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1. Introduction

The parton shower approximation has become a key component of a wide range of com-

parisons between theory and experiment in particle physics. Calculations of infrared-safe

observables, i.e. those that are asymptotically insensitive to soft physics, can be performed

in fixed-order perturbation theory, but the resulting final states consist of a few isolated

partons, quite unlike the multihadron final states observed experimentally. One can at-

tempt to identify isolated partons with hadronic jets, but then the energy flows within and

between jets are not well represented.

At present, the only means of connecting few-parton states with the real world is via

parton showers, which generate high-multiplicity partonic final states in an approximation

that retains enhanced collinear and soft contributions to all orders. Such multiparton

states can be interfaced to a hadronization model which does not require large momentum

transfers in order to produce a realistic hadronic final state. Hadronization and detector

corrections to the fixed-order predictions can then be computed, and the results have

generally been found to be in satisfactory agreement with the data. Infrared-sensitive

quantities such as hadron spectra and multiplicities have also been described successfully

using parton showers. This increases confidence that similar techniques can be used to

predict new physics signals and backgrounds in future experiments.

A crucial ingredient of modern parton showering algorithms1 is angular ordering, which

ensures that important aspects of soft gluon coherence are included in an azimuthally-

averaged form. The angular shower evolution variable [2] used in the event generator

program HERWIG [3] is good for ensuring that angular ordering is built in from the outset,

but the phase space is complicated and not invariant under any kind of boosts. Evolution

in virtuality looks natural but then angular ordering must be imposed afterwards, as is

done in PYTHIA [4].

In the present paper we investigate a new shower evolution formalism, based on an

angular variable related to transverse momentum [5]–[9]. The main aim is to retain the di-

rect angular ordering of the shower while improving the Lorentz invariance of the evolution

and simplifying the coverage of phase space, especially in the soft region. The new shower

variables also permit a better treatment of heavy quark fragmentation, through evolution

down to zero transverse momentum and the use of mass-dependent splitting functions,

which eliminate the sharply-defined collinear “dead cones” seen in earlier angular-ordered

treatments.2

In the following section we define the new shower variables and their associated kine-

matics and dynamics, including the appropriate argument of the running coupling, the

mass-dependent parton branching probability, and the shower evolution cutoff. The vari-

ables are defined slightly differently for initial- and final-state parton branching, and depend

on the colour connection of the evolving parton, so we consider in subsequent sections the

various possible configurations of colour flow between initial and final jets.

1For a general introduction to the parton shower approximation, see for example Chapter 5 of [1].
2Improvements to heavy quark fragmentation in the framework of the PYTHIA parton shower are

presented in ref. [10].
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The formalism presented here is implemented in the new Monte Carlo event generator

Herwig++ [11]. Results for e+e− annihilation and comparisons with LEP data are presented

in a separate publication [12]. The formulae in the present paper could also be used

to construct a matching scheme for next-to-leading order (NLO) QCD calculations and

Herwig++ parton showers, similar to that developed for HERWIG showers in [13, 14] and

implemented in the MC@NLO event generator [15], or to improve schemes for combining

parton showers with fixed-order matrix elements [16].

2. New variables for parton branching

2.1 Final-state quark branching

2.1.1 Kinematics

Consider parton branching in an outgoing

q q
q

k

i−1
i

0

i

Figure 1: Final-state parton branching. The

blob represents the hard subprocess.

quark jet. For improved treatment of quasi-

collinear emission from a massive quark, fol-

lowing ref. [8], we define the quark momentum

after the ith gluon emission qi−1 → qi+ki (see

figure 1) as

qi = αip+ βin+ q⊥i (2.1)

where p is the jet’s “parent parton” momentum (p2 = m2, the on-shell quark mass-

squared), n is a lightlike “backward” 4-vector (n2 = 0), and q⊥i is the transverse momentum

(q2⊥i = −q⊥2i , q⊥i · p = q⊥i · n = 0). Then

βi =
q⊥

2
i + q2i − α2

im
2

2αip · n
. (2.2)

If the “backward” vector n were not lightlike, eq. (2.2) and the ensuing kinematics

would be much more complicated. Ideally, n should point in the direction of the parton

that is colour-connected to the quark, forming a colour dipole [8]. If the colour-connected

parton is massive, this clearly cannot be the case in all frames of reference. However, as will

be illustrated later, we can always define a lightlike n that is close to the required direction

by forming an appropriate linear combination of the colour-connected 4-momenta.

The momentum fraction z and relative transverse momentum p⊥ are now defined by

zi =
αi
αi−1

, p⊥i = q⊥i − ziq⊥i−1 . (2.3)

Then we have

q2i−1 =
q2i
zi

+
k2i

1− zi
+

p⊥i
2

zi(1− zi)
. (2.4)

– 3 –
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2.1.2 Running coupling

To find the optimal argument of αS, we consider the branching of a quark of virtuality q2

into an on-shell quark and an off-shell gluon of virtuality k2 [17]. From eq. (2.4), the quark

propagator denominator is

q2 −m2 =
1− z

z
m2 +

k2

1− z
+

p⊥
2

z(1− z)
=

1

1− z

{

k2 +
1

z

[

p⊥
2 + (1− z)2m2

]

}

. (2.5)

Thus the scale of gluon virtualities that predominate in the parton cascade, which determine

the argument of αS, is set by [p⊥
2 + (1− z)2m2]/z. Since there are no soft quark (z → 0)

singularities, we may neglect the factor of 1/z. Therefore the suggested argument of αS

is p⊥
2 + (1 − z)2m2. This is the natural extension of the usual argument p⊥

2 [18] to the

massive case: collinear gluon emission from a massive quark remains in the perturbative

region provided 1− z À Λ/m. In practice we impose a minimum virtuality on light quarks

and gluons in the parton shower, and therefore the actual argument used for αS is slightly

more complicated (see below).

2.1.3 Evolution variable

The evolution variable is not simply q2 since this would ignore angular ordering. For

massless parton branching this means the evolution variable should be p⊥
2/[z(1 − z)]2 =

q2/z(1 − z) [21]. For gluon emission by a massive quark we assume this generalizes to

(q2 −m2)/z(1 − z). To define a resolvable emission we also need to introduce a minimum

virtuality Q2
g for gluons and light quarks. Therefore from eq. (2.5) the evolution variable is

q̃2 =
p⊥

2

z2(1− z)2
+
µ2

z2
+

Q2
g

z(1 − z)2
(2.6)

where µ = max(m,Qg). For the argument of the running coupling we use

z2(1− z)2q̃2 = p⊥
2 + (1− z)2µ2 + zQ2

g . (2.7)

Note that for massive quarks this allows us to evolve down to p⊥ = 0, provided the

emitted gluon is not too soft. As is well known, gluon emission is dynamically suppressed

at p⊥ < (1−z)m, i.e. inside the dead cone [19, 20]. In previous angular ordered treatments,

such as that in HERWIG, this region was simply cut out of the phase space. As we shall

see, the present treatment enables us to describe the distribution of gluon emission inside

the dead cone without any sharp angular cutoff.

