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1. Introduction and conclusion

Two-dimensional sigma-models have long acted as a playground in which to test aspects

of four-dimensional gauge dynamics. The two systems share many qualitative features in-

cluding asymptotic freedom, a dynamically generated mass gap, anomalies, and instantons.

Some years ago, N. Dorey proved a more quantitative correspondence between super-

symmetric theories in two and four dimensions [1]. He showed that the BPS spectrum of

the mass deformed two-dimensional N = (2, 2) CPN−1 sigma-model coincides with the

BPS spectrum of four-dimensional N = 2 SU(N) supersymmetric QCD. The correspon-

dence is exact, holding at the quantum level in both weak and strong coupling regimes.

Generalisations to other two-dimensional sigma-models were later found [2]. However, de-

spite some insight from brane constructions [3, 2], the underlying reason for the agreement

remained mysterious. The purpose of this paper is to provide a field theoretic explanation

for the correspondence.

The key to our story lies in the recent progress in understanding the dynamics of

various soliton configurations in the Higgs phase of N = 2 SQCD. Of particular rele-

vance are the non-abelian vortices [4], which are string-like objects in four dimensions,

and monopoles [5] which, due to the Meissner effect, are confined in the Higgs phase and

come attached to two semi-infinite vortex strings.1 We shall show that the two-dimensional

1Analogous configurations in a closely related theory were also discussed in [6] and [7] respectively. Other

work on confined monopoles can be found in [8].
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theory considered by Dorey in [1] is precisely the theory describing the vortex string. As

we explain below, the BPS excitations of the string have an interpretation as four di-

mensional states: the perturbative string excitations correspond to W boson-string bound

states, while the solitonic kinks of the string correspond to the confined monopoles in four

dimensions [5].

The results presented here fit into the growing body of work devoted to understanding

the dynamics of solitons in the Higgs phase of N = 2 theories. In recent years we have

found that these theories admit a remarkably rich structure of classical BPS solitons. As

well as the strings and confined monopoles mentioned above, there is an intricate system

of domain walls [9, 10], domain wall junctions [11] and, perhaps most remarkably, D-

branes [12, 13] in which the vortex string terminates on a domain wall where its end is

electrically charged under a gauge field. While field theoretic D-branes have been known

to exist for some time in strong coupling regimes [14] the objects described in [12, 13] are

amenable to semi-classical analysis.

The correspondence discovered in [1] holds in both strong coupling and weak coupling

regimes of the two theories. In the latter regime, the central charge of the theory may be

expanded in an infinite series of instanton contributions. Since the BPS spectra coincide,

this expansion agrees term by term, suggesting a quantitative correspondence between two

dimensional instantons (which are vortices) and four-dimensional Yang-Mills instantons.

Indeed, in [4], an ADHM-like construction of the vortex moduli space was presented and

it was shown that the moduli space of vortices is a particular submanifold of the moduli

space of instantons. It would be interesting to prove explicitly that the integrals over the

relevant moduli spaces coincide. From the interpretation of the correspondence presented

here, this agreement suggests another solitonic connection: a vortex in a vortex string looks

like a Yang-Mills instanton in four dimensions. In section 3, we present the Bogomoln’yi

equations describing such a solution.

The conclusion of this paper — that the quantum dynamics of solitons, specifically

vortex strings, may be used to extract information about the strong coupling dynamics of

the underlying four dimensional gauge theory — is reminiscent of the stringy games played

in ten dimensions. For example in the the old-new Matrix theory, D-brane solitons contain

much information about the bulk dynamics. It would be interesting to see if this analogy

can be pushed further.

The plan of the paper is as follows. In section 2, we study N = 2 supersymmetric

U(Nc) gauge theory with Nf = Nc flavours. We review the exact central charge on the

Coulomb branch which can be determined from the Seiberg-Witten solution. We then

follow the states as you slide onto the Higgs branch, breaking the gauge group completely.

We shall show that the monopoles remain BPS, but are now confined. At the same time,

a new BPS object appears: the vortex string. In section 3 we describe the low-energy

dynamics of the vortex string and show that it is governed by the two-dimensional theory

studied in [1]. We review the computation of the BPS spectrum and confirm that it does

indeed coincide with that of the four-dimensional parent theory. In particular, we shall see

that elementary excitations of the string are associated to W-bosons, while kinks in the

string are monopoles in four dimensions. In section 4, we repeat this story for Nf > Nc

– 2 –
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flavours, and the associated “semi-local” vortices, giving a rationale for the generalisation

discovered in [2]. This includes the case of the conformal vortex string.

Note added: after finishing this work we were informed that similar conclusions have

been reached by M. Shifman and A. Yung [15]. We would like to thank M. Shifman for

communicating their results to us prior to publication.

2. The four dimensional gauge theory: Nf = Nc

Our interest in this paper will focus on N = 2 supersymmetric QCD with U(Nc) gauge

group with Nf flavours transforming in the fundamental representation. In this section

we restrict to Nf = Nc. Nevertheless we shall continue to use the subscripts f and c to

distinguish between flavour and colour groups. Generalisations to Nf > Nc will be given

in section 4. We denote the complexified gauge coupling constant2 as τ = 2πi/e2 + θ/2π.

In N = 1 language the theory contains a U(Nc) vector multiplet field, an adjoint chiral

multiplet Φ and a further 2Nf chiral multiplets Qi and Q̃i, i = 1, . . . , Nf . The Qi transform

in the (Nc, N̄f ) of the U(Nc)× SU(Nf ) gauge and flavour group; the Q̃i transform in the

(N̄c,Nf ). The lowest component of each chiral multiplet is a complex scalar field which, as

is traditional, we denote by the corresponding lower-case letter i.e. φ, qi and q̃i. We provide

each of the hypermultiplets with a complex mass parameter mi through the superpotential,

W =
√
2

Nf
∑

i=1

Q̃i(Φ−mi)Qi .

Generically the masses break the flavour group of the theory SU(Nf )
m−→ U(1)Nf−1. The

lagrangian also enjoys an SU(2)R×U(1)R classical R-symmetry. In the presence of non-zero

masses, the latter is broken to Z2.

The theory has an intricate moduli space of vacua depending on the hypermultiplet

masses mi, as well as a Fayet-Illiopoulos (FI) parameter which we shall introduce shortly.

For now, we take this FI parameter to vanish, ensuring that there is always a Coulomb

branch of vacua parameterised by φ = diag(φ1, . . . , φNc) in which the gauge group is

generically broken to the Cartan subalgebra U(Nc)
φ−→ U(1)Nc . When some of the masses

coincide, one can also have Higgs branches of vacua parameterised by holomorphic gauge

invariant operators formed from the hypermultiplet fields. For Nf = Nc, these include the

baryonic operators,

B = Qa1
1 Q

a2
2 · · ·Q

aNc

Nc
εa1...aNc

B̃ = Q̃a11 Q̃
a2
2 · · · Q̃

aNc

Nc
εa1...aNc

where ai denote colour indices. There are also meson operators of the form Mij = Q̃iQj.

The pattern in which the vacuum moduli spaces intertwine was described in detail in [16]

2A note on conventions: our Yang-Mills term is normalised as (1/4e2) Tr(FµνF
µν) which differs by a

quadratic Casimir factor of 2 from the usual conventions. This leads to an unfamiliar factor of 2 in this

and other formulae containing e2.

– 3 –
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for the N = 2 theories of interest. (The surviving vacua for N = 1 deformations were

examined in [17]).

The classical spectrum of BPS states depends on the vacuum in which the theory

lives. We shall start by discussing the classical spectrum on the Coulomb branch, only

subsequently moving onto quantum corrected spectrum and, ultimately, to the quantum

spectrum on the Higgs branch. At a generic point on the Coulomb branch the theory has an

interesting mixture of BPS states arising from both elementary excitations as well as non-

perturbative monopole and dyon states. Among the former are the Nc massless photons,

together with Nc(Nc−1) W-bosons with mass |φa−φb| for a, b = 1, . . . , Nc. There are also

NcNf BPS quark states which, for a = 1, . . . , Nc and i = 1, . . . , Nf have masses given by,

Mquark = |φa −mi| . (2.1)

All further BPS states arise as solitons and have non-zero magnetic charges under the un-

broken gauge group U(1)Nc . We denote these magnetic charges as ha and require
∑

a ha =

0, reflecting the fact that monopole solutions only exist in the semi-simple SU(N)C ⊂
U(N)C part of the gauge group. The classical mass of these monopoles is given by

Mmon =
2π

e2

∣

∣

∣

∣

∣

Nc
∑

a=1

haφa

∣

∣

∣

∣

∣

. (2.2)

In addition to these purely magnetic solitons, the classical spectrum also contains an infi-

nite tower of dyons. A unified mass formula for each of these objects can be given in terms

of the central charge Z. For BPS states with electric charge ja and magnetic charge ha
under U(1)Nc , and with charge si under the global flavour group U(1)Nf−1, the mass of

any BPS state is given by M = |Z| with

Z =
Nc
∑

a=1

φa(ja + τha) +

Nf
∑

i=1

misi . (2.3)

The above discussion has been classical. Let us now turn to various aspects of the quantum

theory. The overall U(1) part of the gauge group becomes weakly coupled in the infra-

red3 and the interesting dynamics lies in the interactions of the SU(N) part of the gauge

group. For vanishing m = φ = 0, the one-loop beta-function for the SU(Nc) gauge cou-

pling has a coefficient proportional to −(2Nc−Nf ) = −Nc and the gauge coupling e2 runs

logarithmically with the scale µ. It can be eliminated in favour of an RG invariant scale,

Λ = µ exp

(

− 4π2

Nc e2(µ)

)

. (2.4)

Another quantum effect which will be important in the following arises from anomalies:

the U(1)R symmetry is broken by instantons to Z2(2Nc−Nf ) = Z2Nc when mi = 0. (Recall

that, in the presence of hypermultiplet masses mi, U(1)R is further broken at the classical

level to Z2).

