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1. Introduction

New string or M-theory models are obtained turning on n-form fluxes, which allow, in

general, the lifting of vacua, supersymmetry breaking and moduli stabilisation [1]–[24].

Examples of such new solutions are IIB and IIA orientifolds [25]–[29], where the orientifold

projection (in absence of fluxes) preserves N = 4 or N = 2 supersymmetries.

Recently, the T6/Z2 orientifold with N = 4 supersymmetry [8, 9] and K3 × T2/Z2

orientifold [24] with N = 2 supersymmetry have been the subject of an extensive study.

In these cases, turning on NS–NS and R–R three–form fluxes allows to obtain new string

vacua with vanishing vacuum energy, reduced supersymmetry and moduli stabilisation [7]–

[9] and [21, 24]. These features can all be understood in terms of an effective gauged

supergravity, where certain axion symmetries are gauged [30]–[32]. These are generalised

no-scale models [33, 34].
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In the present investigation, we consider more general four-dimensional orientifolds

with fluxes (both in type IIB and IIA) where the orientifold projection involves an inversion

I9−p on 9 − p coordinates, transverse to the Dp-brane world-volume, thus generalising

the T6/Z2 orientifold (with p = 3) constructed by Frey-Polchinski [8] and Kachru-Shulz-

Trivedi [9] (see also [10] for a derivation of the complete low-energy supergravity from T-

dialysed Type I theory in ten dimensions). Interestingly, their low-energy descriptions are

all given in terms of N = 4 supergravity with six vector supermultiplets from the closed-

string sector, coupled to anN = 4 Yang-Mills theory living on the Dp-brane world-volume.

However, despite the uniqueness of N = 4 supersymmetry, the low-energy actions

crucially differ in the choice of the manifest “duality symmetries” of the lagrangian, since

different sets of fields survive the orientifold projection, and therefore different symmetries

are manifestly preserved. Leaving the brane degrees of freedom aside, these duality sym-

metries are specified by their action on the (twelve) bulk vectors. Actually, N = 4 super-

gravity demands that such symmetries be contained in SU(1, 1)×SO(6, 6) [35, 36] and act
on the vector field strengths and their duals as symplectic Sp(24,R) transformations [37].
On the other hand, the symmetries of the lagrangian correspond to block-lower-triangular

symplectic matrices, whose block-diagonal components have a definite action on the vector

potentials [38, 39, 40]. For instance, in the orientifold models containing an I9−p inversion,

the block-diagonal symmetries always include GL(9 − p,R) × GL(p − 3,R), as maximal
symmetry of the GL(6,R) associated to the moduli space of the six-torus metrics. The
lower-triangular block contains the axion symmetries of the R-R scalars and of the NS-NS

ones originating from the B-field, whenever present1.

In the sequel, we describe all nilpotent algebras Np [41], corresponding to axion sym-

metries of the R-R and NS-NS scalars for all orientifold models. All Np’s are nilpotent

subalgebras of so(6, 6), are generically non-abelian and contain central charges. There are

four of them in type IIB (p = 3, 5, 7, 9) with dimensions 15, 23, 23, 15 respectively, while

there are only three of them in type IIA (p = 4, 6, 8) of dimensions 20, 24, 20, respectively.

A common feature of these algebras is that they always contain fifteen R-R axionic symme-

tries, while the extra symmetries correspond to NS-NS B-field axions in the bi-fundamental

of GL(9− p,R)×GL(p− 3,R).
A further R-R axion symmetry originates from the SU(1, 1), which acts as electric-

magnetic duality on the gauge fields living on the brane world-volume. The corresponding

axion field can be identified with the Cp−3 R-R field, as dictated by the coupling
∫

Σp+1

Cp−3 ∧ F ∧ F , (1.1)

where F is the two-form field strength of gauge fields living on the branes.

Turning on fluxes in the orientifold models (three- and five-form fluxes in type IIB, two-

and four-form fluxes in IIA) corresponds to a “gauging” in the corresponding supergravity

lagrangian, whose couplings are dictated by the particular choice of fluxes. Non-abelian

gaugings may also occur corresponding to subalgebras of Np, or quotient algebras Np/Z,

where Z are some of the central generators of Np.

1For example, the latter is not present in the p = 3 case, i.e. the T6/Z2 orientifold.
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As an illustrative example, let us consider the p = 7 type IIB orientifold defined in sec-

tion 2, where the non-vanishing NS-NS and R-R fluxes are Haij, Faij , G
i = εab εijklGabjkl

(a, b = 5, 6 and i, j = 1, . . . , 4), and let us look at terms involving the axions coming from

the B and four-form fields, Bia and Cijab = Cijεab. Inspection of the three-form kinetic

term reveals a non-abelian gauge coupling proportional to

√−g HaijHµνb g
ab giµ gjν , (1.2)

as well as axion gauge couplings proportional to

√−g HaijHµb` g
ab giµ gj` , (1.3)

together with similar expressions for the F -three form. Such terms come also from the

reduction of type IIB four-form field. In addition, when a five-form flux Gi is turned on an

axion gauge coupling emerges of the type

∂µCij + εijk`G
kG`

µ . (1.4)

where G`
µ = g`i giµ are the Kaluza-Klein vectors. We report here only a preliminary

analysis of the deformation of the N = 4 supergravity due to these new gaugings.

In the present paper we do not address either the question of unbroken supersymmetries

or the question of moduli stabilisation, which would require the knowledge of the scalar

potential and a study of the fermionic sector. However, we can anticipate that certain

moduli are indeed stabilised in all these models, since a Higgs effect is taking place as

suggested by the presence of charged axion couplings.

The paper is organised as follows: in section 2, we review the four-dimensional T6/Z2

orientifold models, their spectra and their allowed fluxes. In section 3, the N = 4 super-

gravity interpretation is given for the ungauged case (absence of fluxes) and the duality

symmetries exposed. The Np algebras are exhibited as well as their action on the vector

fields. In section 4, we give a preliminary description of gauged supergravity, for the par-

ticular case of type IIB orientifolds with some three-form fluxes turned on. In section 5

some conclusions are drawn. Finally, in appendix some useful formulae needed to compute

the quadratic part of the vector field strengths in the lagrangian, are given.

2. N = 4 orientifolds: spectra and fluxes

In this section we review the construction of orientifold models preserving N = 4 super-

symmetries in D = 4 [29]. This is the simplest setting for orientifold constructions, and

consists of modding out type II superstrings by the world-sheet parity Ω [25]. Follow-

ing [28, 29], the orientifold projection can be given a suggestive geometrical interpretation

in terms of non-dynamical defects, the orientifold O-planes, that reflect the left-handed

and right-handed modes of the closed string. Actually, one can combine world-sheet parity

with other (geometrical) operations. In general, this can affect the nature of the orientifold

planes, that, in the simplest instance of a bare Ω have negative tension and R-R charge, and

are (9 + 1)-dimensional (O9 planes) since they have to respect the full Lorentz symmetry
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preserved by Ω. In the present paper, we are interested in the class of models generated

by the ΩI9−p generator, where I9−p denotes the inversion on 9− p coordinates. Of course,

ΩI9−p must be a symmetry of the parent theory, and this is the case of type IIB for p odd,

and of type IIA for p even. Actually, ΩI9−p reflects the action of T-duality in orientifold

models. Indeed, T-duality itself can be thought of as a chiral parity transformation

XL → XL , XR → −XR , (2.1)

and conjugates Ω so to get

T9−pΩT
−1

9−p = ΩI9−p . (2.2)

As a result, the full ten-dimensional Lorentz symmetry is now broken to the subgroup

SO(1, p)× SO(9− p), and the closed-string sector involves O9−p planes sitting at the fixed

points of the orbifold T9−p/I9−p. The associated open-string sector will then correspond

to open strings with Dirichlet boundary conditions along T9−p, i.e. open strings ending on

D(9 − p) branes. As usual, tadpole conditions will fix the rank of the Chan-Paton gauge

group, i.e. the total number of D-branes. In the present paper, however, we shall not be

concerned with open-string degrees of freedom and we shall concentrate our analysis solely

on the closed-string degrees of freedom.

Before we turn to the description of specific models, a general comment is in order.

An important requirement in the construction is that the orientifold group be Z2, i.e. its

generator ΩI9−p must square to the identity. Although Ω has always ±1 eigenvalues, and
thus Ω2 = 1, this is not the case for I9−p. For example, for p = 7 I2 would correspond to

a π rotation on a two-plane and, although its action on the bosonic degrees of freedom is

real and assigns to them a plus or minus sign according to the number of indices along the

two-plane, its eigenvalue on spinors is eiπΣ , where Σ = ± 1
2 are the two helicities. Thus,

it does not square to the identity, but rather to (−1)F , with F the (total) space-time

fermion number. Therefore, in this case the orientifold projection needs be modified by the

inclusion of (−1)FL , with FL the left-handed space-time fermion number [47]. We are thus

dealing with the four-dimensional orientifolds

(Tp−3 × T9−p) /ΩI9−p
[
(−1)FL

][ 9−p2 ] , (2.3)

where [ 9−p2 ] denotes the integer part of (9−p)/2. Here we have decomposed the six-torus as

T6 = Tp−3 × T9−p , (2.4)

since I9−p only acts on the coordinates of T9−p, while leaves invariant those along Tp−3.

As we shall see, this is a natural decomposition since, in the orientifold, we are left with

the perturbative symmetry GL(p − 3) × GL(9 − p) of the compactification torus. To fix

the notation, in this paper we shall label coordinates on the T6 with a pair of indices

(i, a), where i = 1, . . . , p− 3 counts the coordinates not affected by the space parity (those
coordinates that would be longitudinal to the branes), while a = 1, . . . , 9− p runs over the

coordinates of T9−p (orthogonal to the branes). As usual, Greek indices µ, ν, . . . will label

coordinates on the four-dimensional Minkowski space-time.
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p scalars vectors

9 gij , φ, Cµν , Cij Gi
µ, Ciµ

7 gij, gab, φ, Bia, C, Cia, Cijkl, Cijab Gi
µ, Baµ, Caµ, Cijkµ

5 gij , gab, φ, Bia, Cµν , Cij , Cab, Ciabc Gi
µ, Baµ, Ciµ, Cabcµ

3 gab, φ, C, Cabcd Baµ, Caµ

Table 1: Massless degrees of freedom for the IIB orientifolds.

At this point, it is better to consider the cases p odd or p even separately. In the first

case, ΩI9−p[(−1)FL ][
9−p
2

] is a symmetry in type IIB, while in the latter case it is properly

defined within type IIA.

2.1 IIB orientifolds

In type IIB superstring we have to consider four cases,
p fluxes

9 none

7 Hija, Fija, Gijkab

5 Habc, Fiab, Hija, Gijabc

3 Habc, Fabc

Table 2: Allowed fluxes for the

IIB orientifolds. F , H and G

fluxes are associated to the B, C2

and C4 fields.

corresponding to the allowed choices p = 9, 7, 5, 3. The

massless ten-dimensional fields have a well defined parity

with respect to Ω:

even : GMN , φ , CMN , (2.5)

odd : BMN , C , C
(+)
MNPQ , (2.6)

where GMN is the metric tensor, φ the dilaton, BMN the

Kalb-Ramond two-form, and Cp+1 are the R-R (p + 1)-

forms.2 Henceforth, it is straightforward to select the four-

dimensional excitations that survive the orientifold projection. In fact, after splitting the

ten-dimensional index M in the triple (µ, i, a) labelling M1,3 × Tp−3 × T9−p, it is evident

that the fields with an odd (even) number of a-type indices are odd (even) under the action

of I9−p. On the other hand, when present, (−1)FL assigns a plus sign to the NS-NS states

(which originate from the decomposition of the product of two bosonic representations of

SO(8)) and a minus sign to the R-R states (which originate from the decomposition of

the product of two spinorial representations of SO(8)). At the end, aside from the four-

dimensional metric tensor, one is left with the massless (bosonic) degrees of freedom listed

in table 1.

