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Abstract: We derive the lagrangian and the transformation laws of N = 4 gauged su-

pergravity coupled to matter multiplets whose σ-model of the scalars is SU(1, 1)/U(1) ⊗
SO(6, 6 + n)/SO(6) ⊗ SO(6 + n) and which corresponds to the effective lagrangian of the

type-IIB string compactified on the T 6/Z2 orientifold with fluxes turned on and in presence

of n D3-branes. The gauge group is T 12⊗G where G is the gauge group on the brane and

T 12 is the gauge group on the bulk corresponding to the gauged translations of the R-R

scalars coming from the R-R four-form.

The N = 4 bulk sector of this theory can be obtained as a truncation of the Scherk-Schwarz

spontaneously broken N = 8 supergravity. Consequently the full bulk spectrum satisfies

quadratic and quartic mass sum rules, identical to those encountered in Scherk-Schwarz

reduction gauging a flat group.

This theory gives rise to a no scale supergravity extended with partial super-Higgs mech-

anism.
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1. Introduction

In recent time, compactification of higher dimensional theories in presence of p-form fluxes

[1]–[23] has given origin to new four-dimensional vacua with spontaneously broken super-

symmetry and with vanishing vacuum energy. These models realize, at least at the classical

level, the no-scale structure [24]–[26] of extended supergravities in an M or String theory

setting [27]–[34].

No-scale supergravities also arise from Scherk-Schwarz generalized dimensional reduc-

tion [35]–[37], where a flat group is gauged.
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From a pure four-dimensional point of view all these models can be viewed as partic-

ular cases of gauged-extended supergravities (for recent reviews see [38]–[40]). The gauge

couplings correspond to fluxes turned on.1 This is so because for N > 1 supersymmetry a

scalar potential is necessarily due to the presence of gauge symmetries. It has been shown

that a common feature of all no-scale structures is that the complete gauge group of the

theory contains a sector where “axionic” symmetries are gauged [41]–[47].

The Higgs effect in this sector is then tightly connected to the super-Higgs mecha-

nism [48, 49]. The complete gauge group is usually larger than this sector and the ad-

ditional gauge bosons are frequently associated to central charges of the supersymmetry

algebra.

For instance, in N = 8 spontaneously broken supergravity à la Scherk-Schwarz, the

translational part TΛ is 27-dimensional and the extra sector T0 is one-dimensional, then

completing a 28-dimensional flat group [35, 44]

[TΛ, T0] = f∆Λ0T∆ ; [TΛ, TΣ] = 0 ; Λ,Σ = 1 . . . 27 . (1.1)

This algebra is a 28-dimensional subalgebra of e7,7. In the case of the IIB orientifold T 6/Z2,

the translational part TΛ is 12-dimensional, while the extra sector Ti are the Yang-Mills

generators on the brane [8, 9, 50]

[TΛ, Ti] = 0 ; [TΛ, TΣ] = 0 ; [Ti, Tj ] = c k
ij Tk ; ΛΣ = 1 . . . 12; i, j, k = 1 . . . dimG .

(1.2)

What is common to these groups is that they must have a symplectic action on the vector

field strengths and their dual [51]. This implies that they must be embedded in Sp(2n,R),

where n = 12 + dimG in the orientifold case.

The particular choice of the embedding determines the structure of the gauged su-

pergravity. In the case of the type-IIB supergravity in presence of D3-branes, the strong

requirement is that the original SL(2,R) symmetry acts linearly on the twelve bulk vec-

tors (BµΛ, CµΛ), Λ = 1 . . . 6, but acts as an electric magnetic duality on the vectors Ai
µ,

i = 1 . . . n living on the D3-branes.2

Mathematically this corresponds to a very particular embedding of SL(2,R)×SO(6, 6+

n) into Sp(24 + 2n,R).

The relevant decomposition is

so(6, 6+n) = sl(6,R)0+so(1, 1)0+so(n)0+(15′,1)+2+(15,1)−2+(6′,n)+1+(6,n)−1 (1.3)

where so(n) ⊃ Adj G(dimn) (note that if G = U(N), then n = N 2). The symplectic

embedding of the 12 + n vectors such that SL(2,R) is diagonal on 12 vectors and off

diagonal in the remaining Yang-Mills vectors on the branes, is performed in section 3.

Interestingly, the full bulk sector of the T 6/Z2 type IIB orientifold can be related

to a N = 4 truncation of the N = 8 spontaneously broken supergravity à la Scherk-

Schwarz [35, 36]. This will be proven in detail in section 8.

1Note that in String and M theories the fluxes satisfy some quantization conditions [1]–[23]
2(BµI , CµI) are the SL(2, R) doublet N-S and R-R two-forms with one leg on space-time and one leg on

the torus
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The U(4) R-symmetry of the type-IIB theory is identified with the U(4) ⊂ USp(8) of

the N = 8 theory, while SL(2,R)×GL(6) is related to the subgroup of E6(6) × SO(1, 1) ⊂
E7(7). The N = 4 truncation is obtained by deleting the left-handed gravitino in the

4
− 1

2 and keeping the 4+
1
2 in the decomposition of the 8 of USp(8) into U(4) irreducible

representations: 8 −→ 4
− 1

2 + 4+
1
2 .

The N = 8 gravitino mass matrix (the 36 of USp(8)) decomposes as follows

36 −→ 10 + 150 + 10+1 + 10
−1

(1.4)

and the representation 10+1 corresponds to the N = 4 gravitino mass matrix of the orien-

tifold theory [50, 57].

The vacuum condition of the N = 8 Scherk-Schwarz model corresponds to the vanish-

ing of a certain representation 42 of USp(8) [37, 44]. Its N = 4 decomposition is

42 −→ 200 + 1+2 + 1−2 + 10
+1

+ 10−1 (1.5)

and the vacuum condition of the N = 4 orientifold theory corresponds to setting to zero [50,

57] the representation 10−1 (the other representations being deleted in the truncation).

This theory has a six-dimensional moduli space (6 + 6N , N being the dimensional

of the Cartan subalgebra of G, if the D3-brane coordinates are added) which is locally

three copies of SU(1, 1)/U(1) [45, 52, 50]. The spectrum depends on the overall scale

γ = (R1R2R3)
−1 = e

K
2 , whereK is the Kähler potential of the moduli space. In units of this

scale, if we call mi (i = 1, 2, 3, 4) the four gravitino masses, the overall mass spectrum has a

surprisingly simple form, and in fact it coincides with a particular truncation (to half of the

states) of the N = 8 spectrum of Scherk-Schwarz spontaneously broken supergravity [36].

The mass spectrum satisfies the quadratic and quartic relations:

∑

J

(2J + 1)(−1)2Jm2
J = 0

∑

J

(2J + 1)(−1)2Jm4
J = 0 . (1.6)

These relations imply that the one-loop divergent contribution to the vacuum energy is

absent, in the field theory approximation [53, 54]. In the present investigation we complete

the analysis performed in reference [57, 50]. In these previous works the part referring to

the bulk sector of the theory and the vacua in presence of D3-branes degrees of freedom

were obtained.

The paper is organized as follows:

• In section 2 we describe the N = 4 σ-model geometry of the bulk sector coupled to

n D3-branes.

