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Abstract: We present new self-gravitating solutions in five dimensions that describe cir-

cular strings, i.e. rings, electrically coupled to a two-form potential (as e.g. fundamental

strings do), or to a dual magnetic one-form. The rings are prevented from collapsing by

rotation, and they create a field analogous to a dipole, with no net charge measured at

infinity. They can have a regular horizon, and we show that this implies the existence

of an infinite number of black rings, labeled by a continuous parameter, with the same

mass and angular momentum as neutral black rings and black holes. We also discuss the

solution for a rotating loop of fundamental string. We show how more general rings arise

from intersections of branes with a regular horizon (even at extremality), closely related

to the configurations that yield the four-dimensional black hole with four charges. We

reproduce the Bekenstein-Hawking entropy of a large extremal ring through a microscopic

calculation. Finally, we discuss some qualitative ideas for a microscopic understanding of

neutral and dipole black rings.
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1. Introduction

Take a neutral black string in five dimensions, constructed as the direct product of the

Schwarzschild solution and a line, so the geometry of the horizon is R × S2. Imagine

bending this string to form a circle, so the topology is now S1 × S2. In principle this

circular string tends to contract, decreasing the radius of the S1, due to its tension and

gravitational self-attraction, but we can make the string rotate along the S1 and balance

these forces against the centrifugal repulsion. Then we end up with a neutral rotating

black ring. Ref. [1] obtained it as an explicit solution of five-dimensional vacuum General

Relativity.

This heuristic construction was first suggested surprisingly long ago in [2], but several

of the most important features of the neutral black ring could hardly have been anticipated

without the explicit solution. For fixed mass, the spin of a five-dimensional rotating black

hole of spherical topology is bounded above [2], whereas the spin of the black ring is

bounded below. But the ranges of existence of both sorts of objects overlap, and where

they do, one actually finds two black rings, in addition to the black hole, all with the same

mass and spin. This triplicity of solutions implies the non-uniqueness of five-dimensional

black holes, and can be regarded as a sort of hair, even if it makes a rather thin wig.

– 1 –
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A string can naturally couple to a two-form potential Bµν , and be an electric source

for it, a familiar example being the fundamental string. Alternatively, its electric-magnetic

dual in five dimensions would be a string magnetically charged under a one-form potential

Aµ. Take one such string and bend it into circular shape, balancing it again by appro-

priately spinning the ring. This configuration will have a non-trivial gauge field, but now

the net charge will be zero. Actually, as we shall ellaborate shortly, it is appropriate to

view it as a dipole, with zero net charge but with a non-vanishing local distribution of

charge. So we may refer to the rotating circular strings as rotating dipole rings. These

were conjectured to exist in ref. [3, 4, 5], and they are the subject of this paper.

The dipole field allows black rings to sport much thicker hair, and indeed it realizes

a more drastic infinite non-uniqueness: the only conserved asymptotic charges of these

rings are their mass and spin, but they support a gauge field labeled by parameters within

a continuous range of values. This possibility was first anticipated in [4], and it will be

realized below.

Since these solutions appear quite naturally in the supergravity description of string/

M-theory at low energies, they give us a new perspective on the role of black rings within

string theory, in a guise different from the one studied in [5]. We begin to explore it in this

paper, and in particular provide the first precise microscopic calculation of the entropy of

a black ring.

The structure of the paper is the following: Since the study of the solutions is somewhat

technical, before plunging into the details we introduce, in the next section, the basic

concepts and describe, in a graphical manner, the main features of dipole rings. In section 3,

after a short description of the neutral rotating ring, we give the explicit form of the dipole

solutions and compute their properties. In section 4 we address the issues raised by the

solution that describes a rotating loop of fundamental string, and discuss qualitatively

some features of dipole rings from a microscopic string viewpoint. In section 5 we explain

how black rings appear in triple intersections of branes, with the rotation arising from

momentum running along the intersection. We also reproduce the Bekenstein-Hawking

entropy of the extremal black ring, to next-to-leading order at large radius, via a statistical-

mechanical counting of string states. We conclude in section 6 with a discussion of the

results and some qualitative considerations towards a broader microscopic view of black

rings. The appendix shows how the Myers-Perry (MP) black hole [2] is recovered from the

solutions in section 3.

2. Setup and summary of properties

We construct dipole ring solutions for a number of theories, the simplest of which are the

five-dimensional Einstein-Maxwell-dilaton theories

I =
1

16πG

∫

d5x
√−g

(

R − 1

2
(∂φ)2 − 1

4
e−αφF 2

)

. (2.1)

The conventional Einstein-Maxwell theory is recovered when the dilaton decouples, i.e.,

α = 0. One often considers the addition of a Chern-Simons term to this theory, as required

by minimal supergravity in five dimensions. It turns out that the Chern-Simons term is of
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no consequence to the solutions in this paper, and therefore the dipole rings with α = 0 are

also solutions of minimal five-dimensional supergravity. Then the uniqueness theorem of

supersymmetric black holes in this theory [4] directly implies that none of the black rings

of the non-dilatonic theory can be a supersymmetric solution.

A ring is a circular string, and in the five-dimensional theories of (2.1), strings act as line

sources of a magnetic field, i.e., they can be thought of as linear distributions of magnetic

monopoles. So the field of a magnetic black ring, outside the horizon, can be described

as being produced by a circular configuration of magnetic monopoles. It is important to

realize that, even if there is a local distribution of charge, the total magnetic charge is

zero [7]. The reason is that, in order to compute the magnetic charge in five dimensions,

one has to specify a two-sphere that encloses a point of the string, and a vector tangent to

the string. Since this vector changes orientation halfway around the ring, the total charge

on the ring is zero. This can also be seen as the fact that on a 4D slice that cuts the

ring at diametrically opposite points, one finds opposite magnetic charges. So the ring is

analogous to a dipole.

We will also consider the electric dual of these solutions. The transformation

φ̃ = −φ , H = e−αφ ∗ F , (2.2)

where H = dB is a three-form field strength, maps the theory (2.1) to

I =
1

16πG

∫

d5x
√−g

(

R − 1

2
(∂φ̃)2 − 1

12
e−αφ̃H2

)

. (2.3)

It will be convenient to express the dilaton coupling as

α2 =
4

N
− 4

3
, 0 < N ≤ 3 , (2.4)

since the values N = 1, 2, 3 are of particular relevance to string and M-theory. In these

cases the solution can be regarded as an N -fold intersection of branes, which typically

wrap an internal space (see e.g., [6]). N = 3 yields the non-dilatonic theory, but another

case of particular interest is N = 1, since then the action (2.3) can be interpreted as the

NS sector of low energy string theory (in Einstein frame), and it contains the fundamental

string as a solution. The dilaton σ of string theory is in this case σ =
√

3
8 φ̃ and the string

metric g
(s)
µν = e

q

2

3
φ̃
gµν . Via dualities the solution is related as well to other single-brane

configurations.

One can define a “local charge” for the string solutions of (2.3) as1

Q =
1

4π

∫

S2

e−αφ̃ ∗ H , (2.5)

where the S2 encloses a point along the string, and give it a sign according to a choice

of orientation along the string. To see the meaning of this charge, consider first the

case of a straight fundamental string. This is infinitely long, but it can be made fi-

1Local, in the sense of corresponding to a localized source of the gauge field, which may not give rise to

a net charge, but not referring to the local (as opposed to global) character of the gauge symmetry.
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S2

Figure 1: The non-topological winding number n of the ring is proportional to the local charge

Q measured from the electric flux of H across an S2 that encloses a section of the string. An

azimuthal angle has been suppressed in the picture, so the S2 is represented as a circle.

nite by requiring the spatial direction parallel to the string to form a compact circle.