3Readers uncomfortable with the Landau pole are free to turn on a noncommutivity parameter and

repeat the story below.
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Most important for our purposes are the quantum corrections to the masses of BPS

states. At weak coupling |φa − φb| À Λ, one can show that the mass formula receives

contributions from one-loop effects, together with an infinite series of instanton corrections.

At strong coupling one needs another technique to compute the spectrum. Thankfully a

beautiful method is provided by Seiberg and Witten’s famous solution to the low-energy

dynamics on the Coulomb branch [18]. We now review the Seiberg-Witten solution for the

exact central charge Z evaluated at a specific point on the Coulomb branch.

2.1 At the root of the baryonic Higgs branch

For reasons that will shortly become clear, we will be interested in the BPS spectrum of

the theory arising at a point on the Coulomb branch known as the “root of the baryonic

Higgs branch”4 [16]. This is the point defined classically by φ = diag(m1, . . . ,mNc). so

that the breaking of flavour and gauge symmetries occurs at the same scale U(Nc) ×
SU(Nf )

m−→ U(1)Nc ×U(1)Nf−1. From equation (2.1) we see that Nc of the NfNc degrees

of quark freedom become massless at this point. In fact, the quark masses become precisely

degenerate with the masses of photons and W-bosons, each of which have classical masses

for given by

MW−boson =Mquark = |mi −mj| . (2.5)

Because of this degeneracy the classical central charge (2.3) may be written in the simplified

form,

Z =

Nc
∑

i=1

mi(Si + τhi) (2.6)

where we have redefined the charges as Si = sa + ja. We would now like to describe

the quantum corrections to this charge formula as encoded in the Seiberg-Witten solution.

(Recently the semi-classical computation of corrections to the monopole mass was revisited

in [13, 19], finding agreement with the exact result of Seiberg and Witten). At the root

of the baryonic Higgs branch, the Seiberg-Witten elliptic curve has a special property: it

degenerates [16]

F (t, u) =

(

t−
Nc
∏

i=1

(u−mi)

)

(

u− ΛNc
)

. (2.7)

This form of the curve occurs naturally in the M-theory construction of [20], where the

degeneration corresponds to the fact that one of the IIA NS5 branes remains unbent upon

its ascent to M-theory. The curve is branched over the Nc points ei defined by,

Nc
∏

i=1

(u−mi)− ΛNc =

Nc
∏

i=1

(u− ei) = 0 . (2.8)

4In the present context, with Nf = NC , there is no Higgs branch emanating from this point even when

mi = 0. A better name might be “root of the baryonic Higgs phase”.
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In the quantum theory the central charge is given by the integral of the Seiberg-Witten

differential λSW = (u/t)dt over certain one cycles of the curve. The resulting modification

of the classical formula (2.6) is

Z =

Nc
∑

i=1

(miSi +mDihi) (2.9)

where all the quantum corrections are encoded in the functionsmD i which are holomorphic

in the hypermultiplet masses mi and Λ. They are given by

mDl −mDk =
1

2πi

∫ el

ek

dλSW =
1

2πi

∫ el

ek

u
dt

t
=

1

2π

Nc
∑

i=1

∫ el

ek

u du

u−mi

where, in the final equality, we have used the exact form of the curve (2.7). Evaluating

this integral, we find the expression for the contribution to the central charge given by

mDl −mDk =
1

2π
Nc(el − ek) +

1

2π

Nc
∑

i=1

mi log

(

el −mi

ek −mi

)

. (2.10)

2.2 On the baryonic Higgs branch

The Seiberg-Witten computation of the spectrum holds on the Coulomb branch and we

have presented the result above at a very specific point, known as the root of the baryonic

Higgs branch. Let us now ask what becomes of the BPS spectrum as we move onto the

baryonic Higgs branch. We do this by turning on a Fayet-Illiopoulos (FI) parameter v2 for

the U(1) part of the gauge theory, so the D-term becomes,

D =

Nf
∑

i=1

qiq
†
i − q̃

†
i q̃i − v2 .

The FI parameter v2 lifts the Coulomb branch and forces the theory onto the Higgs branch.

The theory has a unique vacuum state, given by

φ = diag(m1, . . . ,mNc) , B = vNf , B̃ =M = 0 (2.11)

We now see why the point φ = diag(m1, . . . ,mNc) is called the root of the baryonic Higgs

branch: it indeed provides the gateway into the Higgs phase when the FI parameter is

turned on. The pattern of symmetry breaking in this vacuum is given by

U(Nc)× SU(Nf )
m−→ U(1)Nc ×U(1)Nf−1 v−→ U(1)Nc−1

diag (2.12)

Our interest remains on the spectrum of BPS states, but now in the vacuum (2.11). What

becomes of the various BPS states as we turn on the FI parameter v2? Let us firstly

consider elementary excitations. The photons and W-bosons pick up an extra contribution

to their mass proportional to ev through the Higgs mechanism. In doing so, they combine

with the NfNc = N2
c quark hypermultiplets and are no longer BPS, now sitting in long

supersymmetry multiplets5 [23]. None of the elementary particle states remain BPS.

– 6 –
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Figure 1: A sketch of the U(2) monopole in the Higgs phase [5]. The caricature is accurate for

ev ¿ |mi −mj |, a limit which ensures the flux tube is larger than the monopole core.

Let us now turn to the magnetic monopoles. At first sight, it appears unlikely that they

can remain BPS on the Higgs branch. Since the gauge group is fully broken, the Meissner

effect ensures that magnetic flux can no longer freely permeate the vacuum but is restricted

to lie in a flux tube. Thus the monopoles are confined and, in isolation, have infinite mass.

Nevertheless, as shown in [5], the monopoles are BPS. The final object can be thought of as

the original monopole, now emitting two vortex strings and the total combination preserves

1/4 of the original supersymmetry. The classical Bogomoln’yi equations describing this

monopole-flux-tube combo can be derived by completing the square in the hamiltonian.

Denoting the non-abelian magnetic field as B and setting all irrelevant fields to zero we

choose that the monopole ejects its flux tubes in the x3 directions. We manipulate the

hamiltonian thus [5]

H =
1

2e2
B2 +

1

2e2
|Dφ|2 + |Dqi|2 +

e2

2
(qiq

†
i − v2)2 + q†i |φ−mi|2qi

=
1

2e2
(D1φ−B1)

2 +
1

2e2
(D2φ−B2)

2 + (D3φ−B3 − e2(qiq†i − v2))2 +

+|D1qi − iD2qi|2 + |D3qi + (φ−mi)qi|2 +
1

e2
∂µ(φBµ)− v2B3

≥ 1

e2
∂µ(φBµ)− v2B3 (2.13)

where we have left colour indices and traces implicit and we have summed over the flavour

index i. The Bogomoln’yi equations can be found in the total squares on the second line.

While no explicit solutions to these equations are known, several properties were deduced

in [5].6 We draw a caricature of the solution in figure 1.

The two terms in the final line of (2.13) measure conserved topological charges. The

first is precisely the magnetic charge carried by the monopole. In the Coulomb phase the

5This issue also arose in [21, 22] where it was argued that, in certain theories, they remain “almost

BPS”.
6As explained in [13], solutions to these equations describe a wider range of objects than the confined

monopoles considered here and include strings ending on domain walls.
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integral
∫

d3x ∂ · (φB) is evaluated on the S2
∞ boundary. In the present case, the monopole

flux does not make it to all points on the boundary, but is confined to two flux tubes

which stretch in the ±x3 direction. Correspondingly, the integral should now be evaluated

over two planes R2
±∞ at x3 = ±∞. The second term in (2.13) is new. When integrated

over the x1− x2 plane, it measures the tension of the flux tubes emitted by the monopole.