• In section 3 we give in detail the symplectic embedding which describes the bulk IIB

theory coupled to D3-brane gauge fields.

• In section 4 the gauging of the N = 4 theory is given.
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• In section 5 the lagrangian (up to four fermions terms) and the supersymmetry trans-

formation laws (up to three fermions terms) are obtained.

• In section 6 the potential and its extrema are discussed.

• In section 7 the mass spectrum is given.

• In section 8 we describe the embedding of our model in the N = 8 supergravity and

its relation with the Scherk-Schwarz compactification.

• In appendix A we describe the geometric method of the Bianchi identities in super-

space in order to find the supersymmetry transformation laws on space-time.

• In appendix B we use the geometric method (rheonomic approach)in order to find

a superspace lagrangian which reduces to the space-time lagrangian after suitable

projection on the space-time.

• In appendix C we give a more detailed discussion of the freezing of the moduli when

we reduce in steps N = 4 −→ 3, 2, 1, 0 using holomorphic coordinates on the T 6

torus.

• In appendix D we give some conventions.

2. The geometry of the scalar sector of the T 6/Z2 orientifold in presence

of D3-branes

2.1 The σ-model of the bulk supergravity sector

For the sake of establishing notations, let us first recall the physical content of the N = 4

matter coupled supergravity theory.

The gravitational multiplet is

{
V a
µ ; ψAµ; ψ

A
µ ; A

I
1µ; χ

A; χA; φ1; φ2
}

(2.1)

where ψAµ and ψAµ are chiral and antichiral gravitini, while χA and χA are chiral and

antichiral dilatini; V a
µ is the vierbein, AI

1µ, I = 1, . . . 6 are the graviphotons and the complex

scalar fields φ1, φ2 satisfy the constraint φ1φ1 − φ2φ2 = 1.

We also introduce 6+ n Yang-Mills vector multiplets, from which 6 will be considered

as vector multiplets of the bulk, namely

{AI
2µ; λ

I
A; λ

IA; sr} (2.2)

where λIA and λIA are respectively chiral and antichiral gaugini, AI
2µ are matter vectors

and sr, r = 1, . . . 36 are real scalar fields.

Correspondingly we denote the n vector multiplets, which microscopically live on the

D3-branes, as

{Ai
µ; λ

i
A; λ

iA; qIi } (2.3)

where i = 1, . . . n.
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It is well known that the scalar manifold of the N = 4 supergravity coupled to 6 + n

vector multiplets is given by the coset space [55, 56]

SU(1, 1)

U(1)
⊗ SO(6, 6 + n)

SO(6) × SO(6 + n)
. (2.4)

Denoting by w[ ], the weights of the fields under the U(1) factor of the U(4) R-symmetry,

the weights of the chiral spinors are3

w[ψA] =
1

2
; w[χA] =

3

2
; w[λIA] = −

1

2
; w[λiA] = −

1

2
(2.5)

and for the SU(1, 1)/U(1) scalars we have

w[φ1] = w[φ2] = −1 ; w
[
φ1
]
= w

[
φ2
]
= 1 . (2.6)

Let us now describe the geometry of the coset σ-model.

For the SU(1, 1)/U(1) factor of the N = 4 σ-model we use the following parameteri-

zation [57]:

SSU(1,1) =

(
φ1 φ2
φ2 φ1

)
(φ1φ1 − φ2φ2 = 1) (2.7)

Introducing the 2-vector
(
L1

L2

)
=

1√
2

(
φ1 + φ2
−i(φ1 − φ2)

)

w[Lα] = −1 ; w[L
α
] = 1 (2.8)

the identity φ1φ1 − φ2φ2 = 1 becomes:

LαL
β − LαLβ = iεαβ (2.9)

The indices α = 1, 2 are lowered by the Ricci tensor εαβ , namely:

Lα ≡ εαβLβ . (2.10)

A useful parametrization of the SU(1, 1)/U(1) coset is in terms of the N-S, R-R string

dilatons of type-IIB theory [50]
φ2
φ1

=
i− S
i+ S

(2.11)

with S = ieϕ + C, from which follows, fixing an arbitrary U(1) phase:

S = −L
2

L1
(2.12)

φ1 = −1

2
[i(eϕ + 1) + C]e−

ϕ
2 (2.13)

φ2 =
1

2
[i(eϕ − 1) + C]e−

ϕ
2 (2.14)

L1 = − i√
2
e−

ϕ
2 (2.15)

L2 = − 1√
2

(
e
ϕ
2 − iCe−ϕ

2

)
. (2.16)

Note that the physical complex dilaton S is U(1) independent.
3Throughout the paper lower SU(4) indices belong to the fundamental representation, while upper SU(4)

indices belong to its complex conjugate
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We will also use the isomorphism SU(1, 1) ∼ SL(2,R) realized with the Cayley matrix C

C =
1√
2

(
1 1

−i i

)
(2.17)

SSL(2,R) = CSSU(1,1)C−1 =
1√
2

(
L1 + L

1
i(L1 − L1)

L2 + L
2

i(L2 − L2)

)
≡
(
α β

γ δ

)
. (2.18)

We note that the 2-vector (Lα L
α
) transform as a vector of SL(2,R) on the left and

SU(1, 1) on the right. Indeed:

S̃ = CSSU(1,1) =
(
L1 L

1

L2 L
2

)
. (2.19)

The left-invariant Lie algebra valued 1-form of SU(1, 1)is defined by:

θ ≡ S−1dS =

(
q p

p −q

)
(2.20)

where the coset connection 1-form q and the vielbein 1-form p are given by:

q = iεαβL
αdL

β
(2.21)

p = −iεαβLαdLβ . (2.22)

Note that we have the following relations

∇Lα ≡ dLα + qLα = −Lαp (2.23)

∇Lα ≡ dL
α − qLα = −Lαp . (2.24)

To discuss the geometry of the SO(6, 6+n)/SO(6)×SO(6+n) σ-model, it is convenient

to consider first the case n = 0, that is the case when only six out the 6+n vector multiplets

are present (no D3-branes). This case was studied in reference [57].

In this case the coset reduces to SO(6,6)
SO(6)×SO(6) ; with respect to the subgroup SL(6,R)×

SO(1, 1) the SO(6, 6) generators decompose as follows:

so(6, 6) = sl(6,R)0 + so(1, 1)0 + (15′,1)+2 + (15,1)−2 (2.25)

where the superscripts refer to the SO(1, 1) grading. We work in the basis where the

SO(6, 6) invariant metric has the following form

η =

(
06×6 16×6
16×6 06×6

)
. (2.26)

Thus, the generators in the right hand side of (2.25) are:

sl(6,R) :

(
A 0

0 −AT

)
so(1, 1) :

(
11 0

0 −11

)

(15′,1)+2 : T[ΛΣ] =

(
0 t[ΛΣ]
0 0

)
(15,1)−2 : (T[ΛΣ])

T (2.27)
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where we have defined:

t[ΛΣ]
Γ∆ = δΓ∆ΛΣ ; Λ, Σ = 1, . . . , 6 (2.28)

and A are the SL(6,R) generators. It is useful to split the scalar fields sr into those which

span the GL(6,R)/SO(6)d submanifold and which parametrize the corresponding coset

representative LGL(6,R) from the axions parametrizing the 15′+2 translations. We indicate

them respectively with E = ET ≡ EI
Λ, E

−1 ≡ (E−1)ΛI symmetric 6 × 6 matrices and with

B = −BT ≡ BΛΣ, Λ, Σ = 1, . . . , 6, I = 1, . . . , 6. Note that the capital Greek indices refer

to global GL(6) while the capital Latin indices refer to local SO(6)(d) transformations. The

coset representatives LGL(6,R) and the full coset representative L can thus be constructed

as follows:

L = exp
(
−BΛΣT[ΛΣ]

)
LGL(6,R) =

(
E−1 −BE
0 E

)

LGL(6,R) =

(
E−1 0

0 E

)
. (2.29)

Note that the coset representatives L are orthogonal with respect to the metric (2.26),

namely LT ηL = η.