The string has a topological winding number that is proportional to the local charge

(2.5),

n =
πα′

2G
Q , (2.6)

and this is a conserved quantity2 that measures the number of times that the string goes

around the circle before closing in on itself, or alternatively the number of closed strings

singly-wound on the circle. In general, the winding n ∝ Q can also be defined, with a

different proportionality factor, for dual brane realizations of the N = 1 solution, while

for N = 2, 3 obtained from brane intersections, the winding of the “effective string” at the

intersection is proportional to QN . Consider now a circular string loop in asymptotically

flat spacetime (no compact circle). We can also regard it as a closed string, but now it

does not wrap any topologically non-trivial cycle. Instead, it winds around a contractible

circle, but we can still define the local charge Q (2.5) (see figure 1), and n as in (2.6).

Now n is not topological, but it still measures the number of windings of the string around

the circle. So even in the case where the charge is not a conserved quantity, it has a clear

physical meaning and it provides the most natural characterization of the source of the

dipole field.

Dipole rings are therefore specified by the three physical parameters (M,J,Q). The

third parameter, which is independent of the other two, is not a conserved charge, and

is classically a continuous parameter. So, as we will see in detail, it implies infinite non-

uniqueness in five dimensions. Upon quantization in string theory these parameters become

discrete, and there will be a finite but still very large number of states with the same mass

and spin.

We are now ready to summarize the features of the dipole rings that follow from the

detailed analysis of the next section. We can adequately fix the overall scale of the solutions

by fixing their mass M . Then the solutions are characterized by reduced dimensionless

2Upon Kaluza-Klein reduction along the compact circle, Q is a conserved charge under the gauge field

obtained from reduction of the two-form potential.
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black hole

large black ring

small black ring

j2

aH

0
27

32
1

2
√

2

1

Figure 2: Plot of horizon area vs. (spin)2, for given mass, for the neutral rotating black ring (solid)

and black hole (dotted). The reduced variables j2 and aH are defined in (2.7), (2.8). There are

two branches of black rings, which branch off from the cusp at (j2, aH) = (27/32, 1), and which

are dubbed “large” and “small” according to their area. For spins in the range 27/32 ≤ j2 < 1

the black rings in the two branches coexist with a black hole of the same mass and spin, implying

three-fold non-uniqueness. Other interesting features are: The black hole at j2 = 27/32, i.e., with

the same mass and spin as the minimally spinning ring, has aH =
√

5/2. At j2 = aH
2 = 8/9 the

curves intersect and we find a black hole and a (large) black ring both with the same mass, spin

and area. The limiting solution at (j2, aH) = (1, 0) is a naked singularity. Fastly spinning black

rings, j2 → ∞, become thinner and their area decreases as aH ∼ 1/(j
√

2).

magnitudes, obtained by dividing out an appropriate power of M , or of GM (which has

dimension (length)2), e.g., we define a dimensionless “reduced spin” variable j, conveniently

normalized as

j2 ≡ 27π

32G

J2

M3
, (2.7)

(j2 is often a more convenient variable than j), as well as a reduced area of the horizon,

aH ≡ 3

16

√

3

π

AH

(GM)3/2
, (2.8)

and a reduced local charge,

q ≡ Q√
GM

. (2.9)

The properties of the neutral solutions (q = 0) found in [1] are summarized in the

plot of aH vs. j2 in figure 2. The explicit analytical form of the curves is given below

in (3.8), (3.9). The non-uniqueness in 27/32 ≤ j2 < 1 is clear from the figure. Note we

have normalized aH so that its maximum value for a neutral ring is 1.

For the dipole-charged solutions we focus on the values of the dilaton coupling most

relevant to string theory, namely N = 1, 2, 3 in (2.4). The space of solutions is a two-

dimensional surface in the space (j, q, aH ). Rather than a 3D plot of this surface, a clearer

– 5 –
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N = 1 N = 2

N = 3

j2

aH

+́

q

1

0

27

32
127

32
.951

1

.37

0

27

32
.93 1

Figure 3: aH vs. j2, for different values of q, for dipole rings with dilaton coupling α =

2
√

2/3,
√

2/3, 0 (N = 1, 2, 3). q varies continuously, but we have plotted the curves for only a

few representative values, with q increasing in the direction of the arrow: shorter dashing corre-

sponds to larger q, and the solid curves correspond to the neutral ring (q = 0). For any fixed j, i.e.,

fixed mass and spin, such that j2 > 27/32, there are always rings with q in a continuous range of

values, implying continuous non-uniqueness. Observe also that for fixed q 6= 0, j is bounded above

and below so the range of allowed spins is finite, and becomes narrower as q grows. When q reaches

its maximum value the curves degenerate to a point, which is at (j2, aH) = (1, 0), (.95, 0), (.93, .37)

for N = 1, 2, 3 resp. (see figure 5 for the maximum values of q). For N = 3, the endpoints of the

curves lie on the thick grey line, which corresponds to extremal dipole rings of finite horizon area.

representation is obtained plotting several sections of it at constant q as curves in the plane

(j2, aH). These are depicted in figure 3. It becomes apparent that if we fix the mass and the

angular momentum, with j2 > 27/32, there exist black ring solutions with q taking values

over a continuous finite interval.3. Black hole uniqueness is then violated by a continuous

parameter, and therefore in an infinite manner.

There are other features common to all values of N . Like in the neutral case, for fixed

q there are two branches of black rings, one of them having larger area than the other,

and in the range where they coexist we find two black rings with the same mass, spin and

local charge. The two branches join at the slowest spinning ring with the given q, and this

ring always has larger spin and smaller area than the minimally spinning neutral ring. The

3For generic dilaton coupling, the range of q is finite for 1 ≤ N ≤ 3, and infinite for 0 < N < 1, although

these figures do not reflect it.
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smaller area is easy to understand if we recall that adding charge to a black hole while

keeping its mass fixed typically reduces its area. The larger spin is needed in order to

counterbalance the attraction between diametrically opposite sections of the ring, which

as we saw can be regarded as oppositely charged.

In contrast to the neutral case, where the spin of large rings is unbounded, the spin

of large dipole rings has an upper bound. The solutions which saturate the bound are

extremal (but non-supersymmetric) rings, meaning that the outer and inner horizons come

to coincide. A qualitative explanation for this upper bound will be provided in section 4.

Of these extremal solutions, the only ones that have non-zero area are the non-dilatonic

extremal rings, i.e., N = 3. This was expected, since the extremal limit of the straight

strings in five dimensions results in non-zero area only when N = 3. For N > 1 the small

ring branch also has an extremal limit, which corresponds to maximum j in that branch,

and which have non-zero area only if N = 3. In the N = 3 plot in figure 3 we draw the

area of the extremal solutions as a thick grey line, but one should bear in mind that q is

not constant along this curve, i.e., the relation between Q and M at extremality is not

fixed but changes with J . For N = 1 the branch of small rings terminates at a singular

solution before the extremal limit is reached.

In section 5 we exhibit rotating dipole ring solutions of string and M-theory at low

energies, that arise from the intersection of three kinds of branes with different dipole

charges, e.g., D2, D6 and NS5 brane charges, and which reduce to the cases N = 1, 2, 3

above by having equal numbers of one, two, or three of the component branes, and no branes

of the remaining components. Their features are qualitatively the same as described above,

according to the number of component branes that are present.

As we will see, many of the qualitative properties of large rings are similar to those

of their straight string limits. Since we often have a microscopic stringy picture of the

latter, this allows us to get at least a qualitative microscopic picture of large rings, and

understand some of the features described above, as we will explain in sections 4 and 5.