These are simply vortices, supported by the overall broken U(1) gauge symmetry in (2.12).

They have tension given by Tvortex = 2πv2k for k ∈ Z and will be the subject of study

in section 3. Since these vortex strings have finite tension and semi-infinite length, the

total mass of the configuration is infinite. This reflects the fact that the monopoles are

confined. Nonetheless, as we see from (2.13), this infinite mass splits unambiguously into a

finite contribution from the monopole and an infinite contribution from the flux-tube. As

an alternative way of viewing this, we could say that the monopole mass is the excess over

an infinite straight vortex string (suitably regulated with an infra-red cut-off). With the

monopole’s mass defined in this way, we see that it remains identical to that calculated in

the Coulomb phase (2.2).

In summary, on the Higgs branch the quarks and W-bosons combine to form long

multiplets, while the monopoles are confined yet remain BPS. Moreover, after subtracting

the contribution from the BPS flux tube, we have seen that the classical monopole mass

remains unchanged as we turn on the FI parameter v2 and move onto the Higgs branch.

Can we understand this and extend the result to the quantum theory? In fact, there is a

simple non-renormalisation theorem that tells us that the central charge Z for particle states

cannot receive contributions from the FI parameter v2 and remains given by (2.9) for BPS

states on the Higgs branch. The important observation is the fact that, in N = 2 theories,

the central charges are given by the scalar components of background vector multiplets [18].

Any dependence on hypermultiplets or linear multiplets (also known as tensor multiplets)

is forbidden by supersymmetry. The FI parameter v2 lies in a background linear multiplet

(it is actually one component of a triplet of FI parameters which is precisely the scalar field

content of the N = 2 linear multiplet). We therefore conclude that the BPS particle states

receive no contribution to their mass from v2 and the exact quantum corrected central

charge on the Higgs branch is given by (2.9).

3. The vortex theory

In the previous section we have derived the BPS spectrum on the baryonic Higgs branch.

We have seen that there are no W-boson or quark BPS states, but monopoles survive as

BPS objects, albeit confined by the Meissner effect. Moreover, we have something new: a

BPS vortex string with tension 2πv2. In this section, we study the quantum dynamics of

this vortex string and show that its mass spectrum reproduces the four dimensional BPS

spectrum described above.

Let us start by describing the vortex in the theory with vanishing quark masses,mi = 0.

In this case, the lagrangian preserves the full SU(Nf ) flavour symmetry but the unique

vacuum state on the Higgs branch lies in a colour-flavour locked phase with the symmetry

breaking pattern U(Nc)×SU(Nf )
v−→ SU(Nc)diag. The breaking of the overall U(1) gauge

– 8 –
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group ensures that vortex strings are supported with topological winding number given by
∫

TrB = 2πk, with k ∈ Z, where the integral is taken over the plane transverse to the

string. If we choose the strings to lie in the x3 direction, then the classical configurations

obey the non-abelian version of the first order vortex equations

B3 = e2





Nf
∑

i=1

qiq
†
i − v2



 , D1qi = iD2qi . (3.1)

The strings are BPS with tension given by Tvortex = 2πv2k. In [4], an ADHM-like con-

struction of the k-vortex moduli space was derived from a D-brane picture. We review this

in appendix A. In the remainder of this paper we shall content ourselves with studying a

single vortex k = 1. In this case, all zero modes of the vortex are Goldstone modes and the

moduli space can be constructed simply from the symmetries of the field theory [4, 6]. The

key point to note is that a single non-abelian vortex is simply an abelian Nielsen-Olesen

vortex embedded into a U(1) subgroup of U(Nc). Suppose we choose to embed it in the

upper left-hand corner. Then acting on this solution with the SU(Nc)diag vacuum sym-

metry sweeps out a moduli space Mvortex
∼= SU(Nc)/(U(1) × SU(Nc − 1)) ∼= CPNc−1 of

solutions. We therefore have,

Mvortex = C×CPNc−1 (3.2)

where C parameterises the center of mass of the vortex string in the x1 − x2 plane, while

CPNc−1 describes the internal degrees of freedom arising from the SU(Nc)diag action. The

low-energy dynamics of the vortex string can be described by a d = 1 + 1 dimensional

sigma-model with target spaceMvortex. Since the vortex is BPS, the low-energy dynamics

preserves N = (2, 2) supersymmetry.

Let us ask how this situation changes for non-zero quark masses mi. The answer

was given in [5]. The masses break the symmetry group as SU(Nc)diag → U(1)Nc−1
diag ,

lifting the CPNc−1 moduli space. For a vortex of unit winding number, there are now

Nc isolated solutions corresponding to an abelian vortex embedded in one of the diagonal

U(1) ∈ U(Nc) subgroups. In other words, the off-diagonal embeddings have been removed.

From the perspective of the low-energy dynamics, the masses mi induce a potential V on

CPNc−1 with Nc isolated minima. This potential is of the form V ∼ K 2 where K is a

holomorphic Killing vector on CPNc−1. We derive this potential in appendix B.

We now describe the theory in more detail and flesh out some of these results. Firstly,

note that our low-energy approach to determine the spectrum of the string is a priori

trustworthy provided the string is sufficiently massive: ev À |mi −mj|. In fact, because

of the BPS nature of our results, they can ultimately be continued throughout parameter

space. With this in mind, we now describe the theory of the vortex. We use the language

of the gauged-linear sigma model. This description arises naturally in the brane picture

of [4] which we review in appendix A.

Vortex theory: d = 1 + 1, N = (2, 2) supersymmetric U(1) with a single neutral chiral

multiplet Z and Nc chiral multiplets Ψi of charge +1. Each charged chiral has twisted
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masses mi, i = 1, . . . , Nc. The classical theory has dimensionless FI parameter r and

vacuum angle θ which are combined in a single complex coupling τ = ir+ θ/2π. The gauge

theory also contains a dimensionful gauge coupling g.

A couple of comments are in order. Firstly, the twisted mass in two dimensional

gauge theories was introduced in [3]. Each twisted mass is a complex mass for a chiral

multiplet, consistent with supersymmetry and gauge invariance. It is forbidden in four-

dimensional N = 1 theories by Lorentz symmetry, but becomes available upon dimensional

reduction to two dimensions. As our notation suggests, the twisted masses of the vortex

theory are identified with the hypermultiplet masses mi in four-dimensions. This follows

immediately from the brane picture of [3] and [4]. The FI parameter of the vortex theory,

which determines the Kähler class of the CPNc−1 moduli space can also be extracted from

the brane construction [4]

r =
2π

e2
. (3.3)

Note that, with this result, the complexified coupling τ of the vortex theory is identified

with the complexified coupling τ of the four-dimensional theory.7 Finally, we are instructed

in [4] to take the two-dimensional gauge coupling g2 → ∞. This arises as a consequence

of the decoupling limit of the D-brane system and forces the vortex theory onto its Higgs

branch. In what follows, we will leave g2 finite. This is justified by the existence of the

CFIV supersymmetric index [24] which ensures that the BPS spectrum of the vortex theory

is independent of g2.

The neutral chiral multiplet Z contains a single complex scalar field z, parameterising

the center of mass motion of the vortex. It corresponds to the C factor in (3.2). Since

this field is free, we pay it no more attention and ignore it in the following. Each charged

chiral multiplet Ψi also contains a complex scalar ψi, i = 1, . . . , Nc, while the U(1) vector

multiplet contains the two dimensional gauge field and a further, neutral, complex scalar

σ. The bosonic part of the lagrangian describing the internal degrees of freedom of the

vortex is given by,

−Lvortex =
1

2g2
(

F 2
01 + |∂σ|2

)

+

Nc
∑

i=1

(

|Dψi|2 + |σ −mi|2|ψi|2
)

+
g2

2

(

Nc
∑

i=1

|ψi|2 − r
)2

. (3.4)

For vanishing twisted masses mi, the theory has a SU(Nc)D global symmetry which is

identified with the SU(Nc)diag symmetry in four dimensions. For generic mi 6= 0, this

is broken to U(1)Nc−1
D . The theory also has a U(1)R symmetry which is inherited from

the U(1)R symmetry in four dimensions. This rotates the phases of both σ and mi. For

vanishing masses, the vortex theory has a Higgs branch of vacua given by σ = 0 with the

chiral multiplets constrained to obey
∑

i |ψ|2 = r. After dividing by the U(1) action we see

the Higgs branch is CPNc−1 in agreement with (3.2). In the presence of twisted masses,

7The identification of the theta angle in four dimensions with the theta angle on the vortex theory is

new. It follows simply from the IIA version of the brane construction presented in appendix A. For both

the two dimensional theory on the vortex [3] and the four dimensional theory [20], the theta angle is given

by the separation of M5-branes along the M-theory circle.