The left invariant 1-form L−1dL ≡ Γ satisfying dΓ + Γ ∧ Γ = 0 turns out to be

Γ =

(
EdE−1 −EdBE

0 E−1dE

)
. (2.30)

As usual we can decompose the left invariant 1-form into the connection Ω, plus the viel-

bein P:
Γ = ΩHTH + PKTK . (2.31)

The matrices TH are the generators of the isotropy group SO(6)1×SO(6)2, where we have

indicated with SO(6)1 ∼ SU(4) the semisimple part of the R-symmetry group U(4) and

with SO(6)2 the “matter group”.

Since we are also interested in the connection of the diagonal subgroup SO(6)(d), we

will use in the following two different basis for the generators, the first one that makes

explicit the direct product structure of the isotropy group (Cartan basis) and the latter

in which we identify the diagonal subgroup of the two factors (diagonal basis). We have

respectively:

TH =

(
T1 0

0 T2

)
T ′H =

(
T(v) T(a)
T(a) T(v)

)
(2.32)

where T(v) is the generator of the diagonal SO(6)(d) of SO(6)1 × SO(6)2 and T(a) is the

generator of the orthogonal complement. The two basis are related by

T ′H = D−1THD (2.33)

where D is the matrix:

D =
1√
2

(
1 1

1 −1

)
. (2.34)
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In the diagonal basis we can extract the connections ω(d) and ω̂ of the diagonal SO(6)(d)
subgroup and of its orthogonal part by tracing with the T

′

H generators or, more simply, by

decomposing L−1dL into its antisymmetric part, giving the connection, and its symmetric

part giving the vielbein. In the following we will write Ω and P as follows:

Ω = ω(d) + ω̂

ω(d) =
1

2

(
EdE−1 − dE−1 E 0

0 EdE−1 − dE−1 E

)

ω̂ =
1

2

(
0 −EdBE

−EdBE 0

)
(2.35)

The vielbein P is, by definition P = Γ− Ω so that we get

Ω =

(
ωIJ −P [IJ ]
−P [IJ ] ωIJ

)
; P =

(
P (IJ) −P [IJ ]
P [IJ ] −P (IJ)

)
(2.36)

where

ωIJ =
1

2
(EdE−1 − dE−1 E)IJ (2.37)

P (IJ) =
1

2
(EdE−1 + dE−1 E)IJ (2.38)

P [IJ ] =
1

2
(EdBE)IJ . (2.39)

In particular:

∇(d)EI
Λ ≡ dEI

Λ −EI
ΛωI

J = −EJ
ΛP

(JI) . (2.40)

In this basis the Maurer-Cartan equation

dΓ + Γ ∧ Γ = 0 (2.41)

take the form:

R(d)IJ = −P (IK) ∧ P (KJ) (2.42)

∇(d)P [IJ ] = −P (IK) ∧ P [KJ ] + P [IK] ∧ P (KJ) (2.43)

∇(d)P (IJ) = 0 (2.44)

where ∇(d) is the SO(6)d covariant derivative and R(d) is the SO(6)d curvature:

R(d) IJ = dωIJ + ωIK ∧ ω J
K . (2.45)

The usual Cartan basis (TH -basis) where the connection is block-diagonal and the vielbein

is block off-diagonal is obtained by rotating Γ with the matrix D. We find:

Γ =

(
ωIJ1 −(P IJ)T

−P IJ ωIJ2

)
=

(
ωIJ − P [IJ ] P (IJ) + P [IJ ]

P (IJ) − P [IJ ] ωIJ + P [IJ ]

)
(2.46)

where ω1 and ω2 are the connections of SO(6)1 and SO(6)2 respectively, while −(P IJ)T =

P (IJ) + P [IJ ] is the vielbein. In this case the the curvature of the SO(6, 6)/SO(6)⊗ SO(6)

manifold takes the form:

R =

(
R1 0

0 R2

)
(2.47)
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where:

RIJ
1 ≡ dωIJ1 + ωIK1 ∧ ω J

1K = −PKI ∧ P J
K (2.48)

RIJ
2 ≡ dωIJ2 + ωIK2 ∧ ω J

2K = −P IK ∧ P J
K (2.49)

and the vanishing torsion equation is

∇P IJ ≡ dP IJ + P IK ∧ ω J
1K + ωI2 K ∧ PKJ = 0 . (2.50)

2.2 Geometry of the σ-model in presence of n D3-branes

We now introduce additional n Yang-Mills multiplets (Ai
µ, λ

i
A, λ

Ai, qiI), I = 1 . . . 6,

i = 1 . . . n.

The isometry group is now SL(2,R) × SO(6, 6 + n) and the coset representative L

factorizes in the product of the SO(6,6+n)
SO(6)×SO(6+n) coset representative L and the SL(2,R)

SO(2) coset

representative S:

L = S L . (2.51)

In the following we shall characterize the matrix form of the various SO(6, 6+n) generators

in the 12 + n and define the embedding of SU(1, 1) ⊗ SO(6, 6 + n) inside Sp(24 + 2n,R).

With respect to the subgroup SL(6,R)×SO(1, 1)× SO(n) the SO(6, 6 +n) generators

decompose as follows:

so(6, 6 + n) = sl(6,R)0 + so(1, 1)0 + so(n)0 + (15′,1)+2 + (15,1)−2 + (6′,n)+1 + (6,n)−1

(2.52)

where the superscript refers to the so(1, 1) grading. Let us choose for the 12 + n invariant

metric η the following matrix:

η =

( 06×6 116×6 06×n
116×6 06×6 06×n
0n×6 0n×6 −11n×n

)
(2.53)

where the blocks are defined by the decomposition of the 12 + n into 6 + 6 + n. The

generators in the right hand side of (2.52) have the following form:

sl(6,R) :



A 0 0

0 −AT 0

0 0 0


 ; so(1, 1) :




11 0 0

0 −11 0

0 0 0


 (2.54)

(15′,1)+2 : T[ΛΣ] =




0 t[ΛΣ] 0

0 0 0

0 0 0


 ; (15,1)−2 : (T[ΛΣ])

T (2.55)

(6′,n)+1 : T(Λi) =




0 0 t(Λi)
0 0 0

0 (t(Λi))
T 0


 ; (6,n)−1 : (T(Λi))

T (2.56)

where we have used the following notation:

t[ΛΣ]
Γ∆ = δΓ∆ΛΣ ; t(Λi)

Σk = δΣΛδ
k
i Λ,Σ = 1, . . . , 6 ; i, k = 1, . . . , n . (2.57)
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As in the preceding case, we split the scalar fields into those which span the GL(6,R)
SO(6)d

sub-

manifold and which parametrize the corresponding coset representative LGL(6,R) from the

axions parametrizing the (15′,1)+2 translations and we indicate them as before respec-

tively with EI
Λ and BΛΣ. In presence of D3-branes we have in addition the generators in

the (6′,n)+1 that we parametrize with the 6× n matrices a ≡ aΛi (in the following we will

also use the notation qIi ≡ EI
Λa
Λ
i ). The coset representatives LGL(6,R) and L can thus be

constructed as follows:

L = exp
(
−BΛΣT[ΛΣ] + aΛiT(Λi)

)
LGL(6,R) =



E−1 −CE a

0 E 0

0 aTE 11




LGL(6,R) =



E−1 0 0

0 E 0

0 0 11




C = B − 1

2
aaT (2.58)

where the sum over repeated indices is understood. Note that the coset representative L

is orthogonal respect the metric η.