However, in orientifold models it happens often that fields which are odd under the

projection can be consistently assigned with a (quantised) background value for the fields

themselves, or for their field strengths. For example, in the p = 7 case the NS-NS fields B ij

and the R-R fields Cij are both odd with respect to the orientifold projection and, thus,

their quantum excitations are projected out. However, acting on them with a ∂a derivative

changes their parity, and thus (quantised) fluxes along the internal directions, Haij and

Faij , can be incorporated in the model. Repeating a similar analysis for the other cases

yields the allowed fluxes listed in table 2.
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p scalars vectors

8 gij , g99, φ, Bi9, Ci, C9µν , Cij9 Gi
µ, Cµ, Ci9µ, B9µ

6 gij , gab, φ, Bia, Ca, Ciµν , Cijk, Ciab Gi
µ, Baµ, Cijµ, Cabµ

4 g44, gab, φ, B4a, C4, Caµν , Cabc G4
µ, Baµ, Cµ, C4aµ

Table 3: Massless degrees of freedom for the IIA orientifolds.

2.2 IIA orientifolds

Type IIA superstring selects p even, and thus leaves us
p fluxes

8 Hij9, Gijk9

6 Haij, Habc, Fia, Gijab

4 Habc, Fab, G4abc

Table 4: Allowed fluxes for the

IIA orientifolds. F , H and G

fluxes are associated to the B,

C1 and C3 fields.

with the three cases p = 8, 6, 4. Although a bare Ω is not

a symmetry in type IIA, we can nevertheless assign a well

defined parity to the massless ten-dimensional degrees of

freedom:

even : GMN , φ , CM , (2.7)

odd : BMN , CMNP . (2.8)

As before, GMN is the metric tensor, φ the dilaton, BMN

the Kalb-Ramond two-form, while in this case the R-R potentials Cp+1 carry an odd number

of indices. The additional action of I9−p and, eventually, of (−1)FL thus yields the massless

degrees of freedom listed in table 3.

Also in this case one can allow for (quantised) fluxes along the compactification torus,

as summarised in table 4.

3. N = 4 supergravity interpretation of T6 orientifolds: manifest duality

transformations and Peccei-Quinn symmetries

The four-dimensional low-energy supergravities of N = 4 orientifolds (in the absence

of fluxes) can be consistently constructed as truncations of the unique four-dimensional

N = 8 supergravity which describes the low-energy limit of dimensionally reduced type

II superstrings. Its duality symmetry group E7(7) acts non linearly on the 70 scalar fields,

and linearly, as a Sp(56,R) symplectic transformation, on the 28 electric field strengths and
their magnetic dual. In this framework an intrinsic group-theoretical characterisation of

the ten-dimensional origin of the four-dimensional fields is indeed achieved. In the so-called

solvable Lie algebra representation of the scalar sector [41, 42], the scalar manifold

Mscal = exp
(
Solv(e7(7))

)
(3.1)

is expressed as the group manifold generated by the solvable Lie algebra Solv(e7(7)) defined

through the Iwasawa decomposition of the e7(7) algebra:

e7(7) = su(8) + Solv
(
e7(7)

)
. (3.2)

In this framework, there is a natural one-to-one correspondence between the scalar fields

and the generators of Solv(e7(7)). The latter consists of the 7 generators Hp of the e7(7)
Cartan subalgebra, parametrised by the T6 radii Rn = eσn together with the dilaton φ,

2Actually, the four-form C
(+)
4 is constrained to have a self-dual field strength, a peculiarity of type IIB
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and of the shift generators corresponding to the 63 positive roots α of e7(7), which are

in one-to-one correspondence with the axionic scalars that parametrise them. This cor-

respondence between Cartan generators and positive roots on one side and scalar fields

on the other, can be pinpointed by decomposing Solv(e7(7)) with respect to some rele-

vant groups. For instance, the duality group of maximal supergravity in D dimensions

is E11−D(11−D) and therefore, in the solvable Lie algebra formalism, the scalar fields in

the D-dimensional theory are parameters of Solv(e11−D(11−D)). Since e11−D(11−D) ⊂ e7(7),

decomposing Solv(e7(7)) with respect to Solv(e11−D(11−D)) it is possible to characterise the

higher-dimensional origin of the four-dimensional scalars. Moreover, in four dimensions the

group SL(2,R)× SO(6, 6)T ⊂ E7(7), SO(6, 6)T being the isometry group of the T6 moduli-

space, acts transitively on the scalars originating from ten-dimensional NS-NS fields of

type II theories. These scalars therefore parametrise Solv(sl(2,R)+so(6, 6)T ). Henceforth,
decomposing Solv(e7(7)) with respect to Solv(sl(2,R)+so(6, 6)T ) one can achieve an intrin-
sic characterisation of the NS-NS or R-R ten-dimensional origin of the four-dimensional

scalar fields, the R-R scalars (and the corresponding solvable generators) transforming in

the spinorial representation of SO(6, 6)T . Finally, depending on whether we interpret the

four-dimensional maximal supergravity as tied to type II supergravities on T6 or D = 11

supergravity on T7, the metric moduli are acted on transitively by GL(6,R)g or GL(7,R)g
subgroups of E7(7), respectively. Therefore, in the two cases the metric moduli parametrise

Solv(gl(6,R)g) or Solv(gl(7,R)g) and thus, decomposing Solv(e7(7)) with respect to these

two solvable subalgebras, depending on the higher-dimensional interpretation of the four-

dimensional theory, we may split the axions into metric moduli of the internal torus and

into scalars deriving from dimensional reductions of ten- or eleven-dimensional tensor fields.

The latter will parametrise nilpotent generators transforming in the corresponding tensor

representations with respect to the adjoint action of GL(6,R)g or GL(7,R)g. As a result
of the above decompositions, we are able to characterise unambiguously each parameter of

Solv(e7(7)) as a dimensionally reduced field. Let us consider the dimensional reduction of

type II supergravities. As far as the axionic scalars are concerned the correspondence with

roots can be summarised in terms of an orthonormal basis {εp} of R7:3

Cn1n2...nk ↔ a+ εn1 + · · · εnk , (3.3)

Cn1n2...nkµν ↔ a+ εm1 + · · · εm6−k
, (εn1...nkm1...m6−k 6= 0) , (3.4)

Bnm ↔ εn + εm , (3.5)

Bµν ↔
√
2 ε7 , (3.6)

Gnm ↔ εn − εm , (n 6= m) , (3.7)

where

a = −1
2

6∑

n=1

εn +
1√
2
ε7 . (3.8)

3Now and henceforth we shall always label by n, m = 1, . . . , 6 the T6 directions, by i, j = 1, . . . , p − 3

the directions of Tp−3 which are longitudinal to the Dp-brane and by a, b = p−2, . . . , 9−p the directions of

the transverse T9−p. The four-dimensional space-time directions are generically denoted by Greek letters.

– 7 –



J
H
E
P
1
0
(
2
0
0
3
)
0
1
5

In our notation, the so(6, 6)T roots have the form {±εn±εm}, where 1 ≤ n < m ≤ 6. Notice
indeed that the nilpotent generators corresponding to non-metric axions transform in tensor

representations of GL(6,R)g, and this, in turn, defines the GL(6,R)g representation of the
corresponding scalar. For instance, the Cn1...nk parametrises the generator T

n1...nk =

Ea+εn1+...εnk
whose transformation property under GL(6,R)g is

g ∈ GL(6,R)g : g · T n1...nk · g−1 = gn1
m1 · · · gnkmk

Tm1...mk . (3.9)

The roots corresponding to R-R fields are spinorial with respect to SO(6, 6)T and, depend-

ing on whether the number of their indices is even or odd, they belong to the root system of

two e7(7) algebras which are mapped into each other by the SO(6, 6)T outer automorphism

(T-duality) [43, 44]. These two systems naturally correspond to the reduction of IIB and

IIA superstrings, that are indeed related by T-dualities. Hence, the T6 metric moduli in

the type IIA or B descriptions, are acted upon transitively by two inequivalent GL(6,R)g
subgroups of E7(7): in the former case GL(6,R)g is contained in SL(8,R) ⊂ E7(7), while

in the latter case GL(6,R)g is contained in the maximal subgroup SL(3,R) × SL(6,R)g
of E7(7). As far as the R-R scalars are concerned, the two representations differ in the

SO(6, 6)T chirality of the 32 spinorial positive roots

IIA : 32− =







1

2
(

odd +
︷ ︸︸ ︷

±ε1 . . .± ε6) +
1√
2
ε7






,

IIB : 32+ =







1

2
(

even +
︷ ︸︸ ︷

±ε1 . . .± ε6) +
1√
2
ε7






. (3.10)

Similarly, vector potentials, and their corresponding duals, are in one-to-one correspon-

dence with weights W of the 56 of E7(7) in the two representations discussed above:

Cn1...nkµ ↔ w + εn1 + · · · εnk ,

Bmν ↔ εn −
1√
2
ε7 ,

Gn
µ ↔ −εn −

1√
2
ε7 ,

where

w = −1
2

6∑

n=1

εn . (3.11)

The dual potentials correspond to the opposite weights −W .
The above axion-root (Φ ↔ α) and vector-weight (Aµ ↔ W ) correspondences can be

retrieved also from inspection of the scalar and vector kinetic terms in the dimensionally

reduced type IIA or type IIB lagrangians [43, 45, 46] on a straight torus, which have the
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form:

dilatonic scalars: −∂µ~h · ∂µ~h ,

axionic scalars: −1
2
e−2α·h (∂µΦ · ∂µΦ) ,

vector fields: −1
4
e−2W ·h Fµν F

µν ,

where

~h =

6∑

n=1

σn

(

εn +
1√
2
ε7

)

− 1
2
φa , (3.12)

and, as usual, Fµν = ∂µAν − ∂νAµ.

A generic axion Φ and its dilatonic partner eα·h can be thought of as the real and

imaginary parts of a complex field z spanning an SL(2,R)/SO(2) submanifold, where
the SL(2,R) group is defined by the root α. In the models describing type II strings on
Tp−3×T9−p orientifolds, the real part of the complex scalar z spanning the SL(2,R)/SO(2)
factor in the scalar manifold is Ci1...ip−3 , where i1, . . . ik label the directions of Tp−3, as

dictated by the coupling in eq. (1.1). From eqs. (3.3) and (3.12) one can then verify that

Im(z) = eα·h = Volp−3 e
p−7
4

φ, where Volp−3 denotes the volume of Tp−3. The scalar Im(z)

defines the effective four-dimensional coupling constant of the super Yang-Mills theory on

Dp-branes through the relation:

1

g2
YM

= Vp−3 e
p−7
4

φ . (3.13)

The embedding of the N = 4 orientifold models Tp−3 × T9−p (in absence of fluxes)

inside the N = 8 theory (in its type IIA or IIB versions) is defined by specifying the

embedding of the N = 4 duality group SL(2,R) × SO(6, 6) inside the N = 8 E7(7) one.

As far as the scalar sector is concerned, this embedding is fixed by the following group

requirement:

SO(6, 6) ∩ GL(6,R)g = O(1, 1) × SL(p− 3,R)× SL(9− p,R) . (3.14)

Condition (3.14) fixes the ten-dimensional interpretation of the fields in the ungauged

N = 4 models (except for the cases p = 3 and p = 9) which, for a given p, is indeed

consistent with the bosonic spectrum resulting from the orientifold reductions listed in the

previous section. In the p = 3 and p = 9 cases, the two embeddings are characterised by a

different interpretation of the scalar fields, consistent with the T6/Z2 orientifold reduction

in the presence of D3 or D9 branes. We shall denote these two models by T0 × T6 and

T6 × T0, respectively. In these cases, equation (3.14) in the solvable Lie algebra language

amounts to requiring that metric moduli are related either to the Tp−3 metric gij or to

the T9−p metric gab. The scalar field parameterising the Cartan generator of the external

SL(2,R) factor is given in eq. (3.13), while the metric modulus corresponding to the O(1, 1)
in eq. (3.14) is (modulo an overall power)

O(1, 1)↔ (Vp−3)
9−p (V9−p)

11−p . (3.15)
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IIB Superstring

IIA Superstring

T  × T   or T  × T0 6 06 2 4T  × T 24T  × T

1 5T  × T 5 1T  × T3 3T  × T

1β 2β 3β 4β 5β

6β

Figure 1: SO(6, 6) Dynkin diagrams for the Tp−3 × T9−p models. The shaded subdiagrams define

the groups SL(p− 3,R)× SL(9− p,R) acting transitively on the metric moduli. The empty circles

define simple roots corresponding to the metric moduli gij , gab, the grey circle denotes a simple

root corresponding to a Kalb-Ramond field Bia and the black circle corresponds to a R-R axion.