– 10 –



J
H
E
P
0
4
(
2
0
0
4
)
0
6
6

performing the same procedure results in a twisted potential on the Higgs branch of the

type constructed in [25] as we show explicitly in appendix B. The potential has Nc isolated

vacua given by,

Vacuum i : σ = mi , |ψj |2 = rδij (3.5)

As described above, the ith vacuum corresponds to a vortex embedded in the ith U(1)

subgroup, carrying magnetic charge B = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 sits in the

ith entry.

So far we have discussed the relevant aspects of the classical two-dimensional theory

on the vortex worldsheet. Let us now turn to the quantum theory. When the twisted

masses vanish mi = 0, there is a one-loop correction to the FI parameter r, leading to a

logarithmic running at scale µ,

r(µ) = r0 −
Nc

2π
log

(

MUV

µ

)

(3.6)

where r0 is the bare FI parameter defined at the UV cut-off MUV . Note that, since this

theory describes the low-energy dynamics of a soliton, it is inappropriate to take MUV to

infinity. Instead it is set by the mass scale of the vortex: MUV = v2.

In (3.6) we see our first hint that the vortex theory understands something of the four

dimensional quantum dynamics since the one-loop beta function for r is identical to that of

the four-dimensional coupling e2. This ensures that the relationship r = 2π/e2 is preserved

under RG flow. Note that although vortices exist by virtue of the overall U(1) ⊂ U(Nc),

the renormalisation of r clearly follows the asymptotically free SU(Nc) gauge coupling in

four dimensions, rather than the infra-red free U(1) coupling. Since the beta functions for

r and 2π/e2 are equal, it follows that if we eliminate r(µ) in favour of the one-loop RG

invariant scale,

Λ = µ exp

(

−2πr(µ)

Nc

)

then this coincides with the dynamically generated scale in four dimensions (2.4).

The anomaly structure provides further agreement between the vortex theory and four

dimensions. The U(1)R symmetry on the vortex worldsheet is broken by anomalies to

Z2Nc , in agreement with the four dimensional result. This suggests an interplay between

Yang-Mills instantons and worldsheet instantons. We shall return to this later.

In the presence of twisted masses, the story is similar. The running of the coupling r(µ)

is cut-off at the scale |mi −mj |. For |mi −mj | À Λ, the theory is weakly coupled. Again,

this is in agreement with the four dimensional theory at the root of the baryonic Higgs

branch, which sits far out on the Coulomb branch when |mi−mj| À Λ. In this regime, the

Nc classical vacua of the vortex theory (3.5) are trustworthy ground states around which

to study excitations. Finally, we note that at strong coupling, |mi −mj| ¿ Λ, the Witten

index ensures that there remain Nc isolated vacuum states in the quantum vortex theory.

3.1 The spectrum of the vortex string

Having identified the theory on the vortex string and described some of its properties, our

task now is to determine its spectrum. In fact this is precisely the calculation performed
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by Dorey in [1] where he computed the exact quantum BPS spectrum as a function of the

twisted masses mi and Λ. In this subsection we review the results of [1] and describe how

they relate to the vortex string.

We deal first with the classical, elementary internal excitations of the BPS string. The

vortex theory (3.4) includes a gapped photon with mass g
√
r. This does not lie in a BPS

multiplet and, moreover, decouples as g2 → ∞ so we do not consider it in the following.

The elementary BPS excitations arise from the chiral multiplets ψi. As we have seen,

when the quark masses mi vanish these parameterise the massless Goldstone modes of the

internal CPNc−1 vortex moduli space of (3.2). In the presence of the masses mi, these flat

directions are lifted and the vortex theory has a classical mass gap. In the ith vacuum,

there are (Nc − 1) BPS states arising from the ψj with, for j 6= i, masses given by

Mψ = |mj −mi| . (3.7)

We see that these perturbative excitations of the string reproduce the classical mass spec-

trum of the quarks and W-bosons (2.5) in the four dimensional theory, but on the Coulomb

branch. Recall that, in the Higgs vacuum we are considering, the classical mass of these

particles is increased by a contribution from ev and they are no longer BPS. How then can

we understand the agreement of the BPS formula (3.7) on the string and four dimensional

BPS formula on the Coulomb branch (2.5)? These elementary states of the vortex are to be

thought of as four-dimensional elementary particles bound to the string, an interpretation

which is clear from the brane picture of appendix A. In the center of the vortex string, one

of the Higgs fields qi vanishes and the theory effectively sits in a partial Coulomb phase.8

The W-bosons and quarks which are carry charge under the corresponding U(1) may lower

their mass to their Coulomb branch value by sitting where qi = 0. For the ith vortex, these

are precisely the states with mass (3.7). The calculation above shows that these states

actually re-obtain BPS status by this mechanism.

When the classical vortex theory has isolated vacua, it also admits topological kink

solutions which contribute to the spectrum. Kinks in models of this type have been much

studied in the literature, starting with Abraham and Townsend [9] and continued in [1, 26,

10]. The first order Bogomoln’yi equations describing the kink are given by,

∂σ = g2

(

Nc
∑

i=1

|ψi|2 − r
)

Dψi = (σ −mi)ψi

where all derivatives are along the spatial worldvolume direction of the vortex string, and

the fields are subject to the boundary conditions that they return to Vacuum i as x→ −∞,

and to Vacuum j as x→ +∞. The BPS mass of such a kink is given by,

Mkink = r|mi −mj | =
2π

e2
|mi −mj| . (3.8)

Comparing with equation (2.2), we see that this coincides with the mass of the monopole

with magnetic charge ha = δai − δaj , sitting at the root of the baryonic Higgs branch. In

8We thank M. Shifman and A. Yung for discussions and suggestions on this point.
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fact, as shown in [5], the kink in the vortex string is precisely this magnetic monopole in

the Higgs phase, with the string providing the flux line which whisks away the magnetic

charge as required by Meissner. To see this, we examine the quantum numbers of the

kink. As x → −∞, the vortex theory sits in the ith vacuum state, corresponding to a

magnetic flux in U(1)i ⊂ U(1)Nc . In the other direction, as x → +∞, the vortex sits in

the jth vacuum, the magnetic flux in the U(1)j ⊂ U(1)Nc subgroup. Taking into account

the direction of the flux, we see that the kink must provide a source of magnetic charge

ha = δai − δaj , precisely that of the monopole. The magnetic flux assignment for a U(2)

monopole is drawn in figure 1.

Finally, as with the monopoles of section 2, the kinks on the vortex string also admit a

generalisation to dyons in which they are charged under the U(1)Nc−1
D global flavour group

of the vortex theory [9]. Such objects are known as q-kinks. Moreover, there is also an

analog of the Witten effect [27] for these kinks so that, in the presence of a θ-angle, they

pick up global electric charge [1].

To summarise, the classical BPS spectrum on the vortex string consists of a rich mix

of both elementary and topological excitations. To write a central charge formula for the

masses, we define the charge of a state under the U(1)Nc−1
D global flavour symmetry to

be Si. We further define the topological charge Ti, such that a field configuration that

tends toward Vacuum j as x→ −∞ and to Vacuum k as x→ +∞ has topological charge

Ti = δij − δjk. The masses of all BPS states are then given by M = |Z| with the classical

central charge given by,

Z = i

Nc
∑

i=1

mi(Si + τTi)

which agrees precisely with the classical central charge of the four-dimensional theory (2.6)

if we equate the two-dimensional topological charge with the four-dimensional magnetic

charge: Ti = hi.

Now we turn to the description of the quantum spectrum of the vortex string. Once

again exact results are available, although of a very different nature from the Seiberg-Witten

curve that we employed in section 2. The trick, following Witten [28], is to integrate out the

chiral superfields Ψi leaving an effective lagrangian for the vector multiplet fields. This is

most elegantly expressed in terms of a twisted chiral superfield Σ whose lowest component

is the complex scalar field σ, and includes F01 as part of the auxiliary field. In the presence

of twisted masses, this calculation was first done in [3], resulting in the effective twisted

superpotential,

W(Σ) =
i

2
τΣ− 1

4π

Nc
∑

i=1

(Σ−mi) log

(

2

µ
(Σ−mi)

)

.