The left invariant 1-form Γ = L−1dL turns out to be:

Γ =



E dE−1 −E[dB − 1

2(da a
T − a daT )]E E da

06×6 E−1dE 06×n
0n×6 daT E 11n×n


 . (2.59)

Proceeding as before we can extract, from the left invariant 1-form, the connection and the

vielbein (2.31) in the basis where we take the diagonal subgroup SO(6)d inside SO(6) ×
SO(6 + n), where now TH are the generators of SO(6)1 × SO(6)2 × SO(n). It is sufficient

to take the antisymmetric and symmetric part of Γ corresponding to the connection and

the vielbein respectively. We find:

Ω =




ωIJ −P [IJ ] P Ii

−P [IJ ] ωIJ −P Ii

−P iI P iI 0


 ; P =



P (IJ) −P [IJ ] P Ii

P [IJ ] −P (IJ) P Ii

P iI P iI 0


 (2.60)

where

ωIJ =
1

2
(EdE−1 − dE−1 E)IJ (2.61)

P (IJ) =
1

2
(EdE−1 + dE−1 E)IJ (2.62)

P [IJ ] =
1

2

{
E

[
dB − 1

2

(
da aT − a daT

)]
E

}IJ

(2.63)

P Ii =
1

2
EI
Λda

Λi . (2.64)

From the Maurer-Cartan equations

dΓ + Γ ∧ Γ = 0 (2.65)
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we derive the expression of the curvatures and the equations expressing the absence of

torsion in the diagonal basis:

∇(d)P [IJ ] = −P (IK) ∧ P [KJ ] + P [IK] ∧ P (KJ) + 2P I
i ∧ P iJ (2.66)

∇(d)P iJ = P i
I ∧ P IJ (2.67)

while equations (2.42), (2.44) remain unchanged.

Note that, as it is apparent from equation (2.60), the connection of SO(n) is zero in this

gauge: ωij = 0. To retrieve the form of the connection in the Cartan basis it is sufficient

to rotate Ω and P, given in equation (2.60), by the generalized D matrix (2.34)

D =
1√
2




1 1 0

1 −1 0

0 0 1


 . (2.68)

We find

Ω =



ωIJ − P [IJ ] 06×6 06×n

06×6 ωIJ + P [IJ ] P Ii

0n×6 −P Ii 0n×n


 (2.69)

P =




06×6 P (IJ) + P [IJ ] P Ii

P (IJ) − P [IJ ] 06×6 06×n
P iI 06×n 0n×n


 (2.70)

RIJ
1 ≡ dωIJ1 + ωIK1 ∧ ω J

1K = −PKI ∧ P J
K − 2P Ii ∧ P iJ (2.71)

RIJ
2 ≡ dωIJ2 + ωIK2 ∧ ω J

2K = −P IK ∧ P J
K + 2P Ii ∧ P iJ (2.72)

and the vanishing torsion equation is

∇P IJ ≡ dP IJ + P IK ∧ ω J
1K + ωIK2 ∧ P J

K + 2P Ii ∧ P J
i = 0 (2.73)

dP Ii + ωIJ1 ∧ P i
J + P (IJ) ∧ P i

J = 0 . (2.74)

3. The symplectic embedding and duality rotations

Let us now discuss the embedding of the isometry group SL(2,R) × SO(6, 6 + n) inside

Sp(24 + 2n,R). We start from the embedding in which the SO(6, 6 + n) is diagonal:4

SO(6, 6 + n)
ι
↪→ Sp(24 + 2n,R)

g ∈ SO(6, 6 + n)
ι−→ ι(g) =

(
g 0

0 (g−1)T

)
∈ Sp(24 + 2n,R)

S =

(
α β

γ δ

)
∈ SL(2,R)

ι−→ ι(S) =

(
α11 −βη
−γη δ11

)
∈ Sp(24 + 2n,R)

αδ − βγ = 1 (3.1)

4The signs in the embedding ι of SL(2, R) have been chosen in such a way that the action on the doublet

charges in the final embedding ι′ were the same as S.
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where each block of the symplectic matrices is a (12 + n) × (12 + n) matrix. In this

embedding a generic symplectic section has the following grading structure with respect to

so(1, 1):

VSp =




v(+1)

v(−1)

v(0)

u(−1)

u(+1)

u(0)




(3.2)

where v(±1) and u(±1) are six dimensional vectors while v(0) and u(0) have dimension n.

Identifying the v’s with the electric field strengths and the u’s with their magnetic dual,

we note that the embedding ι (3.1) corresponds to the standard embedding where SL(2,R)

acts as electric-magnetic duality while SO(6, 6 + n) is purely electric.

We are interested in defining an embedding ι′ in which the generators in the (15′,1)+2

act as nilpotent off diagonal matrices or Peccei-Quinn generators and the SL(2,R) group

has a block diagonal action on the v(±1) and u(±1) components and an off diagonal action

on the v(0) and u(0) components.

Indeed, our aim is to gauge (at most) twelve of the fifteen translation generators in

the representation (15′,1)+2 and a suitable subgroup G ⊂ SO(n).

The symplectic transformation O which realizes this embedding starting from the one

in (3.1) is easily found by noticing that (v(+1), u(+1)) and (v(−1), u(−1)) transform in the

(6′,2)+1 and (6,2)−1 with respect to GL(6,R)×SL(2,R) respectively. Therefore we define

the new embedding:

ι′ = OιO−1

O =




0 0 0 116×6 0 0

0 116×6 0 0 0 0

0 0 11m×m 0 0 0

−116×6 0 0 0 0 0

0 0 0 0 116×6 0

0 0 0 0 0 11m×m




(3.3)

In this embedding the generic SL(2,R) element S has the following form:

ι′(S) =




δ 116×6 −γ 116×6 0 0 0 0

−β 116×6 α 116×6 0 0 0 0

0 0 α 11m×m 0 0 β 11m×m
0 0 0 α 116×6 β 116×6 0

0 0 0 γ 116×6 δ 116×6 0

0 0 γ 11m×m 0 0 δ 11m×m




(3.4)
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while the generic element of SO(6, 6 + n)/SO(6)× SO(6 + n) takes the form