The small ring branch is more intriguing, but we will be able to make some reasonable

suggestions about its meaning in section 6.

We finish this section mentioning how earlier ring solutions are related to the ones in

this paper. The first example in this class that we are aware of is the construction of a

self-gravitating static loop of string described in [7]. This is a static, extremal dipole ring

with dilaton coupling N = 1. It does not have a regular horizon, and in the absence of

rotation or any external field, it contains a conical singularity disk. Ref. [3] generalized it to

static extremal dipole rings with arbitrary dilaton coupling α, and also to static extremal

rings from triple intersections of branes. All these solutions are recovered (in different

coordinates) from the solutions in this paper by setting the rotation to zero and taking the

extremal limit. When N = 3 they have a regular degenerate horizon, but they still contain

conical singularities (if no fluxbrane is added). Refs. [8, 5] constructed charged black rings,

but these have a net charge (besides dipole charges, not independent of the net charges),

and are therefore different from the ones in this paper.

We turn now to the explicit form of the solutions, and to explain how the features we

have described are obtained.

– 7 –
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3. Dipole black ring solutions

The neutral rotating black ring was obtained in [1] from the Kaluza-Klein C-metric so-

lutions in [9] via a double Wick rotation of coordinates and analytic continuation of pa-

rameters. All the new solutions in this paper are similarly obtained from the generalized

C-metrics found in [10]. It turns out that the coordinates and parameters in which these

new black rings are expressed more simply are slightly different from those previously used

for black rings in [1, 5], so we need to begin with a brief description of the neutral solu-

tion in these new coordinates. They share the feature with the coordinates in [11, 5] that

the cubic functions involved take a factorized form and allow for easier analytic evalua-

tion than in the original form in ref. [1]. This allows us to provide some new analytical

results.

3.1 Neutral ring

The metric is

ds2 = −F (y)

F (x)

(

dt + C(ν, λ) R
1 + y

F (y)
dψ

)2

+

+
R2

(x − y)2
F (x)

[

−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)
dϕ2

]

, (3.1)

where4

F (ξ) = 1 + λξ , G(ξ) = (1 − ξ2)(1 + νξ) , (3.2)

and

C(ν, λ) =

√

λ(λ − ν)
1 + λ

1 − λ
. (3.3)

The coordinates x and y vary within the ranges

− 1 ≤ x ≤ 1 , −∞ < y ≤ −1 , (3.4)

and the dimensionless parameters λ and ν within

0 < ν ≤ λ < 1 . (3.5)

R has dimensions of length, and for thin large rings it corresponds roughly to the radius of

the ring circle [5]. In order to avoid conical singularities at y = −1 and x = −1 the angular

variables must be identified with periodicity

∆ψ = ∆ϕ = 2π

√
1 − λ

1 − ν
. (3.6)

To avoid also a conical singularity at x = +1 we take the two parameters λ, ν, to be

related as

λ =
2ν

1 + ν2
. (3.7)

4We warn the reader that even if we use the same letters x, y, λ, ν, F, G as in [5], their meaning here is

slightly different.
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x = −1 x = +1

x

ψ y

y = −1/ν

y = −1

x = const

Figure 4: Coordinate system for black ring metrics (adapted from [12]). The diagram sketches a

section at constant t and ϕ. Surfaces of constant y are ring-shaped, while x is a polar coordinate

on the S2 (roughly x ∼ cos θ). x = ±1 and y = −1 are fixed-point sets (i.e., axes) of ∂ϕ and ∂ψ,

resp. Infinity lies at x = y = −1.

With these choices, the solution has a regular horizon of topology S1 × S2 at y = −1/ν,

an ergosurface of the same topology at y = −1/λ, and an inner spacelike singularity at

y = −∞. Asymptotic spatial infinity is reached as x → y → −1. The coordinate system is

illustrated in figure 4.

A static ring solution, which necessarily contains a conical singularity, is obtained

when instead of (3.7) we set λ = ν [12]. The spherical black hole of Myers and Perry with

rotation in a single plane can also be obtained from (3.1), but in the coordinates in (3.1)

this case is much subtler than when using the forms of the metric employed in [1, 5]. The

appropriate limiting procedure is described in the appendix. When ν → 1 the solution

becomes singular and the horizon is replaced by a naked singularity.

The mass, spin, and other physical parameters of the neutral black ring can be readily

recovered as the neutral limit µ → 0 of the expressions for the dipole ring, eqs. (3.23)–(3.27)

below, so we will not present them here. Note that for a black ring at equilibrium, i.e.,

satisfying (3.6) and (3.7), there is only one independent dimensionless parameter, so the

reduced area and spin, (2.7), (2.8), must be related. aH and j can be computed from the

expressions for M , J and AH , and the analytic relation between them is, in parametric

form,

aH = 2
√

ν(1 − ν) , j2 =
(1 + ν)3

8ν
(black ring) , (3.8)

with 0 < ν ≤ 1. On the other hand, for the spherical black hole,

aH = 2
√

2(1 − j2) (black hole) . (3.9)

These curves were plotted and discussed in figure 2.

– 9 –
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Finally, in order to see how we recover a boosted straight black string in the limit

where the radius of the ring circle grows very large, define

r0 = νR , cosh2 σ =
λ

ν
, (3.10)

and

r = −R

y
, cos θ = x , w = Rψ (3.11)

and take the limit R → ∞, λ, ν → 0, keeping r0, σ and r, θ, w finite. Then we obtain the

metric for a boosted black string

ds2 = −f̂

(

dt − r0 sinh σ cosh σ

rf̂
dw

)2

+
f

f̂
dw2 +

dr2

f
+ r2dΩ2

(2) , (3.12)

where

f = 1 − r0

r
, f̂ = 1 − r0 cosh2 σ

r
. (3.13)

The value of the boost obtained from the limit of rings at equilibrium is, from (3.7)

and (3.10), | sinhσ| = 1, and this was shown in [5] to make the ADM pressure Tww = 0

(see eq. (3.40) below, with γ = 0) .

Even if λ and ν do not directly correspond to physical quantities (whereas j2 and

aH do), eq. (3.10) allows to find an approximate meaning for them, which becomes more

accurate for thin rings. For large but finite R, the parameter ν ' r0/R measures the ratio

between the radius of the S2 at the horizon and the radius of the ring. So smaller values of

ν correspond to thinner rings. Also, λ/ν is a measure of the speed of rotation of the ring.

More precisely,
√

1 − (ν/λ) can be approximately identified with the local boost velocity

tanh σ, which for rings in equilibrium, (3.7), is
√

(1 − ν2)/2.

3.2 Dipole rings

The dipole black ring solutions contain a new parameter µ, related to the local charge Q
of the ring. For arbitrary dilaton coupling α, expressed in terms of N as in (2.4), the

geometry of the solutions is

ds2 = −F (y)

F (x)

(

H(x)

H(y)

)N/3 (

dt+C(ν, λ) R
1+y

F (y)
dψ

)2

+
R2

(x−y)2
F (x)

(

H(x)H(y)2
)N/3 ×

×
[

− G(y)

F (y)H(y)N
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)

F (x)H(x)N
dϕ2

]

. (3.14)

The functions F and G are like in (3.2), and

H(ξ) = 1 − µξ . (3.15)

If we consider the magnetic solutions of the Einstein-Maxwell-dilaton theory (2.3) then the

gauge potential is

Aϕ = C(ν,−µ)
√

N R
1 + x

H(x)
+ k1 , (3.16)
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(the constant k1 moves Dirac strings around) and the dilaton

e−φ =

(

H(x)

H(y)

)Nα/2

. (3.17)

C(ν,−µ) is like in (3.3) but with λ → −µ. Since this field is purely magnetic, it makes no

contribution to the Chern-Simons term required by five-dimensional supergravity, and so

the solution belongs in this theory as well.