Angular ordering of the branching qi → qi+1 is defined by

q̃i+1 < ziq̃i . (2.8)

The factor of zi enters because the angle at each branching is inversely proportional to the

momentum fraction of the parent. Similarly for branching on the gluon, ki → ki+1, we

require

k̃i+1 < (1− zi)q̃i . (2.9)

– 4 –
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2.1.4 Branching probability

For the parton branching probability we use the mass-dependent splitting functions of

ref. [7]. These are derived in the quasi-collinear limit, in which p⊥
2 and m2 are treated as

small (compared to p · n) but p⊥
2/m2 is not necessarily small. In this limit the q → qg

splitting function is

Pqq(z,p⊥
2) = CF

[

1 + z2

1− z
− 2z(1− z)m2

p⊥
2 + (1− z)2m2

]

. (2.10)

Note that at p⊥ = 0 the factor in square brackets is just 1 − z, i.e. the soft singularity

at z → 1 becomes a zero in the collinear direction. The minimum virtuality Q2
g serves

only to define a resolvable emission, and therefore we omit it when defining the branching

probability in terms of the evolution variable (2.6) as

dP (q → qg) =
αS

2π

dq̃2

q̃2
Pqq dz =

CF
2π

αS

[

z2(1− z)2q̃2
] dq̃2

q̃2
dz

1− z

[

1 + z2 − 2m2

zq̃2

]

. (2.11)

2.2 Gluon splitting

In the case of a final-state gluon splitting into a pair of heavy quarks of mass m, the

quasi-collinear splitting function derived in [7] is

Pqg(z,p⊥
2) = TR

[

1− 2z(1− z)
p⊥

2

p⊥
2 +m2

]

. (2.12)

We note that this splitting function is bounded above by its value TR = 1/2 at the phase

space boundary p⊥ = 0, and below by TR/2. By analogy with eq. (2.6), in this case

the evolution variable q̃ is related to the virtuality of the gluon or the relative transverse

momentum of the splitting by

q̃2 =
q2

z(1− z)
=
p⊥

2 +m2

z2(1− z)2
. (2.13)

In terms of the variables q̃, z, the g → qq̄ branching probability then reads

dP (g → qq̄) =
TR
2π

αS[z
2(1− z)2q̃2]

dq̃2

q̃2

[

1− 2z(1− z) +
2m2

z(1− z)q̃2

]

dz . (2.14)

In the case of gluon splitting into gluons, the branching probability takes the familiar

form

dP (g → gg) =
CA
2π

αS[z
2(1− z)2q̃2]

dq̃2

q̃2

[

z

1− z
+

1− z

z
+ z(1 − z)

]

dz . (2.15)

Since we introduce a minimum virtuality Q2
g for gluons, the relationship between the evo-

lution variable and the relative transverse momentum for this splitting is as in eq. (2.13)

but with the heavy quark mass m replaced by Qg. Similarly, for gluon splitting to light

quarks we use eq. (2.13) with µ = max(m,Qg) in place of m.

– 5 –



J
H
E
P
1
2
(
2
0
0
3
)
0
4
5

2.3 Initial-state branching

Consider the initial-state (spacelike)

q
0

q
i−1

k i

q q
in

Figure 2: Initial-state parton branching. The blob

represents the hard subprocess.

branching of a partonic constituent of an

incoming hadron that undergoes some

hard collisions subprocess such as deep

inelastic lepton scattering. The mo-

menta are defined as in eq. (2.1), with

the reference vector p along the beam

direction. In this case the evolution

is performed backwards from the hard

sub-process to the incoming hadron, as

shown in figure 2. Thus we now define

in place of eq. (2.3)

zi =
αi−1
αi

, p⊥i = q⊥i−1 − ziq⊥i . (2.16)

Then

q2i−1 = ziq
2
i −

zi
1− zi

k2i −
p⊥i

2

1− zi
. (2.17)

We assume a massless variable-flavour-number evolution scheme [22, 23] for constituent

parton branching, setting m = 0 and putting all emitted gluons at the minimum virtuality,

k2i = Q2
g. Thus in this case the momentum fraction z corresponds precisely to the lightcone

fraction normally used in the definition of parton distribution functions. The angular

evolution variable now relates only to the angle of the emitted gluon and therefore we

choose

q̃2i =
p⊥i

2 + ziQ
2
g

(1− zi)2
, (2.18)

with ordering condition simply q̃i+1 < q̃i. Correspondingly, for the argument of the running

coupling we now use (1− z)2q̃2.

A different type of initial-state branching occurs in the decay of heavy, quasi-stable

coloured objects like the top quark. Here the momentum of the incoming heavy object

is fixed and evolution is performed forwards to the hard decay process. In this case we

cannot neglect the mass of the parton and eq. (2.18) becomes

q̃2i =
p⊥i

2 + ziQ
2
g

(1− zi)2
+m2 , (2.19)

while the branching probability (2.11) is replaced by

dP (q → qg) =
CF
2π

αS[(1− z)2q̃2]
dq̃2

q̃2
dz

1− z

[

1 + z2 − 2zm2

q̃2

]

. (2.20)

2.4 Allowed regions and termination of branching

The allowed phase space for each branching is given by requiring a real relative transverse

momentum, p⊥
2 > 0. In final-state q → qg branching, we have from eq. (2.7)

z2(1− z)2q̃2 > (1− z)2µ2 + zQ2
g . (2.21)

– 6 –
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This yields a rather complicated boundary in the (q̃, z) plane. However, since

(1− z)2µ2 + zQ2
g > (1− z)2µ2 , z2Q2

g (2.22)

we see that the phase space lies inside the region

µ

q̃
< z < 1− Qg

q̃
, (2.23)

and approaches these limits for large values of q̃. The precise phase space can therefore

be filled efficiently by generating values of z between these limits and rejecting those that

violate the inequality (2.21). The resulting threshold for q̃ is slightly larger than but of the

order of µ+Qg (see [12] for a detailed discussion).

In gluon splitting, we obtain the allowed phase space range from eq. (2.13) as

z− < z < z+ , z± =
1

2

(

1±
√

1− 4µ

q̃

)

and q̃ > 4µ (2.24)

where µ = m for splitting into heavy quarks, or µ = max(m,Qg) more generally. Therefore,

analogously to eq. (2.23), the phase space lies within the range

µ

q̃
< z < 1− µ

q̃
. (2.25)

Schematically, the parton shower corresponds to selecting a sequence of (q̃i, zi) values

by solving the equations

R1 = exp

(

−
∫ q̃i−1

q̃i

dq̃

∫ z+

z−

dz
d2P

dq̃ dz

)

R2 =

∫ zi

z−
dzd2P/dq̃ dz

∫ z+
z−

dz d2P/dq̃ dz
(2.26)

where R1,2 ∈ [0, 1] are uniform pseudorandom numbers. Whenever the algorithm selects

a value of q̃ below the relevant threshold, branching of that parton is terminated. The

minimum virtuality Qg thus determines the scale at which soft or collinear parton emission

becomes unresolvable. In the absence of such a scale one eventually reaches a region where

the perturbative expression for the running coupling is divergent.

