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1. Introduction

In this paper we investigate compactifications that include duality twists and internal fluxes

and their relation to orbifolds.

Compactification with duality twisting is a generalization of the Scherk-Schwarz mech-

anism in classical supergravity [1]–[13]. In a typical supergravity theory, there is a non-

compact global symmetry G. In a twisted compactification, one introduces a twist in the

toroidal directions by the global symmetry G. The twisting generates a nontrivial Scherk-

Schwarz potential on the moduli space and for certain twists is equivalent to introducing

internal fluxes of various gauge fields on the torus.

We consider the extension of duality twisting to the full quantum string theory and

discuss the general properties of the resulting Scherk-Schwarz potential. The global sym-

metry G of the low energy effective action is not a symmetry of the quantum theory but is

broken to a discrete U-duality group G(Z) [14] that acts on the integral lattice of p-brane

charges. Therefore, the twists that can be lifted to string theory must belong to the duality

group G(Z) [8]. This restriction leads to a quantization condition on the mass parameters

appearing in the Scherk-Schwarz potential [8].
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As we review in section 2.1, the physically inequivalent twists are classified by conju-

gacy classes of G(Z). We analyze the Scherk-Schwarz potential and show that the effective

low energy physics of the compactified theory is completely determined by the conjugacy

class, resolving an apparent paradox. Given a potential on the moduli space, the next

question is whether the potential has any minima and what the structure of the theory is

at these minima.

We will see that the task of finding the minima is simplified considerably by some

elegant group theoretic considerations. We illustrate this point in section 3 by means

of an explicit example in which the duality twists belong to SL(2,Z) and outline the

generalization to other groups in section 4.4. We show that the minima of the Scherk-

Schwarz potential are in one-to-one correspondence with the fixed points in the moduli

space under the action of the twist group. One implication of this result is that for a

compactification twisted by an element of the T-duality group, the theory at a minimum

of the potential has an exact conformal field theory description as an orbifold of a toroidal

compactification. The orbifold theory as usual contains additional twisted sector states

that are not visible in the supergravity analysis. When the twist is not a perturbative

symmetry, there is no CFT construction for such theories, but the supergravity analysis

and the group theoretic considerations concerning the minima of the potential can still be

applicable.

One motivation for this work is its bearing on the stabilization of moduli in string the-

ory. The vacuum manifold of string compactifications is characterized by several moduli

that govern the shape and size of the compactification space as well as the value of the

coupling constant in string theory and correspond to unwanted massless fields in space-

time. There are stringent observational constraints on the presence of such massless scalars

and even in a cosmological context the presence of moduli is problematic [15]. It is thus

interesting to seek string compactifications with few or no moduli already at the tree level.

A number of apparently unrelated methods have been utilized in the literature for

constructing models with a small number of moduli. Compactifying with duality twists or

internal fluxes is one way to stabilize the moduli. In this framework, the twists or the fluxes

generate a nontrivial potential on the moduli space. As a result, the expectation values

of the moduli fields are fixed at the minima of the potential and many moduli acquire

mass [1]–[29]. This mechanism has been used, for example, to construct models where all

complex structure moduli of Calabi-Yau and torus compactifications of type-II and type-I

compactifications are stabilized [23, 26]. Another way to stabilize the moduli is to orbifold

the theory by a symmetry that exists only for special values of the moduli [30]. The moduli

are then fixed to take these special values. In this case, typically there are many additional

massless scalar fields in the twisted sectors. These twisted moduli can in turn be made

massive by including a shift in the orbifolding action. Using this mechanism for certain

special asymmetric orbifolds, it is possible to construct models where all moduli except the

dilaton are stabilized [31]–[34].

In this paper we investigate the relation between these various approaches. As we will

see, in many respects compactifications with duality twists and internal fluxes are closely

related to certain orbifolds with shifts.
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We review and develop the relevant aspects of compactification with duality twists in

section 2 and illustrate the main points in section 3 with an example with SL(2) twists.

We discuss the relation between duality twisting, fluxes, and orbifolds in section 4 and

conclude in section 5 with some comments.

2. Compactification with duality twists

2.1 General Formalism

For simplicity, we consider twisted reduction on a circle but these results can be readily

extended to more general toroidal compactifications.

Consider a D + 1 dimensional supergravity (or theory of matter coupled to gravity)

with a global symmetry G. An element g of the symmetry group acts on a generic field

ψ as ψ → g[ψ]. Consider now a dimensional reduction of the theory to D dimensions on

a circle of radius R with a periodic coordinate y ∼ y + 2πR. In the twisted reduction,

the fields are not independent of the internal coordinate but are chosen to have a specific

dependence on the circle coordinate y through the ansatz

ψ(xµ, y) = g(y) [ψ(xµ)] (2.1)

for some y-dependent group element g(y). An important restriction on g(y) is that the

reduced theory in D dimensions should be independent of y. This is achieved by choosing

g(y) = exp

(

My

2πR

)

(2.2)

for some Lie-algebra element M . The map g(y) is not periodic around the circle, but has

a monodromy

M(g) = expM . (2.3)

The Lie algebra element M generates a one-dimensional subgroup L of G.

It has been seen in explicit examples that Scherk-Schwarz reduction of a supergravity

gives rise to a gauged supergravity; see e.g. [5, 7, 10, 11, 13]. It is easy to see that this must

always be the case. Consider a field ψ in the D + 1 dimensional theory that transforms

in some representation of G as δψ = εMψ where ε is an infinitesimal parameter and M

is the matrix representation of the element M . It is straightforward to show that on

twisted dimensional reduction to D dimensions, the derivative of ψ is replaced by the

gauge covariant derivative ∇ψ = dψ+AMψ, where A is the 1-form gauge potential arising

from the Kaluza-Klein reduction of the metric on the circle. This follows from demanding

general coordinate invariance under transformations of the form y → y + δy(x) where x

are the coordinates of the noncompact D-dimensional spacetime. We thus obtain a gauged

supergravity where L has become a local symmetry whose gauge field is the Kaluza-Klein

vector potential. The gauged supergravity has fermion mass terms and modifications of

the fermion supersymmetry transformations which are linear in the mass matrix M , and

a scalar potential (discussed below) which is quadratic in M . If any other vector fields in

the theory are singlets under G, then the gauge group is the one-dimensional group L (or

– 3 –
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strictly speaking the product of L with the gauge group for the other vector fields, which

is abelian in most of the examples of interest here). However, if there are n other abelian

gauge fields Ab (a, b = 1, . . . , n) transforming in some representation of G, δAa = εM
a
bA

b,

then the gauge group is the semi-direct product of L with U(1)n with generators ty, ta and

structure constants fya
b = −fayb = M

b
a, where ty is the generator corresponding to the

Kaluza-Klein vector field and all other structure constants vanish.

The Scherk-Schwarz ansatz (2.1) breaks the global symmetry G down to the subgroup

that commutes with g(y). Acting with a general constant element h in G will change the

twist to hg(y)h−1 and would seem to give a new theory. However, this theory is related to

the original one via the field redefinition ψ → h[ψ] for all fields ψ, so that the two choices of

g(y) in the same conjugacy class give equivalent reductions related by field-redefinitions [8].

The map g(y) is a local section of a principal fiber bundle over the circle with fiber

G and monodromy M(g) in G. Such a bundle is constructed from I × G, where I is the

interval [0, 2πR], by gluing the ends of the interval together with a twist of the fibers by

the monodromy M. Two such bundles with monodromy in the same G-conjugacy class

are equivalent.

