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1. Introduction

The determination of low-energy prepotential of four-dimensional (4D) N = 2 super

Yang-Mills theory initiated by Seiberg and Witten marked a significant step toward our

understanding of non-perturbative dynamics of gauge theory. The results were originally

derived by exploiting holomorphy and electromagnetic duality. They can be expanded in

the weak-coupling region in the form suggesting the interpretation as the one-loop correc-

tion plus infinite number of instanton corrections. It was natural to try to reproduce exactly

these coefficients by instanton calculation. One important clue in that direction was that

the twisted version of N = 2 super Yang-Mills theory calculates the intersection theory of

the moduli space of instantons [1, 2]. Moreover, it has been noted that the equivariant ver-

sion of the intersection theory is readily computable using the localization formula [3, 4].

Recently, several authors [5]–[7] directly verified that the action functional arising from

the constrained instanton calculus precisely has the form to which the equivariant local-

ization applies. Based on these observations, Nekrasov and collaborators determined all

the instanton corrections and showed that they agree with the result obtained from the

Seiberg-Witten curve [8, 9]. He also proposed a simple extension of his formula for the

exact graviphoton-corrected prepotential for the five-dimensional (5D) pure U(N) super

Yang-Mills theory.

We have also seen a great amount of development on the side of topological strings

in the last two years. The advent of the so-called topological vertex enabled us to cal-

culate all-genus topological A-model amplitude for any local toric Calabi-Yau manifold

using certain kind of Feynman-like rules. According to [10, 11], the topological amplitude
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should be equal to the graviphoton-corrected prepotential of the physical theory obtained

by compactifying the type IIA string (or more precisely M-theory) on the same Calabi-

Yau. Indeed, Iqbal and Kashani-Poor found [12, 13], by using some physically-motivated

simplifying assumptions, that for certain local toric Calabi-Yau X 0
N the resulting all-genus

amplitude exactly agreed with the 5D prepotential proposed by Nekrasov. Later, Eguchi

and Kanno [14, 15] showed in a mathematically rigorous way the equivalence of the two

expressions. They also extended the results to cases with various matter contents.

However, certain mysteries remain. There are N + 1 local toric Calabi-Yau manifolds

Xm
N (m = 0, 1, . . . , N) which can be used to geometrically engineer the same 4D N = 2

U(N) super Yang-Mills theories. As was shown in [13], only for m = 0 the topological

amplitude agreed with the 5D prepotential proposed by Nekrasov. What kind of physical

mechanism is operating behind the discrepancy for nonzero m? We solve this puzzle in

this short note. Namely, we exactly reproduce the all-genus closed string amplitudes for

Xm
N with m nonzero in a gauge theory calculation à la Nekrasov. It is done by properly

taking into account the effects of 5D Chern-Simons terms.

The rest of the paper is organized as follows. In section 2, we very briefly review

the instanton counting by Nekrasov. In section 3, we review the relation between the 5D

Chern-Simons term and the triple intersection of the Calabi-Yau. After these preparations,

we analyze the effect of 5D Chern-Simons terms to the instanton counting in section 4.

Finally, in section 5, we conclude by discussing some of the future directions. In the

appendix we discuss the relation between the partition functions on the Ω background and

the graviphoton-corrected prepotential.

2. Brief review of Nekrasov’s instanton counting

Let us recapitulate briefly the method of computation of the graviphoton-modified pre-

potential, as presented by Nekrasov. We consider 5D pure Yang-Mills theory with eight

supercharges. We put it on the so-called Ω background with the metric

ds2 = (dx5)2 + (dxµ +Aµdx5)2 , (2.1)

where Ωµν = ∂[µAν] is constant anti-self-dual(ASD), and the circumference of the fifth

direction is β. We denote the eigenvalues of Ωµν by ±~.

Firstly, we encode the vacuum expectation value of the adjoint scalar as the Wilson

line exp(β diag(a1, . . . , aN )) around the fifth direction. This is possible because 4D scalar

field in the vector multiplet consists of one real 5D scalar and the Wilson line around

the circle. From holomorphy, we have only to calculate the prepotential with Wilson line

turned on, with no vacuum expectation value for the 5D scalar.