After branching has terminated, the outgoing partons are put on mass-shell (or given

the virtual mass Qg if lighter) and the relative transverse momenta of the branchings in

the shower are computed. For final-state gluon splitting we have

|p⊥| =
√

z2(1− z)2q̃2 − µ2, (2.27)

or else, if the parent is a quark,

|p⊥| =
√

(1− z)2(z2q̃2 − µ2)− zQ2
g . (2.28)

The virtualities of the internal lines of the shower can now be computed backwards accord-

ing to eq. (2.4). Finally, the azimuthal directions of the p⊥’s can be chosen [24] and the

full 4-momenta reconstructed using eqs. (2.1) and (2.2).

– 7 –
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In initial-state constituent parton branching the evolution is “guided” by the parton

distribution functions (PDFs) of the incoming parent hadron. Since PDFs are often not

tabulated below some scale Qs > Q0, one may wish to terminate branching whenever

q̃ < Qs is selected. In that case the incoming parton is assigned virtuality q2n ∼ −Q2
s and

the spacelike virtualities of internal lines are then reconstructed back from q2n to q20 using

the transverse momenta deduced from eq. (2.18) inserted in eq. (2.17).

For initial-state branching in the decay of a heavy, quasi-stable coloured object, the

branching proceeds in the opposite direction but the reconstruction of momenta is similar,

using eq. (2.19) instead of (2.18).

2.5 Treatment of colour flows

The more detailed treatment depend on the choice of the “backward” vector n and on

which quantities are to be held fixed during jet evolution. Normally n should be taken

along the colour-connected partner of the radiating parton, and the 4-momentum of the

colour-connected system should be preserved. The upper limits on the evolution variable

q̃ for the colour-connected jets should be chosen so as to cover the phase space in the soft

limit, with the best possible approximation to the correct angular distribution. In setting

these limits we neglect the minimum virtuality Q2
g, which is a good approximation at high

energies. We consider separately the four cases that the colour connection is between two

final-state jets, two initial-state (beam) jets, a beam jet and a final-state jet, or a decaying

heavy parton and a decay-product jet.

3. Final-final colour connection

Consider the process a→ b+c where a is a colour singlet and b and c are colour-connected.

Examples are e+e− → qq̄ and W → qq̄′. We need to preserve the 4-momentum of a and

therefore we work in its rest-frame,

pa = Q(1,0, 0) , pb =
1

2
Q(1 + b− c,0, λ) , pc =

1

2
Q(1− b+ c,0,−λ) , (3.1)

where p2a = Q2, b = m2
b/Q

2, c = m2
c/Q

2 and

λ = λ(1, b, c) ≡
√

(1 + b− c)2 − 4b =
√

(1− b+ c)2 − 4c . (3.2)

For emission of a gluon g from b we write

qi = αipb + βin+ q⊥i (3.3)

where q⊥g = k⊥, q⊥b = −k⊥, q⊥c = 0 and we choose

n =
1

2
Q(λ,0,−λ) . (3.4)

If c is massive, the alignment of n along the colour-connected momentum pc is exact

only in a certain class of Lorentz frames. As mentioned in section 2.1.1, if we try to use

– 8 –
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a massive “backward” vector the kinematics become too complicated. However, we can

always construct the lightlike vector (3.4) in a covariant way as

n =
1

2
[(1 + b− c+ λ)pc − (1− b+ c− λ)pb] , (3.5)

which is close to pc as long as b and c are small.

To preserve pa = qb + qc + qg we require

∑

αi =
∑

βi =
2

1 + b− c+ λ
(3.6)

whereas the mass-shell conditions give

βb =
2

λ(1 + b− c+ λ)

(

b+ κ

αb
− bαb

)

βc =
2

λ(1 + b− c+ λ)

(

c

αc
− bαc

)

βg =
2

λ(1 + b− c+ λ)

(

κ

αg
− bαg

)

(3.7)

where κ ≡ k⊥
2/Q2. Our new variables are

z =
αb

αb + αg
, κ̃ ≡ q̃2

Q2
> b , (3.8)

where from eq. (2.6) we have

κ = (z2κ̃− b)(1− z)2 , (3.9)

and so
√

b/κ̃ < z < 1. From eqs. (3.6)-(3.9) we find

αb =
z

1 + b− c+ λ

(

1 + b− c+ z(1− z)κ̃+
√

[1− b+ c− z(1− z)κ̃]2 − 4b
)

,

αc =
2

1 + b− c+ λ
− αb

z
,

αg =
1− z

z
αb , (3.10)

with the βi’s given by eq. (3.7).

3.1 Phase space variables

It is convenient to express the phase space in terms of the Dalitz plot variables

xi =
2pa · qi
Q2

= (1 + b− c)αi + λβi . (3.11)

Substituting from eqs. (3.7) and (3.10), we find

xc = 1− b+ c− z(1− z)κ̃

xb = (2− xc)r + (z − r)
√

x2c − 4c

xg = (2− xc)(1− r)− (z − r)
√

x2c − 4c (3.12)

– 9 –
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where

r =
1

2

(

1 +
b

1 + c− xc

)

. (3.13)

The jacobian factor is thus simply

∂(xb, xc)

∂(z, κ̃)
= z(1− z)

√

x2c − 4c (3.14)

and the quasi-collinear branching probability (2.11) translates to

dP (q → qg) = CF
αS

2π

dxb dxc

(1− b+ c− xc)
√

x2c − 4c

[

1 + z2

1− z
− 2b

1− b+ c− xc

]

(3.15)

where

z = r +
xb − (2− xc)r
√

x2c − 4c
, (3.16)

r being the function of xc given in eq. (3.13).

For emission from parton c we write

qi = αipc + βin+ q⊥i (3.17)

where now we choose

n =
1

2
Q(λ,0, λ) . (3.18)

Clearly, the region covered and the branching probability will be as for emission from

parton b, but with xb and xc, b and c interchanged.

3.2 Soft gluon region

For emission from parton b in the soft region 1− z = ε→ 0 we have

xc ∼ 1− b+ c− εκ̃ , xb ∼ 1 + b− c− εκ̃′ (3.19)

where

κ̃′ = λ+
κ̃

2b
(1− b− c− λ) . (3.20)

Since κ̃ is an angular variable, we can express it in terms of the angle θbg between the

directions of the emitting parton b and the emitted gluon in the rest frame of a. In the

soft region we find

κ̃ =
(1 + b− c+ λ)(1 + b− c− λ cos θbg)

2(1 + cos θbg)
(3.21)

Thus κ̃ = b at θbg = 0 and κ̃→∞ as θbg → π.