For the electric solutions of (2.3), the metric is the same as above, the dilaton φ̃ = −φ,

and the two-form potential

Btψ = C(ν,−µ)
√

N R
1 + y

H(y)
+ k2 . (3.18)

The constant k2 may be chosen at convenience, e.g., to make Btψ vanish at y = −1/ν.

The parameters λ and ν vary in the same ranges as in the neutral case (3.5), while

0 ≤ µ < 1 . (3.19)

When µ = 0 we recover the neutral solution (3.1).

Most of the features of the solutions are analyzed in the same manner as for the neutral

black ring, so we refer to the previous section and earlier papers [1], [5] for more details.

The coordinate x varies in [−1, 1]. Initially we take y ∈ (−∞,−1], but we will shortly see

that this can be extended across |y| = ∞ to the range (1/µ,+∞). The possible conical

singularities at the axes extending to infinity, x = −1 and y = −1, are avoided by setting

∆ψ = ∆ϕ = 4π
H(−1)N/2

√

F (−1)

|G′(−1)| = 2π
(1 + µ)N/2

√
1 − λ

1 − ν
. (3.20)

The balance between forces in the ring will be achieved when, in addition, there are no

conical singularities at x = +1. This requires that

∆ϕ = 4π
H(+1)N/2

√

F (+1)

|G′(+1)| , (3.21)

which can be satisfied simultaneously with (3.20) only if

1 − λ

1 + λ

(

1 + µ

1 − µ

)N

=

(

1 − ν

1 + ν

)2

. (3.22)

In the neutral case µ = 0 this equation is solved by (3.7).

Under these conditions, it is easy to see that the solution has a regular outer horizon

of topology S1 × S2 at y = −1/ν. In addition, there is an inner horizon at y = −∞. The

metric can be continued beyond this horizon (as in e.g., [1]) to positive values 1/µ < y < ∞,

until y = 1/µ is hit from above, which is a curvature singularity. The two horizons coincide

when ν = 0, which defines the extremal limit, and ν can be regarded as a non-extremality

parameter. In general, a ring-shaped ergosurface is present at y = −1/λ.
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The calculation of the mass, angular momentum, horizon area, temperature (from

surface gravity) and angular velocity at the (outer) horizon is straightforward, and one

finds

M =
3πR2

4G

(1 + µ)N

1 − ν

(

λ +
N

3

µ(1 − λ)

1 + µ

)

, (3.23)

J =
πR3

2G

(1 + µ)3N/2
√

λ(λ − ν)(1 + λ)

(1 − ν)2
, (3.24)

AH = 8π2R3 (1 + µ)Nν(3−N)/2(µ + ν)N/2
√

λ(1 − λ2)

(1 − ν)2(1 + ν)
, (3.25)

T =
1

4πR

ν(N−1)/2(1 + ν)

(µ + ν)N/2

√

1 − λ

λ(1 + λ)
, (3.26)

Ω =
1

R

1

(1 + µ)N/2

√

λ − ν

λ(1 + λ)
. (3.27)

We can also compute the local charge Q defined in (2.5). The integral is taken over an S2

parametrized by (x, ϕ), at constant t, ψ and y ∈ (−1/ν,−1), see figure 4. Then

Q = R
√

N
(1 + µ)(N−1)/2

√

µ(µ + ν)(1 − λ)

(1 − ν)
√

1 − µ
. (3.28)

In addition, we define the potential Φ from the difference between the values of B at infinity

and at the horizon,

Φ =
π

2G

[

Btψ̃(x = y = −1) − Btψ̃

(

y = −1

ν

)]

, (3.29)

where ψ̃ = (2π/∆ψ)ψ is the canonically normalized angular variable, and the factor π/2G

is introduced simply for convenience. Then

Φ =
πR

2G

√
N

(1 + µ)(N−1)/2
√

µ(1 − µ)(1 − λ)√
µ + ν

. (3.30)

A straightforward calculation using these results shows that the black ring satisfies a

Smarr relation5

M =
3

2

(

1

4G
AHT + ΩJ

)

+
1

2
QΦ . (3.31)

The first law

dM =
1

4G
TdAH + ΩdJ + ΦdQ , (3.32)

can also be, somewhat laboriously, verified explicitly. The numerical coefficients in (3.31)

and (3.32) are consistent with the homogeneity properties of M as a function of scaling

dimension 2, of the variables AH , J , Q with scaling dimensions 3, 3, 1, resp.

5The equilibrium condition (3.22) has not been enforced in any of the expressions (3.23)–(3.31), so in

principle they are valid as well for unbalanced black rings, although we will not be considering these in any

detail in this paper.
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The horizon area of dilatonic rings vanishes in the extremal limit ν → 0. These are

nakedly singular solutions. Only in the non-dilatonic case N = 3 does the area remain

finite as ν → 0, and the solution has a regular degenerate horizon. The mass M and local

charge Q are not any simply related in the extremal limit, and for finite values of R, the

extremal solutions are not supersymmetric.

The main properties of dipole rings are summarized in figure 3. In order to produce

these plots, we first solve eq. (3.22) for λ as a function of ν and µ. Using (3.23)–(3.28), we

compute the reduced local charge q, spin j, and area aH , as functions of µ and ν, and then

we invert to find µ as a function of q and ν. The inverted function can be seen to involve

more than one branch for N > 1. All of this can be done fully analitically for N = 1, 2, 3,

but the expressions are exceedingly long and only simplify in the extremal limit. So we

proceed using a symbolic manipulation computer program. Eventually we obtain aH and

j2 as functions of ν and q, which allows us to plot the curves for fixed q, varying 0 ≤ ν ≤ 1.

We refer to section 2 for a discussion.

The limit where the ring becomes a straight string allows us again to get a feeling

for other properties of the solutions. In addition to taking λ, ν → 0, R → ∞ with (3.10)

and (3.11) finite, we also take µ → 0 and keep finite

µR = r0 sinh2 γ , (3.33)

where γ gives a convenient parametrization of the charge in this limit. Then the limiting

solution is

ds2 = − f̂

hN/3

(

dt− r0 sinh σ cosh σ

rf̂
dw

)2

+
f

hN/3f̂
dw2+h2N/3

(

dr2

f
+ r2dΩ2

(2)

)

, (3.34)

Aϕ =
√

Nr0 sinh γ cosh γ(cos θ + 1) , eφ = hNα/2 , (3.35)

for the magnetic solution, and

Btw =
√

Nr0 sinh γ cosh γ(h−1 − 1) , eφ̃ = h−Nα/2 , (3.36)

for the electric one, where f and f̂ were defined in (3.13), and

h = 1 +
r0 sinh2 γ

r
. (3.37)

These are five-dimensional charged strings with a momentum wave. When N = 3 and

γ = σ, the reduction along w to four dimensions yields the Reissner-Nordstrom black hole.

While the straight string (3.34) solves the field equations for arbitrary values of σ and γ,

the strings that are obtained as a limit of rings that satisfy the equilibrium condition (3.22)

must, from this condition, be such that

sinh2 σ = 1 + N sinh2 γ . (3.38)

Note that when γ 6= 0 the boost has to be larger than in the neutral case γ = 0. This is

easily interpreted: sections of the ring at diametrically opposite ends, ψ and ψ + π, have

opposite orientation and therefore they attract each other via the Hµνρ field. Then a larger

centrifugal repulsion is needed in order to achieve equilibrium, and the effect persists even

at very large ring radii.
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The ADM stress-energy tensor of the string (3.34) is

Ttt =
r0

4G
(1 + cosh2 σ + N sinh2 γ) ,

Tww =
r0

4G

(

sinh2 σ − 1 − 5N

3
sinh2 γ

)

, (3.39)

Ttw =
r0

4G
sinhσ cosh σ . (3.40)

We observe that, in contrast to the neutral ring and the charged rings of [5], the pressure

Tww of the limiting string does not vanish when the equilibrium condition (3.38) is enforced.