In classical supergravity, any twist in G is allowed, but in M-theory, the twists must

belong to the duality group G(Z) and thus the inequivalent twisted reductions will be

classified by the conjugacy classes of the discrete group G(Z) [8]. Monodromies in G(Z)

related by G conjugation define theories with equivalent actions, but in general the action

of G changes the charge lattice. For a fixed charge lattice, the equivalent classes of theories

are defined by the classes of G(Z) monodromy related by G(Z) conjugation [8].

Note that in performing twisted reductions, it is not necessary that the potential have

any critical points, or that the theory have a solution which is flat space or (anti-) de Sitter

space in D dimensions. For example, in the twisted reduction of IIB supergravity in [2]

the resulting D = 9 theory has a potential without critical points and so has no Minkowski

or maximally symmetric vacua. However, it does have half-supersymmetric domain wall

solutions, which can be lifted to solutions of the 10-dimensional IIB theory, as can any

other solution of the D = 9 theory. This is a typical situation, and it is useful to discuss

reduction in generality without specifying a D-dimensional solution.

Going around the circle many times generates twists that are powers of the monodromy

M. We will refer to the discrete abelian subgroup of G(Z) generated by the monodromy

M as the twist group of the bundle. If the order of the twist group is a finite integer n, then

the n-fold cover of this fiber bundle is trivial because all twists can be completely undone

around a larger circle. That is, with the ansatz (2.1) and (2.2) and twist group Zn, if the

range of y is extended to run from 0 to 2πnR, then the n-fold cover of the original circle is

the circle with the identification y ∼ y+2πnR and the monodromy for this covering circle

is the identity, as Mn =
�
.

As we explain in section 2.3, the low energy effective action of the gauged supergravity

in D dimensions is completely determined by the mass matrix M for a given monodromy

M. This leads to an apparent paradox. It is clear from eq. (2.3) that a given monodromy

matrix can arise in general from infinitely many different mass matrices M [8]. As the

– 4 –
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bundle space is determined completely by the monodromy, different choices of M with the

sameM should give equivalent theories. On the other hand, as the mass matrixM appears

explicitly in the gauged supergravity action, different choices of M would appear to give

different theories. For example, in the case of trivial reduction with M =
�
, there are

infinitely many mass matrices M satisfying eM =
�
, each of which would give a different

supergravity action. We describe in the next subsection how this ambiguity is resolved.

2.2 An ambiguity

Consider the example of a complex scalar field φ reduced on a circle with coordinate y with

the identification y ∼ y + 2πR. For a trivial reduction, one has the mode expansion

φ(x, y) =
∑

n

einy/Rφn(x) , (2.4)

giving an infinite set of fields φn(x) in the reduced theory with mass mn ∝ n/R, so that

φ0 is a massless field and the other modes are massive Kaluza-Klein modes. If the original

theory is invariant under U(1) phase rotations φ → eiαφ, one can include a U(1) twist in

the reduction, so that the 1× 1 mass matrix is M = im/R for some real number m, with

monodromy M = e2πim. Then the twisted mode sum becomes

φ(x, y) =
∑

n

ei(n+m)y/Rφ̃n(x) , (2.5)

so that the new modes φ̃n(x) have mass m̃n ∝ (n+m)/R. Clearly, if m is an integer, then

the two mode sums are equivalent, with φ̃n = φn+m, and the full Kaluza-Klein spectra are

the same, as one would expect from the fact that both reductions have monodromy matrix

M =
�
. However, in the twisted case the mass matrix is non-trivial. This means that if

one reduces and then truncates to the n = 0 sector, one is left with a single scalar field

φ̃0(x) with mass m/R, with different masses for different choices of integer m. In this way,

one could truncate the Kaluza-Klein spectrum to any one of the massive modes φm = φ̃0
instead of the usual choice φ0. Similarly, two non-integral choices of mass m = m1,m = m2

which differ by an integer would give equivalent Kaluza-Klein spectra, but if one truncated

to the n = 0 sector, one would obtain distinct truncations.

This applies more generally. The twisted compactifications are classified by the mon-

odromy matrices, up to conjugation. Different choices of mass matrix which give equivalent

monodromies will give equivalent Kaluza-Klein spectra, but can give distinct truncations

to the ‘zero-mode’ sector (the analogue of the n = 0 sector in the example above whose

only dependence on the extra coordinates comes from the twist). These different trunca-

tions will give different potentials as they depend on the mass matrix explicitly. However,

in deriving low-energy effective physics, it is important to choose the truncation to the

lightest fields. In the example above, the tower of Kaluza-Klein fields φ̃n(x) have mass

m̃n ∝ (n+m)/R and one could truncate to a single scalar for any given value of n. How-

ever, the lightest scalar is for that value of n which minimizes |m+ n| and in deriving the

effective low-energy physics, it is important to choose that value of n if one truncates, so

that the effective theory describes the lightest states.

– 5 –
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2.3 The Scalar Potential

The moduli fields, which we generically denote by Φ, are not massless in the reduced theory

in general and there is a nontrivial Scherk-Schwarz potential V (Φ) on the moduli space. It

is straightforward to extend the analysis of Scherk and Schwarz [1] and later generalizations

to obtain an explicit formula for this scalar potential in terms of the mass matrix M . For

the case in which the scalars in D+ 1 dimensions take values in a coset G/K (typically G

is a non-compact group with a maximal compact group K) they can be represented by a

vielbein V(x) ∈ G transforming under rigid G transformations and local K transformations

as V → k(x)Vg. Here we will restrict ourselves to the case in which V is a real matrix in a

real representation of G; the generalization to complex representations is straightforward.

The kinetic term is

L = −1

2
Tr[V−1DmVV−1DmV] (2.6)

where Dm is a K-covariant derivative with K-connection given in terms of V and its

derivative. In this formulation, the theory has a rigid G symmetry and a local K symmetry.

The local K symmetry can be fixed to remove the unphysical degrees of freedom in V. Let
η be a constant K-invariant metric (for semi-simple K, it can be taken to be the Cartan-

Killing metric, and for the standard case in which K is compact, a Lie algebra basis can be

chosen so that η =
�
). Then one can define the K-invariant field H = V tηV transforming

under G as H → gtHg, so that the kinetic term becomes

L = +
1

2
Tr[∂mH−1∂mH] . (2.7)

It is straightforward to show that dimensional reduction on a circle with a twist determined

by the mass matrix M yields a potential in D dimensions given by

V (Φ) = eaφTr[M2 +M tH(Φ)MH−1(Φ)] , (2.8)

where eφ is the modulus corresponding to the radius of the circle and a = 6/(D−1)(D−2).

The potential arises from the y-derivatives in eq. (2.7) with the Scherk-Schwarz ansatz

H(Φ(x), y) = Mt(y)H(Φ(x))M(y) with M(y) = exp My
2πR . The matrix M has dimensions

of mass and introduces mass parameters into the theory. This generalizes the results

of [1, 9, 10].