Secondly, we note that the partition function Z of supersymmetric theories on the Ω

background and the graviphoton-corrected prepotential Fgrav of the same theory generi-

cally satisfy the relation

Fgrav = ~2 logZ . (2.2)
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This relation was shown originally in [8]. Another derivation using the Hilbert scheme of

points is presented in the appendix. Z can be schematically expressed as

Z = tr(−)F e−βHeβΩµνJ
µν

eβaiJ
i

, (2.3)

where H is the hamiltonian of the field theory, J µν the generators of SO(4), and J i are the

generators of global U(N) gauge rotations.

Thirdly, it is argued that the calculation of the partition function localizes onto the

moduli space of instantons. Thus Z is given by

Z =
∑

k

qk tr(−)F e−βHke−βΩµνJµνe−βaiJi , (2.4)

where q = e2πiβτ counts the instanton number. Now Hk is the hamiltonian of the supersym-

metric quantum mechanics on the “framed” k-instanton moduli space MN,k of dimension

4Nk. From the index theorem, there are 4Nk real fermionic adjoint zero-modes around

the k-instanton configuration. Hence, the Hilbert space of the quantum mechanical system

is the space of sections of the spin bundle of the instanton moduli. Thus, the trace in

equation (2.4) can be identified with the equivariant index of the k-instanton moduli. We

focus on the Cartan subgroup U(1)2+N ⊂ SO(4) ×U(N) of the global symmetries.

We use the following fixed point theorem to calculate the equivariant index:

Theorem 1. Let M be a spin manifold acted by an abelian group G. Take an element a

from the Lie algebra of G and let g = eβa. Assume the fixed points of G are isolated. Then

tr(−)F g =
∑

p:fixed
points of G

∏

w:eigenvalues
of a on TMp

1

2 sinh β
2w

(2.5)

where the left hand side is traced over zero-modes of the Dirac operators on M .

This theorem reduces the calculation of Z to the study of fixed points in the moduli

space. The fixed points are at the small instanton singularities in MN,k. Hence we need to

use the moduli of noncommutative instantons M̃N,k as the ultraviolet regularization [16].

The result turns out to be independent of the noncommutativity parameter. Fixed points

in M̃N,k was studied by Nekrasov [8] and Nakajima and Yoshioka [17]. They are labeled

by N -tuples of Young tableaux (Y1, . . . , YN ). We denote the number of boxes of the i-th

row of the tableau Y by yi. The action of g on the tangent space at the fixed points can

be studied straightforwardly, and gives the celebrated formula of Nekrasov

exp(~−2Fgrav) =
∑

Y1,...,YN

( q

4N

)

∑

`Yi
N
∏

l,n=1

∞
∏

i,j=1

sinh β
2 (aln + ~(yl,j − yn,i + j − i))

sinh β
2 (aln + ~(yl,j − yn,i))

, (2.6)

where `Y is the number of boxes in Y , ~ is the magnitude of Ωµν , and aij denotes ai − aj .

Note that the result is independent under the constant shift ai → ai + c.

To determine the g action on the tangent space, we need to use the Atiyah-Drinfeld-

Hitchin-Manin (ADHM) construction of instantons. Let X denote the vector space

X = (V ∗ ⊗ V )⊕ (V ∗ ⊗ V )⊕ (W ∗ ⊗ V )⊕ (V ∗ ⊗W ) , (2.7)
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where V = Ck and W = CN . Define a U(k) action on X by letting V and W transform in

the fundamental and trivial representations respectively. M̃N,k is the hyperkähler quotient

of X by the U(k) action. Hence, a fixed point p = gp in M̃N,k corresponds to an ADHM

datum xp ∈ X fixed up to the U(k) action:

gxp = φp(g)xp , (2.8)

where g ∈ U(1)2+N and φp(g) ∈ U(k). An essential part of the calculation leading to the

formula (2.6) is the property that at the fixed point labeled by (Y1, Y2, . . . , YN ), φ(g) has

k eigenvalues given by

exp(−β(al + ~(i− j))) for each box (i, j) ∈ Yl , (2.9)

where l runs from 1, . . . , N .