ι′(L) =




E 0 0 0 0 0

0 E 0 0 0 0

0 aTE 11 0 0 0

0 CE −a E−1 0 0

−CE 0 0 0 E−1 −a
−aTE 0 0 0 0 11




. (3.5)

The product Σ = ι′(L)ι′(S) of these two matrices gives the desired embedding in Sp(24 +

2n,R) of the relevant coset. If we write the Sp(24 + 2n,R) matrix in the form

Σ =

(
A B

C D

)
(3.6)

and define

f =
1√
2
(A− iB) ; h =

1√
2
(C − iD) (3.7)

we obtain [58]

f =
1

2




δE −γE 0

−βE αE 0

−βaTE αaTE α− iβ


 (3.8)

h =
1

2



−βCE − iαE−1 αCE − iβE−1 −(α− iβ)a
−δCE − iγE−1 γCE − iδE−1 −(γ − iδ)a
−δaTE γaTE γ − iδ


 . (3.9)

The kinetic matrix of the vectors is defined as [51, 58] N = h · f−1 and we find

N =




−2iL1L1E−1E−1 1
2aa

T−2iL(1L2)E−1E−1−2iBL[1L2] −a
1
2aa

T−2iL(2L1)E−1E−1−2iBL[2L1] −2iL2L2E−1E−1 + L2

L1 aa
T −L2

L1a

−aT −L2

L1 a
T L2

L1




(3.10)

or in components

NΛαΣβ = −2iL(αLβ)(E−1)ΛI(E−1)IΣ +BΛΣεαβ − i(aaT )ΛΣ L(α
(
L
β) − Lβ)L

1

L1

)

NΛα i = −aΛiL
α

L1

N ij =
L2

L1
δij (3.11)

where we have used the relation (2.9).

4. The gauging

Our aim is to gauge a group of the following form:

T12 ×G ⊂ SO(6, 6 + n) (4.1)
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where T12 denote 12 of the (15′,1)+2 Peccei-Quinn translations T[ΛΣ] in SO(6, 6) and the

groupG is in general a compact semisimple subgroup of SO(n) of dimension n. In particular

if G = U(N) we must have N 2 = n. The gauge group is a subgroup of the global symmetry

group of the ungauged action whose algebra, for the choice of the symplectic embedding

defined in the previous section, is:

sl(6,R)0 + so(1, 1)0 + so(n)0 + (15′,1)+2 + (6′,n)+1 . (4.2)

We note that the maximal translation group T12 which can be gauged is of dimension twelve

since the corresponding gauge vector fields are AΛα belong to the (6,2)−1 of GL(6,R) ×
SL(2,R). Let us denote the gauge generators of the T12 factor by TΛα, corresponding to

the gauge vectors AΛα and by T i (i = 1, . . . , n) those of the G factor associated with the

vectors Ai. These two sets of generators are expressed in terms of the (15 ′,1)+2 generators
T[ΛΣ] and of the SO(n) generators T[ij] respectively by means of suitable embedding matrices

fΓΣΛα and ckij :

TΛα = fΓΣΛα T[ΓΣ]

T k = ckij T[ij] (4.3)

where cijk are the structure constants of G, with i j k completely antisymmetric. The

constants fΓΣΛα are totally antisymmetric in ΓΣΛ as a consequence both of supersymmetry

and gauge invariance or, in our approach, of the closure of the Bianchi identities. They

transform therefore with respect to SL(6,R)× SO(1, 1) × SL(2,R) in the (20 ′,2)+3. Note

that fΓΣΛα are the remnants in D = 4 of the fluxes of the type-IIB three-forms.

We may identify the scalar fields of the theory with the elements of the coset repre-

sentative L of SO(6, 6 + n)/SO(6) × SO(6 + n) namely, EΛI , B
ΛΣ, aΛi . The scalar field

associated with the coset SL(2,R)/SO(2) ' SU(1, 1)/U(1) is instead represented by the

complex 2-vector Lα satisfying the constraint (2.9).

The gauging can be performed in the usual way replacing the coordinates differentials

with the gauge covariant differentials ∇(g):

dLα −→ ∇(g)Lα ≡ dLα (4.4)

dEΛI −→ ∇(g)EΛI ≡ dEΛI (4.5)

dBΛΣ −→ ∇(g)BΛΣ = dBΛΣ + fΛΣΓαAΓα (4.6)

daΛi −→ ∇(g)aΛi = daΛi + c jk
i Aja

Λ
k . (4.7)

Note that fΛΣΓα are the constant components of the translational Killing vectors in the

chosen coordinate system, namely kΛΣ|Γα = fΛΣΓα [57], where the couple ΛΣ are coordinate

indices while Γα are indices in the adjoint representation of the gauge subgroup T12; in the

same way the Killing vectors of the compact gauge subgroup G are given by k
Λ |j
i = c jk

i aΛk
where the couple Λi are coordinate indices, while jk are in the adjoint representation of G.

From equations (4.4)–(4.7) we can derive the structure of the gauged left-invariant

1-form Γ̂

Γ̂ = Γ + δ(T12)Γ + δ(G)Γ (4.8)
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where δ(T12)Γ and δ(G)Γ are the shifts of Γ due to the gauging of T12 and G respectively.

From these we can compute the shifts of the vielbein and of the connections. We obtain:

P̂ IJ = P IJ + δ(T12)P
IJ + δGP

IJ (4.9)

P̂ Ii = P Ii + δ(T12)P
Ii + δGP

Ii (4.10)

ω̂IJ1,2 = ω1,2 + δ(T12)ω
IJ
1,2 + δGω

IJ
1,2 (4.11)

where

δ(T12)P
IJ =

1

2
EI
Λf

ΛΣΓαAΓαE
J
Σ (4.12)

δGP
IJ =

1

2
cijkEI

Λa
Λ
i Aja

Σ
kE

J
Σ (4.13)

δ(T12)P
Ii = 0 (4.14)

δGP
Ii =

1

2
cijkEI

Λa
Λ
kAj (4.15)

δ(T12)ω
IJ
1 = −δ(T12)ω

IJ
2 = −1

2
EI
Λf

ΛΣΓαAΓαE
J
Σ (4.16)

δGω
IJ
1 = −δGωIJ2 = −1

2
cijkEI

Λa
Λ
i Aja

Σ
kE

J
Σ . (4.17)

Note that only the antisymmetric part of P IJ is shifted, while the diagonal connection ωd =

ω1 + ω2 remains untouched. An important issue of the gauging is the computation of the

“fermion shifts”, that is of the extra pieces appearing in the supersymmetry transformation

laws of the fermions when the gauging is turned on. Indeed the scalar potential can be

computed from the supersymmetry of the lagrangian as a quadratic form in the fermion

shifts. The shifts have been computed using the (gauged) Bianchi identities in superspace

as it is explained in appendix A. We have:

δψ
(shift)
Aµ = SABγµε

B = − i

48

(
F
IJK−

+ C
IJK−)

(ΓIJK)ABγµε
B (4.18)

δχA (shift) = NABεB = − 1

48

(
F
IJK+

+ C
IJK+

)
(ΓIJK)ABεB (4.19)

δλ
I (shift)
A = ZI B

A εB =
1

8
(F IJK + CIJK)(ΓJK) BA εB (4.20)