One immediate question is whether this potential has any stable minima and which

moduli acquire mass at these minima. In terms of M̃ = VMV−1, the potential becomes

V (Φ) = eaφTr[M̃2 + M̃ tηM̃η−1] . (2.9)

For a given mass matrix M , the potential depends on the moduli Φ that parametrize the

coset through the matrix M̃(Φ). The dependence on φ is only through the exponential

factor, so the potential will be stationary with respect to variations of φ only if V (Φ) = 0,

which requires either aφ = −∞, or M̃ = M̃0 with

Tr[M̃0(M̃0 + η−1M̃ t
0η)] = 0 . (2.10)

– 6 –
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Let us now restrict to the case in which K is compact and η is the identity matrix (e.g.

G = SL(N) and K = SO(N)). Then the potential can be rewritten as

V (Φ) =
1

2
eaφTr(Y 2) (2.11)

where Y is the real symmetric matrix, Y ≡ [M̃ + M̃ t]. The potential is then manifestly

positive, V (Φ) ≥ 0 because Y is diagonalizable with real eigenvalues, so that Tr(Y 2) is

the sum of the squares of the eigenvalues. It is clear that the potential will vanish at a

point Φ = Φ0 in the moduli space if and only if Y vanishes at that point. At such a point

Φ0 at which Y = 0, M̃(Φ0) equals a rotation generator M̃0 with M̃0 = −M̃ t
0. Moreover,

from the positivity of the potential, the point Φ0 is a global minimum that is stable or

at least marginally stable. Given such an antisymmetric M̃0, the relation M̃0 = V0MV−10
determines the corresponding value V0 of the vielbein V at the point Φ = Φ0. To summarize,

the only critical points of the potential for finite φ are the stable minima where the potential

vanishes and where M̃(Φ0) is a rotation generator.

We now derive some general properties of the critical points of this potential which will

play a vital role in understanding the relation between twisted reductions and orbifolds.

We will show that the critical points (or submanifolds) are fixed under the action of the

twist group. The relevant mathematics will be discussed further in section 4.4. Consider

then the case in which the mass matrix is G-conjugate to a rotation generator r, r = −r t,
so that

M = S−1rS (2.12)

for some constant S ∈ G. Then the monodromyM = eM is conjugate to a rotation matrix

R = er satisfying RtR =
�
,

M = S−1RS . (2.13)

The potential now will have a global minimum at the point Φ0 in moduli space such that

V(Φ0) = S because at that point M̃0 = r and so Y (Φ0) = 0. At this point, the coset

metric takes the value H0 = StS. This is invariant under the action of the twist group,

H0 → H′0 ≡ MtH0M = H0, as is easily seen using (2.13) and RtR =
�
. Thus, such a

critical point is a fixed point under the action of the twist group generated by M.

There is a natural action of G on the theory, inherited from the structure of the

D + 1 dimensional theory, but it is not a symmetry in D dimensions, as the mass terms

and potential are not invariant under G (although they are preserved by a subgroup).

Acting with G is a field redefinition, and there are two situations to consider. First, if

the D + 1 dimensional theory is a field theory with a global G symmetry (e.g. a classical

supergravity), then the field redefinition from acting withG takes theD-dimensional theory

to an equivalent theory, written in terms of different variables. The second case is that in

which the D+ 1 dimensional theory has only a G(Z) symmetry (as in string theory or M-

theory compactifications, or in a classical Kaluza-Klein reduction on Tn where the massive

Kaluza-Klein modes break the low-energy SL(n,R) to SL(n,Z)). If there is a charge lattice

acted on by G and preserved by the subgroup G(Z), then for a fixed charge lattice, only

field redefinitions from the action of G(Z) will lead to equivalent theories.

– 7 –
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Since G acts transitively on the coset, any point on the coset Φ0 can be moved to any

other point Φ′0 by right multiplication of the vielbein by some element U ∈ G, V(Φ0) →
V(Φ′0) = V(Φ0)U . Under this action, the twist M will go to M′ = U−1MU , changing

the potential to a new one. If Φ0 was a critical point of the original potential, then Φ′0 is

a critical point of the new one. In the first situation in which G is a symmetry in D + 1

dimensions, this action of G is a field redefinition and leads to an equivalent theory and

by acting with G, any given critical point Φ0 can be moved to any desired point in moduli

space Φ′0. In the second situation in which the original theory only has a G(Z) symmetry,

acting with G in general takes the theory to an inequivalent one, but acting with G(Z)

leads to an equivalent theory. Thus acting with G can move a critical point to any desired

point in moduli space, but in general changes the theory. Acting with G(Z) will take the

theory to a physically equivalent one, and change the monodromy to another representative

of the same G(Z) conjugacy class. The G(Z) action can be used to move any critical point

to one in a fundamental domain G(Z)\G/K of the moduli space. However, then acting

with G to move it to another point in the same fundamental domain would lead to an

inequivalent theory.

The distinction between these two situations will be important later when we discuss

orbifolds in section 4. Different points in the moduli space where different orbifold theories

are possible can be moved to each other by G transformations and would appear to be

equivalent in the naive low-energy analysis unless we correctly incorporate the integrality

of charges as above by allowing only G(Z) transformations.

3. Examples with SL(2) Twists

We now illustrate the main ingredients of this construction by means of an example of a

standard reduction on T2 followed by a twisted reduction on S1. Reducing first on the T2

gives a theory whose symmetries include the mapping class group SL(2,Z) of the torus.

One can then reduce further on the circle with a twist that belongs to this SL(2,Z). This

example will also prepare the background for establishing the connection with orbifolds,

and is closely related to the IIB compactifications considered in [8, 9, 10, 35, 11, 13].

3.1 Pure Gravity

Consider first a theory of pure gravity with Einstein-Hilbert action in D + 3 dimensions.

Dimensionally reducing on T2 gives a theory in D+1 dimensions whose massless spectrum

contains the graviton, two Kaluza-Klein gauge bosons and three scalar fields coming from

the moduli of the torus. The area of the torus eψ parametrizes R
+ and the complex

structure τ of the torus parametrizes SL(2,Z)\SL(2,R)/SO(2). The SL(2,Z) is the group

of large diffeomorphisms of the torus and is a discrete gauge symmetry.

The truncated massless theory in D+1 dimensions now has SL(2,R) global symmetry

and we can consider the reduction on a further circle to D dimensions with an SL(2,R)

twist. There are three distinct twisted reductions corresponding to the three distinct

SL(2,R) conjugacy classes [8]. These are the hyperbolic, elliptic and parabolic SL(2,R)

– 8 –
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conjugacy classes, represented by the monodromy matrices

Mh =

(

em 0

0 e−m

)

, Me =

(

cosm sinm

− sinm cosm

)

, Mp =

(

1 m

0 1

)

(3.1)

respectively, generated by the matrices

Mh =

(

m 0

0 −m

)

, Me =

(

0 m

−m 0

)

, Mp =

(

0 m

0 0

)

(3.2)

and each class is specified by a single coupling constant or mass parameter m.

For each of these theories the Scherk-Schwarz potential (2.8) takes a simple form.

The scalars ψ, τ = τ1 + iτ2 take values in GL(2,R)/SO(2) and can be represented by

the GL(2,R) matrix V with a local SO(2) invariance removing one of the four degrees of

freedom of V. Then H = V tV can be given in terms of ψ, τ as H = eψH(τ) where

H(τ) ≡ 1

τ2

(

1 τ1
τ1 |τ |2

)

(3.3)

and the potential is given by

V (τ) = eaφTr[M2 +M tH(τ)MH−1(τ)] . (3.4)

Note that the potential is independent of ψ. For the elliptic twisting with monodromyMe,

the potential has a minimum at τ = i giving a Minkowski vacuum. For the parabolic case,

the potential is proportional to m2eaφ+bΦ where τ2 = e−Φ and and b is a constant, and so

the only critical points are when aφ+ bΦ = −∞. For finite φ, this corresponds to τ = i∞,

representing a degenerate torus. The hyperbolic case has no critical points on the upper

half plane.