The axions not related to the T6 metric moduli consist of Ci1...ip−3 in the external SL(2,R)/
SO(2) factor, (p− 3) (9− p) moduli Bia in the bifundamental of SL(p− 3,R)×SL(9− p,R)
and 15 R-R moduli which we shall generically denote by CI and which span the maximal

abelian ideal {T I} of Solv(so(6, 6)). The scalars Bia and CI parametrise a 15+(p−3) (9−p)
dimensional subalgebra Np of Solv(so(6, 6)) consisting of nilpotent generators only. In

figure 1 the so(6, 6) Dynkin diagrams for the various models and the corresponding in-

tersections with gl(6,R)g , represented by sl(p − 3,R) + sl(9 − p,R) subdiagrams, are il-
lustrated. As far as the scalar fields are concerned, the Tp−3 × T9−p models within the

same type IIA or IIB framework are mapped into each other by so(6, 6)T Weyl trans-

formations, which can be interpreted as T-dualities on an even number of directions of

T6.

We con now turn to the detailed analysis of each (IIB or IIA) orientifold model.

3.1 T4 × T2 IIB orientifold with D7 branes. The ungauged version

Solvable algebra of global symmetries. The following model (with p = 7) describes

the bulk sector of IIB superstring compactified on a (T4×T2)/Z2 orientifold with D7 branes

wrapped on the T4.

To this end, we describe the embedding of the scalar sector of the correspondingN = 4

model within the N = 8 by expressing the so(6, 6) Dynkin diagram {βn} in terms of the
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simple roots of e7(7)
4

β1 = ε1 − ε2 ,

β2 = ε2 − ε3 ,

β3 = ε3 − ε4 ,

β4 = ε4 + ε5 ,

β5 = −ε5 + ε6 ,

β6 = −
1

2

(
6∑

n=1

εn

)

+
1√
2
ε7 = a .

According to eq. (3.3), the root β6 corresponds to the ten-dimensional R-R scalar C0, and

thus identifies the type IIB duality group SL(2,R)IIB. The Dynkin diagram of the external
SL(2,R) factor in the isometry group consists, instead, of the single root

β = a+ ε1 + ε2 + ε3 + ε4 . (3.16)

It is useful to classify the positive roots according to their grading with respect to three

relevant O(1, 1) groups generated by the Cartan operators Hβ, Hλ4 , Hλ6 and parametrised

by the moduli β · h, h4, h6:

O(1, 1)0 → eβ·h = V4 ,

O(1, 1)1 → eh4 = (V4)
1/4 (V2)

1/2 ,

O(1, 1)2 → eh6 = e−φ , (3.17)

where we have denoted by λn the so(6, 6) simple weights, λn · βm = δnm. O(1, 1)0 is

generated by the Cartan generator of the external SL(2,R) and O(1, 1)1, O(1, 1)2 are in
GL(4,R) ×GL(2,R), the former corresponding to the metric modulus given in eq. (3.15).
In table 5 we list the axionic fields of the model together with the corresponding generator

of Solv(sl(2,R)) + Solv(so(6, 6)), for each of which the O(1, 1)3 grading and the SL(4,R)×
SL(2,R) representations are specified. The indices i, j and a, b label as usual the directions
of the torus which are longitudinal (T4) and transverse (T2) to the D-branes.

The fields Bia and Cia transform in the representation (4,4) of SL(4,R) × SO(2, 2)
where SO(2, 2) = SL(2,R) × SL(2,R)IIB, and therefore will be collectively denoted by Φλi ,
where λ = (α, a) = 1, 2, 3, 4 labels the 4 of SO(2, 2), with a choice of basis corresponding

to the invariant metric ηλσ = diag(+1, +1, −1, −1). Its expression in terms of the fields
Bia and Cia is

Φλi =
1√
2
{Ci2 −Bi1, Bi2 + Ci1, Bi1 + Ci2, −Bi2 +Ci1} . (3.18)

We shall use the same notation for the corresponding generators, {T i
λ} ≡ {T 1ia, T 2ia}.

4In our conventions β1 is the end root of the long leg and β5, β6 the symmetric roots.
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GL(4)×GL(2)-rep. generator root field dim.

– T(0,0,0) {εi − εj , εa − εb} (i < j, a > b) {gij , gab} 7

(1,1)(0,0,1) T0 a C0 1

(4,2)(0,1,0) T 1ia εi + εa Bia 8

(4,2)(0,1,1) T 2ia a+ εi + εa Cia 8

(6,1)(0,2,1) T ij a+ (εi + εa) + (εj + εb) Cij ab ≡ Cij εab 6

(1,1)(2,0,0) T β = a+ ε1 + ε2 + ε3 + ε4 Cijkl ≡ c 1

Table 5: Axionic fields for the T4×T2 IIB orientifold, generators of Solv(so(6, 6)), O(1, 1)3 gradings,

and SL(4,R)× SL(2,R) representations.

From the assigned gradings one can conclude that the generators T0, T
i
λ and T

ij close a

23-dimensional nilpotent solvable subalgebra N7 of Solv(so(6, 6)). The non-trivial commu-

tation relations are determined by the grading and the index structure of the generators,

and read
[
T0, T

i
λ

]
= Mλ

λ′ T i
λ′ ,

[

T i
λ, T

j
λ′

]

= ηλλ′ T
ij , (3.19)

where Mλ
λ′ is a nilpotent generator acting on the 4 of SO(2, 2) which, for our choice of

basis, can be cast in the form

Mλ
λ′ =

1

2







0 −1 0 −1
1 0 1 0

0 1 0 1

−1 0 −1 0






. (3.20)

Infinitesimal transformations. Let us consider now the infinitesimal transformations

of the scalar fields generated by T0, Tλi and Tij . For simplicity we shall restrict our analysis

to those points in the moduli space where the only non-vanishing scalars are Φλ
i , C

ij and

C. The corresponding coset representative thus takes the simple form

L = exp
(
Cij T

ij
)
exp

(

Φλi T
i
λ

)

exp (C T0), (3.21)

and its associated left-invariant one-form is

L−1dL = (L−1∂0L) dC + (L
−1∂iλL) dΦ

λ
i + (L

−1∂ijL) dCij

= T0 dC + dΦλi (δ
λ′

λ − CMλ
λ′)T i

λ′ +
1

2
T ij dΦλi Φλj + T ij dCij . (3.22)

In general, the action of an element TΛ on the coset representative can be expressed as:

L−1TΛL = kαΛL
−1∂αL , (3.23)

where the kΛ are the corresponding Killing vectors. In the case at hand, from eq. (3.19),

we can derive

L−1T0L = T0 + Φλi Mλ
λ′ T i

λ′ +
1
2 Φ

λ
i Φ

λ′
j Mλλ′ T

ij ,

L−1T i
λL =

(

δλ
′

λ − CMλ
λ′
)

T i
λ′ + T ij Φjλ ,

L−1T ijL = T ij , (3.24)
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and, thus, read the non-vanishing components of the Killing vectors

k0 = ∂0 + Φλi Mλ
λ′ ∂iλ′ ,

kiλ = ∂iλ +
1

2
Φjλ ∂

ij ,

kij = ∂ij , (3.25)

where

∂0 =
∂

∂C
, ∂ij =

∂

∂Cij
and ∂iλ =

∂

∂Φλi
. (3.26)

Therefore, under the infinitesimal diffeomorphism ξ0k0 + ξλi k
i
λ+ ξijk

ij the fields transform

as follows:

δC = ξ0 ,

δΦλi = ξλi + ξ0 Φλ
′

Mλ′
λ ,

δCij = ξij +
1

2
ξλ[i Φj]λ . (3.27)

Scalar kinetic terms. Since all the quantities of our gauging are covariant with respect

to SO(2, 2) ×GL(4,R) it is useful to define the (full) coset representative in the following
way

L = exp
(
Cij T

ij
)
exp

(

Φλi T
i
λ

)

exp (c T )E , (3.28)

where E is the coset representative of the submanifold

E ∈ O(1, 1)0 ×
SO(2, 2)

SO(2) × SO(2) ×
GL(4,R)
SO(4)

. (3.29)

The scalar kinetic terms are computed by evaluating the components of the vielbein P =

L−1dL|G/H :

L−1dL|G/H =Pı̂̂ T̂
ı̂̂ +P

λ̂
ı̂ T̂

ı̂
λ̂
+P T̂ +PE , (3.30)

where the restriction to G/H amounts to select the non-compact isometries of the scalar

manifold, PE is the algebra-valued vielbein of the submanifold (3.29). Finally, the hatted

generators denote the non-compact component of the corresponding solvable generator.

The kinetic lagrangian for the scalar fields is then

Lscal =
1

2
Pµ P

µ +
1

2

∑

ı̂λ̂

P
λ̂
ı̂ µ P

λ̂ µ
ı̂ +

1

4

∑

ı̂̂

Pı̂̂ µ Pı̂̂
µ +Tr(P2

E) , (3.31)

where

Pµ = ∂µc ,

P
λ̂
ı̂µ = (∂µΦ

λ
i )E

i
ı̂Eλ

λ̂ ,

Pı̂̂µ =

[

∂µCij +
1

4

(

∂µΦ
λ
i Φjλ − ∂µΦ

λ
j Φiλ

)]

Ei
ı̂ E

j
̂ . (3.32)
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Sp-section O(1, 1)3-grading weight

F1a (−1, 0,−1/2) εa − 1/
√
2ε7

F2a (−1, 0, 1/2) w + εa
F i (−1,−1,−1/2) −εi − 1/

√
2ε7

F i (1,−1,−1/2) w + εj + εk + εl
F̃ 1a (1, 0, 1/2) −εa + 1/

√
2ε7

F̃ 2a (1, 0,−1/2) −w − εa

F̃i (1, 1, 1/2) εi + 1/
√
2ε7

F̃i (−1, 1, 1/2) −w − εj − εk − εl

Table 6: Field strengths, O(1, 1)3 gradings, and corresponding weights.

Vector fields. The twelve vector potentials are Baµ, Caµ, G
i
µ, Cijkµ. As before, we shall

collectively denote by Aλ
µ the pair {Baµ, Caµ}, and by F λ = dAλ the corresponding field

strengths. To avoid confusion, we shall then adopt the following notation for the remain-

ing field strengths: F i = dGi and F i = εijkl dCjkl. Moreover, F̃λ, F̃i and F̃i will denote

the “dual” field strengths, obtained by varying the lagrangian with respect to the elec-

tric ones, not to be confused with the four-dimensional Hodge duals ∗F λ, ∗F i and ∗F i.

Following [37], we can then collect the field strengths and their duals in a symplectic vector

{F λ, F
i, F i, F̃λ, F̃i, F̃i} . (3.33)

In table 6, we list the field strengths and their duals as they appear in the symplectic

section, together with their O(1, 1)3 gradings and the corresponding weights of the 56 of

E7(7).