For soft emission from parton c, the roles of xb and xc, b and c are interchanged. To

cover the whole angular region in the soft limit, we therefore require κ̃ < κ̃b in jet b and

κ̃ < κ̃c in jet c, where
κ̃b
κ̃′b

=
κ̃′c
κ̃c

(3.22)
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and hence

(κ̃b − b)(κ̃c − c) =
1

4
(1− b− c+ λ)2 . (3.23)

In particular, the most symmetric choice is

κ̃b =
1

2
(1 + b− c+ λ) , κ̃c =

1

2
(1− b+ c+ λ) . (3.24)

The largest region that can be covered by one jet corresponds to the maximal value of κ̃

allowed in eq. (3.10) for real αb, i.e. for the maximal b jet

κ̃b = 4(1 − 2
√
b− b+ c) . (3.25)

3.3 Example: e+e− → qq̄g

Here we have b = c = ρ, λ =
√
1− 4ρ = v, the quark velocity in the Born process

e+e− → qq̄. The phase space and the two jet regions for the symmetrical choice (3.24) are

shown in figure 3. The region D, corresponding to hard non-collinear gluon emission, is

not included in either jet and must be filled using the O(αS) matrix element (see below).

For the maximal quark jet we get from eq. (3.25)

κ̃q = 4(1 − 2
√
ρ) , (3.26)

as shown in figure 4 together with the complementary antiquark jet region given by

eq. (3.23).

Figure 3: Phase space for e+e− → qq̄g for mq = 5GeV, Q2 = m2
Z , with symmetric definition of

quark and antiquark jets.
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Figure 4: Phase space for e+e− → qq̄g for mq = 5GeV, Q2 = m2
Z , with maximal region for the

quark jet.

3.3.1 Exact matrix element

The e+e− → V → qq̄g differential cross section, where V represents a vector current such

as a virtual photon, is given to first order in αS by [25, 26]

1

σV

d2σV
dxq dxq̄

=
αS

2π

CF
v

[

(xq + 2ρ)2 + (xq̄ + 2ρ)2 + ζV
(1 + 2ρ)(1− xq)(1 − xq̄)

− 2ρ

(1− xq)2
− 2ρ

(1− xq̄)2

]

(3.27)

where

ζV = −8ρ(1 + 2ρ) (3.28)

and

σV = σ0 (1 + 2ρ) v (3.29)

is the Born cross section for heavy quark production by a vector current, σ0 being the

massless quark Born cross section.

In the case of the axial current contribution e+e− → A → qq̄g, instead of eq. (3.27)

we have

1

σA

d2σA
dxq dxq̄

=
αS

2π

CF
v

[

(xq + 2ρ)2 + (xq̄ + 2ρ)2 + ζA
v2(1− xq)(1− xq̄)

− 2ρ

(1− xq)2
− 2ρ

(1− xq̄)2

]

, (3.30)

where

ζA = 2ρ[(3 + xg)
2 − 19 + 4ρ] , (3.31)

σA being the Born cross section for heavy quark production by the axial current:

σA = σ0v
3 . (3.32)
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3.3.2 Soft gluon distribution

In the soft gluon region 1− z = ε→ 0 the branching probability (3.15) becomes

d2P

dxq dxq̄
∼ αS

2π

2CF
vε2

fs(κ̃)

fs(κ̃) =

(

1

κ̃
− ρ

κ̃2

)

Θ(κ̃− ρ) . (3.33)

In this limit, the exact vector and axial current matrix elements, eqs. (3.27) and (3.30)

respectively, give identical distributions:

1

σV

d2σV
dxq dxq̄

∼ 1

σA

d2σA
dxq dxq̄

∼ αS

2π

2CF
vε2

f(κ̃)

f(κ̃) =

(

1− 2ρ

κ̃κ̃′
− ρ

κ̃2
− ρ

κ̃′2

)

Θ(κ̃− ρ)

= fs(κ̃)
( v

κ̃′

)2
. (3.34)

Since from eq. (3.20)

κ̃′ = v + κ̃

(

1− v

1 + v

)

> v , (3.35)

the parton shower approximation (3.33) always overestimates the true result in the soft

limit, and so correction by the rejection method is straightforward. For small values of ρ

we have

f(κ̃) =
1

κ̃
− ρ

κ̃2
+

2ρ2

κ̃
− 2ρ+O(ρ2) . (3.36)

Since κ̃ > ρ we see that the error in the approximation (3.33) is at most O(ρ), for any

value of κ̃ (figure 5)

Figure 5: The function f(κ̃) giving the gluon angular distribution in the soft limit, for m = 5GeV,

Q2 = m2
Z . The exact result eq. (3.34), solid curve, and shower approximation (3.33), dashed, are

not distinguishable on this scale. The dotted curve shows the earlier HERWIG approximation.
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The angular-ordered shower variables used previously in HERWIG [19] corresponded

to a 1/κ̃ behaviour at small κ̃, cut off sharply at κ̃ = 2ρ, as indicated by the dotted curve

in figure 5. We see that the new treatment greatly improves the description at small κ̃,

near the collinear direction.

3.3.3 Dead region contribution

The integral over the dead region may be expressed as

1

σV

∫

D

d2σV ≡
αS

2π
CF F

D
V (κ̃q) (3.37)

where κ̃q parametrizes the boundary of the quark jet. As shown in figure 6, this is actually

maximal, but still small, at the symmetric point given by eq. (3.24).

Although the integral in eq. (3.37) is finite, the integrand diverges as one approaches

the soft limit xq = xq̄ = 1 via the narrow “neck” of the dead region in figure 3 or 4.

This could cause problems in generating qq̄g configurations in the dead region in order to

apply a matrix element correction [27]. To avoid such problems, one can map the region

xq, xq̄ > 3/4 into a region whose width vanishes quadratically as xq, xq̄ → 1, as illustrated

in figure 7. The mapping shown is

xq → x′q = 1−
[

1

4
− (1− xq)

]

=
7

4
− xq ,

xq̄ → x′q̄ = 1− 2(1− x′q)

[

3

4
− (1− xq)

]

=
5

8
+

1

2
xq +

3

2
xq̄ − 2xqxq̄ (3.38)

when xq > xq̄ > 3/4. Within the mapped region, the integrand then has an extra weight

factor of 2(1 − x′q) which regularizes the soft divergence. When xq̄ > xq > 3/4, xq and xq̄
are interchanged in both the mapping and the weight.

Figure 6: The function FD(κ̃q) giving the contribution of the dead region to the cross section, for

m = 5GeV, Q2 = m2
Z . Solid: vector current. Dashed: axial current.
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Figure 7: The soft region, with jet boundaries (solid) and mapped region (dashed), form = 5GeV,

Q2 = m2
Z .