The SL(2,R) global symmetry of the massless reduction is broken down to an SL(2,Z)

subgroup if the massive Kaluza-Klein states are kept. For the reduction of the full Kaluza-

Klein theory including the massive states, therefore, the monodromy must belong to

SL(2,Z). The SL(2,Z) conjugacy classes have been analyzed in [36, 37]. For any con-

jugacy class M, −M and ±M−1 also represent conjugacy classes, so for each M in the

following list, there are also conjugacy classes −M and ±M−1.

Apart from the trivial class M =
�
, there are four conjugacy classes that generate

twist groups of finite order

M2 =

(−1 0

0 −1

)

, M3 =

(

0 1

−1 −1

)

, M4 =

(

0 1

−1 0

)

, M6 =

(

1 1

−1 0

)

.

(3.5)

The matrices M2,M3,M4,M6 respectively generate Z2,Z3,Z4,Z6 subgroups of SL(2,Z)

and the subscript gives the order of the subgroup. The monodromies M3,M4,M6 are all

in the elliptic conjugacy class of SL(2,R) with |Tr(M)| < 2.

The monodromies in the parabolic and hyperbolic conjugacy classes all generate twist

groups of infinite order. There are an infinite number of parabolic SL(2,Z) conjugacy

classes with Tr(M) = 2, represented by T n:

MTn =

(

1 n

0 1

)

(3.6)

with a distinct conjugacy class for each integer n.
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There are an infinite number of hyperbolic SL(2,Z) conjugacy classes with |Tr(M)| >
2, represented by

MHn =

(

n 1

−1 0

)

, (3.7)

for integers n with |n| ≥ 3, together with sporadic monodromies M(t) of trace t

M(8) =

(

1 2

3 7

)

, M(10) =

(

1 4

2 9

)

, M(12) =

(

1 2

5 11

)

M(13) =

(

2 3

7 11

)

, M(14) =

(

1 2

6 13

)

, . . . (3.8)

and this gives the complete list of sporadic classes for 3 ≤ t ≤ 15.

The mass matrices corresponding to the monodromies (3.5) and (3.6) are given by

M2 = πA−1
(

0 1

−1 0

)

A, M3 =
2π

3
√
3

(

1 2

−2 −1

)

, M4 =
π

2

(

0 1

−1 0

)

,

M6 =
π

3
√
3

(

1 2

−2 −1

)

, MTn =

(

0 n

0 0

)

. (3.9)

where A is an arbitrary SL(2,R) matrix.

The ambiguity discussed in section section 2.2 arises here from the infinitely many so-

lutions of the equation eM =
�
given by M = 2π ( 0 n− n 0 ). This ambiguity does not

affect the full physical spectrum and in (3.9) we have chosen, for each monodromy, a simple

representative for the mass matrix from the infinite number of possible choices. Note that

after accounting for this ambiguity, the mass matrices for the monodromies M3,M4,M6

are uniquely determined but there are still an infinite number of mass matrices M2, char-

acterized by the arbitrary matrix A, that all give rise to the same monodromy M2. Note

that changing A is an SL(2,R) conjugation and so a field redefinition in the truncated

theory in which the Kaluza-Klein modes are absent and the D+1 dimensional theory has

an SL(2,R) symmetry, but for the full theory it changes the theory unless it is an SL(2,Z)

conjugation. We shall return to the role of A in our discussion of orbifolds. Each of the

mass matrices (3.9) is SL(2,R)-conjugate to the mass matrix Me in (3.2), Mn = U−1MeU

and so the corresponding potentials each have a unique critical point at which V = 0, and

this is located at the image of τ = i under the action of the SL(2,R) transformation U .

3.2 Bosonic String

Consider next the bosonic string compactified on T2. In addition to the metric, we now

also have a dilaton and an antisymmetric tensor among the massless fields. The global

symmetry group is G = O(2, 2) and for fixed value of the dilaton, the moduli space of these

compactifications is given by the Narain coset O(2, 2;Z)\O(2, 2)/O(2) ×O(2).

A convenient parametrization of this space is in terms of the complex structure modulus

τ and the complexified Kähler modulus σ. The real part of σ is the area of the torus

and the imaginary part is the value of the 2-form field Bmn on the torus. The moduli

space for complex structures is SL(2,Z)\SL(2,R)/SO(2) as before and the Kähler modulus
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parametrizes an identical space. The total moduli space is thus

[SL(2,Z)\SL(2,R)/SO(2)× SL(2,Z)\SL(2,R)/SO(2)]/Z2 . (3.10)

The additional Z2 comes from the “parity” element of O(2, 2,Z) with determinant −1.
This element changes the sign of one of the left-moving coordinates of the torus and hence

corresponds to T-duality along that coordinate; it exchanges τ and σ and interchanges the

two SL(2,Z) factors (see, for example, [38]).

We can now reduce the theory further on a circle with a duality twist given by a

conjugacy class of G(Z) = [(SL(2,Z)τ × SL(2,Z)σ ] o Z2. The subscripts are added to

denote that SL(2,Z)τ and SL(2,Z)σ act on τ and σ respectively. The twists that belong

to the SL(2,Z)τ factor have already been discussed in the previous subsection; there are

distinct theories corresponding to each of the conjugacy classes of SL(2,Z). The twists by

SL(2,Z)σ are nongeometric but are conjugate by the Z2 T-duality element to SL(2,Z)τ and

lead to equivalent theories. Twisting simultaneously by elements of the two SL(2) factors

with a mass matrix

M = (Mσ ⊗
�
)⊕ (

� ⊗Mτ ) (3.11)

where Mσ and Mτ are mass matrices of SL(2)σ and SL(2)τ twists respectively, results in

new theories. As we discuss in section 4.1, these new theories are related to asymmetric

orbifolds.

3.3 Supergravity

For a supergravity with a global symmetry G and local symmetry K, with scalars in G/K

parametrized by V, the fermions are inert under G but transform under K. In a physical

gauge in which the K symmetry is fixed, a G transformation is accompanied by a compen-

sating K transformation which acts on the fermions. Given the low energy action for the

massless bosons, the effective action for the fermions is determined by supersymmetry. Cor-

responding to the nontrivial scalar potential (2.8), the fermions acquire moduli-dependent

mass terms that are linear in the mass matrix M , and the supersymmetry transformations

of the fermions are modified by terms linear in M .

Consider the Scherk-Schwarz reduction from D + 1 to D dimensions on a circle, in

the formalism in which the local K symmetry is not fixed. For the bosonic sector, the

reduction is specified by the choice of a twist in G. In the fermionic sector, there is a choice

of spin structure for the fermions on the circle (i.e. the possibility of including a twist by

(−1)F ). The fermions can be decomposed into K representations, and in principle it is

possible to choose a different spin structure for each K representation. In addition, there

is the possibility of accompanying this by a twist in K.