Under a generic nilpotent transformation

ξT + ξ0 T0 + ξλi T
i
λ + ξijT

ij , (3.34)

the field strengths transform as

δF λ = −ξλi F
i + ξ0 F

λ′Mλ′
λ ,

δF i = 0 ,

δF i = ξF
i ,

δF̃λ = ξ ηλλ′ F
λ′ − ξ0 Mλ

λ′ F̃λ′ − ηλλ′ ξ
λ′
i F i ,

δF̃i = −ξ F̃i + ξλi F̃λ − 2 ξij F j ,

δF̃i = −ξλ
′

i F λ ηλλ′ + 2 ξij F
j . (3.35)

We then deduce that the electric subalgebra is

ge = o(1, 1)(0,0) + so(2, 2)(0,0) + gl(4,R)(0,0) + (1,1)(2,0) + (4,4)(0,1) + (1,6)(0,2) ,

where o(1, 1)(0,0) is the generator of O(1, 1)0, and the grading refers to O(1, 1)0 ×O(1, 1)1.
The group O(1, 1)2 is now included inside SO(2, 2) and, in what follows, we shall not

consider its grading any longer. Furthermore, we identify T as the generator in (1,1) (2,0),
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T i
λ and T

ij are associated to (4,4)(0,1) and (6,1)(0,2), respectively. The interested reader

may find in appendix the explicit symplectic realisation of the generators of N7, as well as

the computation of the vector kinetic matrix.

3.2 T2 × T4 IIB orientifold with D5 branes. The ungauged version

Solvable algebra of global symmetries. In this second model the relevant axions are

Bia, Cab, Ciabc ≡ Cd
i , Cµν ≡ c and Cij = εij c

′, and can be associated to the following

choice of simple roots

β1 = ε1 − ε2 ,

β2 = ε2 + ε3 ,

β3 = −ε3 + ε4 ,

β4 = −ε4 + ε5 ,

β5 = −ε5 + ε6 ,

β6 = a+ ε3 + ε4 ,

for the subalgebra so(6, 6) ⊂ e7(7). The Dynkin diagram of the external SL(2,R) consists,
instead, of the single root

β = a+ ε1 + ε2 , (3.36)

whose corresponding axion is Cij , according to eq. (3.3).

The triple grading, this time, refers to the O(1, 1)3 group generated by the three Cartan

Hβ, Hλ2 , Hλ6 and parametrised by the moduli β · h, h2, h6:

O(1, 1)0 → eβ·h = V2 e
−φ/2 ,

O(1, 1)1 → eh2 = (V2)
1/2 (V4)

1/4 eφ/2 ,

O(1, 1)2 → eh6 = (V4)
1/2 e−φ/2 , (3.37)

where, as usual, O(1, 1)0 is in the external SL(2,R), while O(1, 1)1 and O(1, 1)2 are con-
tained in GL(2,R) ×GL(4,R).

In table 7 we list the axionic fields of this model, together with the corresponding

generator of Solv(so(6, 6)), for each of which the O(1, 1)3 grading is specified, as well as

their SL(2,R) × SL(4,R) representations
Also in this case, the generators T , T ia, T i

a and T ab close a 23-dimensional solvable

subalgebra of SO(6, 6)

N5 = c T +Bia T
ia + Ca

i T
i
a + Cab T

ab , (3.38)

whose algebraic structure is encoded in the non-vanishing commutators

[

T ia, T bc
]

= εabcd T i
d , (3.39)

[

T ia, T j
d

]

= εij δad T . (3.40)
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GL(2)×GL(6)-rep. generator root field dim.

– T(0,0,0) {εi − εj , εa − εb} (i < j, a > b) {gij , gab} 7

(1,6)(0,0,1) T ab α7 + εa + εb Cab 6

(2,4)(0,1,0) T ia εi + εa Bia 8

(2,4)(0,1,1) T i
d α7 + εi + εa + εb + εc Cd

i 8

(1,1)(0,2,1) T α7 + εi + εj + εa + εb + εc + εd Cµν = c 1

(1,1)(2,0,0) T ′ β Cij = c′ 1

Table 7: Axionic fields for the T2×T4 IIB orientifold, generators of Solv(so(6, 6)), O(1, 1)3 gradings,

and SL(2,R)× SL(4,R) representations.

The corresponding coset representative reads

L = ec T eBia T
ia

eC
a
i T

i
a eCab T

ab

, (3.41)

while its left-invariant one-form is

L−1dL = Tdc+ T abdCab + T i
d dC

d
i + (T

ia + εij Ca
j T + εabcd T i

d Cbc) dBia . (3.42)

The transformation properties of the axionic scalars can be deduced from

L−1TL = T ,

L−1T i
aL = T i

a + εij Bja T ,

L−1T iaL = T ia + εij Ca
j T + εabcd T i

d Cbc ,

L−1T abL = T ab + εabcdBid T
i
c , (3.43)

which identify the Killing vectors

k = ∂ ,

kia = ∂ia + εijBja∂ ,

kia = ∂ia ,

kab = ∂ab + εabcdBid∂
i
c , (3.44)

where

∂ =
∂

∂c
, ∂ia =

∂

∂Ca
i

, ∂ia =
∂

∂Bia
, ∂ab =

∂

∂Cab
. (3.45)

Hence, under the infinitesimal diffeomorphism ξ T + ξia T
ia + ξai T

i
a + ξab T

ab, one has

δc = εij ξai Bja + ξ ,

δCa
i = εabcd ξbcBid + ξai ,

δBia = ξia ,

δCab = ξab . (3.46)

For later convenience we shall define the generator Tab = −1
4 εabcd T

cd, and the correspond-

ing parameter ξab = −1
4 εabcd ξ

cd, in terms of which the relation (3.39) reads

[
Tab, T

ic
]
= δc[a T

i
b] . (3.47)
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Sp-section O(1, 1)3-grading weight

F i
µν (−1,−1,−1/2) −εi − 1/

√
2ε7

Fiµν (1,−1,−1/2) w + εi
Haµν (−1, 0,−1/2) εa − 1/

√
2ε7

F a
µν (−1, 0, 1/2) w + εb + εc + εd

F̃iµν (1, 1, 1/2) εi + 1/
√
2ε7

F̃ i
µν (−1, 1, 1/2) w + εj + εa + εb + εc + εd

H̃ a
µν (1, 0, 1/2) −εa + 1/

√
2ε7

F̃aµν (1, 0,−1/2) w + εi + εj + εa

Table 8: Field strengths, O(1, 1)3 gradings, and corresponding weights.

Vector fields. The vector fields of this model are Gi
µ, CiµBaµ, C

a
µ, and we name the

corresponding field strengths and their duals by

F
i
µν , Fiµν , Haµν , F

a
µν , F̃iµν , F̃

i
µν , H̃

a
µν , F̃aµν . (3.48)

In the table 8 we list the field strengths and their duals as they appear in the symplectic

section, together with their O(1, 1)3 gradings, and the corresponding E7(7) weights.

The transformation laws under a generic nilpotent transformation ξ ′ T ′+ξ T+ξab Tab+

ξia T
ia + ξai T

i
a can be deduced from the grading and weight structures. One finds

δF i = 0 ,

δFi = ξ′ εij F
j ,

δHa = ξia F
i ,

δF a = ξab Hb − ξai F
i ,

δF̃i = ξ′ εij F̃
j + ξai F̃a − ξia H̃

a + ξ Fi ,

δF̃ i = εij ξja F
a − εij ξaj Ha + ξF

i

δH̃ a = ξ′ F a + ξab F̃b + ξai ε
ij Fj ,

δF̃a = ξ′Ha − ξai ε
ij Fj . (3.49)

The explicit symplectic representation of the N5 generators together with the computation

of the vector kinetic matrix N may be found in appendix.

3.3 T0 × T6 and T6 × T0 IIB orientifolds with D3 and D9 branes. The ungauged

version

The T0 × T6 model in the presence of D3-branes, with and without fluxes was constructed

in [30]–[32]. The structure of the T6 × T0 model, on the other hand, is somewhat trivial,

since there is no room for fluxes to be turned on. For completeness, here we shall confine

ourselves to the description of their embeddings within the N = 8 theory, and to the

identification of the solvable algebras N3 and N9, together with their action on scalar and

vector fields.
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GL(6)-rep. generator root field dim.

– T(0,0) {εa − εb} (a > b) {gab} 15

15(0,1) Tab a+ εc + εd + εe + εf Cab ≡ εabcdef Ccdef 15

1(2,0) T β C0 = c 1

Table 9: Axionic fields for the T0×T6 IIB orientifold, generators of Solv(so(6, 6)), O(1, 1)2 gradings

and GL(6,R) representations.

Solvable algebra of global symmetries: the T0 × T6 model. The embedding of the

sl(2,R)+ so(6, 6) algebra inside e7(7) is defined by the following identification of the simple

roots:

β1 = −ε1 + ε2 ,

β2 = −ε2 + ε3 ,

β3 = −ε3 + ε4 ,

β4 = −ε4 + ε5 ,

β5 = −ε5 + ε6 ,

β6 = a+ ε1 + ε2 + ε3 + ε4 , (3.50)

for the so(6, 6) component, and

β = a , (3.51)

for the sl(2,R) one. The correspondence axion-root is quite simple and is summarised in
table 9.

In this case, the grading is with re-
Sp-section O(1, 1)2-grading weight

Faµν (1,−1/2) w + εa

Haµν (−1,−1/2) εa − 1/
√
2ε7

F̃ a
µν (−1, 1/2) −w − εa

H̃ a
µν (1, 1/2) −εa + 1/

√
2ε7

Table 10: Field strengths, O(1, 1)2 gradings, and

corresponding weights.

spect to the pair of O(1, 1) groups gen-

erated by Hβ, Hλ6 and corresponding

to the following moduli:

O(1, 1)0 → eβ·h = e−φ ,

O(1, 1)1 → eλ
6·h = V6 . (3.52)

The nilpotent algebra N3, generated by

Tab, acts as Peccei-Quinn translations

on the R-R scalars Cab

δCab = ξab . (3.53)

The vector fields are Caµ and Baµ, and the symplectic section of the corresponding

field strengths Faµν and Haµν and their magnetic duals F̃
a
µν , H̃

a
µν is listed in table 10.

The duality action of an infinitesimal transformation ξab Tab + ξ T is then

δFa = ξHa ,

δHa = 0 ,

δF̃ a = ξab Hb ,

δH̃ a = −ξab Fb − ξ F̃ a . (3.54)
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GL(6)-rep. generator root field dim.

– T(0,0) {εi − εj} (i < j) {gij} 15

15(0,1) T ij a+ εi + εj Cij 15

1(2,0) T β Cµν = c 1

Table 11: Axionic fields for the T6 × T0 IIB orientifold, generators of Solv(so(6, 6)), O(1, 1)2

gradings, and GL(6,R) representations.

Solvable algebra of global symmetries: the T6 × T0 model. The embedding of the

sl(2,R)+ so(6, 6) algebra inside e7(7) is defined by the following identification of the simple

roots

β1 = ε1 − ε2 ,

β2 = ε2 − ε3 ,

β3 = ε3 − ε4

β4 = ε4 − ε5 ,

β5 = ε5 − ε6 ,

β6 = a+ ε5 + ε6 , (3.55)

for the so(6, 6) component, and

β = a+
6∑

n=1

εn , (3.56)

for the sl(2,R) one. The correspondence axion-root is quite simple, and is summarised in
table 11.

In this case, the grading is with re-
Sp-section O(1, 1)2-grading weight

Fiµν (−1, 1/2) w + εi
F i
µν (−1,−1/2) −εi − 1/

√
2ε7

F̃ i
µν (1,−1/2) −w − εi

F̃iµν (1, 1/2) εi + 1/
√
2ε7

Table 12: Field strengths, O(1, 1)2 gradings, and

corresponding weights.

spect to a pair of O(1, 1) groups gener-

ated by Hβ, Hλ6 and corresponding to

the following moduli:

O(1, 1)0 → eβ·h = V6 e
φ/2 ,

O(1, 1)1 → eλ
6·h = (V6)

1/2 e−3/4 φ .

The nilpotent algebra N9, generated by

T ij , acts as Peccei-Quinn translations

on the R-R scalars Cij,

δCij = ξij . (3.57)

The vector fields are Ciµ and Gi
µ, and the symplectic sections of the corresponding

field strengths Fiµν and F i
µν and their magnetic duals F̃

i
µν , F̃iµν are listed in table 12.