Assuming no singularities in the Kähler potential, the Nc quantum vacua of the theory

are determined by the critical points of the twisted superpotential ∂W/∂Σ = 0 and are

given by,
Nc
∏

i=1

(σ −mi)− ΛNc ≡
Nc
∏

i=1

(σ − ei) = 0
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which we notice as the same equation describing the branch points of the Seiberg-Witten

curve at the root of the baryonic Higgs branch (2.8). The classical BPS kinks which we

described above also survive in this effective theory [29] although their mass is now corrected

to include quantum effects. A kink interpolating between the Vacuum i and Vacuum j has

mass Mkink = 2∆W = 2W(ei) − 2W(ej). In the weak coupling regime |mi − mj| À Λ

the leading contribution is precisely the classical result (3.8). Deep in the strong coupling

regime, |mi −mj| ¿ Λ, quantum effects are dominant. The exact BPS mass of the kink

can be captured by a correction to the central charge so that all BPS excitations of the

string have masses M = |Z|, now with

Z = −i
Nc
∑

i=1

(miSi +mD iTi)

where all the quantum corrections are encoded in mD,i, each a holomorphic function of

mj and Λ. Using the expressions above, we find that (up to an i-independent irrelevant

constant)

mD i = −2iW(ei) =
1

2πi
Ncei +

1

2πi

Nc
∑

j=1

mj log

(

ei −mj

Λ

)

which we see coincides with the expression computed in four dimensions (2.10). Note that

these two equations arose from very different origins: the degeneration of the Seiberg-

Witten elliptic curve in four dimensions, and the critical points of the effective twisted

superpotential in two dimensions. This agreement is the main result of [1].

Note that while we have shown, following [1], that the exact central charges agree in

two and four dimensions, this does not necessarily imply that the spectra coincide. For

this we have to show that the same quantum numbers Si and Ti are realised in each theory.

For example, from the perspective of the vortex string, we have seen that only kinks with

quantum numbers Ti = δij−δik are allowed classically. In contrast, in the four dimensional

theory, there exist classical monopole configurations with arbitrary magnetic charge T i,

subject only to
∑

i Ti = 0. However, not all of these classical configurations may be realised

as states in the quantum theory. It was shown in [1] that at weak coupling |mi−mj| À Λ,

the allowed charges of quantum states do coincide between the two theories. Moreover,

since the central charges agree, the curves of marginal stability where states may decay

also coincide in the two theories. This strongly suggests that the spectra agree throughout

the parameter space.

3.2 A weak coupling expansion

The results of the previous section reveal that the exact BPS mass spectrum of the vortex

theory coincides with the exact BPS mass spectrum of the four-dimensional gauge theory.

Powerful as these results are, it is constructive to examine them in the weak-coupling

regime |mi −mj| À Λ. In this case, each holomorphic function mD i has the expansion,

mD i =
1

2πi



Ncmi +

Nc
∑

j=1

(mj −mi) log

(

mj −mi

Λ

)

+

∞
∑

n=1

cn(mj)Λ
n
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where the log term arises as a one-loop contribution, while each term in the sum is due to

a charge n instanton effect with an mj dependent coefficient cn. In the four-dimensional

theory these are U(Nc) Yang-Mills instantons while, in the theory on the vortex string

worldsheet, they are two-dimensional instantons which are usually referred to as semi-local

vortices or CPNc−1 lumps. In other words, from the perspective of the vortex string,

Yang-Mills instantons look like semi-local vortices: a vortex within a vortex.9 This is

entirely analogous to the fact that, as we have seen above, a Yang-Mills monopole looks

like a kink within a vortex. The fact that the coefficients cn coincide term by term is

presumably related to the observation of [4] that the moduli space of semi-local vortices

is a submanifold of the moduli space of Yang-Mills instantons. It would be interesting to

understand this agreement at the semi-classical level.

In fact, just as we derived the 1/4-BPS Bogomoln’yi equations for the monopole in the

vortex [5], we may similarly derive the equations describing the Yang-Mills instanton in

the Higgs phase in the presence of the vortex string. To do so, we set the hypermultiplet

masses mi = 0 to zero and work in four-dimensional euclidean space. We define a complex

structure on R4 given by z = x2+ix3 and w = x4+ix1, and complete the four-dimensional

action thus,

L =
1

2e2
FµνF

µν +

Nf
∑

i=1

|Dµqi|2 +
e2

2





Nf
∑

i=1

qiq
†
i − v2





2

=
1

2e2

(

F12 − F34 − e2
(

∑

qiq
†
i − v2

))2
+
∑

(

|Dzqi|2 +Dw̄qi|2
)

+

+
1

2e2
(F14 − F23)2 +

1

2e2
(F13 + F24)

2 +
1

e2
FµνFρσε

µνρσ + F12v
2 − F34v2

≥ 1

e2
FµνFρσε

µνρσ + F12v
2 − F34v2 .

The terms left in the final line are all topological charges. We recognise the first as counting

instanton number n when integrated over R4. The remaining two charges both count vortex

strings. The term F12 is the topological charge for a string extended in the x3−x4 plane as
we have discussed above. The presence of the third charge F34, which counts strings with

worldvolume x1 − x2, reflects the fact that the most general solution to the Bogomoln’yi

equations appear to contain more than we bargained for: orthogonal vortex strings, which

share no worldvolume directions, together with Yang-Mills instantons. The Bogomoln’yi

equations are

F12 − F34 = e2

(

∑

i

qiq
†
i − v2

)

, F14 = F23 , F13 = F24 , Dzqi = 0 , Dw̄qi = 0 .

We see that these are an interesting mix of the usual self-dual Yang-Mills equations and

the non-abelian vortex equations (3.1). As we mentioned, the most general solution seems

likely to describe k1 vortices with worldvolume in the x3 − x4 plane, another k2 vortices

9From brane picture this is clear. In the IIA version described in appendix A, both objects arise as

euclidean D0-branes lying in the D4 world-volume.
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with worldvolume in the x1 − x2 plane, and n Yang-Mills instantons. Such solutions

likely preserve 1/8 supersymmetry. It would be interesting to study the properties of

these solutions further. The relevance for the current work is restricted to the 1/4-BPS

configurations with k2 = 0.

4. Nf > Nc and semi-local vortices

In this section we would like to generalise the story to N = 2 U(Nc) supersymmetric QCD

with Nf > Nc massive hypermultiplets. In [2] a two-dimensional, non-compact sigma-

model was presented whose mass spectrum coincides with that of this four-dimensional

gauge theory. Here we confirm, using the results of [4], that this is indeed the theory living

on the vortex string.

We start by taking generic masses for the hypermultiplets mi 6= mj for i 6= j where i

and j now run from 1 to Nf > Nc. We also include a FI parameter v2 from the beginning.

The theory now has Nf !/Nc!(Nf −Nc)! isolated vacua, labeled by the choice of Nc quarks

which have an expectation value. Without loss of generality, we may choose the vacuum

φ = diag(m1, . . . ,mNc) with q̃i = 0 and

qai =

{

vδai a, i = 1, . . . , Nc

0 i = Nc + 1, . . . , Nf

We will be interested in the BPS spectrum at this point on the Higgs branch. As in section 2,

the W-bosons combine with N 2
c quarks to form long multiplets. However, in contrast to the

theory with Nf = Nc, there are now BPS quark states. These arise from the (Nf −Nc)Nc

quark hypermultiplet which parameterise the flat directions of the Higgs branch when

mi = 0. For non-vanishing mi, these BPS quarks states have mass Mquark = |mi − mj|
for i = 1, . . . , Nc and for j = Nc + 1, . . . , Nf . The classical monopole spectrum remains

much as in section 2. We can again compute the quantum corrections to the central charge

using the Seiberg-Witten curve at the corresponding point on the Coulomb branch. The

relevant formulae can be found in [2] so we shall be brief: the classical central charge at

a generic point on the Coulomb branch is again given by (2.3). In our vacuum of choice

φ = diag(m1, . . . ,mNc) the degeneracies in the spectrum between quarks and W-bosons

allows us to simplify the central charge as

Z =

Nc
∑

i=1

mi(Si +mD ihi) +

Nf
∑

i=Nc+1

misi (4.1)

where the definitions are as in section 2, equation (2.6) and, classically, mD i = τ . Quantum

mechanically, mD i can again be expressed as the integral of the Seiberg-Witten one-form

λSW over a particular one-cycle of a new elliptic curve with Nc branch points ei. Skipping

the details, we simply quote the final result: mD i takes the form,

mDj =
1

2π



(2Nc −Nf )ej −
Nc
∑

i=1

mi log

(

ej −mi

Λ

)

+

Nf
∑

i=Nc+1

mi log

(

ej −mi

Λ

)



 . (4.2)
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4.1 The semi-local vortex theory

We would now like to discuss the low-energy dynamics of the vortex string. Vortices in

gauge theories with Nf > Nc are known as “semi-local vortices”, terminology which first

arose in the abelian gauge theory with multiple Higgs fields [30]. As the gauge coupling e2

is varied, these solitons interpolate between Nielsen-Olesen like vortices and sigma-model

lumps on the Higgs branch of the theory. In non-abelian theories of the type considered

here, they were studied in [4].