Alternatively, one can first choose a physical gauge eliminating the local K symmetry,

and then reduce with a twist in G (which acts on fermions through the compensating

transformation) and a choice of spin structure for each K representation. In the cases that

we have discussed so far, the symmetries include a rigid SL(2,R) ⊆ G symmetry and a

local U(1) ⊆ K in D+1 dimensions. In this case, if we fix the K symmetry completely by
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choosing physical gauge, the SL(2,R) transformation represented by the matrix

Λ =

(

a b

c d

)

(3.12)

will act on a fermion λ of U(1) charge q by the compensating U(1) transformation

λ→
(

cτ̄ + d

cτ + d

)q/4

λ . (3.13)

Here we restrict ourselves to the case in which we twist only by the global group G and

the spin structure is periodic for all fermions. This gives reductions specified by a mass

matrix M which reduce to the standard reduction when M = 0.

In the standard reduction on T2 followed by a twisted reduction on S1 that we have

considered above, all gravitini become massive at the minima of the scalar potential and the

supersymmetry is completely broken. This can be checked directly, and will become appar-

ent once we make the connection with orbifolds. In the orbifold description, the gravitini

have nontrivial transformations under the twist groups and are thus projected out, so that

there are no massless gravitini in the spectrum and supersymmetry is completely broken. It

is straightforward, however, to construct models with supersymmetric minima by compact-

ifying on higher dimensional tori; we will discuss a simple example in section section 4.2.

3.4 Superstrings

For the heterotic string on T2, there are additional gauge fields and extra moduli from the

Wilson lines. The Narain moduli space is now O(2, 18;Z)\O(2, 18)/O(2) ×O(18). On the

submanifold of this moduli space where all Wilson lines are turned off, the duality symmetry

is again [(SL(2,Z)τ ×SL(2,Z)σ ]oZ2. In this special case, the analysis is similar to that for

the bosonic string. More general reductions twisted by conjugacy classes of the full duality

group O(2, 18;Z) are quite interesting and are related to heterotic compactifications with

various magnetic fluxes turned on, as will be discussed elsewhere.

For the type-IIA superstring on T2, the U-duality group is SL(3,Z) × SL(2,Z). The

SL(3) is a symmetry of the supergravity action and contains SL(2)τ , while the SL(2) fac-

tor is only a symmetry of the supergravity equations of motion and is the SL(2)σ factor

considered above. The perturbative T-duality symmetry is [(SL(2,Z)τ × SL(2,Z)σ ]. Note

that the Z2 element corresponding to T-duality along one leg of the torus is no longer a

symmetry because it interchanges type-IIA with type-IIB. The type-IIB superstring com-

pactified on T2 gives the same D = 8 theory, but now for IIB it is SL(2)σ that is contained

in SL(3), while the SL(2) factor that is only a symmetry of the equations of motion is the

geometric symmetry SL(2)τ . Whereas in the heterotic or bosonic case, twisting by SL(2)τ
or SL(2)σ gave equivalent theories related by T-duality, in the type-II case they give rise

to two distinct SL(2) twistings. In the first, the IIA theory is twisted by SL(2)τ , and this

is T-dual to twisting type-IIB by SL(2)σ . This results in a theory similar to the bosonic

and the heterotic cases. In the second, the IIA theory is twisted by SL(2)σ , and this is

T-dual to twisting type-IIB by SL(2)τ . In this case, the twist is by a symmetry that acts

via duality and is only a symmetry of the equations of motion, not of the action. This

results in some novel features, which will be analyzed in [39].
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For type-II strings there are other more general possibilities when the twisting is non-

perturbative and the monodromy is an arbitrary element of SL(3,Z) × SL(2,Z). For ex-

ample, the type-IIB string in D = 10 has a nonperturbative SL(2,Z)λ symmetry that acts

on the dilaton-axion field λ. After reducing on T2 this SL(2,Z)λ becomes a subgroup of

SL(3,Z) and is conjugate to the perturbative SL(2,Z)σ discussed above. Therefore, the

SL(2,Z)λ twists are dual to the SL(2,Z)σ twists. Even though the group theoretic con-

siderations are identical in the two cases, the realization in terms of perturbative string

modes will be quite different. For example, twists that correspond to turning on NS-NS

fluxes will be conjugate to twists that correspond to turning on R-R fluxes.

Note that the D = 7 theory obtained by twisting with an element of the SL(2,Z)λ
can also be obtained by first reducing the IIB theory on a circle with an SL(2,Z)λ twist

M to D = 9, and then performing a standard reduction on T2. Thus, the D = 7 theories

obtained by twisting with SL(2,Z)λ are precisely the T2 reductions of the D = 9 theories

of [9, 10, 8, 11, 13] and have a very similar structure. The D = 9 theory can be thought of

as F-theory compactified on a T2 bundle over S1 with monodromy M [8].

4. Orbifolds, duality twists, and fluxes

Given a theory with a discrete symmetry X, its orbifold is obtained by gauging the sym-

metry. The Hilbert space of the orbifold consists of states of the original theory that are

invariant underX, together with new twisted string states that are closed up to a nontrivial

X transformation. We will be interested in orbifolds of strings compactified on T2 × S1.

For special values of the torus modulus, the torus will be invariant under a discrete Zn sym-

metry of finite order n = 2, 3, 4 or 6. For such a torus, the orbifold group X = Zn relevant

for our purpose is generated by a Zn generator of the torus symmetry group accompanied

by an order n shift along the circle.

4.1 Bosonic string

Let us first consider orbifolds of the bosonic string where the discrete rotation is geometric

and acts symmetrically on the left-moving and right-moving coordinates of the torus. To

see what geometric rotations are allowed, let z be the complex coordinate of T2 with

the identifications z ∼ z + 1 ∼ z + τ , where τ is the complex structure modulus of the

torus. For what follows, the Kähler modulus can be arbitrary so the over-all scale of the

torus is not important. Associated with the torus is a lattice of points in the complex

plane, {z = m + nτ}, for arbitrary integers m and n. Now, a rotation in the complex

plane becomes a symmetry of the torus only if it is a symmetry of the lattice. A Z2

rotation through π that takes z to −z is a symmetry of all lattices. Additional symmetries

are possible for special lattices (i.e. for special values of τ) given by the crystallographic

classification [40]. A square lattice with τ = i has an enhanced Z4 symmetry generated

by the rotations z → eiπ/2z and a hexagonal lattice with τ = e2πi/3 has an enhanced Z6

symmetry generated by z → eiπ/3z with a Z3 subgroup generated by z → e2iπ/3z. The

only possible discrete rotation symmetries of the torus are Z2,Z3,Z4,Z6.
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The orbifold action for our purposes will be one of these Zn rotations of a torus at a

special value of the modulus with a simultaneous order n shift along the circle of radius nR

for n = 2, 3, 4, 6. Note that the list of allowed orbifold rotations is in one–to–one correspon-

dence with the list of twist groups generated by the monodromies M2,M3,M4,M6 that

we encountered earlier in a rather different context. We now explain the relation between

the orbifolds and the twisted reductions.

It is clear that all of the above orbifolds can be viewed as twisted reductions. The

group SL(2,Z) of large diffeomorphisms of T2 has a natural action on the lattice defining

the torus and the Zn symmetry of a special lattice is a subgroup of SL(2,Z) that leaves

the lattice invariant. Conjugation by SL(2,Z) gives a physically equivalent rotation and

thus again there is a dependence only on conjugacy classes. If the circle has radius r and

coordinate y ∼ y + 2πr, then the orbifolded theory is identified under the action of a Zn

rotation accompanied by a shift y → y+2πr/n. This is equivalent to the twisted reduction

on a circle of radius R = r/n with a twist by the Zn generator. Since the orbifold satisfies

the string equations of motion with vanishing ground state energy at tree level, the Scherk-

Schwarz potential must have a stable (or marginally stable) minimum with zero energy at

this point.