δλ
(shift)
iA = W B

iA εB =
1

8
L2E

J
ΛE

K
Σ a

ΛjaΣk cijk(ΓJK) BA εB (4.21)

where we have used the selfduality relation (see appendix D for conventions) (ΓIJK)AB =
i
3!εIJKLMNΓLMN

AB and introduced the quantities

F± IJK =
1

2

(
F IJK ± i ∗F IJK

)
(4.22)

C± IJK =
1

2

(
CIJK ± i ∗CIJK

)
(4.23)

where

F IJK = Lαf IJKα , f IJKα = fΛΣΓαEI
ΛE

J
ΣE

K
Γ , F

IJK
= L

α
f IJKα (4.24)
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and CIJK are the boosted structure constants defined as

CIJK = L2E
I
ΛE

J
ΣE

K
Γ a

ΛiaΣjaΓk cijk , C
IJK

= L2E
I
ΛE

J
ΣE

K
Γ a

ΛiaΣjaΓk cijk (4.25)

while the complex conjugates of the self-dual and antiself-dual components are

(F± IJK)∗ = F
∓IJK

, (C± IJK)∗ = C
∓IJK

(4.26)

For the purpose of the study of the potential, it is convenient to decompose the 24

dimensional representation of SU(4)(d) ⊂ SU(4)1 × SU(4)2 to which λIA belongs, into its

irreducible parts, namely 24 = 20 + 4. Setting:

λIA = λ
I (20)
A − 1

6
(ΓI)ABλ

B(4) (4.27)

where

λA(4) = (ΓI)
ABλIB; (ΓI)

ABλ
I (20)
B = 0 (4.28)

we get

δλA(4) = ZAB(4)εB =
1

8
(F+IJK + C+IJK)(ΓIJK)ABεB (4.29)

δλ
I (20)
A = Z

I(20) B
A εB =

1

8
(F−IJK + C−IJK)(ΓJK) BA εB (4.30)

5. Space-time lagrangian

The space-time lagrangian and the associated supersymmetry transformation laws, have

been computed using the geometric approach in superspace. We give in the appendices A

and B a complete derivation of the main results of this section.

In the following, in order to simplify the notation, we have suppressed the “hats” to

the gauged covariant quantities: ∇̂ → ∇; P̂ → P ; ω̂1,2 → ω1,2. In particular, the gauged

covariant derivatives on the spinors of the gravitational multiplet and of the Yang-Mills

multiplets are defined as follows:

∇ψA = DψA +
1

2
qψA −

1

4
(ΓIJ)

B
A ωIJ1 ψB (5.1)

∇χA = DχA +
3

2
qχA − 1

4
(ΓIJ)

A
B ω

IJ
1 χB (5.2)

∇λIA = DλIA −
1

2
qλIA −

1

4
(ΓIJ)

B
A ωIJ1 λIB + ωIJ2 λJA (5.3)

∇λiA = DλiA −
1

2
qλiA −

1

4
(ΓIJ)

B
A ωIJ1 λiB (5.4)

(5.5)

∇ is the gauged covariant derivative with respect to all the connections that act on the

field, while D is the Lorentz covariant derivative acting on a generic spinor θ as follows

Dθ ≡ dθ − 1

4
ωabγabθ . (5.6)
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The action of the U(1) connection q (2.21) appearing in the covariant derivative ∇ is defined

as a consequence of the different U(1) weights of the fields (2.5).

The complete action is:

S =

∫ √−gLd4x (5.7)

where

L = L(kin) + L(Pauli) + L(mass) −L(potential) (5.8)

where

L(kin) = −
1

2
R− i

(
NΛαΣβF+µνΛα F+Σβµν −N

ΛαΣβF−µνΛα F−Σβµν
)
+

−2i
(
N iΣβF+µνi F+Σβµν −N

iΣβF−µνi F−Σβµν
)
+

−i
(
N ijF+µνi F+jµν −N

ijF−µνi F−jµν
)
+

+
2

3
fΛΣΓγεαβAΓγ µAΣβ νFΛαρσε

µνρσ + pµp
µ +

1

2
P IJ
µ P µ

IJ + P Ii
µ P

µ
Ii +

+
εµνρσ√−g

(
ψ̄Aµ γν∇ρψAσ − ψ̄Aµγν∇ρψ

A
σ

)
− 2i

(
χ̄Aγµ∇µχA + χ̄Aγ

µ∇µχ
A
)
+

−i
(
λ̄AI γ

µ∇µλ
I
A + λ̄IAγ

µ∇µλ
IA
)
− 2i

(
λ̄Ai γ

µ∇µλ
i
A + λ̄iAγ

µ∇µλ
iA
)

(5.9)

where, using equations (2.22), (2.62), (2.63), (2.64) we have:

pµp
µ = LαLβ∂µL

α∂µL
β

(5.10)

P IJ
µ P µ

IJ = P (IJ)µ P µ
(IJ) + P [IJ ]µ P µ

[IJ ]

P (IJ)µ P µ

(IJ) = −4∂µE
I
Λ∂

µ(E−1)ΛI = 4gΛΣ∂µ(E
−1)ΛI ∂

µ(E−1)IΣ

P [IJ ]µ P µ
[IJ ] =

1

4
gΛΓgΣ∆

(
∇(g)µBΛΣ −

1

2
aΛi

↔
∇(g)µ aiΣ

)(
∇µ
(g)B

Γ∆ − 1

2
aΓj
↔
∇
µ

(g)
aj∆
)

P Ij
µ P µ

Ij = gΛΣ∂µa
Λ
i ∂

µaΣi (5.11)

and we have defined gΛΣ ≡ EIΛE
I
Σ, F± = 1

2(F ± i ∗F)

L(Pauli) = −2pµχ̄AγνγµψAν − P IJ
µ ΓABI λ̄JAγ

νγµψBν −
−2P Ii

µ (ΓI)
AB λ̄iAγ

νγµψBν − 2 Im (N )ΛαΣβ ×

×
[
F+µνΛα

(
LβEΣ

I(ΓI)
ABψ̄AµψBν + 2iLβEΣ

I(ΓI)
ABχ̄AγνψBµ +

+ 2iLβEΣ
I λ̄IAγνψ

A
µ +

1

4
LβE

I
Σ(ΓI)AB λ̄

A
J γµνλ

JB + LβE
I
Σλ̄

A
I γµνχA+

+
1

2
LβE

I
Σ(ΓI)AB λ̄

iAγµνλ
B
i

)]
− 2 Im (N )iΣβ ×

×
[
F+µνi

(
LβEΣ

I(ΓI)
ABψ̄AµψBν + 2iLβEΣ

I(ΓI)
ABχ̄AγνψBµ +

+ 2iLβE
I
Σλ̄

I
Aγνψ

A
µ +

1

4
LβE

I
Σ(ΓI)AB λ̄

A
J γµνλ

JB + LβE
I
Σλ̄

A
I γµνχA+
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+
1

2
LβE

I
Σ(ΓI)AB λ̄

iAγµνλ
B
i

)
+

+ F+µνΣβ

(
EI
Λa
Λ
i L2(ΓI)

ABψ̄AµψBν + 2iEI
Λa

Λ
i L2(ΓI)