Semi-local vortices involve a subtlety not shared by those discussed in section 3: some

of their zero modes are non-normalisable [31]. This means that the Manton metric on their

moduli space includes some (logarithmically) divergent terms and these fluctuations are

classically frozen. The non-normalisability of these modes also leads to subtleties in treating

these objects quantum mechanically which, to our knowledge, have not been resolved in

the literature.

In [4], a brane construction of both vortices and semi-local vortices was employed to

extract the low-energy dynamics of the solitons. Although the resulting theory captured

much information about vortex dynamics, it did not give the Manton metric on the moduli

space. Indeed, for the case of semi-local vortices this discrepancy is most extreme since

the brane construction provides a finite metric on the moduli space of semi-local vortices.

Nevertheless, it was argued in [4] that as long as we restrict to BPS sectors of a supersym-

metric gauge theory, then one should be able to use any of a class of metrics on the vortex

moduli space since the questions reduce to calculating certain topological quantities. Here

we present an example of this technique. Rather than using the non-normalisable metric on

the semi-local vortex moduli space, we instead work with the simpler metric derived from

the brane construction of [4]. The fact that we are able to reproduce the quantum spectrum

of the four-dimensional gauge theory gives strong support in favour of this procedure. With

this caveat in mind, we now describe the low-energy dynamics of the semi-local vortex [4]

Semi-local vortex theory: d = 1 + 1, N = (2, 2) supersymmetric U(1) with a single

neutral chiral multiplet Z, Nc chiral multiplets Ψi of charge +1 and (Nf − Nc) charged

chiral multiplets Ψ̃m of charge −1. The Ψi have twisted masses mi, i = 1, . . . , Nc, while

the Ψ̃m have twisted masses mNc+m, m = 1, . . . , Nf −Nc.

The FI parameter is given by r = 2π/e2 as in section 2 and the D-term for the

theory reads,

D =

Nc
∑

i=1

|ψi|2 −
Nf−Nc
∑

m=1

|ψ̃m|2 − r .

After dividing by the U(1) gauge action, the equation D = 0 defines the Higgs branch

of the theory for which, for mi = 0, is isomorphic to the internal moduli space of semi-

local vortices [4]. Note that, in contrast to the CPNc−1 of section 2, the moduli space

of semi-local vortices is non-compact. This reflects the fact that at large distances they

look like sigma-model lumps, replete with a scaling modulus. When the masses are turned

on mi 6= 0, there are again only Nc isolated vacua in the theory, given by |ψj |2 = v2δij
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and ψ̃m = 0. Once again, these correspond to the Nc possible U(1) embeddings of the

Nielsen-Olesen abelian vortex.

The semi-local vortex theory described above was previously studied in [2] where it

was shown that the exact BPS spectrum indeed coincides with the spectrum of massive

quarks and monopoles in the four-dimensional parent theory. Once again, we will be

brief and make only a few choice comments. As in section 3, the anomalies in four and

two dimensions are in agreement: for vanishing masses the U(1)R symmetry is broken

by instantons to Z2(2Nc−Nf ) in both cases. The one-loop logarithmic running of the FI

parameter is given by,

r(µ) = r0 −
2Nc −Nf

2π
log

(

MUV

µ

)

(4.3)

which, agrees with the one-loop beta function of e2(µ) in four-dimensions. Notice in par-

ticular that both two and four dimensional theories are asymptotically free for Nf < 2Nc

and infra-red free for Nf > 2Nc. Of particular interest is the critical case, Nf = 2Nc.

On the four-dimensional Coulomb branch, with vanishing masses, the theory is conformal.

Once we move onto the Higgs branch, the same is true of the theory of the vortex string.

It may prove interesting to understand the relevance of this point.

Finally, the computation of the classical and quantum spectrum proceeds much as

above — for full details see [2] — and reduces to computing the critical points of the

effective superpotential,

W =
τΣ

2
− 1

4π

Nc
∑

i=1

(Σ−mi) log

(

2

µ
(Σ−mi)

)

+
1

4π

Nf
∑

m=Nc+1

(Σ−mi) log

(

2

µ
(Σ−mi)

)

.

The quantum corrected central charge takes the form (4.1), now with the mD i = −2iW(ei)

where ei are the Nc critical points of W. Using the form of the superpotential above, we

see that mD i is indeed given by (4.2). The exact BPS spectrum of the vortex string is

in agreement with the BPS spectrum of its four-dimensional parent theory. Once again,

the kinks have the interpretation of confined monopoles, while the elementary excitations

of the string correspond to N 2
c bound W-bosons, as well as Nf (Nf − Nc) quark-string

threshold states.
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B) C)
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Figure 2: The type-IIA brane set-up. figure (a) shows the four dimensional theory at the root of

the baryonic Higgs branch. In figure (b), the right-hand NS5-brane has slid in the x9 direction and

the gauge theory sits on the Higgs branch. We have included the D2-brane vortex string in red in

this picture. In figure (c), we have moved the D6-branes off the page to the far-right, allowing us

to read off the theory on the D2-brane.

A. The brane construction

In this section we review the brane derivation of the vortex theory given in [4] and present

the (trivial) generalisation to include non-zero masses. While the construction of [4] was

performed in the IIB string theory set-up of [32], resulting in vortices as particles in

d = 2 + 1 dimensions, here we work with the T-dual IIA construction where the vor-

tices appear as strings in a d = 3 + 1 dimensional gauge theory. Older relevant work

can be found in [3, 33, 2]. Related brane constructions of vortices were recently discussed

in [34].

Our brane configuration is drawn in figure 2. We use the well-known construction of

N = 2 theories in d = 3 + 1 dimensions realised on the worldvolume of Nc D4-branes

suspended between two NS5-branes [20]. A further Nf = Nc D6-branes give rise to hyper-

multiplets coming from 4− 6 strings. The spatial worldvolume directions of the branes are

NS5 : 12345

D4 : 1236

D6 : 123789

D2 : 39 .

The gauge coupling e2 and FI parameter v2 are encoded in the separation ∆x of the two

NS5-branes,
1

e2
=

∆x6

(2π)2gsls
, v2 =

∆x9

(2π)3gsl3s
(A.1)

where gs and ls =
√
α′ are the string coupling and string length respectively. The hyper-

multiplet masses and the vacuum expectation value of φ = diag(φ1, . . . , φNc) are encoded
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in the x4 and x5 positions of the D-branes [20]

mi =
x4 + ix5

l2s

∣

∣

∣

∣

D6i

, φi =
x4 + ix5

l2s

∣

∣

∣

∣

D4i

. (A.2)

In figure 2a we draw the brane configuration corresponding to the four dimensional theory

with v2 = 0 at the root of the baryonic Higgs branch φ = diag(m1, . . . ,mNc). In figure 2b,

we have turned on the FI parameter v2 by moving the right-hand NS5-brane out of the

page in the x9 direction. Here we also depict the vortex string, appearing as a D2-brane

stretched the distance ∆x9 between the NS5-brane and the D3-brane.

To read off the vortex theory on the D2-brane, we first

Figure 3: The confined

monopole in the brane pic-

ture. The D2-brane world-

sheet interpolates between the

upper and middle D4-branes

as −∞ < x3 < +∞.

manipulate the branes a little. The field theory cares nothing

for the x6 position of the D6-branes and we may freely move

them in this direction. Ther is one caveat however: they

have non-zero linking number with the NS5-branes which en-

sures that D4-branes are created or destroyed if the two pass

through each other [32]. We choose to move the D6-branes

to the right. When they pass through the right-hand NS5-

brane, the connecting D4-branes dissapear by flux conserva-

tion and the D6-branes are now attached only to the left-

hand NS5-brane. After moving the D6-branes to x6 → ∞,

the resulting configuration is shown in figure 2c. From this

we may read off the gauge theory on the D2-brane as de-

scribed in [3]. It is given by d = 1 + 1, N = (2, 2) U(1)

gauge theory. The gauge coupling constant g2 and the FI

parameter r are given by the separation of the NS5-branes,

1

g2
=

∆x9ls
gs

, r =
∆x6

2πgsls
.

As explained in [4], taking the decoupling limit of the four-

dimensional gauge theory from the full string dynamics translates to the requirement that

g2 →∞. In contrast, r remains finite and, comparing with (A.1), is given by r = 2π/e2 as

promised. The matter content of the D2-brane theory includes a single free chiral multiplet,

corresponding to motion in the x1+ ix2 direction, and Nc charged chiral multiplets arising

from the 2 − 4 strings. These chiral multiplets have a twisted mass given by the position

of the D4-branes [3],

mi =
x4 + ix5

l2s

∣

∣

∣

∣

D4i

which, for our choice of the baryonic Higgs branch, coincides with the hypermultiplet masses

(A.2). This concludes the brane derivation of the vortex theory discussed in section 2.