The restrictions on the parameters of the strings that result as a limit of balanced rings,

such as eq. (3.38), are in general poorly understood (see also [5]), and although it is clear

that they are the result of an equilibrium of forces, it would be interesting to understand

them in more detail. At any rate, in the limit we still recover the identification

M

2πR
→ Ttt ,

J

2πR2
→ Ttw , (3.41)

while Q →
√

Nr0 sinh γ cosh γ is identified as the black string charge under the H field.

3.3 Extremal rings

The extremal solutions are defined as the limiting case where the outer and inner horizons

coincide. For the dilatonic solutions the horizon turns into a null singularity, whereas the

non-dilatonic extremal ring has a regular degenerate horizon. Typically, the extremal limit

yields solutions where the spin and/or the charge reach a maximum value. In the present

case, if we fix the mass and the spin, with j2 > 1, then there is always a maximum value of Q
which is saturated precisely in the extremal limit ν → 0. For 27/32 < j2 < 1 the situation

is more complicated and depends on the dilaton coupling, as can be seen in figure 3. On

the other hand, if we fix the local charge and the mass, i.e., fix q, the spin reaches an

absolute maximum at an extremal solution along the large ring branch. There is also a

local maximum along the small ring branch, but this solution is extremal only for N > 1.

For N = 1 this local maximum is not an extremal solution. In this case the branch of small

black rings with q < qmax =
√

2/3π terminates at ν = [1 − (q/qmax)
2]/[1 + (q/qmax)

2],

i.e., before ν = 0, so these should not be interpreted as extremal solutions, except when

q → qmax.

In the extremal limit the physical variables admit simple enough expressions in terms

of the only dimensionless parameter that remains after imposing the equilibrium condition

(3.22), and which we take to be µ. Namely, for the extremal N = 1 solution (for which the

equilibrium condition becomes simply λ = µ) we find6

j2 =
27(1 + µ)4

16µ(2 + µ)3
, q =

√

2µ

π(2 + µ)
, aH = 0 . (3.42)

6Exact expressions for general N can be found, but they are fairly long.
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N = 2 N = 1N = 3

q

j2

0 .21 .26
√

2

3π

1
.95
.93

Figure 5: (Spin)2 vs. local charge, for extremal rings of fixed mass. Although we only plot the

cases of integer N , the curves for all 1 < N ≤ 3 are qualitatively similar to N = 2, 3, while for

0 < N < 1 there is no upper bound for q, and the curve asymptotes to j2 = 1 as q → ∞.

For N = 2:

j2 =
27(1 + µ)5

4µ(4 + µ + µ2)3
, q =

√

4µ(1 − µ)

π(4 + µ + µ2)
, aH = 0 . (3.43)

For N = 3:

j2 =
(1 + µ)6(3 + µ2)2

128µ(1 + µ2)3
, q =

√

µ(1 − µ)2

π(1 + µ2)
, aH =

√

µ(1 − µ2)3(3 + µ2)

4(1 + µ2)3
. (3.44)

We plot j2 vs. q in figure 5. Observe the existence of a maximum value of q in all

three cases (it is also possible to see that if N < 1 there is no such upper bound). We will

interpret this feature from a microscopic viewpoint in the next section. For N = 2, 3, when

q is below this maximum value there exist two extremal ring solutions with the same mass

and dipole charge, but different spin. These two rings are the extremal limits of solutions in

the large and small ring branches that we mentioned above. Note the absence of a second

N = 1 extremal solution, for fixed q, in figure 5.

In [3] it was observed that when the N = 3 extremal static ring is balanced by a

fluxbrane of appropriate strength, then the geometry near the horizon of the ring becomes

exactly AdS3 × S2. Ref. [5] conjectured that this might be the case as well when the ring

is balanced not by a fluxbrane but by rotation, as in the present paper. However, closer

examination reveals that this is not the case: for any finite value of R the near-horizon

extremal geometry is distorted away from AdS3 × S2 by factors of the polar angle of the

S2.

4. Loop of fundamental string, and qualitative microscopics

The extremal ring solution is particularly simple when N = 1. Since the local charge in

this case can be regarded as fundamental string charge, it is expected to describe a rotating

loop of fundamental string. However, this appears to raise a puzzle, since it is well known
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that in perturbative string theory it is impossible to have a closed string loop that rotates

like a rigid wheel. The resolution is fairly simple, and can be understood more simply if we

focus first on the similar situation posed by a straight string that carries linear momentum.

Refs. [13, 14] constructed solutions of low energy string theory with non-zero winding

and momentum of the form

ds2 = −1

h
du dv − (h−1 − 1)|Ḟ|2dv2 + 2(h−1 − 1)Ḟ · dx dv + dx · dx , (4.1)

where u, v are light-cone coordinates, F(v) parametrizes a curve in the d − 2 transverse

directions x, and h is a harmonic function

h = 1 +
Q

|x− F|d−4
(4.2)

(we will not need the dilaton and H field for our argument) so the solution is singular at

x = F(v). Q is proportional to the winding number of the string. It was shown in [14] that

one can match these solutions to a fundamental string source, with a profile of momentum-

carrying transverse oscillations given by F(v).

Now consider fundamental strings with small oscillation amplitudes, such that when we

perform a coarse-grain average over their oscillation profiles we get 〈F〉 ' 0 and 〈Ḟ ·x〉 ' 0,

but 〈|Ḟ|2〉 6= 0. We shall not be too precise about how this averaging is performed, but

one can suppose, along the lines of [15], that we choose not to resolve distances smaller

than a typical amplitude, so we remain at |x| À |F|. The coarse-grained metric is then

approximated by

ds2 = −1

h
du dv +

p

|x|d−4h
dv2 + dx · dx (4.3)

with h = 1 + Q/|x|d−4 and p = Q〈|Ḟ|2〉, i.e., we can regard the strings as oscillating about

a center-of-mass line at x = 0, and carrying a large, macroscopic total momentum density

Q〈|Ḟ|2〉.
So, after averaging over strings with small oscillations, the effective solution (4.3) looks

like a string with a longitudinal momentum wave. Since it is well known that relativis-

tic fundamental strings cannot support longitudinal oscillations, the proper interpretation

of (4.3) must be in terms of this averaging procedure. This interpretation is, for the

purposes of this paper, basically the same as the microscopic proposal for the two- and

three-charge black hole solutions in [15]–[17]. Following [16, 17], we may refer to (4.3) as

the “naive” solution for a string carrying momentum, which is a coarse-grained average

over the structure near the core of the “correct” metrics (4.1).

The extremal rings of this paper are now seen to be “naive” metrics, as (4.3). Indeed,

the limit of infinite radius (3.34) for the N = 1 extremal solutions is precisely the met-

ric (4.3) in d = 5 with Q = Q. So the rotating loop of string is an effective coarse-grained

description of strings which oscillate about the ring, with amplitude much smaller than the

ring radius, and the rotation is provided by the momentum circulating along the ring car-

ried by these oscillations. One would also expect the existence of “correct” ring solutions,

analogous to (4.1), where the momentum wave is resolved into transverse oscillations of the
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string, but due to the absence of supersymmetry it appears difficult to find these solutions

analytically.7 It would also be interesting to construct the rotating loops of string, with

oscillations, as classical solutions of perturbative string theory.