The converse is more interesting and less obvious. Compactification with a dual-

ity twist is more general than the orbifold construction in certain respects because it

can be carried out without restricting the moduli to special values and the moduli can

have nontrivial variation along the circle and in the D-dimensional spacetime. More-

over, we can twist by any monodromy, giving distinct theories for each of the infinite

number of conjugacy classes listed in section 3. The orbifold, on the other hand, is

possible only for special values of the moduli where the lattice admits a symmetry and

the class of allowed orbifold rotations is finite. As we now discuss, the connection be-

tween the two is provided by the Scherk-Schwarz potential. The minima of the potential

occur precisely at the fixed points in the coset space SL(2)/SO(2) under the action of

the twist group, and these are precisely the points in moduli space where orbifolding is

possible.

Consider first the parabolic and the hyperbolic conjugacy classes of SL(2,Z). Mon-

odromies in these conjugacy classes generate twist groups of infinite order and have no

fixed points on the upper half plane with τ2 strictly positive and finite. As discussed in

section 3, the Scherk-Schwarz potential has no stable minima with τ2 strictly positive and

finite in these cases, consistent with the fact that there is no standard orbifold formulation

in this situation.

Monodromies in the elliptic conjugacy classes of SL(2,Z) generate twists of finite order.

As they are SL(2,R)-conjugate to a rotation, they must have a fixed point. In fact, it follows

from a theorem given in section 4.4 that any finite order subgroup ofG(Z) always has a fixed

point on G/K for any non-compact semi-simple G with K its maximal compact subgroup.

Moreover, together with the discussion in section 2.3 this implies that the Scherk-Schwarz

potential for a given elliptic monodromy has a stable minimum precisely at this fixed point.

We now check these facts by hand for the simple case of SL(2) by explicitly finding the

minima of the potential for the mass matrices given by (3.9).

– 14 –



J
H
E
P
0
9
(
2
0
0
3
)
0
5
4

When G = SL(2), the vielbein can always be written in the physical gauge as an upper

triangular matrix with the parametrization

V(τ) = 1√
τ2

(

1 τ1
0 τ2

)

(4.1)

so that the metric H = V tV takes the canonical form (3.3). (That this can always be

done is seen most easily by using the Iwasawa decomposition of a general SL(2) matrix as

a product kV where k is an SO(2) matrix and V is an upper triangular matrix and then

fixing the physical gauge to gauge away k.) In this parametrization, given an arbitrary

mass matrix M = (−d bc d ) in the Lie algebra of SL(2,R), the matrix M̃ = VMV−1 is
given by

M̃ =
1

τ2

(

1 τ1
0 τ2

)(−d b

c d

)(

τ2 −τ1
0 1

)

=
1

τ2

(−dτ2 + cτ1τ2 dτ1 + b− cτ12 + dτ1
cτ2

2 −cτ1τ2 + dτ2

)

.

(4.2)

Now we have seen in section 2.3, the potential can be written in the form

V (τ) =
1

2
eaφTr(Y 2) (4.3)

where Y is a real symmetric matrix, Y ≡ [M̃ + M̃ t]. Therefore, for a given mass matrix

M , a minimum occurs precisely for those values of τ for which the corresponding Y matrix

vanishes. The Y matrices corresponding to the four mass matrices in (3.9) for the elliptic

conjugacy classes are given by

Y2 =

( −dτ2 + cτ1τ2 dτ1 + b− cτ12 + cτ2
2 + dτ1

dτ1 + b− cτ12 + cτ2
2 + dτ1 −cτ1τ2 + dτ2

)

Y3 =
4π

3
√
3τ2

(

τ2 − 2τ1τ2 1 + τ1
2 − τ22 − τ1

1 + τ1
2 − τ22 − τ1 −τ2 + 2τ1τ2

)

= 2Y6

Y4 =
π

2τ2

( −2τ1τ2 1 + τ1
2 − τ22

1 + τ1
2 − τ22 2τ1τ2

)

. (4.4)

Note that in the matrix Y2, the three real numbers b, c, d are subject to the constraint

d2 + bc = −π2 and thus it depends effectively on only two parameters. This follows from

the fact that the mass matrix M2 in (3.9) depends on an arbitrary SL(2,R) matrix A and

is an arbitrary trace-less matrix whose determinant equals π2.

Now, the minima of the potential can be readily found. The matrices Y3 and Y6
vanish only at τ = exp (πi/3) and thus for twists by the monodromies M3 and M6, the

minimum of the potential (4.3) occurs precisely at points where a Z3 and Z6 orbifold action

is possible. Similarly the matrix Y4 vanishes only at τ = i and thus for the monodromy

M4 the potential has a minimum precisely where a Z4 orbifold is possible.

For the conjugacy class M2, the position at which the matrix Y2 vanishes depends on

the choice of the numbers b, c, d in (4.4), corresponding to the choice of the SL(2,R) matrix

A in (3.9). Choosing A = 1, d = 0, b = −c, Y2 vanishes at τ = i. Now conjugating with

U ∈ SL(2,R) gives A = U and can be used to move the point at which Y2 vanishes to any

desired point in moduli space. Changing A in this way changes the compactified theory
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unless A ∈ SL(2,Z), and this SL(2,Z) redundancy can be used to move the critical point

into a fundamental domain. This freedom is consistent with the fact that a Z2 orbifold is

possible for all values of τ and is a consequence of the fact that the orbifold twist in this

case belongs to the center of the duality group.

We can understand the existence and the location of these minima more succinctly

following the discussion section 2.3 in a way that will be generalized to other twist groups

in section 4.4. Every monodromy Mn of finite order n has |Tr(Mn)| < 2 and is in the

elliptic SL(2,R) conjugacy class Mn, so that it is conjugate to the rotation matrix Me

given in (3.1), for some value of the angle of rotation m. Moreover, since (Mn)
n =

�
,

the angle must be m = 2πN
n for some integer N . The monodromies in (3.5) are in fact

conjugate to the rotation matrix Rn, where Rn is the SO(2) rotation through 2π
n , i.e. there

exists a (constant) SL(2,R) matrix Sn such that

SnMnS
−1
n = Rn (4.5)

Note that given an Sn that solves this equation, left-multiplication by an arbitrary SO(2)

matrix k gives another matrix S ′n ≡ kSn that also solves this equation. We can use

this gauge freedom to bring all matrices Sn to an upper triangular form. For the cases

n = 2, 3, 4, 6, the matrices Sn are given by

S2 = V , S4 =

(

1 0

0 1

)

, S3 = S6 =

√

2√
3

(

1 1
2

0
√
3
2

)

. (4.6)

Note that S2 is an arbitrary SL(2,R) upper triangular matrix V because M2 depends on

an arbitrary SL(2,R) matrix A which can written as a product A = kV where k is an

SO(2) matrix.

For these monodromies, the mass matrix Mn can be chosen (using the ambiguity

discussed in section 2.2) so that after this conjugation it becomes the rotation generator

SnMnS
−1
n =

2π

n

(

0 −1
1 0

)

. (4.7)

We have seen in section 2.3 that for such a mass matrix, the Scherk-Schwarz potential has

a global minimum at V = Sn at which the potential vanishes, and that this is a fixed point

under the action of the twist group generated by Mn.