From the brane picture, certain other aspects of the vortex dynamics become immedi-

ately obvious. In figure 2b, we drew the D2-brane attached to the upper D4-brane. This

corresponds to a vortex string with magnetic flux in B = diag(1, 0, . . . , 0). It is clear from
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the brane picture that there exist a further Nc − 1 inequivalent vortex configurations in

which the D2-brane is attatched to one of the other D4-branes. It is also simple to under-

stand the confined monopole in this picture. We consider a D2-brane worldvolume which

starts attatched to the upper D4-brane at x3 → −∞, and then interpolates down to the

middle D4-brane as x3 → +∞. At intermediate steps, the D2-brane cannot simply be a

line stretching distance ∆x9 as drawn in figure 2b since it has no where to end. The only

possiblity is that the D2-brane bends in the x6 direction to attatch itself to the NS5-branes.

The final configuration is drawn in figure 3 and is similar to those considered in [3, 2].10

Notice that as v2 → 0, and the separation ∆x9 of the NS5-branes vanishes, this stretched

D2-brane indeed becomes the ’t Hooft Polyakov monopole in the Coulomb phase.

B. Potential on the vortex moduli space

One of the key features of the vortex theory described in section 3 is the presence of twisted

masses for the chiral multiplets. Here we provide a purely field theoretic derivation of this

potential using a method developed in [35]. We then relate this potential to that arising

on the Higgs branch of the vortex theory.

We are interested in non-abelian vortices in the four-dimensional theory described in

section 2. If the hypermultiplet masses vanish mi = 0, we may simply set the adjoint scalar

φ = 0 and study the vortex equations (3.1). The question we wish to answer here is how

these solutions are lifted with the introduction of the masses mi. To simplify matters, we

take all mi to be real, which allows us to restrict to real φ (the generalisation to complex

masses is simple). Further, we will use the ability to shift φ to set
∑Nf

i=1mi = 0. A solution

to the vortex equations (3.1) now has an extra contribution to its energy coming from the

terms in the four dimensional action

V =

∫

d2x
2

e2
TrDzφDz̄φ+

Nf
∑

i=1

q†i (φ−mi)
2qi

which is to be evaluated on a particular configuration for the fields Az and qi solving (3.1).

While qi and Az are fixed, φ may vary so as to minimize V . It satisfies,

D2φ = e2
Nf
∑

i=1

{φ, qiq†i } − 2qiq
†
imi (B.1)

subject to the asymptotic condition φ → diag(m1, . . . ,mNc). In this appendix we show

how to evaluate V for a given vortex solution.

The most general solution to the non-abelian vortex equations has 2kNc parameters

where k is the magnetic flux [4]. Let Vk,Nc denote the moduli space of solutions and choose

coordinates Xp on Vk,Nc with p = 1, . . . , 2kNc. The tangent vectors of Vk,Nc are provided

by the zero modes (δpAz, δpqi) of the vortex which satisfy the linearised version of (3.1),

Dz δpAz̄ −Dz̄ δpAz =
ie2

2

Nf
∑

i=1

(

δpqi q
†
i + qi δpq

†
i

)

10Similar brane configurations have been considered by J. Evslin in the context of [7].
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Dz δpqi = iδpAz qi . (B.2)

This is to be augmented by the gauge fixing condition arising from Gauss’ law

Dz δpAz̄ +Dz̄ δpAz = −
ie2

2

Nf
∑

i=1

(

δpqi q
†
i − qi δpq

†
i

)

(B.3)

The Manton metric on Vk,Nc is defined by the overlap of zero modes,

gpq =

∫

d2x
2

e2
Tr(δ{pAz) (δq}Az̄) +

Nf
∑

i=1

(δ{pqi) (δq}q
†
i ) (B.4)

Of particular interest will be the zero modes generated by symmetries, specifically the

action of the SU(N)diag symmetry preserved by the vacuum when mi = 0. As we have

seen in section 3, for the case of a single vortex k = 1, this sweeps out the entire CPNc−1

internal vortex moduli space [4, 6]. For higher k, it provides only a subset of the zero

modes. In all cases, the action of the symmetry results in an SU(Nc)diag isometry of the

moduli space metric gpq with Nc − 1 mutually commuting holomorphic Killing vectors.

These will be important in the following. As explained in section 2 of [4], the zero modes

associated with this symmetry can be constructed uniquely from a given Lie algebra element

Ω0 ∈ su(Nc)diag. The zero modes are given by,

δAz = DzΩ , δq = i(Ωq − qΩ0) (B.5)

where Ω = Ω(z, z̄), a function which, from (B.2) and (B.3), satisfies,

D2Ω = e2
Nf
∑

i=1

{Ω, qiq†i } − 2qiq
†
iΩ0 (B.6)

subject to the boundary condition Ω(z, z̄) → Ω0 as |z| → ∞. Now let us choose a very

special element Ω0 which lies in the Cartan subalgebra of su(Nc)diag. We set

Ω0 = diag(m1, . . . ,mNc) . (B.7)

The crucial observation is that for this specific rotation, equation (B.6) coincides with the

equation of motion for φ given in (B.1): we have Ω = φ. This allows us to write the excess

energy of the vortices in terms of the overlap of these zero modes (B.5)

V =

∫

d2x
2

e2
Tr δAz δAz̄ +

Nf
∑

i=1

δqiδq
†
i . (B.8)

We are now almost done. The final step is to decompose the specific rotation (B.7) into

a basis of normalised rotations. It is somewhat simpler to work with the larger u(Nc)diag
Cartan sub-algebra and subsequently impose the vanishing trace condition on various ob-

jects. Let Hi denote the Nc mutually commuting generators and write Ω0 =
∑

imiHi. We

further denote by Ki the Killing vector on Vk,Nc which is generated by the action of Hi.
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Note that, because of the traceless condition, these Nc Killing vectors are not all linearly

independent but satisfy
∑

iKi = 0. We may now express the zero mode (B.5) in this basis

of tangent vectors,

δAz =

(

Nc
∑

i=1

miK
p
i

)

δpAz , δq =

(

Nc
∑

i=1

miK
p
i

)

δpq .

Finally, inserting this into (B.8) and using the defintion of the metric (B.4), we arrive at our

promised result for excess vortex energy as a potential on Vk,Nc given by the length-squared

of a particular Killing vector,

V =

Nc
∑

i,j=1

(miK
p
i ) (mjK

q
j ) gpq . (B.9)

B.1 From vortex theory to vortex moduli space

The vortex theory described in section 2 (and derived in appendix A using branes) is given

in terms of a gauged linear sigma-model. The Higgs branch of the vortex theory coincides

with the moduli space of vortices which, for a single vortex k = 1, is simply C×CPNc−1.

Here we would like to show how the potential (B.9) arises from the twisted mass terms in

the vortex theory. The Higgs branch is defined by the D-term constraint

D =

Nc
∑

i=1

|ψi|2 − r = 0

modulo the U(1) gauge action which rotates each chiral multiplet equally: δgaugeψi = iψi.

The Higgs branch inherits a natural metric from the gauge theory through a mechanism

known as the Kähler quotient. In the present context, this is simply the round Fubini-

Study metric on CPNc−1. The metric on the Higgs branch is defined in terms of a basis

of tangent vectors δpψi, p = 1, . . . , 2(Nc − 1) satisfying the linearised equations δpD = 0

together with the gauge fixing constraint
∑

i ψ
†
i δpψi = 0. The metric on the Higgs branch

is then given by

gpq =

Nc
∑

i=1

(δ{pψi) (δq}ψ
†
i ) . (B.10)

For the single k = 1 vortex considered here, all directions of the inernal moduli space

are generated by the action of the SU(Nc)diag symmetry.11 We will match to the vortex

moduli space calculation described above by following the action of this symmetry and,

in particular, the (Nc − 1) mututally commuting Killing vectors it generates on the Higgs

branch. As above, it will prove useful to overcount and work with Nc Killing vectors subject

to a constraint. Consider the Nc normalised zero modes arising from such the su(Nc)diag
action.

δiψj = iψjδij −
i

r
|ψi|2ψj . (B.11)

11For the more general k > 1 theories discussed in [4], this statement is no longer true but the following

methods can also be implemented.
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These are not all linearly independent. If we denote the corresponding Killing vector on

the Higgs branch as Ki, we have
∑Nc

i=1Ki = 0. Note that the action has been normalised

so that Ki coincides with the Killing vector on V1,Nc defined above. It is simple to see how

the masses mi affect the Higgs branch. In the strict g2 →∞ limit, they induce a potential

given by the term from equation (3.4)

V =

Nf
∑

i=1

|ψi|2(σ −mi)
2 (B.12)

where σ can vary so as to minimise V , giving rise to the solution

σ =
1

r

∑

i

mi|ψi|2 .