4. Initial-initial colour connection

Here we consider the inverse process b + c → a where a is a colour singlet of invariant

mass Q and b, c are beam jets. The kinematics are simple because we take beam jets to be

massless: in the c.m. frame

pa = Q(1,0, 0) , pb =
1

2
Q(1,0, 1) , pc =

1

2
Q(1,0,−1) . (4.1)

For emission of a gluon g from b we write

qi = αipb + βipc + q⊥i (4.2)

where q⊥g = k⊥, q⊥a = −k⊥, q⊥b = q⊥c = 0. Notice that in this case the recoil transverse

momentum is taken by the colour singlet a so we cannot preserve its 4-momentum. We

choose to preserve its mass and rapidity, so that

αa = βa =
√
1 + κ , (4.3)

where as before κ ≡ k⊥
2/Q2. Now we have

βb = αc = 0 , αgβg = κ ,

αa = αb − αg , βa = βc − βg , (4.4)

and our new variables in this case are

z = 1− αg
αb

, κ̃ ≡ q̃2

Q2
=

κ

(1− z)2
. (4.5)
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Thus we find

αa = βa =
√

1 + (1− z)2κ̃ ,

αb =
1

z

√

1 + (1− z)2κ̃ ,

βc =
1 + (1− z)κ̃
√

1 + (1− z)2κ̃
. (4.6)

4.1 Phase space variables

It is convenient to express the kinematics in terms of the “reduced” Mandelstam invariants:

s̄ =
(qb + qc)

2

Q2
, t̄ =

(qb − qg)
2

Q2
, ū =

(qc − qg)
2

Q2
. (4.7)

The phase space limits are

1 < s̄ <
S

Q2
, 1− s̄ < t̄ < 0 , ū = 1− s̄− t̄ (4.8)

where S is the beam-beam c.m. energy squared. In terms of the shower variables for beam

jet b, we have

s̄ = αbβc =
1

z
[1 + (1− z)κ̃] , t̄ = −αbβg = −(1− z)κ̃ , ū = −(1− z)s̄ . (4.9)

Thus curves of constant κ̃ in the (s̄, t̄) plane are given by

t̄ =
κ̃(1− s̄)

κ̃+ s̄
(4.10)

and the jacobian factor for conversion of the shower variables to the Mandelstam invariants

is
∂(s̄, t̄)

∂(z, κ̃)
=

1− z

z
s̄ . (4.11)

For the other beam jet c we have t̄↔ ū and thus

t̄ =
s̄(1 − s̄)

κ̃+ s̄
. (4.12)

We see that in order for the jet regions to touch without overlapping in the soft limit s̄→ 1,

t̄→ 0, we need κ̃ < κ̃b in jet b and κ̃ < κ̃c in jet c, where κ̃c = 1/κ̃b. The most symmetrical

choice is κ̃c = κ̃b = 1, as shown in figure 8, but we can take κ̃b or κ̃c as large as we like.

4.2 Example: Drell-Yan process

Consider radiation from the quark in the Drell-Yan process, qq̄ → gZ 0. In the laboratory

frame we have

qq = (Px1,0, Px1) , qq̄ = (Px2,0,−Px2) (4.13)

where P = 1
2

√
S is the beam momentum. If we generated the initial hard process qq̄ → Z 0

with momentum fractions xq, xq̄ and we want to preserve the mass and rapidity of the Z 0

we require

x1 = xqαb , x2 = xq̄βc (4.14)
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Figure 8: Beam jets (B,C) and dead region (D) in initial-state branching.

where αb and βc are given by eqs (4.6).

The branching probability in the parton shower approximation is

d2P

dz dκ̃
= CF

αS

2π

1

κ̃

1 + z2

1− z
, (4.15)

which gives a differential cross section (s = s̄Q2, etc.)

1

σ0

d2σ

ds dt
=

D(x1)D(x2)

D(xq)D(xq̄)

αS

2π
CF

s+ u

s3tu

[

s2 + (s+ u)2
]

(4.16)

where σ0 is the Born cross section. The functions D(x1) etc. are parton distribution

functions in the incoming hadrons; these factors take account of the change of kinematics

xq, xq̄ → x1, x2 discussed above.

The exact differential cross section for qq̄ → gZ0 to order αS is

1

σ0

d2σ

ds dt
=

D(x1)D(x2)

D(xq)D(xq̄)

αS

2π
CF

Q2

s3tu

[

(s+ t)2 + (s+ u)2
]

. (4.17)

Since Q2 = s+ t+u and t ≤ 0, we see that the parton shower approximation (4.16) overes-

timates the exact expression, becoming exact in the collinear or soft limit t→ 0. Therefore

the gluon distribution in the jet regions can be corrected efficiently by the rejection method,

and the dead region can be filled using the matrix element, as was done in ref. [28].3 The

benefit of the new variables is that the angular distribution of soft gluon emission requires

no correction, provided the jet regions touch without overlapping in the soft region. As

shown above, this will be the case if the upper limits on κ̃ satisfy κ̃q̄ = 1/κ̃q .

3An alternative approach, which is adopted in PYTHIA for this process [29], would be to increase the

jet regions to cover the whole phase space, and to apply a larger corrections within the jets. In our case

this would correspond to choosing κ̃b = κ̃c = S/Q2.
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5. Initial-final colour connection

Consider the process a + b → c where a is a colour singlet and the beam parton b and

outgoing parton c are colour-connected. An example is deep inelastic scattering, where a

is a (charged or neutral) virtual gauge boson. We need to preserve the 4-momentum of a

and therefore we work in the Breit frame:

pa = Q(0,0,−1) , pb =
1

2
Q(1 + c,0, 1 + c) , pc =

1

2
Q(1 + c,0,−1 + c) , (5.1)

where p2a = −Q2, p2b = 0, and m2
c = cQ2. Notice that the beam parton b is always taken

to be massless, but the outgoing parton c can be massive (e.g. in W +d→ c).