We thus conclude that for an elliptic duality twist Mn ∈ SL(2,Z)τ , the critical points

of the Scherk-Schwarz potential are precisely at the fixed points of the twist. The potential

vanishes at the minimum and the theory at the minimum is a symmetric orbifold of the

type discussed above using the twist group generated by Mn accompanied by a shift.

Orbifolds with twisted boundary conditions around toroidal directions have been con-

sidered before, for example, in [41, 30, 42, 43], usually with boundary conditions that break

supersymmetry. Our analysis illuminates the place of such orbifold conformal field theories

in the string configuration space. If we climb up the Scherk-Schwarz potential from the

minimum, the string equations of motion will no longer be satisfied and there would be

no CFT description of the theory because we have perturbed the CFT by an irrelevant
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perturbation. Nevertheless, from the spacetime point of view, it is a mild way of going

off-shell with operators that correspond to massive fields in spacetime with masses of order

of the inverse radius of the circle and our analysis gives the off-shell potential.

Duality twists that belong to SL(2,Z)σ are related to the one above by a T-duality along

one of the legs of the torus. The most general case when we twist by an arbitrary element

of O(2, 2;Z) would therefore twist the coordinate and the T-dual coordinate independently

of each other. The minima of the potential in this case would be described by the most

general order n asymmetric orbifold with an asymmetric rotation of the torus accompanied

by a shift along the circle.

The possible asymmetric rotations can be easily classified [33] and are given by the

automorphisms of the lorentzian lattice Γ2,2 for special values of the moduli that are left

fixed by the twists. There are fixed planes for the cases that we have already discussed

when the T-duality twist acts only on τ or only on σ. There are also fixed points in

the general case that have more symmetry. For example, the point σ = i, τ = i has an

enhanced (Z4 × Z4) o Z2 symmetry, the point σ = τ = ρ with ρ = eπi/3 has an enhanced

Z9 symmetry and the point σ = i, τ = ρ (or vice versa) has a Z12 symmetry which acts

quasicrystallographically [31] on the lattice. At any of these points in the moduli space, a Zn

subgroup of the symmetry can be combined with an order n shift to obtain an asymmetric

orbifold. This orbifold would describe the theory at the minimum of the potential in the

corresponding Scherk-Schwarz reduction, with mass matrix of the form (3.11).

4.2 Superstrings

In the case of superstrings, the action of the orbifold rotation must be lifted to spacetime

fermions. Consider, for example, a T2 reduction along the X8 and X9 directions. The

torus coordinate z can be written as X8 + iX9, and the Zn rotations discussed in the

previous section are generated by elements exp (2πiJ89/n) where J89 is the generator of

rotations in the 89 plane. When spacetime fermions are present, the eigenvalues of J89 are

half-integral and exp (2πiJ89) = (−1)F where F is the fermion number; as a result these

rotations now generate Z2n groups of order 2n. For odd n, an order n symmetry generated

by exp (2πiJ89/n)(−1)F is also possible. We suppose there is a further circular direction

X7 say, and orbifold by these transformations combined with the appropriate shifts in the

X7 coordinate.

These orbifolds break supersymmetry completely because in the light cone Green-

Schwarz formalism (with X8, X9 both transverse coordinates), no components of Spin(8)

spinors are left invariant by the rotation in the 89 plane. When the radius of the X 7 circle

is of string scale, all these models contain tachyons in the twisted sector and are unstable.

However, for a large enough circle there will be no tachyons and the twisted states will

be very massive. This is the regime in which one can compare the orbifolds with the

supergravity analysis of compactifications with duality twists given in the previous sections.

The above applies to orbifolds based on subgroups of SL(2,Z)τ . For the heterotic

string, the ones based on SL(2,Z)σ are related by T-duality and are very similar. For

the type-IIA string, orbifolds by subgroups of SL(2,Z)σ are distinct from orbifolds by

subgroups of SL(2,Z)τ and are T-dual to orbifolds of type-IIB by subgroups of SL(2,Z)τ .
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When the duality twist does not belong to the T-duality group then the theory at the

minimum of the Scherk-Schwarz potential cannot be described by a perturbative orbifold,

but the supergravity analysis of section 2 and section 3 is still applicable. For example, in

the supergravity analysis the twists that correspond to turning on Ramond-Ramond fluxes

are on the same footing as those that correspond to turning on NS-NS fluxes (see below for

a discussion of fluxes in this context). The group theoretic considerations of this and the

previous sections can be equally well applied to such nonperturbative twists, in particular

for finding the minima of the Scherk-Schwarz potential.

For the standard reduction on T2 followed by a twisted reduction on S1 of type-IIB,

all nonperturbative twists belong to SL(3). If we restrict attention to the nonperturbative

SL(2,Z)λ, then the considerations are similar to those for SL(2,Z)σ . The monodromyM2

actually corresponds to a perturbative symmetry Ω(−1)FL where Ω is orientation reversal

and FL is the left-moving fermion number [44]. Therefore, modding out by this symmetry

gives rise to a perturbative orientifold. The orientifold has no orientifold planes or D-branes

because of the shift along the circle. TheM3,M4,M6 twists are nonperturbative and the

Scherk-Schwarz potential will fix the dilaton-axion field λ to either i or eπi/3 where the string

would be strongly coupled. The classical analysis given here can still be reliable in such

situations in the spirit of F-theory [45], especially if the theory at the minimum preserves

enough supersymmetry. Since this SL(2,Z)λ is conjugate to SL(2,Z)σ by an element of

SL(3) we expect that the theories at the minima with nonperturbative twists will be dual

to the perturbative orbifolds discussed above by using the adiabatic argument [46].

It is easy to construct models with unbroken supersymmetries by compactifying on

higher tori of dimensions 2N and choosing a duality twist that is a subgroup of SU(N).

The resulting orbifold theory at the minimum then has SU(N) holonomy and preserves

some number of supersymmetries. As a simple example that illustrates this point, consider

type-IIB on a T4 × S1. We take the twists to be in SL(4,Z) which is the group of large

diffeomorphisms of T4. The simplest nontrivial conjugacy class is the element − �
that

generates a twist group of order two. Because it is a twist of finite order, the Scherk-

Schwarz potential will have a stable minimum and the Z2 symmetry of the orbifold theory

at the minimum is generated by the reflection of all coordinates of T4 accompanied by a

half-shift along the circle. Note that without the half-shift, the T4/Z2 orbifold would have

given us aK3 and we would have obtained a standard type-IIB compactification onK3×S1
to five dimensions with sixteen unbroken supersymmetries. When the orbifolding action

includes the half-shift, one would still obtain a theory in five dimensions with sixteen

supersymmetries, but all twisted states will now be massive. In particular, the vector

multiplets that come from the sixteen fixed points of the reflection on T4 will now be

massive thereby stabilizing all moduli that belong to these multiplets as well as the moduli

in the untwisted sector that are projected out by the orbifolding.