This picture allows us to get a qualitative microscopic understanding of some features

of extremal dipole rings. Our main assumptions are that (a) extremal solutions correspond

to strings with chiral oscillations, i.e., only left-movers (or only right-movers), and (b) that

Q gives, through eq. (2.6), the number n of strings wound in the loop (or alternatively, the

number of windings of a single string n times longer). Then we can see that there must be

an upper bound on the spin for fixed Q and M , which is saturated in the extremal limit.

For, if we fix n and the total energy M , then we are restricting the total energy that can

be carried by the oscillations. If this energy is distributed among only left-movers, i.e., an

extremal state, then the angular momentum will be maximized. Solutions with both left

and right movers will be non-extremal, and have lower angular momentum. This is indeed

the behavior that we observe in the ring solutions.

We can also understand qualitatively why q must be bounded above, i.e., why there

is a maximum Q for fixed M .8 The total energy of the configuration, M , must be dis-

tributed among the tension of wound strings, and among the momentum carried by os-

cillations. So there will be a maximum number of strings that can make a ring (and a

similar story goes for a single long string that winds n times around the loop). The en-

ergy that goes into each string in the loop is roughly the product of the string tension

times the length of the loop, so we would expect to maximize the number of strings by

decreasing the radius. But a ring rotating at a smaller radius must be rotating faster in

order to be balanced, and therefore more energy has to be spent into momentum carri-

ers. So a compromise must be reached between momentum and winding, i.e., between

j and q. It is then fairly clear that, among extremal rings, the solution with maxi-

mum q will also be the one with minimum j, and again this is observed in figure 5. It

is less clear, and this requires a better understanding of the balance of forces in rings,

why the equilibrium condition (3.22) for the fundamental string loop, λ = µ, corre-

sponds, at large radii, to having equal winding and momentum numbers, i.e., self-T-dual

strings.

In section 6 we will take these arguments further to try to understand the qualitative

properties of black rings far from extremality, even neutral rings.

The degeneracy of states of a string with chiral momentum can be reproduced in

the supergravity context by assigning a stretched horizon to (4.3) with entropy propor-

tional to its area [18] (see also [15]). One may try to extend this picture to the ex-

tremal N = 1 ring, including the corrections for large but finite radius. However, a

more stringent test of the correspondence between area and entropy of string states is

provided by extremal rings with non-zero area, and these will be analyzed in the next

section.

7The resolution of donut-shaped configurations in [15] is different, since those carry a net charge, like

supertubes.
8This is non-trivial: for dilaton coupling N < 1 there is no such a maximum, suggesting that these cases

may not have a microscopic stringy interpretation.
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5. Rings from brane intersections, and quantitative microscopics

The C-metric solutions of ref. [10] can also be used to obtain, via appropriate analytic

continuations, black rings with dipoles under several gauge fields. These are naturally

interpreted in string theory as arising from intersections of branes. The rotating ring

solution with three local charges is particularly interesting. It can be regarded as the result

of bending into a circular ring-shape a three-charge five-dimensional black string with a

momentum wave. The three charges can be interpreted as e.g., charges of D6, D2 and NS5

branes intersecting along the string, and the momentum runs along the intersection. In

another realization the ring results from the intersection of three M5 branes [19]. Since

they are in any case related by dualities, we will provide explicit results only for the more

symmetric M5⊥M5⊥M5 configuration.

5.1 Supergravity solution

The solution contains three new parameters µi, i = 1, 2, 3, in addition to λ and ν, and

which are associated with each of the three M5 branes. Accordingly, we introduce

Hi(ξ) = 1 − µiξ . (5.1)

The full eleven-dimensional metric is

ds2 = ds2
(5) +

[

H2(x)H3(x)

H2(y)H3(y)

]1/3 (

H1(y)

H1(x)

)2/3

(dy2
1 + dy2

2) +

+

[

H1(x)H3(x)

H1(y)H3(y)

]1/3 (

H2(y)

H2(x)

)2/3

(dy2
3 + dy2

4) +

+

[

H1(x)H2(x)

H1(y)H2(y)

]1/3 (

H3(y)

H3(x)

)2/3

(dy2
5 + dy2

6) . (5.2)

Here ds2
(5) is the five-dimensional metric obtained from (3.14) after setting N = 3, and

replacing

H(ξ) → [H1(ξ)H2(ξ)H3(ξ)]
1/3 . (5.3)

The four-form field strength is

F[4] = 3
(

dA(1) ∧ dy1 ∧ dy2 + dA(2) ∧ dy3 ∧ dy4 + dA(3) ∧ dy5 ∧ dy6

)

(5.4)

with

A(i) = C(ν,−µi) R
1 + x

Hi(x)
dϕ . (5.5)

Each M5 brane spans the ψ direction of the ring and four of the yn directions.

Given that the triple intersection results in a factorized structure in the metric coeffi-

cients, (5.3) (in spite of the absence of any preserved supersymmetries), most results follow

from simple substitutions in the expressions in section 3.2. For instance, equilibrium now

requires

∆ϕ = ∆ψ = 2π

√
1 − λ

1 − ν

3
∏

i=1

√

1 + µi , (5.6)
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and

1 − λ

1 + λ

3
∏

i=1

1 + µi

1 − µi
=

(

1 − ν

1 + ν

)2

, (5.7)

and the physical parameters are

M =
3πR2

4G

1

1 − ν

(

λ +
3

∑

i=1

µi(1 − λ)

3(1 + µi)

)

3
∏

i=1

(1 + µi) , (5.8)

J =
πR3

2G

√

λ(λ − ν)(1 + λ)

(1 − ν)2

3
∏

i=1

(1 + µi)
3/2 , (5.9)

AH = 8π2R3

√

λ(1 − λ2)

(1 − ν)2(1 + ν)

3
∏

i=1

(1 + µi)(µi + ν)1/2 , (5.10)

T =
1

4πR

ν(1 + ν)
∏3

i=1(µi + ν)1/2

√

1 − λ

λ(1 + λ)
, (5.11)

Ω =
1

R

1
∏3

i=1(1 + µi)1/2

√

λ − ν

λ(1 + λ)
, (5.12)

Qi = R

√

µi(µi + ν)(1 − λ)

(1 − ν)
√

1 − µ2
i

3
∏

j=1

√

1 + µj , (5.13)

Φi =
πR

2G

√

µi(1 − µi)(1 − λ)

(1 + µi)(µi + ν)

3
∏

j=1

√

1 + µj . (5.14)

These magnitudes correspond to the five-dimensional interpretation of the solution, hence

the presence of the five-dimensional Newton’s constant G. If we assume that the compact

yn directions have all equal length L, then G is related to the eleven-dimensional coupling

constant κ as

G =
κ2

8πL6
, (5.15)

and the number of M5 branes of each type forming the ring is [19]

ni = 2πL2

(

2

πκ2

)1/3

Qi =

(

2π

G

)1/3

Qi . (5.16)

Note that, in the extremal limit ν = 0, the mass is not the sum of component masses

(plus momentum), so the extremal ring is not a threshold bound state. The latter only

occurs in the straight string limit, which can be obtained in a manner analogous to the

previous sections.