3. Triple intersection and the Chern-Simons terms

In this section we recapitulate how the 5D theories obtained by M-theory compactification

on Xm
N differ from each other. Firstly let us recall the generic structure of 5D supersym-

metric U(1)n gauge theory with eight supercharges[18]. Classically, the theory is specified

by the prepotential F = cijkaiajak + τijaiaj of degree up to three. It is because the third

derivative of F gives the coefficient of the Chern-Simons term
∫

cijkAi ∧ Fj ∧ Fk . (3.1)

This will not be gauge-invariant unless the third derivative is constant.

Secondly let us see how the coefficients cijk is determined from the geometric data,

when the theory is realized by a M-theory compactification. In this setup, 5D vector fields

Ai come from the three-form field C (3) of the eleven-dimensional supergravity reduced

along two-cycles Ci in the Calabi-Yau, Ai =
∫

Ci
C(3). The 5D Chern-Simons term (3.1)

comes directly from the eleven dimensional Chern-Simons coupling
∫

C(3) ∧ (dC)(4) ∧ (dC)(4) . (3.2)

Thus we see that the coefficient cijk is precisely the triple intersection of (the Poincaré

duals of) two-cycles Ci.

When the Calabi-Yau space develops an ADE singularity through the collapse of two

cycles, there appears enhanced non-abelian gauge symmetry corresponding to the ADE

type of the singularity. In such cases, the Chern-Simons coupling (3.1) should be like-

wise enhanced to the non-abelian version CS(A,F ) which is defined through the descent

equation

dCS(A,F ) = tr(F ∧ F ∧ F ) , (3.3)

where F is the non-abelian field strength. Moreover, Intriligator et al. [19] studied the

geometry of general Calabi-Yau manifolds which give rise to 5D U(N) theories and showed

that the triple intersection is determined up to the coefficient of this non-abelian Chern-

Simons term.
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Iqbal and Kashani-Poor studied M-theory compactification on local toric Calabi-Yau

manifolds Xm
N [13]. We collect here relevant facts on those manifolds. See [13, 19] for more

detailed accounts. Xm
N is a fibration of AN−1 singularity over the base CP1. It contains a

sequence of compact divisors

S1 = Fm+2−N , S2 = Fm+4−N , . . . , SN−1 = Fm+N−2 , (3.4)

Here Fn denotes a Hirzebruch surface. The Hirzebruch surface Fm is a CP1 fibration over

the CP1 with the intersection pairing

B ·B = −m, B · F = 1 , F · F = 0 , (3.5)

where B and F denote the base and the fiber, respectively. An AN−1 singularity contains

at the tip N − 1 CP1’s C1, . . . , CN−1 with intersection pairing Ci ·Ci+1 = 1. The divisor Si

of Xm
N is the fibration of Ci over the base CP1. The classical prepotential, or equivalently

the triple intersection is given by the formula

F =
1

2

∑

i,j

|ai − aj|
3 +m

∑

a3i , (3.6)

where we defined the basis a1, . . . , aN of special coordinates by

F =
∑

i,j,k

(ai+1 + · · ·+ aN )(aj+1 + · · ·+ aN )(ak+1 + · · ·+ aN )(Si · Sj · Sk) . (3.7)

This is a natural choice since Si corresponds to the simple root ai − ai+1. From these

expressions we see that the label m of Xm
N is exactly proportional to the magnitude of the

5D Chern-Simons term.

4. Effect of the five-dimensional Chern-Simons term

We saw in the last section that the M-theory compactifications on manifolds Xm
N have

different coefficients for the non-abelian 5D Chern-Simons terms for different m. Let

us next see how the presence of 5D Chern-Simons terms changes the derivation of the

graviphoton-corrected prepotential reviewed in section 2.

4.1 Calculation à la Nekrasov

Let us calculate the graviphoton-corrected prepotential of 5D U(N) super Yang-Mills with

m units of non-abelian Chern-Simons term. Firstly we put the theory on the Ω background

and encode the moduli of the theory by introducing Wilson lines along the fifth direction.