The duality action of an infinitesimal transformation ξij T
ij + ξ T is then

δFi = ξij F
j ,

δF i = 0 ,

δF̃ i = ξF
i ,

δF̃i = ξij F̃
j + ξ Fi . (3.58)
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GL(5)-rep. generator root field dim.

— T(0,0,0) {εa − εb} (a > b) {gab} 10

10(0,0,1) Tab a+ εc + εd + εe Ccde ≡ Cab 10

5(0,1,0) T a ε1 + εa B1a ≡ Ba 5

5(0,1,1) Te a+ ε1 + εa + εb + εc + εd Cµνa ≡ Ce 5

1(2,0,0) T β C1 = c 1

Table 13: Axionic fields for the T1 × T5 IIA orientifold, generators of Solv(so(6, 6)), O(1, 1)3

gradings, and GL(5,R) representations.

As a result, the electric group contains the whole SO(6, 6), as for the heterotic string

on T6. In other words, there are no Peccei-Quinn isometries in SO(6, 6) which could be

gauged. This feature is consistent with the fact that this model does not allow fluxes, and

usually fluxes translate into local Peccei-Quinn invariances in the low-energy supergravity

description.

3.4 T1 × T5 IIA orientifold with D4-branes

Solvable algebra of global symmetries. The embedding of the sl(2,R) + so(6, 6)
algebra inside e7(7) is defined by the following identifications of simple roots:

β1 = ε1 + ε2 ,

β2 = −ε2 + ε3 ,

β3 = −ε3 + ε4 ,

β4 = −ε4 + ε5 ,

β5 = −ε5 + ε6 ,

β6 = a+ ε2 + ε3 + ε4 ,

(3.59)

for the so(6, 6) factor, and

β = a+ ε1 , (3.60)

for the sl(2,R) one. The correspondence axion-root is quite simple, and is summarised in
table 13.

In this case the grading is with respect to the O(1, 1)3 group generated byHβ, Hλ1 , Hλ6

and parametrised by the moduli β · h, h1, h6:

O(1, 1)0 → eβ·h = V1 e
−3φ/4 ,

O(1, 1)1 → eh1 = V1 (V5)
1/5 eφ/2 ,

O(1, 1)2 → eh6 = (V5)
3/2 e−φ/4 . (3.61)

The generators T a, Ta and Tab close a twenty-dimensional nilpotent subalgebra N4 of

Solv(so(6, 6)):

N4 = Ba T
a + Ca Ta +Cab Tab , (3.62)
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vector O(1, 1)3-grading weight

Fµν (1,−1,−1/2) w

F 1
µν (−1,−1,−1/2) −ε1 − 1/

√
2ε7

F1aµν (1, 0,−1/2) w + ε1 + εa

Haµν (−1, 0,−1/2) εa − 1/
√
2ε7

F̃µν (−1, 1, 1/2) −w
F̃1µν (1, 1, 1/2) ε1 + 1/

√
2ε7

F̃ 1a
µν (−1, 0, 1/2) −w − ε1 − εa

H̃ a
µν (1, 0, 1/2) −εa + 1/

√
2ε7

Table 14: Field strengths, O(1, 1)3 gradings, and corresponding weights.

whose algebraic structure is encoded in the non-vanishing commutator

[Tab, T
c] = T[aδ

c
b] . (3.63)

The corresponding coset representative reads

L = eC
a Ta eBa T

a

eC
ab Tab ec T E , (3.64)

where the E factor parametrises the submanifold:

O(1, 1)0 ×O(1, 1)1 ×O(1, 1)2 ×
SL(5,R)
SO(5)

. (3.65)

A generic element ξa T
a + ξa Ta + ξab Tab of N4 then induces the following transformations

on the axionic scalars

δCa = ξa + ξabBb ,

δBa = ξa ,

δCab = ξab . (3.66)

Vector fields. The vector fields of this model are Cµ, G
1
µ, C1aµ, Baµ, and we name the

corresponding field strengths Fµν , F 1
µν , F1aµν , Haµν . The symplectic section of the field

strengths and their duals is

{Fµν , F
1
µν , F1aµν , Haµν , F̃µν , F̃1µν , F̃

1a
µν , H̃

a
µν} , (3.67)

and in table 14 we give their O(1, 1)3 gradings and the corresponding E7(7) weights.

The action of infinitesimal duality transformation ξa T
a + ξa Ta + ξab Tab + ξ T on the

symplectic section is

δF = ξF
1 ,

δF 1 = 0 ,

δF1a = ξa F + ξHa ,
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GL(3)×GL(3)-rep. generator root field dim.

— T(0,0,0) {εi − εj, εa − εb} (i < j, a > b) {gij , gab} 6

(1,3)(0,0,1) Tab a+ εc Cab 3

(3,3)(0,1,0) T ia εi + εa Bia 9

(3,3)(0,1,1) T i
a a+ εi + εb + εc Cibc ≡ Ca

i 9

(3,1)(0,2,1) T ij εi + εj + εa + εb + εc Ckµν ≡ Cij 3

(1,1)(2,0,0) T β Cijk ≡ c 1

Table 15: Axionic fields for the T3 × T3 IIA orientifold, generators of Solv(so(6, 6)), O(1, 1)3

gradings, and GL(3,R)×GL(3,R) representations.

δHa = ξa F
1 ,

δF̃ = −ξa F̃ 1a + ξa Ha ,

δF̃1 = −ξa H̃
a − ξa F1a − ξ F̃ ,

δF̃ 1a = −ξa F
1 − ξab Hb ,

δH̃ a = ξa F + ξab F1b − ξF̃ 1a . (3.68)

The explicit symplectic realisation of the N4 generators together with the computation of

the vector kinetic matrix can be found in appendix.

3.5 T3 × T3 IIA orientifold with D6-branes

Solvable algebra of global symmetries. The embedding of the sl(2,R) + so(6, 6)
algebra inside e7(7) is defined by the following identification of the simple roots

β1 = ε1 − ε2 ,

β2 = ε2 − ε3 ,

β3 = ε3 + ε4 ,

β4 = −ε4 + ε5 ,

β5 = −ε5 + ε6 ,

β6 = a+ ε4 (3.69)

for the so(6, 6) factor, and

β = a+ ε1 + ε2 + ε3 , (3.70)

for the sl(2,R) one. The correspondence axion-root is quite simple and is summarised in
table 15.

The triple grading refers to three O(1, 1) groups generated by Hβ, Hλ3 , Hλ6 and

parametrised by the moduli β · h, h3, h6:

O(1, 1)0 → eβ·h = V3 e
−φ/4 ,

O(1, 1)1 → eh3 = (V3)
1/3 (V ′3)

1/3 eφ/2 ,

O(1, 1)2 → eh6 = (V ′3)
1/3 e−3/4 φ . (3.71)

– 22 –



J
H
E
P
1
0
(
2
0
0
3
)
0
1
5

The generators T ia, Tab, T
i
a and T ij form now a 24-dimensional solvable subalgebra

N6 of Solv(so(6, 6)):

N6 = Bia T
ia + Cab Tab + Ca

i T
i
a + Cij T

ij , (3.72)

whose algebraic structure is encoded in the non-vanishing commutators
[
Tab, T

ic
]
= T i

[aδ
c
b] ,

[

T ia, T j
b

]

= T ijδab . (3.73)

A possible choice for the coset representative is then

L = eCij T
ij

eC
a
i T

i
a eBia T

ia

eC
ab Tab ec T E , (3.74)

with E parameterising the submanifold

O(1, 1)0 ×
GL(3,R)
SO(3)

× GL(3,R)
SO(3)

. (3.75)

Under an infinitesimal transformation ξij T
ij + ξai T

i
a + ξia T

ia+ ξab Tab of N6 the variation

of the axionic scalars is

δCa
i = ξai + ξabBib ,

δCij = ξij + ξa[iC
a
j] ,

δBia = ξia ,

δCab = ξab . (3.76)

Vector fields. The vector fields of this model are Gi
µ,C

i
µ = εijk Cjkµ, Baµ, C

a
µ = εabc Cbcµ,

and we name the corresponding field strengths F i
µν , F

i
µν , Haµν , F

a
µν . The symplectic

section of the field strengths and their duals is

{F i
µν , F

i
µν , Haµν , F

a
µν , F̃iµν , F̃iµν , H̃

a
µν , F̃aµν} , (3.77)

and in table 16 we give their O(1, 1)3 gradings and the corresponding E7(7) weights.

The action of an infinitesimal duality transformation ξij T
ij+ξai T

i
a+ξia T

ia+ξab Tab+

ξ T on the symplectic section is

δF i = 0 ,

δF i = ξF
i ,

δHa = ξia F
i ,

δF a = ξab Hb + ξai F
i ,

δF̃i = −ξia H̃
a − ξai F̃a − 2 ξij F j − ξ F̃i ,

δF̃i = ξia F
a + ξai Ha + 2 ξij F

j ,

δH̃ a = ξab F̃a + ξai F
i + ξ F a ,

δF̃a = ξia F
i + ξHa . (3.78)

The explicit symplectic realisation of the N6 generators together with the computation of

the vector kinetic matrix can be found in appendix.
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Sp-section O(1, 1)3-grading weight

F i
µν (−1,−1,−1/2) −εi − 1/

√
2ε7

F i
µν (1,−1,−1/2) w + εj + εk

Haµν (−1, 0,−1/2) εa − 1/
√
2ε7

F a
µν (−1, 0, 1/2) w + εb + εc

F̃iµν (1, 1, 1/2) εi + 1/
√
2ε7

F̃ i
µν (−1, 1, 1/2) −w − εj − εk

H̃ a
µν (1, 0, 1/2) −εa + 1/

√
2ε7

F̃aµν (1, 0,−1/2) −w − εb − εc

Table 16: Field strengths, O(1, 1)3 gradings, and corresponding weights.

GL(5)-rep. generator root field dim.

— T(0,0,0) {εi − εj, εa − εb} (i < j) {gij} 10

5(0,0,1) T i a+ εi Ci 5

5(0,1,0) T ′i εi + ε6 Bi6 ≡ Bi 5

10(0,1,1) T ij a+ εi + εj + ε6 Cij6 ≡ Cij 10

1(2,0,0) T β Cµν6 ≡ c 1

Table 17: Axionic fields for the T5 × T1 IIA orientifold, generators of Solv(so(6, 6)), O(1, 1)3

gradings, and GL(5,R) representations.

3.6 T5 × T1 IIA orientifold with D8-branes

Solvable algebra of global symmetries. The embedding of the sl(2,R) + so(6, 6)
algebra inside e7(7) is defined by the following identification of the simple roots

β1 = ε1 − ε2 ,

β2 = ε2 − ε3 ,

β3 = ε3 − ε4 ,

β4 = ε4 − ε5 ,

β5 = ε5 + ε6 ,

β6 = a+ ε5 , (3.79)

for the so(6, 6) factor, and

β = a+ ε1 + ε2 + ε3 + ε4 + ε5 , (3.80)

for the sl(2,R) one. The correspondence axion-root is quite simple and is summarised in
table 17.

The triple grading refers to three O(1, 1) groups generated by Hβ, Hλ5 , Hλ6 , all com-

muting with SL(5,R), and parametrised by the moduli β · h, h5, h6:

O(1, 1)0 → eβ·h = V5 e
φ/4 ,

O(1, 1)1 → eh5 = (V5)
1/5 V1 e

φ
2 ,

O(1, 1)2 → eh6 = (V5)
1/5 e−3/4 φ . (3.81)
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The generators T ′i, T i and T ij form now a twenty-dimensional solvable subalgebra N8 of

Solv(so(6, 6)):

N8 = Bi6 T
′i + Ci T

i + Cij T
ij , (3.82)

whose algebraic structure is encoded in the non-vanishing commutator

[
T i, T ′j

]
= T ij . (3.83)

A possible choice for the the coset representative is then

L = eCij T
ij

eBi6 T
′i

eCi T
i

ec T E , (3.84)

with the E parameterising the submanifold:

O(1, 1)0 ×O(1, 1)1 ×O(1, 1)2 ×
SL(5,R)
SO(5)

. (3.85)

Under an infinitesimal transformation ξij T
ij + ξi T

i + ξ′i T
′i of N8 the variation of the

axionic scalars is

δCij = ξ[iBj]6 + ξij ,

δBi6 = ξ′i ,

δCi = ξi . (3.86)

Vector fields. The vector fields of this model are Gi
µ, Ci6µ, Cµ, B6µ, and we name the

corresponding field strengths F i
µν , Fi6µν , Fµν , H6µν . The symplectic section of the field

strengths and their duals is

{F i
µν , Fi6µν , Fµν , H6µν , F̃iµν , F̃

i6
µν , F̃µν , H̃

6
µν} , (3.87)

and in table 18 we give their O(1, 1)3 gradings and the corresponding E7(7) weights.