5.2 Microscopic counting of the entropy

The straight string limit of the black ring we have just described is, modulo dualities,

the same string with three charges plus momentum used in stringy microscopic models of

four-dimensional black holes [20]. The intersection of the branes can be regarded as an
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“effective string”, capable of supporting left and right moving excitations, analogously to a

fundamental string, but with an effective length n1n2n3 times longer than the circle length,

so the excitation gap is correspondingly smaller. The qualitative microscopic arguments

described at the end of section 4 therefore apply here as well, but we can also perform

a more quantitative analysis and count the string states using statistical mechanics. We

will reproduce in this way the Bekenstein-Hawking entropy of the black ring including

the leading corrections that come from considering rings at large but finite radius. The

calculation shares many features with the study of the extremal string-antistring system

in [21].

We do the analysis only for the extremal ring, and leave the discussion of non-extremal

rings for future work. We shall work at large radius, expanding in the small parameters

λ, µi, and keeping the first order corrections in λ ∼ µi ∼ 1/R. The equilibrium condi-

tion (3.22) is

λ =
∑

i

µi + O(λ3) , (5.17)

and will be imposed in the following.

The extremal system is regarded as the ground state of the ring with finite radius,

with chiral momentum excitations at level np on a CFT with central charge c = 6n1n2n3,

or, in the long string picture, a c = 6 CFT but now at level n1n2n3np. Either way the

degeneracy of the microscopic state is

Smicro = 2π
√

npn1n2n3 . (5.18)

This must be compared to the Bekenstein-Hawking entropy of the ring. To this effect,

we have already identified the number of branes forming the ring, ni, in eq. (5.16). To

obtain np we need to characterize as well the momentum that runs along the ring. For this

purpose, none of the quantities M,J etc. computed above is satisfactory, since they are

defined asymptotically away from the ring. Observe that the brane numbers ni are instead

defined through an integral over a surface that encloses a section of the ring, and the result

is independent of the specific geometry or location of the surface as long as it encloses

the ring as in figure 1. A similarly covariant definition can be given for the momentum

number np in terms of a Komar integral, analogous to those studied in [22]. Namely, if η is

the one-form dual to the Killing vector ∂ψ that generates translations along the ring, i.e.,

η = gψµdxµ, then we identify

np =
1

16πG

∫

S1×S2

∗dη , (5.19)

where the surface S1 × S2 encloses the entire ring and can be taken to lie at constant

y ∈ (−1/ν,−1) and constant t. Doing the calculation for the general non-extremal ring,

we obtain

np =
πR3

2G

√

λ(λ − ν)
1 + λ

1 − λ

∏

i

(1 + µi) , (5.20)

and if we take the extremal limit ν = 0 and expand for large radius,

np =
πR3

2G
λ

(

1 + 2λ + O(λ2)
)

. (5.21)
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In this same limit the brane numbers (5.16) are

ni =

(

2π

G

)1/3

Rµi

(

1 + O(λ2)
)

. (5.22)

We have used (5.17) to simplify the terms in brackets in these expressions. The Bekenstein-

Hawking entropy of the extremal ring is, from (5.10),

SBH =
AH

4G
=

2π2R3

G

√

λµ1µ2µ3

(

1 + λ + O(λ2)
)

, (5.23)

and comparing to the microscopic entropy (5.18), using (5.21) and (5.22), we find

SBH = Smicro

(

1 + O(λ2)
)

. (5.24)

The agreement between the leading terms is of course nothing but the result of [20] for

a straight string, but the corrections at first order in λ, which are also reproduced cor-

rectly, are a genuine feature of the black ring. Like in the string-antistring system in [21],

obtaining agreement beyond the leading correction appears to require further refinements,

presumably because the departure from the supersymmetric state becomes too large.

The fact that we have reproduced the entropy using the same formula (5.18) as in the

case of a straight string does not mean that the bending of the string has no effect on the

microscopic states. The forces that are present (centrifugal and self-attraction of the ring)

produce a shift in the excitation levels, which is crucial in analyzing the excitations above

extremality. However, the degeneracy of the ground state is not affected by these shifts.

6. Discussion

We have supplied the first example, to our knowledge, of black hole solutions that are

asymptotically flat, with regular horizons, and which are the source of a dipolar gauge

field. They also imply the violation of uniqueness by a continuous parameter, for solutions

of (2.1) and (2.3) with

πJ2 > GM3 . (6.1)

This is black hole hair of the most basic type — no “secondary hair”, nor exotic fields

— in the familiar Einstein-Maxwell theory. It is then clear that any notion of black hole

uniqueness in the most basic theories in higher dimensions can not be too simple. Fol-

lowing the discovery of the neutral black ring, several steps have been taken towards this

goal.9 Ref. [4] proved that the only supersymmetric black hole of minimal five-dimensional

supergravity is the BMPV solution [24]. This makes it very unlikely that supersymmetric

black rings with a regular horizon exist at all in any five-dimensional supergravity theory.

Refs. [25] have proven the uniqueness of static black holes. The stationary case is typically

much more complicated, but recently it has been established that the MP solution is the

unique black hole in five dimensions among the class of neutral solutions with spherical

9Ref. [23] makes some speculations in this direction.
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topology and with three commuting Killing vectors [26]. Since we have not found any

spherical black holes with a gauge dipole field (see the appendix), it seems likely that this

result should extend as well to the theories (2.1), (2.3) studied in this paper. It is still

unknown whether the solutions with only two commuting Killing symmetries conjectured

in [4] actually exist, and if they do, whether they can be dipole sources as well. Ref. [27]

began a systematic study of stationary solutions of the Einstein-Maxwell theory in higher

dimensions. Other interesting solutions in this class have been found in [28], and a study

of the electromagnetic properties of five-dimensional rotating black holes has been carried

out in [29].

The existence of dipole black rings in five dimensions contrasts with the absence in

four dimensions of asymptotically flat black holes, regular on and outside the horizon,

with a gauge dipole and no monopole charge.10 To be sure, there do exist solutions that

describe two static black holes, with charges equal in magnitude but with opposite sign,

and which therefore form a dipole [30, 21]. But the two black holes attract each other,

and if we tried to balance the attraction by spinning the configuration, radiation would

be generated, losing stationarity. Alternatively, the dipole can be balanced, both in four

and five dimensions, by immersing it in a Melvin-like field, i.e., a fluxbrane, or with cosmic

strings, but then asymptotic flatness is lost [30, 3].

It is interesting to compare the different string theory realizations of black rings, in

this paper and in [5]. In ref. [5] the black ring results from a tubular intersection of D1-

branes and D5-branes, properly viewed as a six-dimensional configuration. Reduction along

the direction of the tube z results into a five-dimensional black ring with net D1 and D5

charges. The effective string extends along z, i.e., transversely to the ring, and the angular

momentum is provided by the intrinsic spin of the ground state, i.e., it is unrelated to the

presence of any momentum along the string. In the rings in this paper, the effective string

lies instead along the direction of the ring, and the angular momentum is actually the

result of momentum carried by excitations moving along the circle. The extremal ground

states, and the excitations above them, are therefore quite different in each case. Also,

the rings in [5] have supersymmetric limits with finite radius (supertubes), whereas in the

present paper supersymmetry can only be preserved in the straight string limit. So black

rings can appear in string theory from rather different perspectives.

Nevertheless, the microscopic picture for the neutral black ring suggested by the anal-

ysis in [5] nicely dovetails with the idea in this paper that a black ring can be viewed as

a loop of string with excitations running along the loop. In keeping with the string/black

hole correspondence principle [32, 33], ref. [5] proposed that neutral black rings go over, as

the string coupling is decreased, into highly-excited fundamental strings in a fuzzy donut-

shaped configuration. Now, if we start from a dipole ring with small winding n, and we

add left and right moving excitations to the string loop, we will be moving further away

from extremality (effectively decreasing q) and approaching a configuration more and more

similar to the fuzzy string-donut proposed for the neutral black ring. The latter would

simply correspond to the case where there is no net winding around the loop.

