defined by the replacement; g ∈ SL(2;R)→ g ∈ SL(2;C)/SU(2) and the gauge

field A ≡ (Az̄dz̄ +Azdz)
σ2
2

To calculate the partition function (C.1) it is convenient to reexpress the gauged WZW

action (2.4) in the form

SgWZW(g,A) = SWZW(hLghR)− SWZW(hLh
−1
R ) ≡ S

(A)
gWZW(g, hL, hR) , (C.2)

Az̄
σ2
2

= ∂z̄hLh
−1
L , Az

σ2
2

= ∂zhRh
−1
R , (C.3)

where we used the abbreviated notation SWZW(g) ≡ S
SL(2;R)
WZW (g). After the Wick rotation

we must suppose hL = h†R(≡ h) ∈ exp (Cσ2). We also introduce the vector-like gauged

WZW action

S
(V )
gWZW(g, hL, hR) ≡ SWZW(hLghR)− SWZW(hLhR) . (C.4)

We can parameterize h(≡ hL ≡ h†R) as

h = e(X+iY )
σ2
2 hu , hu ≡ eiΦ

u σ2
2 , (C.5)

where Φu(w, w̄) is associated with the modulus of holomorphic line bundle; u ≡ s1τ − s2 ∈
Jac(Σ) ∼= Σ, (0 ≤ s1, s2 < 1), conventionally defined as

Φu(w, w̄) =
i

2τ2
{(wτ̄ − w̄τ)s1 + (w̄ − w)s2} , (C.6)
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It is a real harmonic function satisfying the twisted boundary conditions

Φu(w + 2π, w̄ + 2π) = Φu(w, w̄) + 2πs1 ,

Φu(w + 2πτ, w̄ + 2πτ̄ ) = Φu(w, w̄) + 2πs2 . (C.7)

Real scalar fields X, Y correspond to the axial (RA) and vector (U(1)V ) gauge transfor-

mations respectively. Using the Polyakov-Wiegmann identity

S
(A)
gWZW(ΩgΩ†,Ω−1h,Ω† −1h†) = S

(V )
gWZW(g, h, h†)− S(A)

gWZW(Ω−1Ω†, h, h† −1) , (C.8)

and the gauge invariance of path-integral measure D(ΩgΩ†) = Dg, we can rewrite the

partition function (C.1) as follows (after dividing by the gauge volume
∫
DX);

Z(τ) =

∫

Σ
d2u

∫
D[g, Y, ψ±, ψ̃±, b, b̃, c, c̃] e−κS(V )(g,hu,hu †)+(κ−2)S(A)(eiY σ2 ,hu,hu †−1) ×

× e−Sψ(ψ±,ψ̃±,au)−Sgh(b,b̃,c,c̃)

≡
∫

Σ
d2uZg(τ, u)ZY (τ, u)Zψ(τ, u)Zgh(τ) ,

(
auw̄ ≡ i∂w̄Φ

u(w, w̄) ≡ u

2τ2
, auw ≡ −i∂wΦ̄u(w, w̄) ≡

ū

2τ2

)
. (C.9)

Here b, c (b̃, c̃) are the spin (1,0) ghost system to rewrite the jacobian of path integral

measure. The level shift κ → κ − 2(≡ k) for the action S (A)(eiY σ2 , hu, hu †−1) in (C.9) is

owing to the chiral anomaly of the fermion determinant, regularized so that it is anomaly

free along the axial direction.

We next evaluate each sector separately:

• H+
3 -sector.

This non-trivial sector has been already evaluated in [30, 31] (see the comment below);

Zg(τ, u) ≡
∫
Dg e−κS(V )(g,hu,hu †) ∝ e

2π (Imu)2

τ2

√
τ2|θ1(τ, u)|2

. (C.10)

Zg(τ, u) is indeed modular invariant, especially under the S-transformation τ →
−1/τ , u→ u/τ . Note that the “anomaly factor” e

2π (Imu)2

τ2 remedies the S-invariance

thanks to the identity (A.8) as mentioned in appendix B of [42].

• U(1)V -sector.

Y is the coordinate along U(1)V -direction (iRσ2) and thus compact; Y ∼ Y + 2π.

The relevant world-sheet action is calculated as

SY (Y ;u) ≡ −kSWZW(hueiY σ2hu †−1) + kSWZW(huhu †)

=
k

π

∫
d2w |∂w̄Y − iauw̄|2 =

k

π

∫
d2w |∂w̄Y u|2 . (C.11)
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In the last line we set Y u ≡ Y +Φu, which satisfies the twisted boundary conditions;

Y u(w + 2π, w̄ + 2π) = Y u(w, w̄) + 2π(m+ s1) , (m ∈ Z)

Y u(w + 2πτ, w̄ + 2πτ̄ ) = Y u(w, w̄) + 2π(n+ s2) , (n ∈ Z) . (C.12)

Rescaling the twisted boson Y u as Y u → Y u/
√
2k, we arrive at the theory of a

twisted compact boson with radius R =
√
2k. Therefore, the relevant partition

function becomes

ZY (τ, u) =

∫
DY u e− 1

2π

∫
d2w |∂wY u|

2

∝ 1
√
τ2 |η(τ)|2

∑

m,n∈Z
exp

(
−πk
τ2
|(m+ s1)τ − (n+ s2)|2

)
. (C.13)

Again this is manifestly modular invariant.