The action of an infinitesimal tran-
Sp-section O(1, 1)3-grading weight

F i
µν (−1,−1,−1/2) −εi − 1/

√
2ε7

Fi6µν (−1, 1, 1/2) w + εi + ε6

Fµν (−1,−1, 1/2) w

H6µν (−1, 1,−1/2) ε6 − 1/
√
2ε7

F̃iµν (1, 1, 1/2) εi + 1/
√
2ε7

F̃ i6
µν (1,−1,−1/2) −w − εi − ε6

F̃µν (1, 1,−1/2) −w
H̃ 6

µν (1,−1, 1/2) −ε6 + 1/
√
2ε7

Table 18: Field strengths, O(1, 1)3 gradings, and

corresponding weights.

sformation ξij T
ij + ξi T

i + ξ′i T
′i + ξ T

on the symplectic section is

δF i = 0 ,

δFi6 = ξi H6 − ξ′i F + ξij F
j ,

δF = −ξi F i ,

δH6 = ξ′i F
i ,

δF̃i = ξiF̃ − ξ′iH
6 + ξijF̃

j6 + ξFi6 ,

δF̃ i6 = ξF
i ,

δF̃ = ξ′i F̃
i6 + ξH6 ,

δH̃ 6 = −ξi F̃ i6 + ξ F . (3.88)
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The explicit symplectic realisation of the N8 generators, together with the computation of

the vector kinetic matrix can be found in appendix.

4. Fluxes and gauged supergravity: local Peccei-Quinn symmetry as gau-

ged duality transformations

In the present section we consider the deformation of N = 4 supergravity induced by the

presence of fluxes. We shall restrict our analysis, here, only to IIB orientifolds with some

(three-form) fluxes turned on, while we shall defer the study of more general fluxes and of

the gauge structure of other models elsewhere.

Differently to what happened in the well-studied T6/Z2 orientifolds, non-abelian gauged

supergravities (for the bulk sector) now emerge, due to the presence of gauge fields orig-

inating from the ten-dimensional metric, and of axionic scalars associated to the NS-NS

two-form B.

4.1 The T4 × T2 IIB orientifold model

In this model, the allowed three-form fluxes are Hλ
ij = {Haij , Faij}, and are in correspon-

dence with the representation (4,6)+2 of SO(2, 2) ×GL(4,R). The grading simply counts
the number of indices along the internal T4 and, more specifically, is associated to the

subgroup O(1, 1)1 ⊂ GL(4,R). As mentioned in the introduction, inspection of the dimen-
sionally reduced three-form kinetic term indicates for the four-dimensional theory a gauge

group Gg with connection Ωg = XiG
i
µ +XλA

λ
µ and the following structure:

[Xi, Xj ] = Hλ
ijXλ . (4.1)

We may identify the gauge generators with isometries as follows:

Xi = −Hλ
ij T

j
λ ,

Xλ =
1

2
Hλ′
ij T

ij . (4.2)

Using relations (3.19) and the property

Hλ
k[jHi]`λ =

1

2
Hλ
ijHk`λ −

1

4
H εijkl , (4.3)

where H = Hλ
ij H

ij
λ , one can show that the generators defined in (4.2) fulfil the following

algebraic relations

[Xi, Xj ] = Hλ
ijXλ −

1

4
H Tij , (4.4)

which coincide with (4.1) only if H = 0 which amounts to the condition that
∫

T6
F(3) ∧

H(3) = 0 (this condition is consistent with a constraint found in [48] on the embedding

matrix of a new gauge group in the N = 8 theory, which seems to yield an N = 8 “lifting”

of the type IIB orientifold models Tp−3 × T9−p discussed here). Under this condition the

gauge group is indeed contained in the isometry group of the scalar manifold. Moreover it

can be verified that under the duality action of the gauge generators defined in (4.2) the
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vector fields transform in the co-adjoint of the gauge group Gg and thus provide a consistent

definition for the gauge connection Ωg . The variation of the gauge potentials under an

infinitesimal transformation with parameters ξλ, ξi reads

δAλ
µ = ξiHλ

ij G
j
µ + ∂µξ

λ ,

δGi
µ = ∂µξ

i ,

δCijkµ = 0 , (4.5)

and is compatible with the following non-abelian field strengths

F λ
µν = ∂µA

λ
ν − ∂νA

λ
µ −Hλ

ij G
i
µG

j
ν ,

F
i
µν = ∂µG

i
ν − ∂νG

i
µ ,

F i
µν = εijkl (∂µCjklν − ∂νCjklµ) . (4.6)

The Cij and Φ
λ
i scalars are also charged and, up to rotations, subject to shifts

δCij =
1

2
Hλ
ij ξλ −

1

2
ξkHλ

k[iΦj]λ,

δΦλi = Hλ
ij ξ

j , (4.7)

and their kinetic terms are modified accordingly by covariantisations

DµCij = ∂µCij −
1

2
Hij λA

λ
µ +

1

2
Gk
µH

λ
k[iΦj]λ,

DµΦ
λ
i = ∂µΦ

λ
i −Hλ

ij G
j
µ . (4.8)

Chern-Simons terms. The gauge group consists of Peccei-Quinn transformations that

shift the real part of the vector kinetic matrix N (the generalised theta angle). In [49, 50],

it was shown that such a local transformation is a symmetry of the lagrangian provided

suitable generalised Chern-Simons terms are introduced.

In the case at hand, the new contribution to the lagrangian is

Lc.s. ∝ εµνρσ
(

Hλ ij′ A
λ
µG

i
ν ∂ρC

j′

σ +
1

8
Hλ ij′ H

λ
k`G

i
µ C

j′

ν Gk
ρ G

`
σ

)

, (4.9)

corresponding to the non-vanishing entries

Cλ, ij′ = −Hλ ij′ and Ci, λj′ = Hλ ij′ , (4.10)

where, in general, the coefficients CΓ,ΛΣ define the moduli-independent gauge variation of

the real part of the kinetic matrix N

δξ ReNΛΣ = ξΓCΓ,ΛΣ . (4.11)
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4.2 Type T2 × T4 IIB orientifold model

Let us consider the T2 × T4 model in presence of the fluxes Hija = εij Ha and Fiab. These

fluxes appear as structure constants

[Xi, Xj ] = εij HaX
a ,

[Xi, X
a] = F ab

i Xb , (4.12)

of the gauge algebra Gg ≡ {Xi, X
a, Xa} with connection Ωg

µ = Gi
µXi +BaµX

a +Ca
µXa,

all other commutators vanishing.

The identification

X ′i = −F ab
i Tab +Ha T

a
i ,

Xa′ = F ab
i T i

b , X ′a = −Ha T , (4.13)

of the gauge generators with the isometries of the solvable algebra N5, reproduces only a

contracted version of the algebra (4.12) in which three of the central charges Xa vanish and

we are left with X ′a = −Ha T . If we denote by {X⊥} = {Xa}/{X ′a} these three central
generators, we see that the subgroup G ′g = {X ′i, Xa′, X ′a} of the isometry group which is
gauged coincides with the quotient:

G
′
g ≡ Gg/{X⊥} , (4.14)

that amounts to imposing the vanishing of the central terms on all fields.

On the other hand, transformations generated by the operators in (4.13) induce isom-

etry transformations with parameters:

ξia = −ξiHa ,

ξab = −ξi F ab
i ,

ξai = ξb F
ba
i ,

ξ = −Haξ
a , (4.15)

where ξi = εij ξ
j . Using eqs. (3.49) and (4.15), one can then verify that the vectors Gi

µ, Baµ

and Ca
µ transform in the co-adjoint representation of Gg under the duality action generated

by {Xi, X
a, Xa}, so that the above definition of the gauge connection Ωg

µ is consistent:

δBaµ = ξiGj
µ εijHa + ∂µξa = −ξiGi

µHa + ∂µξa ,

δCa
µ = ξiBbµ F

ba
i −Gi

µ ξb F
ba
i + ∂µξ

a ,

δGi
µ = ∂µξ

i . (4.16)

Notice that the action of the central charges Xa amounts just to a gauge transformation

on Ca
µ. These ten vectors can therefore be used to gauge the group Gg, and the non-abelian

field strengths read

Haµν = ∂µBaν − ∂νBaµ − εij HaG
i
µG

j
ν ,

F a
µν = ∂µC

a
ν − ∂νC

a
µ + F ab

i Gi
µBbν − F ab

i Gi
ν Bbµ ,

F
i
µν = ∂µG

i
ν − ∂νG

i
µ . (4.17)
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Since Gg is not part of the global symmetries of the lagrangian, we should restrict ourselves

to the quotient Gg, i.e. we demand that central charges {T, Xa} vanish on all physical
fields. The gauge transformations of the scalar fields

δc = −Ha ξ
a + ξa F

ab
i Bjb ε

ij ,

δCa
i = ξb F

ba
i + ξj F ab

j Bbi ,

δBia = −ξiHa ,

δCab = −ξi Fiab , (4.18)

are then compatible with the covariant derivatives

Dµc = ∂µc+HaC
a
µ −Baµ F

ab
i Bjb ε

ij ,

DµC
a
i = ∂µC

a
i −Bbµ F

ba
i −Gj

µ F
ab
j Bbi ,

DµBia = ∂µBia +GiµHa ,

DµCab = ∂µCab +Gi
µ Fiab . (4.19)

Chern-Simons terms. Also in this case local Peccei-Quinn transformations demand the

inclusion in the lagrangian of the Chern-Simons terms

Lc.s. = εµνρσ
(

HaG
i
µ Ciν ∂ρC

a
σ −Ha C

a
µ Ciν ∂ρG

i
σ − εij F ab

j Baµ Ciν ∂ρBbσ

+
1

8
Ha F

ab
k Gi

µ Ciν G
k
ρ Bbσ −

1

8
εij Ha F

ab
j Bbµ Ciν G

k
ρ Gkσ

)

, (4.20)

corresponding to the non-vanishing components

Ci,
j
a = δji Ha ,

Ca, i
j = −δji Ha ,

Ca, ib = −εij F ab
j , (4.21)

of the CΓ,ΛΣ coefficients.

5. Conclusions and outlooks

In the present paper, we have investigated the symmetries and the structure of several T6

orientifolds which, in absence of fluxes, have N = 4 supersymmetries in four dimensions.

we have not addressed here the question of vacua with some residual supersymmetry, that

will be the subject of future investigations. All these models lead to different low-energy

supergravity descriptions. When fluxes are turned on, the deformed lagrangian is described

by a gauged N = 4 supergravity and fermionic mass-terms and a scalar potential are

developed.

The low-energy lagrangians underlying these orientifolds are different versions of gau-

ged N = 4 supergravity with six bulk vector multiplets and additional Yang-Mills multi-

plets living on the brane world-volume. The gaugings are based on quotients (with respect
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to some central charges) of nilpotent subalgebras of so(6, 6). These nilpotent subalgebras

are basically generated by the axion symmetries associated to R-R scalars and to NS-NS

scalars originating from the two-form B-field.