10The solutions with an electric dipole in [31] have singular horizons.
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Pushing this picture further, we find an appealing explanation of the differences be-

tween the large and small neutral ring branches (figure 2). They would differ in the way

the winding totals to zero: rings in the small branch would contain some strings wound

with opposite orientation, whereas large rings would correspond to configurations where

no string makes a full wind. Amusingly, this simple idea can easily explain several pecu-

liarities of these branches of solutions. The existence of a limit in the small ring branch,

with maximum j and zero area, follows if this limiting configuration consists of oppositely

oriented pairs of extremal strings, with only, say, left-movers. The argument is similar to

those given in section 4. In this configuration the total energy M has to be distributed

among the tension of wound strings and the momentum of oscillators. The presence of

wound strings limits the radius of the ring, since the winding energy grows with this ra-

dius. Then the angular momentum, which for given amount of momentum along the ring

also grows with the radius, will also be bounded above, and the bound saturated when the

oscillators all move in the same sense — i.e., we have pairs of oppositely wound extremal

strings. The degeneracy of extremal fundamental strings is not large enough to register

in the gravitating solution, and so this configuration appears as a zero-area singularity.

If we then add some right-movers the temperature raises, we enhance the entropy, and a

finite horizon area appears, much like when a gravitating fundamental string becomes non-

extremal. This increase in aH should come with a decrease in j, due to the right-movers,

and this is precisely what we observe in figure 2 as we move along the small ring curve

starting from (j2, aH) = (1, 0).

We can also see the reason for the smaller area of small rings: a significant fraction

of their energy has to go into the (non-entropic) tension of wound strings, whereas for

large rings the energy is mostly spent into oscillations that contribute to the entropy. Two

oppositely wound closed strings in a small ring can intercommute and then unwind (or

annihilate). More energy is then available for oscillations, which increase the entropy (area),

and so this provides a mechanism by which small rings decay into thermodynamically

favoured large rings. Moreover, the point at which both branches meet admits a natural

interpretation: if we approach it from the large ring branch, then we have a state of high

excitation, with unwound strings so long that they stretch almost all the way around the

ring circle. If one of these long closed strings self-intersects after a turn around the circle,

it can cut itself and rejoin into two oppositely wound strings, thus connecting to the small

ring branch. Additionally, if we put in some strings that wind in only one direction, we

make a dipole ring. As expected by these arguments, adding this wound strings, i.e.,

increasing q, has the effect of reducing the entropy for a given mass, again in agreement

with figure 3.

This qualitative sketch provides a suggestive basis for the identification of the kind of

string states that correspond to each different black object, i.e., a complete stringy reso-

lution of black hole non-uniqueness in five dimensions, but there remain obscure points.

One puzzling feature is the absence of an infinite radius limit for the configurations con-

jectured to correspond to small rings. More quantitatively, it is unclear why the maximum

value of j for small neutral rings is 1, and not a distribution of values as could be naively

expected if there can be configurations with different numbers of strings and anti-strings
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in the ring. Or why the small ring branch for N = 1 terminates before reaching the ex-

tremal limit. Presumably we require a deeper comprehension of the equilibrium of forces

in the ring to understand these issues, and decide if the picture above is tenable. Also, the

Bekenstein-Hawking entropy of boosted straight strings is known to parametrically match,

at the correspondence point, to the entropy of highly-excited fundamental strings with

linear momentum [33]. It might be interesting to extend this calculation to large rings and

hopefully also to small rings.

The stability of rotating dipole rings is an intriguing question, as it is for all rotating

black objects in higher dimensions [1, 34, 35] (the stability problem in the static case has

been solved recently [36]). Obviously, the dipole ring can evolve into a neutral configura-

tion without any gauge dipole field, since there is no conserved quantity associated with

a dipole. So, for example, the dipole ring could collapse into a MP black hole. Another

possibility is that the dipole discharges via the formation of closed string loops formed

just outside the inner rim of the ring (presumably via quantum effects), and which shrink

to zero size radiating away their energy. This would gradually decrease the local charge

of the ring, and depending on the amount of spin that is lost, might end up in a MP

black hole or a neutral black ring. Besides, one expects thin dipole rings to suffer from

the classical Gregory-Laflamme (GL) instability [37], which should form ripples along the

ring, and these would cause the emission of gravitational radiation. If Q is not changed

under this process, which does not seem unlikely (no classical emission of string loops),

then q would increase, and if the loss of spin were not too large, the dipole could evolve

towards an extremal solution. It is unclear whether extremal and near-extremal rings

should be GL-unstable or not. As the supersymmetric limit is approached the GL-unstable

modes stretch to infinite wavelength. However, for these rings the supersymmetric limit

involves, in addition to extremality, taking the radius to infinity. It remains to be seen

whether extremal rings at finite radius can be stable under classical linearized perturba-

tions.
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A. Limit of Myers-Perry black hole

In order to recover the five-dimensional MP black hole with rotation in one plane [2] from

the solution (3.1), define new parameters a, m,

m =
2R2

1 − ν
, a2 = 2R2 λ − ν

(1 − ν)2
, (A.1)
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such that they remain finite as λ, ν → 1 and R → 0. Also, change coordinates (x, y) →
(r, θ),

x = −1 + 2

(

1 − a2

m

)

R2 cos2 θ

r2 − (m − a2) cos2 θ
,

y = −1 − 2

(

1 − a2

m

)

R2 sin2 θ

r2 − (m − a2) cos2 θ
, (A.2)

and rescale ψ and ϕ

(ψ,ϕ) →
√

m − a2

2R2
(ψ,ϕ) (A.3)

so they now have canonical periodicity 2π. Then we recover the metric

ds2 = −
(

1 − m

Σ

)

(

dt − ma sin2 θ

Σ−m
dψ

)2

+Σ

(

dr2

∆
+ dθ2

)

+
∆ sin2 θ

1 − m/Σ
dψ2 + r2 cos2 θ dϕ2 ,

∆ ≡ r2 − m + a2 , Σ ≡ r2 + a2 cos2 θ (A.4)

of the MP black hole rotating in the ψ direction.

Consider now this same limit for the dipole solution (3.14). Focusing on the gauge

field and taking λ, ν → 1 and R → 0, there does not appear to be any way to obtain a

limiting solution with finite horizon and a non-trivial gauge field. So we can only recover

the MP solution, and we do not find any new black hole of spherical topology with dipole

charge.
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Erratum

1. The correct value of Tww in equation (3.39) is

Tww =
r0

4G

(

sinh2 σ − 1 − N sinh2 γ
)

. (A.5)

Therefore the value of the boost σ obtained from a ring in equilibrium, eq. (3.38), makes

the pressure Tww vanish, as was the case for neutral rings.

2. The correct choice of η, defined above eq. (5.19), is as the one-form dual to the vector ∂ψ̃,

where ψ̃ is canonically normalized to have periodicity 2π. Then η = ∆ψ
2π gψµdxµ. Accounting

correctly for all the factors of the periodicities of ψ and ϕ, the final result for np is not

(5.20) but

np = J , (A.6)

where J is given in eq. (5.9). This equality can actually be proven in general by noting

that ∗dη is regular (i.e., vanishes) at the axis y = −1, so the integration over S1 × S2 in

eq. (5.19) can be extended to an integration over S3. Then np becomes equal to the Komar

integral for J . Since the gauge field does not contribute to this Komar integral, it must be

equal to the ADM value of J .

This corrected value of np yields the same result as eq. (5.21) for extremal rings of

large radius. Therefore the conclusions following from it, in particular eq. (5.24), remain

valid.
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