• Fermion and ghost sectors.

The remaining fermionic sectors are easy to evaluate. They are the standard fermion

determinants with anti-periodic and periodic boundary conditions respectively (for

the NS sector of ψ±)

Z
(NS)
ψ (τ, u) =

∫
D[ψ±, ψ̃±]e−Sψ(ψ±,ψ̃±,au) = e

−2π (Imu)2

τ2
|θ3(τ, u)|2

|η(τ)|2
, (C.14)

Zgh(τ) =

∫
D[b, b̃, c, c̃]e−Sgh(b,b̃,c,c̃) = τ2 |η(τ)|4 . (C.15)

The factor e
−2π (Imu)2

τ2 included in (C.14) is the correct anomaly factor to assure the

modular invariance.

Gathering all the contributions (C.10), (C.13), (C.14) and (C.15), we finally obtain

the desired partition function (2.38).

We further make a comment on the several path-integral formulas for the H+
3 (gauged)

WZW models presented in [30, 31];

∫
Dg e−κSWZW(hughu †) ≡ Tr

(
qL0−

cg
24 q̄L̃0−

cg
24 e2πi(uj

3
0−ūj̃

3
0)
)
∝ e

−(κ−2)π (Imu)2

τ2

√
τ2|θ1(τ, u)|2

, (C.16)

∫
Dg e−κS(V )(g,hu,hu †) ∝ e

2π
(Imu)2

τ2

√
τ2|θ1(τ, u)|2

, (C.17)

∫
Dg e−κS(A)(g,hu,hu †) ∝ e

2π
(Imu)2

τ2
−πκ |u|

2

τ2

√
τ2|θ1(τ, u)|2

, (C.18)

where hu is defined in (C.5). The second and third formulas (C.17), (C.18) are modular

invariant, but the first one (C.16) is not, although it has a natural interpretation as the

trace in the operator calculus.
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The third formula (C.18) is the easiest to prove. The axial action S (A)(g, hu, hu †) can

be rewritten as a complete quadratic form by taking suitable coordinates on H+
3 [31]. The

relevant calculation is then reduced to successive gaussian integrals and the chiral anomaly

formulas (φ is a non-compact real scalar along the Rσ2-direction and v is a complex scalar);

∫
Dg e−κS(A)(g,hu,hu †) =

∫
D[φ, v, v̄]×

× e− κ
π

∫
d2w{(∂wφ+auw)(∂w̄φ+a

u
w̄)+(∂w+∂wφ+auw)v̄(∂w̄+∂w̄φ+a

u
w̄)v}

=

∫
Dφ e− κ

π

∫
d2w|∂wφ+auw |

2 ×

× det
(
(∂w̄ + ∂w̄φ+ auw̄)

†(∂w̄ + ∂w̄φ+ auw̄)
)−1

=

∫
Dφe− κ

π

∫
d2w|∂wφ+auw |

2+ 2
π

∫
d2w |∂wφ|

2+ 1
2πi

∫
φR ×

× det
(
(∂w̄ + auw̄)

†(∂w̄ + auw̄)
)−1

∝ e
−πκ |u|

2

τ2

√
τ2|η(τ)|2

×


e

−2π (Imu)2

τ2 |θ1(τ, u)|2
|η(τ)|2



−1

=
1√
τ2

e
2π (Imu)2

τ2
−πκ |u|

2

τ2

|θ1(τ, u)|2
. (C.19)

We have thus obtained the formula (C.18). In the last line the path-integration of φ is

evaluated as
∫
Dφ e−κ−2

π

∫
d2w ∂wφ∂w̄φ−

κ
π

∫
d2w (∂wφauw̄+∂w̄φa

u
w)−

κ
π

∫
d2w |auw |

2

=

e
−πκ |u|

2

τ2

∫
Dφ e−κ−2

π

∫
d2w ∂wφ∂w̄φ+

iκ
2π

∫
ãu∧ dφ ∝ e

−πκ |u|
2

τ2

√
τ2|η(τ)|2

, (C.20)

where we set ãu = auw̄dw̄ − auwdw ≡ idΦu, which satisfies

∮

α
ãu = 2πis1 ,

∮

β
ãu = 2πis2 . (C.21)

Since φ is non-compact, we have
∮
α dφ =

∮
β dφ = 0, and hence the linear term of φ does

not contribute.

The remaining formulas (C.16) and (C.17) are readily derived from (C.18) by using

the properties SWZW(huhu †) = π(Imu)2

τ2
, SWZW(huhu †−1) = −π(Re u)2

τ2
.
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