The calculation is then localized to that of supersymmetric quantum mechanics on the

ASD instanton moduli space. The lagrangian of the quantum mechanical system is ob-

tained by substituting the gauge field in the 5D action by the corresponding anti-self-dual

configurations specified by the trajectory in the moduli space. The Yang-Mills action gives

the kinetic term for the point particle moving on the ASD moduli, and the Chern-Simons

term gives a phase depending on the trajectory:

eim
∫

CS(A,F ) = eim
∫

dxiAi , (4.1)
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where xµ(t) is the trajectory in the moduli space and the point particle is now coupled

with an external vector potential A . Therefore, the exact partition function of the theory

put on the Ω background is

Zgauge =
∑

k

qk tr(−)F e−βHke−βΩµνJµνe−βaiJi . (4.2)

Now Hk is the hamiltonian of the supersymmetric quantum mechanics on MN,k coupled

to the external gauge potential A . The Hilbert space of the system is the space of sections

of S ⊗ L, where S is the spin bundle of MN,k and L is the line bundle determined by A .

Now we use the extended version of the fixed point theorem(see e.g. [20]):

Theorem 2. Let E → M be a vector bundle over a spin manifold with an action by an

abelian group G. Let a an element of the Lie algebra of G and take g = eβa. Assume the

fixed points of G are isolated. Then

tr(−)F g =
∑

p: fixed
points of G

(tr g|Ep)
∏

w:eigenvalues
of a on TMp

1

2 sinh β
2w

(4.3)

where the trace in the left hand side is taken over the zero-modes of the Dirac operator on

the spin bundle tensored by E.

In view of the theorem, the study of g action on L|p suffices to determine Z, since

we know the placement of fixed points and g action on the tangent spaces already. The

line bundle L has long been known to physicists. It is the determinant line bundle DetD/ .

The determinant line bundle is defined on the space of connections A /G and the fiber

at a configuration A is defined by (detKerD/ A)
∗ ⊗ detKerD/ †A where DA is the chiral

Dirac operator coupled to the connection A in the fundamental representation. When the

base space is restricted to the ASD moduli space, it can be simplified to (detKerD/ A)
∗

because we know that there are no wrong chirality zero-modes. Close relation between

the determinant line bundle and the Chern-Simons terms has long been known since the

work of Alvarez-Gaumé and Ginsparg [21] on the geometric interpretation of non-abelian

anomalies.

In reality we need to blow up the small instanton singularity in the ASD moduli using

spacetime non-commutativity[16]. Hence we need the non-commutative extension of all

these relations among anomaly, index theorem and the Chern-Simons terms. Fortunately

every detail we need has already been worked out by various groups following the seminal

work of Seiberg andWitten on noncommutativity. We refer the reader the works [22, 23] for

noncommutative extension of the relation of non-abelian anomalies, Chern-Simons terms

and the index theorem in six dimesions, and the work [24] for the study of the Dirac zero-

modes in the non-commutative instanton background. We know from these works that

there is no essential difference between commutative and non-commutative spacetime with

regard to the relation of anomaly and the Chern-Simons terms.

Now that we have clear understanding on the nature and the structure of the line

bundle L, we can complete the calculation. The fiber at p is the highest exterior power of

the kernel of the Dirac operator. Thus, to determine the weight w, we have to determine

– 6 –
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the action of g on the Dirac zero-modes. As reviewed in section 2, the ADHM datum xp

itself is not invariant under the action of g, it maps xp to a datum equivalent under U(k)

transformation φ:

gxp = φ(g)xp . (4.4)

Furthermore, we know from the analysis in [24] that k Dirac zero-modes in the fundamental

representation of U(N) transform as a fundamental representation of U(k). One way

of seeing this is to note that when one reconstructs the ADHM datum from an ASD

connection, the k-dimensional vector space V in equation (2.7) is none other than the space

of zero-modes of the Dirac equation. These arguments show that the action of g on the

zero-modes can be traded by the action of φ(g). Hence g|Lp can be readily computed to give

g|Lp = exp



−β
∑

k

∑

(i,j)∈Yk

(ak + ~(i− j))



 = exp

(

−β
∑

k

(`Ykak + ~κYk)

)

, (4.5)

where (Y1, . . . , YN ) labels the fixed points and we defined

κY ≡
∑

(i,j)∈Y

(i− j) =
∑

i

yi(yi + 1− 2i) . (4.6)

Combining all these, we get the partition function for the 5D theory with non-abelian

Chern-Simons term:

Zgauge=
∑

Y1,...,YN

( q

4N

)

∑

i `Yi
e−mβ

∑

(`Yiai+~κYi )
N
∏

l,n=1

∞
∏

i,j=1

sinh β
2 (aln+~(yl,j−yn,i+j−i))

sinh β
2 (aln + ~(yl,j − yn,i))

.