Along similar lines, one can also consider new examples of orientifolds with N = 2, 1

four-dimensional supersymmetries, with and/or without fluxes.
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A. Symplectic realisation of the solvable generators

In this appendix, we give the coset representatives of our models in the symplectic basis

of vector fields. This is needed in order to compute the kinetic matrix NΛΣ, which is a

complex symmetric matrix in the space of vectors in the theory. Its imaginary and real

parts describe the terms

ImNΛΣ FΛ
µνF

Σ µν +
1

2
ReNΛΣ εµνρσFΛ

µνF
Σ
ρσ . (A.1)

Model T4 × T2. The Sp(24,R) representation of the solvable generators in model 1 in
the basis (3.33) is:

T =












0 0 0 0 0 0

0 0 0 0 0 0

0 11 0 0 0 0

η 0 0 0 0 0

0 0 0 0 0 −11
0 0 0 0 0 0












,

T =












MT 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −M 0 0

0 0 0 0 0 0

0 0 0 0 0 0












,
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T i
λ =












0 −(tiλ)T 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −(tiλ η)T 0 0 0

0 0 0 tiλ 0 0

−tiλ η 0 0 0 0 0












,

T ij =












0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 −tij 0 0 0

0 tij 0 0 0 0












, (A.2)

where each block is a 4× 4 matrix, 11 denotes the identity matrix, η ≡ ηλλ′ and

(tiλ)j
λ′ = δij δ

λ′

λ , (tij)kl = δikδ
j
l − δilδ

j
k . (A.3)

The coset representative is

L = exp(CijT
ij) exp(Φλi T

i
λ) exp(cT )E =

(
A 0

C D

)

, (A.4)

where E parametrises the manifold

E ∈ O(1, 1)0 ×
SO(2, 2)

SO(2) × SO(2) ×
GL(4,R)
SO(4)

, (A.5)

and can be written in the following general form:

E =












e−ϕ E(`) 0 0 0 0 0

0 e−ϕE 0 0 0 0

0 0 eϕE 0 0 0

0 0 0 eϕ ηE(`)η 0 0

0 0 0 0 eϕE−1 0

0 0 0 0 0 e−ϕE−1












, (A.6)

with

E(`)
λ
σ̂ ∈

SO(2, 2)

SO(2)× SO(2) ,

Ei
̂ ∈

GL(4,R)
SO(4)

,

eϕH ∈ O(1, 1)0 , (A.7)

the hatted indices being the rigid ones transforming under the isotropy group. The blocks

is L read

A =





e−ϕ E(`)
λ
σ̂ −e−ϕ Φλi Ei

̂ 0

0 e−ϕ Ei
̂ 0

0 c e−ϕ Ei
̂ eϕEi

̂



 ,
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C =





c e−ϕ E(`)λσ̂ −c e−ϕ Φλj Ej
ı̂ −eϕ Φλj Ej

ı̂

c e−ϕ ΦδiE(`)
δ
σ̂ −c e−ϕ 2 C̃ijEj

k̂ −eϕ 2 C̃ijEj
k̂

−e−ϕ ΦδiE(`)
δ
σ̂ e−ϕ 2 C̃ijE

j
k̂ 0



 ,

D =





eϕE(`)λ
σ̂ 0 0

eϕ Φλi E(`)λ
σ̂ eϕE−1

i
̂ −c e−ϕE−1

i
̂

0 0 e−ϕ E−1
i
̂



 ,

C̃ij = Cij +
1

4
Φλi Φλj . (A.8)

In the sequel we shall need also the expression of A−1:

A−1 =





eϕE(`)
σ̂
λ eϕE(`)

σ̂
λΦ

λ
i 0

0 eϕE−1 ı̂
j 0

0 −e−ϕ cE−1 ı̂
j e−ϕ E−1 ı̂

j



 . (A.9)

In terms of the matrices h, f

f =
1√
2

A , h =
1√
2
(C− iD) , (A.10)

the kinetic matrix is expressed as (see [51] and references therein)

N = hf−1 =





Nλλ′ Nλi N ′λi
∗ Nij N ′ij
∗ ∗ N ′′ij



 , (A.11)

and is characterised by the following entries:

Nλλ′ = −i e2ϕ E(`)λ
σ̂ E(`)λ′

σ̂ + c ηλλ′ ,

Nλi = −i e2ϕ E(`)λ
σ̂ E(`)λ′

σ̂ Φλ
′

i + c Φλi

N ′λi = −Φλi ,
Nij = −i

(

(e2ϕ + e−2ϕ c2)E−1
i
ı̂E−1

jı̂ + e2ϕ Φλi E(`)λ
σ̂ E(`)λ′

σ̂ Φλ
′

j

)

+ c Φλi Φλj ,

N ′ij = i c e
−2ϕE−1

i
ı̂E−1

jı̂ − 2 C̃ij ,
N ′′ij = −i e−2ϕ E−1

i
ı̂E−1

jı̂ . (A.12)

Model T2 × T4. The Sp(24,R) representation of the solvable generators in model 2 in
the basis (3.48) is:

T ′ =
















0 0 0 0 0 0 0 0

εij 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 εij 0 0

0 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0

0 0 11 0 0 0 0 0
















,
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Tab =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 δcdab 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 δcdab
0 0 0 0 0 0 0 0
















,

T ia =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

δab δ
i
j 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −δij δab 0

0 0 0 −εij δab 0 0 0 0

0 0 0 0 0 0 0 0

0 −δab εij 0 0 0 0 0 0
















,

T i
a =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−δba δij 0 0 0 0 0 0 0

0 0 0 0 0 0 0 δij δ
b
a

0 0 εij δba 0 0 0 0 0

0 δba ε
ij 0 0 0 0 0 0

0 0 0 0 0 0 0 0
















,

T =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 11 0 0 0 0 0 0

11 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
















. (A.13)

The coset representative has the form:

L = ec
′ T ′ ec T eBia T

ia

eC
a
i T

i
a eCab T

ab

E =
(

A 0

C D

)

, (A.14)

where this time the matrix E describes the submanifold:

E = O(1, 1)0 ×
GL(2,R)
SO(2)

× GL(4,R)
SO(4)

, (A.15)
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and has the following form:

E =
















e−ϕ E2
i
̂ 0 0 0 0 0 0 0

0 eϕ E−1
2 i

̂ 0 0 0 0 0 0

0 0 e−ϕ E−1
4 a

b̂ 0 0 0 0 0

0 0 0 e−ϕ E4
a
b̂

0 0 0 0

0 0 0 0 eϕ E−1
2 i

̂ 0 0 0

0 0 0 0 0 e−ϕ E2
i
̂ 0 0

0 0 0 0 0 0 eϕ E4
a
b̂

0

0 0 0 0 0 0 0 eϕ E−1
4 a

b̂
















,

E2
i
̂ ∈

GL(2,R)
SO(2)

,

E4
a
b̂ ∈

GL(4,R)
SO(4)

,

eϕH ∈ O(1, 1)0 . (A.16)

The blocks A, C, D of L can be conveniently described in terms of the following matrices
(B)ia = Bia, (C)i

a = Ca
i , (C )

ab = Cab:

A =







e−ϕ E2 0 0 0

e−ϕ c′ εE2 eϕ E−1
2 0 0

e−ϕ Bt E2 0 e−ϕ E−1
4 0

−e−ϕ Ct E2 0 e−ϕ C E−1
4 e−ϕ E4







,

C =







e−ϕc′(cε +BCt)E2 −eϕ(cε +BCt)εE−1
2 e−ϕc′(C−BC )E−1

4 −e−ϕc′BE4

−e−ϕε(cε+BCt)E2 0 −e−ϕε(C−BC )E−1
4 e−ϕεBE4

−e−ϕc′CtE2 eϕCtεE−1
2 e−ϕc′CE−1

4 e−ϕc′E4

e−ϕc′BtE2 −eϕBtεE−1
2 e−ϕc′E−1

4 0







,

D =







eϕ E−1
2 e−ϕ c′ εE2 −eϕ BE4 eϕ (C−BC )E−1

4

0 e−ϕ E2 0 0

0 0 eϕ E4 eϕ C E−1
4

0 0 0 eϕ E−1
4







, (A.17)

it is also useful to compute A−1:

A−1 =







eϕE−1
2 0 0 0

−e−ϕ c′E2 ε e−ϕE2 0 0

−eϕE4B
t 0 eϕE4 0

eϕE−1
4 (C Bt +Ct) 0 −eϕE−1

4 C eϕE−1
4






. (A.18)

We then compute the kinetic matrix N whose independent components are:

N =







Nij Ni
j Ni

a Nia

∗ N ij N ia N i
a

∗ ∗ Nab Na
b

∗ ∗ ∗ Nab






, (A.19)

where

Nij = −i
[

E−1
2 i

̂E−1
2 j

̂ (e2ϕ + e−2ϕ c′2) + e2ϕBiaE4
a
âE4

b
âBjb +

+ e2ϕ (−BicC
ca + Ca

i )E
−1
4 a

âE−1
4 b

â
(

CbdBjd + Cb
j

)]

− 2Ba(i C
a
j) c
′ ,
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Ni
j = −i e−2ϕ c′ εik E2

k
k̂ E2

j
k̂ + c δi

j −Bia C
a
k ε

kj ,

Ni
a = i e2ϕ

[

BibE4
b
b̂E4

a
b̂ + (−Bib C

bc + Cc
i )E

−1
4 c

ĉE−1
4 d

ĉCda
]

+ c′ Ca
i ,

Nia = −i e2ϕ (−Bib C
bc + Cc

i )E
−1
4 c

ĉE−1
4 a

ĉ − c′Bia ,

N ij = −i e−2ϕE2
i
k̂ E2

j
k̂ ,

N ia = −εij Ca
j ,

N i
a = εij Bja ,

Nab = −i e2ϕ
(

−CadE−1
4 d

d̂E−1
4 c

d̂ Ccb +E4
a
b̂E4

b
b̂

)

,

Na
b = −i e2ϕCadE−1

4 d
d̂E−1

4 b
d̂ + c′ δab ,

Nab = −i e2ϕE−1
4 a

d̂E−1
4 b

d̂ . (A.20)

Model T1 × T5. The Sp(24,R) representation of the N4 generators is the following:

T a =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

δab 0 0 0 0 0 0 0

0 δab 0 0 0 0 0 0

0 0 0 0 0 0 −δab 0

0 0 0 0 0 0 0 −δab
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
















,

Ta =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 δba 0 0 0 0

0 0 −δba 0 0 0 0 0

0 −δba 0 0 0 0 0 0

δba 0 0 0 0 0 0 0
















,

Tab =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −δcdab 0 0 0 0

0 0 δcdab 0 0 0 0 0
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T =
















0 11 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −11 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −11 0
















. (A.21)

We have chosen the coset representative to have the form given in eq. (3.64). We may

choose for the matrix E the following matrix form:

E =
















eϕE 0 0 0 0 0 0 0

0 e−ϕE 0 0 0 0 0 0

0 0 eϕE−1
a
b̂ 0 0 0 0 0

0 0 0 e−ϕ E−1
a
b̂ 0 0 0 0

0 0 0 0 e−ϕ/E 0 0 0

0 0 0 0 0 eϕ/E 0 0

0 0 0 0 0 0 e−ϕEa
b̂ 0

0 0 0 0 0 0 0 eϕEa
b̂
















,

(A.22)

where:

Ea
b̂ , E ∈ O(1, 1)1 ×O(1, 1)2 ×

SL(5,R)
SO(5)

,

eH ϕ ∈ O(1, 1)0 . (A.23)

The blocks {A, C, D} of L and A−1 have the following form:

A =







E eϕ cE e−ϕ 0 0

0 E e−ϕ 0 0

Ba E eϕ cBa E e−ϕ eϕ E−1
a
b̂ c e−ϕ E−1

a
b̂

0 Ba e−ϕ 0 e−ϕ E−1
a
b̂







,

C =








0 Ba Ca E e−ϕ 0 e−ϕ (Bb C
ba + Ca)E−1

a
d̂

−Ba Ca E eϕ −cBa Ca E e−ϕ −eϕ (Bb C
ba + Ca)E−1

a
d̂ −e−ϕ c (Bb C

ba + Ca)E−1
a
d̂

0 −e−ϕ CaE 0 e−ϕ Cab E−1
b
d̂

CaE eϕ cCa E e−ϕ eϕ Cab E−1
b
d̂ e−ϕ cCab E−1

b
d̂








,

D =







e−ϕ/E 0 −Ba e−ϕ Ead̂ 0

−c e−ϕ/E eϕ/E cBa e−ϕ Ead̂ −Ba eϕ Ead̂
0 0 e−ϕ Ea

d̂
0

0 0 −c e−ϕ Ea
d̂

eϕ Ea
d̂







,

A−1 =







e−ϕ/E −c e−ϕ/E 0 0

0 eϕ/E 0 0

−e−ϕ E
d̂
aBa c e−ϕ E

d̂
a Ba e−ϕ E

d̂
a −c e−ϕ E

d̂
a

0 −eϕ E
d̂
aBa 0 eϕ E

d̂
a







, (A.24)

from equations (A.10) and (A.11) we compute the matrix N :

N =







N N1 N (1a) Na

∗ N1 1 N1
(1a) N1

a

∗ ∗ N (1a) (1b) N (1a) b

∗ ∗ ∗ Na b






, (A.25)
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whose entries are

N = −i e−2ϕ

(

BaBbE
a
âE

b
â +

1

E2

)

,

N1 = i c e
−2ϕ

(

BaBbE
a
âE

b
â +

1

E2

)

,

N (1a) = i e−2ϕBbE
a
âE

b
â ,

Na = Ca +Bb C
ba − i c e−2ϕBbE

a
âE

b
â ,

N1 1 = −i
(
e−2ϕ c2 + e2ϕ

)
(

BaBbE
a
âE

b
â +

1

E2

)

,

N1
(1a) = −

(

BbC
ba + Ca

)

− i c e−2ϕBbE
a
âE

b
â ,

N1
a = i

(
e−2ϕ c2 + e2ϕ

)
BbE

a
âE

b
â ,

N (1a) (1b) = −i e−2ϕEa
âE

b
â ,

N (1a) b = −Cab + i e−2ϕ cEa
âE

b
â ,

Na b = −i
(
e−2ϕ c2 + e2ϕ

)
Ea

âE
b
â , (A.26)

where the asterisks denote the symmetric entries.

Model T3 × T3. The Sp(24,R) representation of the N6 generators is the following:

Tab =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 δcdab 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 δcdab
0 0 0 0 0 0 0 0
















,

T ia =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

δab δ
i
j 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −δijδab 0

0 0 0 δijδ
a
b 0 0 0 0

0 0 0 0 0 0 0 0

0 δab δ
i
j 0 0 0 0 0 0
















,

T i
a =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

δbaδ
i
j 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −δijδba
0 0 δijδ

b
a 0 0 0 0 0

0 δbaδ
i
j 0 0 0 0 0 0

0 0 0 0 0 0 0 0
















,
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T ij =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −2 δijkl 0 0 0 0 0 0

2 δijkl 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
















,

T =
















0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −11 0 0

0 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0

0 0 11 0 0 0 0 0
















. (A.27)

We have chosen the coset representative to have the form given in eq. (3.74). We may

choose for the matrix E the following matrix form:

E =
















e−ϕ Ei1 ̂ 0 0 0 0 0 0 0

0 eϕ Ei1 ̂ 0 0 0 0 0 0

0 0 e−ϕ E−1
2 a

b̂ 0 0 0 0 0

0 0 0 e−ϕ Ea2 b̂ 0 0 0 0

0 0 0 0 eϕ E−1
1 i

̂ 0 0 0

0 0 0 0 0 e−ϕ E−1
1 i

̂ 0 0

0 0 0 0 0 0 eϕ Ea2 b̂ 0

0 0 0 0 0 0 0 eϕ E−1
2 a

b̂
















,

where

Ei
1 ̂ ∈

(
GL(3,R)
SO(3)

)

1

,

Ea
2 b̂ ∈

(
GL(3,R)
SO(3)

)

2

,

eϕH ∈ SO(1, 1)0 . (A.28)

The blocks {A, C, D} of L and A−1 have the following form:

A =







e−ϕ Ei1 ̂ 0 0 0

c e−ϕ Ei1 ̂ eϕ Ei1 ̂ 0 0

Bia e−ϕ Ei1 ̂ 0 e−ϕ E−1
2 a

b̂ 0

Cai e
−ϕ Ei1 ̂ 0 e−ϕ Cab E−1

2 b
ĉ e−ϕ E2

a
ĉ






,

C =







−2 c e−ϕ C̃ij E
j
1 k̂

−2 eϕ C̃ij E
j
1 k̂

−c e−ϕ (Cai +Bib C
ba)E−1

2 a
ĉ −e−ϕ cBib E

−1
2

b
d̂

2e−ϕ C̃ij E
j
1 k̂

0 e−ϕ (Cai + Bib C
ba)E−1

2 a
ĉ e−ϕ Bia E2

a
ĉ

c e−ϕ Cai E
i
1k̂

eϕ Cai E
i
1k̂

c e−ϕ CabE−1
2 b

ĉ c e−ϕ E2
a
ĉ

c e−ϕ Bia Ei1 k̂ eϕ Bia Ei1k̂ c e−ϕ E−1
2 a

ĉ 0






,

D =







eϕ E−1
1 i

̂ −c e−ϕ E−1
1 i

̂ −eϕBia E
a
2 d̂

−eϕ (Cai + Bib C
ba)E−1

2 a
ĉ

0 e−ϕ E−1
1 i

̂ 0 0

0 0 eϕ Ea2 d̂ eϕ Cab E−1
2 b

ĉ

0 0 0 eϕ E−1
2 a

ĉ






,
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A−1 =







eϕ E−1
1

̂
i 0 0 0

−c e−ϕ E−1
1

̂
i e−ϕ E−1

1
̂
i 0 0

−eϕ E2â
a Bia 0 eϕ E2â

a 0

−eϕ E−1
2

ĉ
a (Bib C

ba + Cai ) 0 −eϕ E−1
2

ĉ
a Cab eϕ E−1

2
ĉ
a






,

C̃ij = Cij +
1

2
Ca
i Bja . (A.29)

The vector kinetic matrix can now be calculated and has the following form:

N =







Nij N ′ij Ni
a Nia

∗ N ′′ij N ′i
a N ′ia

∗ ∗ Nab Na
b

∗ ∗ ∗ Nab







, (A.30)

whose entries are

Nij = 2 cBa(i C
a
j) − i

[

(c2 e−2ϕ + e2ϕ)E−1
1 i

̂E−1
1 j

̂ + e2ϕ (Ca
i +BibC

ba)×

× (Cc
j +BjbC

bc)E−1
2 a

ĉE−1
2 c

ĉ + e2ϕBiaBjbE
a
2 ĉE

b
2ĉ

]

,

N ′ij = −2 C̃ij + i c e−2ϕE−1
1 i

̂E−1
1 j

̂ ,

Ni
a = −cCa

i + i e
2ϕ
[

(Cb
i +BicC

cb)CadE−1
2 b

êE−1
2 d

ê +BibE
a
2 ĉE

b
2ĉ

]

,

Nia = −cBia + i e
2ϕ (Cb

i +BicC
cb)E−1

2 b
êE−1

2 a
ê ,

N ′′ij = −i e−2ϕ E−1
1 i

̂E−1
1 j

̂

N ′i
a = Ca

i ,

N ′ia = Bia ,

Nab = −i e2ϕ
[

Ea
2 ĉE

b
2ĉ + CacCbdE−1

2 c
êE−1

2 d
ê
]

,

Na
b = c− i e2ϕ CacE−1

2 c
êE−1

2 b
ê ,

Nab = −i e2ϕE−1
2 a

êE−1
2 b

ê . (A.31)

Model T5 × S1. The Sp(24,R) representation of the N8 generators is the following:

T i =
















0 0 0 0 0 0 0 0

0 0 0 δij 0 0 0 0

−δij 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 δij 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 −δij 0 0
















,

– 39 –



J
H
E
P
1
0
(
2
0
0
3
)
0
1
5

T ′i =
















0 0 0 0 0 0 0 0

0 0 −δij 0 0 0 0 0

0 0 0 0 0 0 0 0

δij 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −δij
0 0 0 0 0 0 0 0

0 0 0 0 0 δij 0 0

0 0 0 0 0 0 0 0
















,

T ij =
















0 0 0 0 0 0 0 0

δijkl 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 δijkl 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
















,

T =
















0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 11 0 0 0 0 0 0

11 0 0 0 0 0 0 0

0 0 0 11 0 0 0 0

0 0 11 0 0 0 0 0
















. (A.32)

We have chosen the coset representative to have the form given in eq. (3.84). We may
choose for the matrix E the following matrix form

E =















e−ϕ Eî 0 0 0 0 0 0 0

0 e−ϕ E−1
i
̂ 0 0 0 0 0 0

0 0 e−ϕ E 0 0 0 0 0

0 0 0 e−ϕ /E 0 0 0 0

0 0 0 0 eϕ E−1
i
̂ 0 0 0

0 0 0 0 0 eϕ Eî 0 0

0 0 0 0 0 0 eϕ/E 0

0 0 0 0 0 0 0 eϕ E















, (A.33)

where:

Ei
̂, E ∈ O(1, 1)1 ×O(1, 1)2 ×

SL(5,R)
SO(5)

,

eϕH ∈ SO(1, 1)0 . (A.34)

The blocks {A, C, D} of L and A−1 have the following form

A = e−ϕ







Ei
̂ 0 0 0

(BiCj + Cij)E
j
̂ E−1

i
̂ −BiE Ci/E

−CiEi
̂ 0 E 0

BiE
i
̂ 0 0 1/E






,
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C = e−ϕ







c (Bi Cj + Cij)E
j
̂ cE−1

i
̂ −cBiE cCi/E

cEi
̂ 0 0 0

cBiE
i
̂ 0 0 c/E

−cCiEi
k̂ 0 cE 0






,

D = eϕ







E−1
i
̂ (Bi Cj +Cij)E

j
̂ Ci/E −BiE

0 Ei
̂ 0 0

0 BiE
i
̂ 1/E 0

0 −CiEi
̂ 0 E






,

A−1 = eϕ







E−1̂
i 0 0 0

Eı̂
j (Cj Bi − Cji) Eı̂

j Eı̂
j Bj −Eı̂

j Cj
Ci/E 0 1/E 0

−BiE 0 0 E






.

The vector kinetic matrix can now be calculated and has the following form

N =







Nij Ni
j Ni N ′i

∗ N ij N i N ′i

∗ ∗ N N ′

∗ ∗ ∗ N ′′






, (A.35)

whose entries are

Nij = −i e2ϕ
[

E−1
i
̂E−1

j
̂ + (Bi Ck + Cik) (Bj Cn +Cjn)E

k
ˆ̀E

n
ˆ̀+

+
1

E2
CiCj +BiBj E

2

]

,

Ni
j = c− i e2ϕ

[

(Bi Ck + Cik)E
k

ˆ̀E
j
ˆ̀

]

,

Ni = −i e2ϕ
[

(Bi Ck + Cik)E
k

ˆ̀Bj E
j
ˆ̀+

1

E2
Ci

]

,

N ′i = i e
2ϕ
[

(BiCk + Cik)E
k

ˆ̀Cj E
j
ˆ̀+E2 Bi

]

,

N ij = −i e2ϕEi
ˆ̀E

j
ˆ̀ ,

N i = −i e2ϕBj E
i
ˆ̀E

j
ˆ̀ ,

N ′i = i e2ϕCj E
i
ˆ̀E

j
ˆ̀ ,

N = −i e2ϕ
[

BiBj E
i
ˆ̀E

j
ˆ̀+

1

E2

]

,

N ′ = c+ i e2ϕCiBj E
i
ˆ̀E

j
ˆ̀ ,

N ′′ = −i e2ϕ
[
CiCj E

i
ˆ̀E

j
ˆ̀+E2

]
. (A.36)
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