AB χ̄AγνψBµ +

+ 2iEI
Λa

Λ
i L2λ̄IAγνψ

A
µ + 4iL2λ̄iAγνψ

A
µ +

+
1

4
L2E

I
Σa

Σ
i (ΓI)AB λ̄

A
J γµνλ

JB + L2E
I
Σa

Σ
i λ̄

A
I γµνχA +

+
1

2
L2E

I
Σa

Σ
i (ΓI)AB λ̄

A
j γµνλ

jB + 2L2λ̄
A
i γµνχA

)]
−

−2 Im (N )ij

[
F+µνi

(
EI
Λa

Λ
j L2(ΓI)

ABψ̄AµψBν + 2iEI
Λa

Λ
j L2(ΓI)

AB χ̄AγνψBµ+

+ 2iEI
Λa

Λ
j L2λ̄

I
Aγνψ

A
µ + 4iL2λ̄jAγνψ

A
µ + (5.12)

+
1

4
L2E

I
Σa

Σ
i (ΓI)AB λ̄

A
J γµνλ

JB + L2E
I
Σa

Σ
i λ̄

A
I γµνχA +

+
1

2
L2E

I
Σa

Σ
i (ΓI)AB λ̄

A
j γµνλ

jB + 2L2λ̄
A
i γµνχA

)]
+ c.c.

L(mass) =

[
+2iSABψ̄Aµγ

µνψBν − 4iNAB ψ̄µAγ
µχB − 2iZIB

Aψ̄Aµγ
µλIB −

− 4iWiB
Aψ̄Aµγ

µλiB + 6
(
QA
I Bλ̄

I
Aχ

B +RA
iBλ̄

i
Aχ

B + TAB
IJ λ̄IAλ

J
B +

+ UAB
ij λ̄iAλ

j
B ++V AB

Ij λ̄IAλ
j
B

)]
+ c.c. (5.13)

L(potential) =
1

4

(
−12SABSAB + 4NABNAB + 2ZIB

AZIB
A + 4WiB

AW iB
A

)
. (5.14)

The structures appearing in L(mass) and L(potential) are given by

SAB = − i

48

(
F
IJK−

+ C
IJK−)

(ΓIJK)AB (5.15)

NAB = − 1

48

(
F
IJK+

+ C
IJK+

)
(ΓIJK)AB (5.16)

ZI B
A =

1

8

(
F IJK + CIJK

)
(ΓJK) BA (5.17)

W B
iA =

1

8
L2 q

JjqKk cijk(ΓJK) BA (5.18)

QIA
B = − 1

12

(
F IJK + CIJK

)
(ΓJK)AB (5.19)

RiA
B = − 1

24
L2 q

JjqKk cijk(ΓJK)AB (5.20)

T IJAB = −1

3
δIJNAB +

1

12

(
F
IJK

+ C
IJK

)
(ΓK)AB (5.21)

U ijAB = −2

3
δijNAB − 1

3
L2q

I
kc

ijk(ΓI)
AB (5.22)

– 18 –



J
H
E
P
0
6
(
2
0
0
3
)
0
4
5

V IiAB = −1

3
cijkL2q

I
j q

K
k (ΓK)AB . (5.23)

The lagrangian is invariant under the following supersymmetry transformation laws:

δV a
µ = −iψ̄AµγaεA + c.c.

δAΛαµ = −LαE I
Λ(ΓI)

ABψ̄AµεB + iLαE
I
Λ (ΓI)AB χ̄

Aγµε
B +

+iLαEΛ I λ̄
IAγµεA + c.c.

δAiµ = −L2EI
Λa
Λ
i (ΓI)

ABψ̄AµεB + iL2E
I
Λa
Λ
i (ΓI)AB χ̄

Aγµε
B +

+iL2EΛIa
Λ
i λ̄

IAγµεA + 2iL2λ̄
A
i γµεA + c.c.

pβδL
β ≡ = 2χ̄Aε

A =⇒ δLα = 2L
α
χ̄Aε

A

δ
(I
KE

J)
Λ δ
(
E−1

)ΛK
= −(Γ(I)AB λ̄J)A εB + c.c.

1

2
EI
ΛE

J
Σ

(
δBΛΣ − δa[Λi aΣ]i

)
= (Γ[I)AB λ̄

J ]
A εB + c.c.

1

2
EI
Λδa

Λi = (ΓI)AB λ̄iAεB + c.c.

δψµA = DµεA − Lα(E−1)ΛI (ΓI)ABF−Λα|µνγ
νεB + SABγµε

B

δχA =
i

2
pµγ

µεA +
i

4
L
α
(E−1)ΛI (Γ

I)ABF−Λα|µνγµνεB +NABεB

δλIA =
i

2
(ΓJ)ABPJI|µγ

µεB − i

2
Lα(E−1)ΛI F−Λα|µνγµνεA + Z B

IA εB

δλiA =
i

2
(ΓJ)ABPJi|µγ

µεB +
1

4

1

L2
F−
i|µνγ

µνεA −

−1

4

1

L2
aΛi F−2Λ|µνγ

µνεA +W B
iA εB (5.24)

where we have defined

qIi = EI
Λa
Λ
I . (5.25)

6. The scalar potential and its extrema

From the expression of the potential given in the lagrangian (5.14) and using the fermionic

shifts given in equations (5.15)–(5.18), one obtains that the potential is given by a sum of

two terms, each being a square modulus, namely:

V =
1

12

∣∣F IJK− + CIJK−∣∣2 + 1

8

∣∣∣L2cijkqjJqkK
∣∣∣
2

(6.1)

where F IJK− and CIJK− were defined in equations (4.22) and (4.23) and qIi in equa-

tion (5.25).

In the first term F IJK− represents the contribution to the potential of the bulk fields,

while CIJK− is the contribution from the D-branes sector. On the other hand the sec-

ond term is the generalization of the potential already present in the super Yang-Mills

theory [50].

We note that using the decomposition given in equations (4.29),(4.30), namely:

ZI B
A = Z

I B(20)
A − 1

6
(ΓI) C

A Z
(4)
CB (6.2)
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in equation (5.14), the contribution of the gravitino shift SAB cancels exactly against the

contribution Z
(4)
AB of the representation 4 of the gaugino; furthermore, since Z

I B(20)
A is

proportional to NAB, the bulk part of the potential is proportional to NABN
BA.

We now discuss the extrema of this potential. Since V is positive semidefinite, its

extrema are given by the solution of V = 0, that is

L2cijkq
jJqkK = 0 , F IJK− + CIJK− = 0 . (6.3)

In absence of fluxes F IJK = 0, the only solution is that the qjJ belong to the Cartan

subalgebra of G, then CIJK = 0, but all the moduli of the orientifold are not stabilized as

well as the Lα. In this case the moduli space is

SU(1, 1)

U(1)
× SO(6, 6 +N)

SO(6) × SO(6 +N)
(6.4)

where N is the dimension of the Cartan subalgebra of G.