4.3 Relation to turning on fluxes

In this subsection we explain the relation between the twisted reductions and compactifi-

cations with internal fluxes.
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The toroidal compactification on T2 followed by this twisted reduction on an S1 is

equivalent to reducing on a three-manifold B which is the total space of the torus bundle

over a circle with metric

ds2B = (2πR)2dy2 +
A
τ2
|dx1 + τ(y)dx2|2 (4.8)

where the fiber is a T2 with real periodic coordinates x1, x2, xi ∼ xi + 1, constant area

modulus A and complex structure τ(y), which depends on the coordinate y. The twisted

reduction on the circle with the ansatz τ(y) = τg(y) associated with a particular torus

bundle B is precisely the compactification on the three dimensional total space B [8]. For

the parabolic conjugacy class, τ(y) = τ1+ iτ2+ny where m is the integral mass parameter

in (3.6), and τ1, τ2 are independent of y, xi. Then the metric is

ds2B = (2πR)2dy2 +
A
τ2
(dx1 +A)2 +Aτ2dx22 (4.9)

where A = (τ1 + ny)dx2. The total space can also be regarded as a circle bundle over a

2-torus [8], with fiber coordinate x1, base space coordinates y, x2 and connection 1-form A

and first Chern number n. We thus see that the parabolic conjugacy classMTn corresponds

to turning on n units of magnetic flux of the Kaluza-Klein gauge field. T-dualizing in the

x1 fiber direction untwists the bundle to give a torus metric on T3

ds2B = (2πR)2dy2 +
τ2
Adx

2
1 +Aτ2dx22 (4.10)

but turns on a B-field with field strength H = ndx1∧dx2∧dy corresponding to a constant

H-flux over T3.

For the elliptic conjugacy classes, the orbifold at the minimum of the potential can be

viewed as turning on magnetic flux tubes similar to the non-compact Melvin solutions [47,

48, 49]. In the non-compact Melvin solution, the orbifolding action is a rotation in a plane

accompanied by a shift along a circle and this orbifold can be interpreted as a Melvin

background with magnetic flux of the Kaluza-Klein vector potential. The total flux in the

plane is a function of the angle of rotation in the plane and since the angle is continuous,

the flux can be changed continuously. By contrast, in the situation that we discuss in this

paper, the rotation angle is quantized because we are rotating the coordinate of a torus and

not of a plane. As we have seen, the only allowed rotation angles for T2 are π/3, π/2, π,

and 2π/3 and consequently only a finite number of discrete values of the flux are allowed.

For the hyperbolic cases, the situation is more complicated and it is unclear whether

there is a relation of the reduction to a toroidal reduction with flux.

4.4 Generalizations

Generalizations to higher duality groups are very interesting and can be used to fix moduli

in a more realistic context preserving some supersymmetry. We will not analyze explicit

models here but instead present a number of general results that are useful for the analysis

of the Scherk-Schwarz potential in these cases.
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We consider a theory with a moduli space G(Z)\G/K with G non-compact semi-simple

and K the maximal compact subgroup.1 Our prime example will be G = SL(N,R) and

K = SO(N).

For G(Z) (e.g. SL(N,Z)), many more conjugacy classes are possible and we will not

discuss them explicitly here. One general question of interest for a given conjugacy class is

whether the Scherk-Schwarz potential has a minimum, and if so, where in the moduli space

it lies. The following theorem is useful for addressing this question. See, for example, [50]

for a proof.

Theorem. Every finite order subgroup H ⊂ G(Z) ⊂ G with G non-compact semi-simple

is conjugate to a subgroup of the maximal compact subgroup K. Thus, there exists a matrix

S ∈ G such that SHS−1 = K1 ⊂ K.

The space G/K is defined as a coset with the equivalence relation g ∼ kg for every

g ∈ G and k ∈ K. If we denote the equivalence class of g by [g] then the coset is the set

{[g]} of all equivalence classes. The equivalence class of the identity [
�
] corresponds to the

entire group K. An element h of G acts on the coset by right multiplication [g] → [gh].

It is clear from the equivalence
�
K = K

� ∼ �
that the point [

�
] in G/K is a fixed point

under the action of K by right multiplication. Therefore, by the theorem above, every

finite order subgroup H also has a fixed point on G/K. This property is closely related

to the fact that the spaces G/K have negative curvature. Indeed, the equivalence class

[S] is the desired fixed point under right-multiplication by H since SH = K1S ∼ S. It is

also clear that since ktk =
�
, the metric H0 = StS is invariant under H-transformations:

htStSh = StS for all h ∈ H. Because H leaves the metric invariant, it defines a symmetry

of the corresponding integer lattice in R
N and can be used for orbifolding.

These results imply that any twist M that generates a finite order subgroup H is

conjugate by an SL(N,R) matrix S to an SO(N) matrix. By (2.3), it will result in a mass

matrix that is conjugate by S to a rotation generator. We have seen in section 2.3 that in

this case when mass matrix is conjugate to a rotation generator, V0 = S or H0 = StS is

a stable minimum of the Scherk-Schwarz potential. Using this physics input we conclude

that for the finite order twists H ⊂ SL(N,Z) the matrix S defines a minimum on the coset

of the Scherk-Schwarz potential at which V = 0.

5. Conclusions

Even though we have focused here on duality twists in T2 × S1 compactifications, these

methods can be applied equally well to more general compactifications on higher tori and

other manifolds such asK3 and Calabi-Yau threefolds that have interesting duality symme-

tries. We have seen that there is a close relation between compactifications with perturba-

tive duality twists and orbifolds. Our considerations here are useful even for nonperturba-

tive duality twists and for duality twists that correspond to turning on internal RR-fluxes.

1Because K acts on the left and G(Z) on the right in our conventions in this paper, the coset should be

denoted by K\G/G(Z); however, with a slight abuse of notation, we adhere to the common usage, denoting

the moduli space by G(Z)\G/K.
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The structure of duality twists for higher groups is expected to be much richer because

many more conjugacy classes are possible. For general twists, the Scherk-Schwarz poten-

tial can be quite complicated and explicit extremization is not easy. However, the group

theoretic considerations discussed here provide an efficient way for finding the minima and

the properties of the theory at the minima. It would be interesting to elucidate further the

relation of duality twisting with compactifications with internal fluxes and to see if some

of the recent models that fix moduli with fluxes can be analyzed in this framework.

We have seen that in the type-II circle compactifications considered here with SL(2)

twists, only the elliptic conjugacy classes lead to stable minima. However, in more general

toroidal compactifications with higher groups, it is likely that other conjugacy classes also

lead to stable minima. For example, the parabolic conjugacy classes correspond to turning

on H-flux. It is known that in orientifolds of type-I on T6, if additional orientifold charges

are present, the inclusion of 3-form fluxes can lead to gauged supergravities [51, 52] that

have stable minima [23, 26]. It would also be interesting to see in the more general cases

which twists lead to stable minima. In such more general situations, the twist groups may

have fixed sub-manifolds instead of fixed points in the moduli space where the potential

has a minimum. In such cases, only some of the moduli will be stabilized.

By considering a U-duality twist that has a unique fixed point on the moduli space,

one can construct models with or without supersymmetry in any dimension that stabilize

all moduli except the radius of the circle used for twisting. In the framework described

here we require an S1 factor for twists but in more general situations where the manifold

of compactification has circle fibration, it might be possible to twist along this fiber in a

way analogous to F-theory [45, 53, 54]. If supersymmetry is broken, the classical analysis

would be quantum corrected but we expect that the existence and the location of the

minima which depend on considerations of symmetry should still be valid. It would be

interesting to explore further if these different techniques can be combined to construct

realistic models with few or no moduli.
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