5.1 Initial-state branching

For emission of a gluon g from the incoming parton b we write

qi = αipb + βin+ q⊥i (5.2)

where q⊥g = k⊥, q⊥b = 0, q⊥c = −k⊥ and we choose

n =
1

2
Q(1 + c,0,−1− c) . (5.3)

To preserve pa = qc + qg − qb we now require

αb − αc − αg = βc + βg − βb =
1

1 + c
(5.4)

whereas the mass-shell condition is

αiβiQ
2(1 + c)2 = q⊥i

2 + q2i (5.5)

which gives

1 + c =
c

αc
+ κ

(

1

αc
+

1

αg

)

. (5.6)

The new variables for emission from the beam jet are as in eq. (4.5). Substituting

in (5.6), we find

αb =
1

2z(1 + c)

(

1 + c+ (1− z)κ̃+
√

[1 + c+ (1− z)κ̃]2 − 4z(1 − z)κ̃
)

,

αc = zαb −
1

1 + c
, αg = (1− z)αb , βb = 0 ,

βc =
1

1 + c
· c+ (1− z)2κ̃

z(1 + c)αb − 1
, βg =

(1− z)κ̃

(1 + c)2αb
. (5.7)
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5.2 Final-state branching

Next consider emission from the outgoing parton c. In this case we write

qi = αipc + βipb + q⊥i (5.8)

To preserve pa = qc + qg − qb we require

αc + αg − αb = βb − βc − βg = 1 (5.9)

whereas the mass-shell condition is now

αiβi (Q
2 +m2

c) = q⊥i
2 + q2i − α2

im
2
c . (5.10)

The new variables for emission from an outgoing parton are as in eqs. (3.8), (3.9) with b

replaced by c:

z =
αc

αc + αg
, κ̃ ≡ q̃2

Q2
=

1

z2

[

c+
κ

(1− z)2

]

. (5.11)

Thus in this case we find

αb = 0 , αc = z , αg = 1− z ,

βb =
1

1 + c
[1 + c+ z(1− z)κ̃] ,

βc =
1− z

1 + c
[2c+ z(1− z)κ̃] ,

βg =
1− z

1 + c
[z2κ̃− 2c] . (5.12)

5.3 Phase space variables

In this process the invariant phase space variables are usually taken to be

xp =
Q2

2pa · qb
, zp =

qc · qb
pa · qb

. (5.13)

In terms of the new variables for emission from the beam parton, we have

xp =
1

(1 + c)αb
= 2z

(

1 + c+ (1− z)κ̃+
√

[1 + c+ (1− z)κ̃]2 − 4z(1 − z)κ̃
)−1

(5.14)

zp = (1 + c)βc =
1

2

(

1− c− (1− z)κ̃+
√

[1 + c+ (1− z)κ̃]2 − 4z(1− z)κ̃
)

, (5.15)

with the jacobian

∂(xp, zp)

∂(z, κ̃)
=

1

κ̃

(

1

xp
+

1 + c

1− zp
− 2

)−1

. (5.16)

In the soft limit z = 1− ε we therefore find for the beam jet

xp ∼
1

1 + c

[

1− ε− εcκ̃

(1 + c)2

]

, zp ∼ 1− εκ̃

1 + c
(5.17)
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Figure 9: Beam jet (B), outgoing jet (C) and dead region (D) in initial-final state branching:

c = 0.25, κ̃b = 1.25, κ̃c = 1.5.

and
∂(xp, zp)

∂(z, κ̃)
∼ ε

(1 + c)2
. (5.18)

In terms of the variables for emission from the outgoing parton,

xp =
1

(1 + c)βb
=

1

1 + c+ z(1 − z)κ̃
, zp = αc = z , (5.19)

so the jacobian is simply
∂(xp, zp)

∂(z, κ̃)
= z(1− z)x2p , (5.20)

and in the soft limit

xp ∼
1

1 + c

[

1− εκ̃

1 + c

]

, zp ∼ 1− ε , (5.21)

with the jacobian again given by eq. (5.18). For full coverage of phase space in the soft

limit we require κ̃ < κ̃b in jet b and κ̃ < κ̃c in jet c, where

κ̃b(κ̃c − c) = (1 + c)2 . (5.22)

Thus the most symmetrical choice is κ̃b = 1 + c, κ̃c = 1 + 2c, as shown in figure 9. On the

other hand, any larger or smaller combination satisfying eq. (5.22) is allowed, as illustrated

in figure 10 for κ̃b = 10.

5.4 Example: deep inelastic scattering

Consider deep inelastic scattering on a hadron of momentum P µ by exchange of a virtual

photon of momentum qµ. By construction, the treatment outlined above preserves qµ and

hence also Q2 = −q2 and the Bjorken variable xB = Q2/2P · q. If the contribution to the

Born cross section from scattering on a quark of momentum fraction xB is represented by

σ0 (a function of xB and Q2), then the correction due to single gluon emission is given by

1

σ0

d2σ

dxp dzp
=

CFαS

2π

D(xB/xp)

D(xB)

1 + (xp + zp − 1)2

xp(1− xp)(1− zp)
. (5.23)
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Figure 10: Beam jet (B), outgoing jet (C) and dead region (D) in initial-final state branching:

c = 0.25, κ̃b = 10, κ̃c = 0.40625.

In the soft limit xp, zp → 1 we have, from eqs. (5.17), (5.21) with c = 0,

(1− xp)(1− zp) ∼ ε2κ̃ (5.24)

and so
1

σ0

d2σ

dxp dzp
∼ CFαS

π

1

ε2κ̃
, (5.25)

whereas the parton shower approximation gives

1

σ0

d2σ

dz dκ̃
∼ CFαS

π

1

εκ̃
. (5.26)

Since the jacobian factor (5.16) or (5.20) in this limit is simply ε, the shower approximation

is exact in the soft limit.

5.5 Example: qq̄ → tt̄

We denote the momenta in this process by pa + pb → pc + pd and the 2→ 2 invariants by

s̄ = 2pa · pb , t̄ = −2pa · pc , ū = −2pa · pd , (5.27)

so that s̄+ t̄+ ū = 0. Colour flows from q to t and anticolour from q̄ to t̄. Therefore the

momentum transfer q = pa − pc = pd − pb is carried by a colour singlet and we preserve

this 4-momentum during showering.

For emission from the incoming light quark or the outgoing top quark, we work in the

Breit frame for this system, where

q = Q(0,0, 1) , pa =
1

2
Q(1 + c,0, 1 + c) , pc =

1

2
Q(1 + c,0,−1 + c) (5.28)

with Q2 = −t̄ − m2
t and c = m2

t /Q
2. Then the treatment of sects. 5.1 and 5.2 can be

applied directly, with the substitution b→ a since the emitting system is now (a, c) rather
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than (b, c). However, the phase space variables are no longer those of section 5.3 since they

involve the momenta of the q̄ and t̄, which in the frame (5.28) take the general form

pb =

[

1

2
Q
√

(1 + c)2 + 4K,Q⊥,−
1

2
Q(1 + c)

]

,

pd =

[

1

2
Q
√

(1 + c)2 + 4K,Q⊥,
1

2
Q(1− c)

]

, (5.29)

where K = Q⊥
2/Q2 is related to the 2→ 2 invariants:

s̄ =
1

2
Q2(1 + c)2

[

1 +

√

1 +
4K

(1 + c)2

]

, t̄ = −Q2(1 + c) , ū = −s̄− t̄ , (5.30)

and so

Q⊥
2 = −s̄

[

1 +
s̄

(1 + c)t̄

]

. (5.31)