(4.7)

We defined aij = ai − aj for brevity. Note that the combined transformation

ai → ai + c , 2πiτ → 2πiτ −mc (4.8)

does not change the result as it should be.

4.2 Comparison with the topological A-model amplitudes

Let us compare what we have obtained à la Nekrasov against the topological A-model am-

plitudes for local toric Calabi-Yau manifolds Xm
N . Combining the equations (67,68,69,78)

in the article by Iqbal and Kashani-Poor [13] and changing their notation to ours, the

amplitude is

Ztop. =
∑

Y1,...,YN

2−2N
∑

`Yi (−)(N+m)
∑

`Yi q
1
2

∑N
i=1(N+m−2i)κiQ

∑

`i
B ×

×

bN+m−1
2

c
∏

i=1

Q
(N+m−2i)(`1+···+`i)
i

N−1
∏

i=bN+m+1
2

c

Q
(2i−m−N)(`i+1+···+`N )
i ×

×

N−1
∏

i=1

Q
−(N−i)(`1+···+`i)−i(`i+1+···+`N )
bi

×

× e−
1
2
β~ ∑N

i=1(N−2i)κi

N
∏

l,n=1

∞
∏

i,j=1

sinh β
2 (aln + ~(yl,j − yn,i + j − i))

sinh β
2 (aln + ~(yl,j − yn,i))

, (4.9)
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where QB and Qi = e−β(ai−ai+1) are respectively the exponential of the Kähler parameters

of the base divisor and the divisors Si. Define aN by

e−βaN = −






QB

bN+m−1
2

c
∏

i=1

Q−i
i

N−1
∏

i=bN+m+1
2

c

Q
−(N−i+m)
i







1/m

. (4.10)

Then, after reshuffling the various factors with some effort, one finds that

Ztop. =
∑

Y1,...,YN

1

(−4)N
∑

`Yi
e−mβ

∑

(`Yiai+~κYi ) ×

×

N
∏

l,n=1

∞
∏

i,j=1

sinh β
2 (aln + ~(yl,j − yn,i + j − i))

sinh β
2 (aln + ~(yl,j − yn,i))

. (4.11)

Using the global symmetry (4.8), we see that this precisely agrees with the calculation of

the gauge theory side à la Nekrasov, equation (4.7).

5. Conclusion

In this short note, we extended the 5D graviphoton-corrected prepotential proposed by

Nekrasov to include the effect of 5D non-abelian Chern-Simons term. We saw that the

introduction of 5D Chern-Simons terms results in twisting of the spin bundle on the instan-

ton moduli by the determinant line bundle. We obtained using the fixed point theorem the

partition function of the 5D U(N) super Yang-Mills theory with 5D Chern-Simons term

on the Ω background. Moreover we saw that the result precisely reproduced the topolog-

ical string amplitude originally obtained by Iqbal and Kashani-Poor and mathematically

proved by Eguchi and Kanno. This agreement is as it should be, because the partition

function of the topological A-model on a Calabi-Yau and that of M-theory compactified

on the same Calabi-Yau times the Ω background should be equal.

It will be worthwhile to generalize the calculation à la Nekrasov to general 5D theories

obtained from M-theory compactification on Calabi-Yau manifolds. It will be extremely

interesting if we can generically prove the equality of the gauge theory partition function

with the topological string partition function by extending Nekrasov’s instanton counting.