Substituting this into the potential (B.12), we see that we can express V purely in terms

of geometrical objects on the Higgs branch: the metric (B.10) and the Killing vectors Ki

arising from the action (B.11). We have,

V =

Nc
∑

i=1

|mi|2|ψi|2 −
1

r
|
∑

i

mi|ψi|2|2

=

Nc
∑

i,j=1

(miK
p
i ) (m̄jK

q
j ) gpq

in agreement with the expression (B.9). It is heartwarming that the potentials derived

from field theory and branes coincide.

References

[1] N. Dorey, The BPS spectra of two-dimensional supersymmetric gauge theories with twisted

mass terms, J. High Energy Phys. 11 (1998) 005 [hep-th/9806056].

[2] N. Dorey, T.J. Hollowood and D. Tong, The BPS spectra of gauge theories in two and four

dimensions, J. High Energy Phys. 05 (1999) 006 [hep-th/9902134].

[3] A. Hanany and K. Hori, Branes and N = 2 theories in two dimensions, Nucl. Phys. B 513

(1998) 119 [hep-th/9707192].

[4] A. Hanany and D. Tong, Vortices, instantons and branes, J. High Energy Phys. 07 (2003)

037 [hep-th/0306150].

[5] D. Tong, Monopoles in the Higgs phase, Phys. Rev. D 69 (2004) 065003 [hep-th/0307302].

[6] R. Auzzi, S. Bolognesi, J. Evslin, K. Konishi and A. Yung, Nonabelian superconductors:

vortices and confinement in N = 2 sqcd, Nucl. Phys. B 673 (2003) 187 [hep-th/0307287].

[7] R. Auzzi, S. Bolognesi, J. Evslin and K. Konishi, Nonabelian monopoles and the vortices that

confine them, hep-th/0312233.

– 24 –

http://jhep.sissa.it/stdsearch?paper=11%281998%29005
http://xxx.lanl.gov/abs/hep-th/9806056
http://jhep.sissa.it/stdsearch?paper=05%281999%29006
http://xxx.lanl.gov/abs/hep-th/9902134
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C119
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB513%2C119
http://xxx.lanl.gov/abs/hep-th/9707192
http://jhep.sissa.it/stdsearch?paper=07%282003%29037
http://jhep.sissa.it/stdsearch?paper=07%282003%29037
http://xxx.lanl.gov/abs/hep-th/0306150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C065003
http://xxx.lanl.gov/abs/hep-th/0307302
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB673%2C187
http://xxx.lanl.gov/abs/hep-th/0307287
http://xxx.lanl.gov/abs/hep-th/0312233


J
H
E
P
0
4
(
2
0
0
4
)
0
6
6

[8] M. Hindmarsh and T.W.B. Kibble, Beads on strings, Phys. Rev. Lett. 55 (1985) 2398;

M.A.C. Kneipp, Z(k) string fluxes and monopole confinement in non-abelian theories, Phys.

Rev. D 68 (2003) 045009 [hep-th/0211049];

M.A.C. Kneipp, Color superconductivity, Z(N) flux tubes and monopole confinement in

deformed N = 2* super Yang-Mills theories, Phys. Rev. D 69 (2004) 045007

[hep-th/0308086].

[9] E.R.C. Abraham and P.K. Townsend, Q kinks, Phys. Lett. B 291 (1992) 85; More on q

kinks: a (1+1)-dimensional analog of dyons, Phys. Lett. B 295 (1992) 225.

[10] J.P. Gauntlett, D. Tong and P.K. Townsend, Multi-domain walls in massive supersymmetric

sigma-models, Phys. Rev. D 64 (2001) 025010 [hep-th/0012178];

D. Tong, The moduli space of BPS domain walls, Phys. Rev. D 66 (2002) 025013

[hep-th/0202012];

A. Losev and M. Shifman, N = 2 sigma model with twisted mass and superpotential: central

charges and solitons, Phys. Rev. D 68 (2003) 045006 [hep-th/0304003];

Y. Isozumi, K. Ohashi and N. Sakai, Exact wall solutions in 5-dimensional SUSY QED at

finite coupling, J. High Energy Phys. 11 (2003) 060 [hep-th/0310189].

[11] J.P. Gauntlett, D. Tong and P.K. Townsend, Supersymmetric intersecting domain walls in

massive hyper-Kaehler sigma models, Phys. Rev. D 63 (2001) 085001 [hep-th/0007124];

K. Kakimoto and N. Sakai, Domain wall junction in N = 2 supersymmetric qed in four

dimensions, Phys. Rev. D 68 (2003) 065005 [hep-th/0306077].

[12] J.P. Gauntlett, R. Portugues, D. Tong and P.K. Townsend, D-brane solitons in

supersymmetric sigma-models, Phys. Rev. D 63 (2001) 085002 [hep-th/0008221].

[13] M. Shifman and A. Yung, Domain walls and flux tubes in N = 2 SQCD: D-brane prototypes,

Phys. Rev. D 67 (2003) 125007 [hep-th/0212293];

M. Shifman and A. Yung, Localization of non-abelian gauge fields on domain walls at weak

coupling (D-brane prototypes II), hep-th/0312257.

[14] G.R. Dvali and M.A. Shifman, Domain walls in strongly coupled theories, Phys. Lett. B 396

(1997) 64 [hep-th/9612128], erratum ibid. B407 (1997) 452;

E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B 507 (1997) 658

[hep-th/9706109].

[15] M. Shifman and A. Yung, Non-abelian string junctions as confined monopoles,

hep-th/0403149.

[16] P.C. Argyres, M.R. Plesser and N. Seiberg, The moduli space of N = 2 SUSY QCD and

duality in N = 1 SUSY QCD, Nucl. Phys. B 471 (1996) 159 [hep-th/9603042].

[17] G. Carlino, K. Konishi and H. Murayama, Dynamical symmetry breaking in supersymmetric

SU(nc) and USp(2nc) gauge theories, Nucl. Phys. B 590 (2000) 37 [hep-th/0005076].

[18] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation and confinement

in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19

[hep-th/9407087], erratum ibid. B430 (1994) 485; Monopoles, duality and chiral symmetry

breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099].

[19] A. Rebhan, P. van Nieuwenhuizen and R. Wimmer, A new anomaly in the central charge of

the N = 2 monopole, hep-th/0401116.

[20] E. Witten, Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B 500

(1997) 3 [hep-th/9703166].

– 25 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C55%2C2398
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C045009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C045009
http://xxx.lanl.gov/abs/hep-th/0211049
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD69%2C045007
http://xxx.lanl.gov/abs/hep-th/0308086
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB291%2C85
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB295%2C225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C025010
http://xxx.lanl.gov/abs/hep-th/0012178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C025013
http://xxx.lanl.gov/abs/hep-th/0202012
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C045006
http://xxx.lanl.gov/abs/hep-th/0304003
http://jhep.sissa.it/stdsearch?paper=11%282003%29060
http://xxx.lanl.gov/abs/hep-th/0310189
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C085001
http://xxx.lanl.gov/abs/hep-th/0007124
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD68%2C065005
http://xxx.lanl.gov/abs/hep-th/0306077
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD63%2C085002
http://xxx.lanl.gov/abs/hep-th/0008221
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C125007
http://xxx.lanl.gov/abs/hep-th/0212293
http://xxx.lanl.gov/abs/hep-th/0312257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB396%2C64
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB396%2C64
http://xxx.lanl.gov/abs/hep-th/9612128
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB507%2C658
http://xxx.lanl.gov/abs/hep-th/9706109
http://xxx.lanl.gov/abs/hep-th/0403149
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB471%2C159
http://xxx.lanl.gov/abs/hep-th/9603042
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB590%2C37
http://xxx.lanl.gov/abs/hep-th/0005076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB426%2C19
http://xxx.lanl.gov/abs/hep-th/9407087
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB431%2C484
http://xxx.lanl.gov/abs/hep-th/9408099
http://xxx.lanl.gov/abs/hep-th/0401116
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB500%2C3
http://xxx.lanl.gov/abs/hep-th/9703166


J
H
E
P
0
4
(
2
0
0
4
)
0
6
6

[21] A. Hanany, M.J. Strassler and A. Zaffaroni, Confinement and strings in mQCD, Nucl. Phys.

B 513 (1998) 87 [hep-th/9707244].

[22] N. Arkani-Hamed, A.G. Cohen, D.B. Kaplan, A. Karch and L. Motl, Deconstructing (2,0)

and little string theories, J. High Energy Phys. 01 (2003) 083 [hep-th/0110146].

[23] A.I. Vainshtein and A. Yung, Type i superconductivity upon monopole condensation in

Seiberg-Witten theory, Nucl. Phys. B 614 (2001) 3 [hep-th/0012250].

[24] S. Cecotti, P. Fendley, K.A. Intriligator and C. Vafa, A new supersymmetric index, Nucl.

Phys. B 386 (1992) 405 [hep-th/9204102].
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