For emission from the incoming light quark we define as in section 5.1

qi = αipa + βin+ q⊥i (5.32)

for i = a, c, g, where q⊥a = 0, q⊥c = −k⊥, q⊥g = k⊥, and n is as in eq. (5.3). Then

the αi’s and βi’s are given by eqs. (5.7) with the substitution b → a. The light antiquark

and the antitop are not affected and therefore qb = pb, qd = pd. This allows the complete

kinematics of the 2→ 3 process to be reconstructed. The 2→ 3 invariants can be defined

as in ref. [14]:

s = 2qa · qb , t1 = −2qa · qc , t2 = −2qb · qd , u1 = −2qa · qd , u2 = −2qb · qc .
(5.33)

It is convenient to express n = pc − cq so that (for i = a, c, g)

qi = (αi − cβi)pa + (1 + c)βipc + q⊥i . (5.34)

Then we find

s = αas̄ , t1 = αaβc(1 + c)t̄ , t2 = t̄ , u1 = αaū , u2 = βc(ū− ct̄)− αcs̄− 2k⊥ ·Q⊥ .
(5.35)

For emission from the outgoing top we use the results of section 5.2, again with the

substitution b→ a. Thus we now have for i = a, c, g

qi = αipc + βipa + q⊥i (5.36)

where the αi’s and βi’s are given by eqs. (5.12) with b→ a, and we find that

s = βas̄ , t1 = αcβa t̄ , t2 = t̄ , u1 = βaū , u2 = αcū−βcs̄−2k⊥·Q⊥ . (5.37)

Similar formulae to eqs. (5.35) and (5.37), with the replacements a → b and c → d,

will hold for the case of gluon emission from the colour-connected (q̄ t̄) system. Using

these relations, one can study the distribution of gluon radiation in the parton shower
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approximation and compare it with the exact qq̄ → tt̄g matrix element. Agreement will

be good in the soft and/or collinear regions but there will be regions of hard, wide-angle

gluon emission in which matrix element corrections should be applied. Alternatively, the

above equations can be used to formulate a modified subtraction scheme for combining

fixed-order and parton-shower results, as was done in ref. [14] for a different parton-shower

algorithm.

6. Decay colour connection

Consider the process b → ca where a is a colour singlet and the decaying parton b and

outgoing parton c are colour-connected. Examples are bottom quark decay, b→ cW ∗, and

top decay, t → bW . Here we have to preserve the 4-momentum of the decaying parton b

and therefore we work in its rest frame,

pb = mb(1,0, 0) , pc =
1

2
mb(1− a+ c,0, λ) , pa =

1

2
mb(1 + a− c,0,−λ) , (6.1)

where a = m2
a/m

2
b , c = m2

c/m
2
b and now

λ = λ(1, a, c) =
√

(1 + a− c)2 − 4a =
√

(1− a+ c)2 − 4c . (6.2)

6.1 Initial-state branching

For emission of a gluon g from the decaying parton b we write

qi = αipb + βin+ q⊥i (6.3)

where q⊥g = k⊥, q⊥c = −k⊥, q⊥b = 0 and we choose

n =
1

2
mb(1,0, 1) , (6.4)

i.e. aligned along pc in the rest frame of b. The mass-shell conditions give

βa =
a

αa
− αa , βc =

c+ κ

αc
− αc , βg =

κ

αg
− αg , (6.5)

with κ = k⊥
2/m2

b . From momentum conservation

αa + αc + αg =
a

αa
+
c+ κ

αc
+

κ

αg
= 1 . (6.6)

Recall that in initial-state branching of a heavy object our new evolution variable is given

by eq. (2.19), so we have

αg = 1− z , κ = (κ̃− 1)(1 − z)2 (6.7)

where κ̃ = q̃2/m2
b > 1. Introducing for brevity the notation

w = 1− (1− z)(κ̃− 1) , u = 1 + a− c− (1− z)κ̃ , v =
√

u2 − 4awz , (6.8)

from eq. (6.6) we find

αa =
u+ v

2w
, αc = 1− αa − αg = z − αa . (6.9)
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6.2 Final-state branching

For radiation from the outgoing parton c we write

qi = αipc + βin+ q⊥i (6.10)

where pc is given by eq. (6.1). Since the colour-connected parton b is at rest in our working

frame of reference, the choice of the light-like vector n in this case is somewhat arbitrary.

By analogy with the cases treated earlier, we choose it to be opposite to that used for the

radiation from b, i.e. along the direction of the colour singlet a:

n =
1

2
mb(λ,0,−λ) . (6.11)

The kinematics are then identical with those for final-final connection (section 3), with the

replacement b→ c, c→ a.

6.3 Phase space variables

As in section 3, it is convenient to use the Dalitz plot variables, which in this case are

xi =
2qi · pb
m2
b

. (6.12)

For emission from the decaying parton b we have xi = 2αi + βi and hence, from eq. (6.9),

xa =
u+ v

2w
+
u− v

2z
, xc = w + z − xa , xg = 2− w − z = (1− z)κ̃ , (6.13)

with the jacobian factor

∂(xa, xg)

∂(z, κ̃)
= (1− z)

[

u+ v

2w2
− u− v

2z2
+
a(w − z)2

vwz

]

. (6.14)

In the soft limit z → 1− ε we find

xa ∼ 1 + a− c− εκ̃′b , xg ∼ εκ̃b (6.15)

where

κ̃′b = λ+
κ̃b
2
(1− a+ c− λ) . (6.16)

For emission from the outgoing parton c we have, from eq. (3.12) with the replacement

b→ c, c→ a:

xa = 1 + a− c− z(1− z)κ̃

xc = (2− xa)r + (z − r)
√

x2a − 4a

xg = (2− xa)(1 − r)− (z − r)
√

x2a − 4a (6.17)

where

r =
1

2

(

1 +
c

1 + a− xa

)

. (6.18)
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In the soft limit we have from eq. (3.20)

xa ∼ 1 + a− c− εκ̃c , xg ∼ εκ̃′c (6.19)

where

κ̃′c = λ+
κ̃c
2c

(1− a+ c− λ) . (6.20)

For full coverage of the soft region we require

κ̃b
κ̃′b

=
κ̃′c
κ̃c

(6.21)

which gives in this case

(κ̃b − 1)(κ̃c − c) =
1

4
(1− a+ c+ λ)2 . (6.22)

Note that, while there is no upper limit on κ̃b, the largest value that can be chosen for κ̃c
is given by the equivalent of eq. (3.25),

κ̃c < 4(1 + a− 2
√
c− c) . (6.23)

6.4 Example: top decay

In the decay t → Wbg we have a = m2
W/m2

t = 0.213 and c = m2
b/m

2
t = 0.026, so for

simplicity we neglect c. We also neglect the top width Γt here, although it can be taken

into account through a multi-scale branching procedure [11]. Then for radiation from the

top we have from eq. (6.13)

xW =
u+ v

2w
+
u− v

2z
, xg = (1− z)κ̃ , (6.24)

where u, v, w are given by eqs. (6.8) with c→ 0. The phase space is the region

0 < xg < 1− a , 1− xg +
a

1− xg
< xW < 1 + a . (6.25)

Notice that for real xW we require u2 > 4awz, i.e.