As the topological string amplitudes can be calculated from the topological vertex, it will

be tempting to suggest the existence of some kind of ‘gauge vertex’ which upon gluing

yields general gauge theory partition functions.
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A. Derivation of the relation (2.2)

In this appendix we give yet another derivation of the relation (2.2). Firstly recall the ar-

gument presented by Gopakumar and Vafa. They showed in [25, 26] that an BPS multiplet

with the left spin content

Ir =

((

1

2

)

⊕ 2(0)

)r+1

(A.1)

and with central charge a contributes to the graviphoton-corrected prepotential by an

amount

~−2Fr(a) =
∑

k>0

1

k

(

2 sinh
k~

2

)2r−2

e−ka , (A.2)

where ~ is the magnitude of the field strength of the graviphoton. This equation can be

proved using the Fock-Schwinger proper time method. Another convenient basis of the left

spin content is

Cj =

((

1

2

)

⊕ 2(0)

)

⊗ (a state with J3L = j) . (A.3)

In this basis, the contribution to the prepotential becomes

~−2Fj(a) =
∑

k>0

1

k

1

(2 sinh k~/2)2
e−k(a+2j~)

=
∑

n>0

log
(

1− e−(a+2j~+n~)
)

. (A.4)

The prepotential is a quantity protected by supersymmetry and receives contributions

only from states annihilated by half of the supersymmetry, i.e. BPS states. Thus the exact

prepotential of the low energy theory is given by

~−2F =
∑

i,r

Ni,r

∑

k>0

1

k
(2 sinh

k~

2
)2r−2e−kai , (A.5)

where Ni,r is the number of multiplets with central charge ai and spin content Ir. Ni,r is

called the Gopakumar-Vafa invariants of the theory.

Next consider the partition function of the theory on the Ω background. Let us canon-

ically quantize the theory, considering the fifth direction dx5 as the time direction. Then,

in the hamiltonian formalism, the partition function can be schematically written as

Z = tr(−)F e−βH exp(iβΩµνJ
µν) , (A.6)

where H is the total hamiltonian of the field theory. This is none other than the equivariant

index of the system. exp(iβΩµνJ
µν) commutes with half of the supersymmetry when the

curvature Ωµν is self-dual. Thus, the partition function Z receives contributions only from

the states annihilated by those supersymmetry. These states are precisely what contributed

to the prepotential of the theory put on the graviphoton background. These consideration

reveals us that the partition function can be written as an infinite product of the form

Z =
∏

r,i

Zr(ai)
Ni,r , (A.7)
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where Ni,r is the same Gopakumar-Vafa invariants we discussed above. Hence, we need

only to show

Zr(a) = exp(~−2Fr(a)) (A.8)

in order to show the relation (2.2).

Let us show the relation (A.8) for the case r = 0. The extension to other cases should

be immediate. Hence we are going to calculate the partition function of a free hypermul-

tiplet on the Ω background. In a first-quantized framework, the system is thought of as a

collection of particles and anti-particles. The calculation of the partition function is local-

ized by the supersymmetry to the configuration space of BPS states. A BPS configuration

is a collection of particles only, since an anti-particle respects the other half of the super-

symmetry and particle-antiparticle pair breaks all of the supersymmetry. As the particles

are indistinguishable from each other, the configuration space of k particles is

SkC2 ≡ (C2)k/Sk . (A.9)

Hence, the partition function should be

Z =
∑

e−ka Indg S
kC2 , (A.10)

where IndgM denotes the equivariant index, i.e. the trace of g over the space of harmonic

spinors ofM . However, the space SkC2 is singular and reliable calculation of the equivariant

index is difficult. It is known that there is a good resolution (C2)[k] of the singularities of

SkC2, called the Hilbert scheme of k-points on C2. Furthermore, it is known to be identical

to M̃1,k, the moduli of non-commutative U(1) instantons. Hence, the fixed points in (C2)[k]

is labeled by a Young tableau Y and the result is

Z =
∑

Y

e−`Y a
∏

s∈Y

(

1

sinh β
2~(l(s) + a(s) + 1)

)2

, (A.11)

where we defined for a Young tableau its arm length and leg length by

aY (s) = yi − j , lY (s) = yDj − i (A.12)

for a box s = (i, j) ∈ Y . Y D denotes the transpose of the Young tableau Y . We refer the

reader to the lecture notes by H. Nakajima [27] for a detailed derivation. The expression

(A.11) can be simplified using the free fermion technique [15] to give

Z =
∏

n≥1

(

1

1− e−ae−~n

)n

= exp(~−2Fr=0(a)) . (A.13)
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