1 < κ̃ < 1 + a

[

1−
√

z(1 − a)

a(1− z)

]2

, (6.26)

and

1− 1− a

κ̃+ 2
√

a(κ̃− 1)
< z < 1 . (6.27)

Thus there is no upper limit on κ̃, but the range of z becomes more limited as κ̃ increases.

For radiation from the b we have from eq. (6.17)

xW = 1 + a− z(1− z)κ̃

xg =
1

2
(2− xW )−

(

z − 1

2

)

√

x2W − 4a . (6.28)
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Figure 11: Phase space for decay t → Wbg, with symmetric choice of emission regions for the b

(B) and the t (T1,T2), and the dead region (D).

To cover the soft region we require κ̃ < κ̃t for emission from the top quark and κ̃ < κ̃b for

that from the bottom, where eq. (6.22) gives

κ̃b =
(1− a)2

κ̃t − 1
. (6.29)

The most symmetrical choice would therefore appear to be κ̃b = κ̃t− 1 = 1− a = 0.787, as

illustrated in figure 11.

As mentioned above, there is no upper limit on κ̃t. Thus the region covered by gluon

emission from the top quark can be as large as we like. However, eq. (6.23) tells us that

the upper limit for radiation from the b is

κ̃b < 4(1−
√
a)2 = 1.16 , (6.30)

and correspondingly κ̃t > 1 + 1
4(1 +

√
a)2 = 1.53. Figure 12 shows this maximal region

that can be covered by emission from the b, together with the complementary regions of

emission from the t.

We note from figures 11 and 12 that, for any value of κ̃t, the region for emission from

the top quark consists of two distinct parts that touch at the point xg = 1−√a, xW = 2
√
a,

where the W boson is at rest: a subregion T1 which includes the soft limit xg → 0 and a

hard gluon region T2. An important difference from the previous treatment of top decay in

HERWIG is that both these regions were absent in the latter, since the decay was performed

in the top rest frame and the non-covariant formalism used there did not allow any emission

from an object initially at rest [19]. As a consequence, a matrix element correction with

an infrared cutoff had to be used to fill these regions [30]. In the new covariant formalism,

emission from the top quark is generated consistently in any frame, and the infrared region

is fully covered by parton showers from the top and bottom.
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Figure 12: Phase space for decay t → Wbg, with maximal region (B) for emission from the b,

together with complementary regions of emission from the t (T1,T2) and the dead region (D).

The exact t→Wbg differential decay rate to first order in αS is given in [30]:

1

Γ0

d2Γ

dxWdxg
=

αS

π

CF
(1 + a− xW )x2g

{

xg −
(1 + a− xW )(1− xg) + x2g

1− a
+ (6.31)

+ xg
(xW + xg − 1− a)2

2(1− a)2
+

2a(1 + a− xW )x2g
(1− a)2(1 + 2a)

}

where Γ0 is the lowest-order decay rate. In the soft region xW → 1 + a, xg → 0 this

becomes
1

Γ0

d2Γ

dxWdxg
∼ αS

π

CF
xg

[

1

1 + a− xW
− 1

(1− a)xg

]

. (6.32)

For soft gluon emission (1 − z = ε→ 0) from the top quark we have from eqs. (6.15),

(6.16)

xW ∼ 1 + a− ε(1− a) , xg ∼ εκ̃ (6.33)

and so the exact form of the soft gluon distribution is

1

Γ0

d2Γ

dxgdxW
∼ αs

π

CF
ε2

ft(κ̃) (6.34)

where

ft(κ̃) =
κ̃− 1

(1− a)κ̃2
. (6.35)

In the same region the parton shower approximation (2.11) gives

d2P

dxgdxW
∼ 1

(1− a)ε

d2P

dz dκ̃
∼ αs

π

CF
(1− a)ε2κ̃

(

1− 1

κ̃

)

=
αs
π

CF
ε2

ft(κ̃) . (6.36)

– 27 –



J
H
E
P
1
2
(
2
0
0
3
)
0
4
5

Thus we see that, for emission from the top quark, the shower approximation is exact in the

soft limit. At higher gluon energies, inside the region T1 the parton shower overestimates

the exact matrix element and can therefore be corrected easily by the rejection method.

In the hard gluon region T2, which contributes only a small finite correction to the cross

section, the parton shower overestimates the matrix element at lower values of xg but

underestimates it at the highest values. Therefore a combination of rejection and matrix

element correction is needed in this region.

For emission from the bottom quark in the soft limit, we use the results of section 3.2

with the substitution b→ 0, c→ a to obtain

xW ∼ 1 + a− εκ̃ , xg ∼ ε

(

1− a+
κ̃

1− a

)

. (6.37)

Therefore the exact soft gluon distribution in the b jet should be

1

Γ0

d2Γ

dxgdxW
∼ αs

π

CF
ε2

fb(κ̃) (6.38)

where

fb(κ̃) =
1

(1− a)κ̃

[

1 +
κ̃

(1− a)2

]−2

. (6.39)

On the other hand the parton shower approximation in this case gives simply

d2P

dxgdxW
∼ 1

(1− a)ε

d2P

dz dκ̃
∼ αs

π

CF
(1− a)ε2κ̃

. (6.40)

Thus the soft gluon distribution in the b jet region is overestimated by a factor of

[

1 +
κ̃

(1− a)2

]2

, (6.41)

which can be corrected by the rejection method. This factor varies from 1 to 5.2 for the

symmetric choice of the b jet region κ̃b = 1 − a depicted in figure 11. For the maximal

b jet shown in figure 12, it rises to 8.3. Since the shower approximation is exact in the

soft limit for emission from the top, one can reduce the amount of soft correction required

by decreasing the b jet region and increasing that for top emission, in accordance with

eq. (6.29). However, for large values of κ̃t the dead region moves near to the collinear

singularity at xW = 1 + a and a large hard matrix element correction becomes necessary.

7. Conclusions

We have presented a new formulation of the parton-shower approximation to QCD matrix

elements, which offers a number of advantages over previous ones. Direct angular order-

ing of the shower ensures a good emulation of important QCD coherence effects, while

the connection between the shower variables and the Sudakov-like representation of mo-

menta (2.1) simplifies the kinematics and their relation to phase space invariants. The use

of mass-dependent splitting functions with the new variables allows an accurate description
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of soft gluon emission from heavy quarks over a wide angular region, including the collinear

direction. The separation of showering into contributions from pairs of colour-connected

hard partons permits a general treatment of coherence effects, which should be reliable at

least to leading order in the number of colours. Since the formulation is slightly different

for initial- and final-state showering, we have provided formulae for all colour-connected

combinations of incoming and outgoing partons.

As mentioned in the Introduction, this new shower formulation is a key element of the

event generator Herwig++ [11]; detailed results of its implementation for e+e− annihilation

are presented in ref. [12].
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