In presence of fluxes, F IJK 6= 0 we have, besides qjJ belonging to the Cartan subalgebra

of G, also F IJK− = 0. We now show that this condition freezes the dilaton field S and

several moduli of GL(6)/SO(6)d. We note that the equation F IJK− = 0 can be rewritten

as:

L1f IJK−1 + L2f IJK−2 = 0 =⇒ f IJK−1

f IJK−2

= −L
2

L1
≡ S (6.5)

so that S must be a constant. We set:

S = iα→ L2

L1
= −iα =⇒ φ2

φ1
=

1− α
1 + α

(6.6)

where α is a complex constant and Reα ≡ eϕ0 > 0 Equation (6.5) becomes:

fΛΣ∆1 = +Reα ∗fΛΣ∆2 − ImαfΛΣ∆2 . (6.7)

We rewrite this equation using f IJK−1,2 = 1
2

(
f IJK1,2 − i ∗f IJK1,2

)
and by replacing the SO(6)

indices I, J,K with GL(6) indices via the coset representatives E I
Λ; we find:

fΛΣΓ1 + ImαfΛΣΓ2 =
1

3!
Reα detE−1εΛΣΓ∆ΠΩg∆∆′gΠΠ′gΩΩ′f∆

′Π′Ω′

2 (6.8)

where gΛΣ ≡ EΛI EΣI is the (inverse) moduli metric of T 6 in GL(6)/SO(6)d.

It is convenient to analyze equation (6.8) using the complex basis defined in appendix C.

In this basis only 4 fluxes (together with their complex conjugates) corresponding to the

eigenvalues of the gravitino mass matrix, are different from zero.

Going to the complex basis where each Greek index decomposes as Λ = (i, ı), i =

1, 2, 3 [57] and lowering the indices on both sides, one obtains an equation relating a (p, q)

form on the l.h.s (p, q = 0, 1, 2, 3; p + q = 3) to a combination of (p′, q′) forms on the

r.h.s. Requiring that all the terms with p′ 6= p, q′ 6= q are zero and that the r.h.s. of

equation (6.8) be a constant, on is led to fix different subsets of the gΛΣ moduli, depending

on the residual degree of supersymmetry.
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Suppose now that we have N = 3 unbroken supersymmetry, that is m1 = m2 = m3 =

0, m4 ∝ |f123| 6= 0 (see appendix C). The previous argument, concerning (p, q)-forms,

allows us to conclude that all the components gij and gı are zero, so that at the N = 3

minimum we have:

gΛΣ −→
(
gi 0

0 gıj

)
. (6.9)

In the N = 2 case we have m2 = m3 = 0, m1 ∝ |f123| 6= 0, m4 ∝ |f123| 6= 0 and a careful

analysis of equation (6.8) shows that, besides the previous frozen moduli, also the g12, g13
components are frozen.

Finally, in the N = 1 case we set one of the masses equal to zero, say m2 = 0, and

m1 ∝ |f123| 6= 0, m3 ∝ |f123| 6= 0 m4 ∝ |f123| 6= 0; in this case the only surviving moduli

are the diagonal ones, namely giı, so that, using the results given in appendix C, also the

real components of gΛΣ are diagonal

gΛΣ −→ diag
{
e2ϕ1 , e2ϕ2 , e2ϕ3 , e2ϕ1 , e2ϕ2 , e2ϕ3

}
(6.10)

the exponentials representing the radii of the manifold T 2(14)×T 2(25)×T 2(36). In terms of the

vielbein EI
Λ we have:

EI
Λ = diag(eϕ1 , eϕ2 , eϕ3 , eϕ1 , eϕ2 , eϕ3) . (6.11)

Finally, when all the masses are different from zero (N = 0), no further condition on the

moduli is obtained.

Note that in every case equation (6.8) reduces to the SL(2,R)×GL(6,R) non covariant

constraint among the fluxes:

fΛΣΓ1 + ImαfΛΣΓ2 =
1

3!
Reα εΛΣΓ∆ΠΩf∆ΠΩ2 . (6.12)

In the particular case α = 1, which implies ϕ = C = 0, from equations (6.5), (6.6), we

obtain:

f−ΛΣ∆1 = if−ΛΣ∆2 . (6.13)

In this case the minimum of the scalar potential is given by

φ2 = 0 =⇒ |φ1| = 1 (6.14)

or, in terms of the Lα fields, L1 = 1√
2
, L2 = − i√

2
(up to an arbitrary phase) . Further-

more (6.7) reduces to the duality relation:

f ΛΣ∆
1 =

1

3!
εΛΣ∆ΓΠΩfΓΠΩ2 (6.15)

which is the SL(2,R)×GL(6) non covariant constraint imposed in [43].

Let us now discuss the residual moduli space in each case. For this purpose we in-

troduce, beside the metric gΛΣ, also the 15 axions BΛΣ with enlarge GL(6)/SO(6)d to

SO(6, 6)/SO(6) × SO(6) (using complex coordinates BΛΣ = (Bi, Bij = −Bji).

Since we have seen that for N = 1, 0, the frozen moduli from F IJK− = 0 are all the

gi and gij except the diagonal ones giı, correspondingly, in the BΛΣ sector, all Bij and
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Bi are frozen, except the diagonal B iı, and they are eaten by the 12 bosons through the

Higgs mechanism. Indeed the three diagonal B iı are inert under gauge transformation (see

appendix C). The metric moduli space is (O(1, 1))3 which, adding the axions, enlarges to

the coset space (U(1, 1)/U(1) ×U(1))3. Adding the Yang-Mills moduli in the D3-brane

sector, the full moduli space of a generic vacuum with completely broken supersymmetry,

or N = 1 supersymmetry contains 6+6N moduli which parametrize three copies of U(1, 1+

N)/U(1) ×U(1 +N).

Let us consider now the situation of partial supersymmetry breaking ( for a more

detailed discussion see appendix C). For N = 3 supersymmetry the equation F IJK− = 0

freezes all gij moduli but none of the gi. The relevant moduli space of metric gi is nine

dimensional and given by GL(3,C)/U(3). Correspondingly there are six massive vectors

whose longitudinal components are the B ij axions. Adding the nine uneaten B i axions

the total moduli space is U(3, 3)/U(3) ×U(3). Further adding the 6N Cartan moduli, the

complete moduli space is U(3, 3 +N)/U(3) ×U(3 +N).

For N = 2 unbroken supersymmetry the equation F IJK− = 0 fixes all gij and gi except

the diagonal ones and g23. The moduli space of the metric is SO(1, 1) × GL(2,C)/U(2).

There are 10 massive vectors which eat all B ij moduli and Bi except the diagonal ones and

B23; the complete moduli space enlarges to SU(1, 1)/U(1)×SU(2, 2)/SU(2)×SU(2)×U(1).

This space is the product of the one-dimensional Kähler manifold and the two-dimensional

quaternionic manifold as required by N = 2 supergravity. By further adding the 6N

Cartan moduli, the moduli space enlarges to SU(1, 1 +N)/U(1) × SU(1 +N)× SU(2, 2 +

N)/SU(2)× SU(2 +N)×U(1).

Finally in the case of N = 1 unbroken supersymmetry, the frozen moduli are the

same as in the N = 0 case, and the moduli space is indeed the product of three copies of

Kähler-Hodge manifolds, as appropriate to chiral multiplets.

7. The mass spectrum

The spectrum of this theory contains 128 states (64 bosons and 64 fermions) coming from

the bulk states of IIB supergravity and 16N 2 states coming from the n D3-branes. The

brane sector is N = 4 supersymmetric. Setting α = 1, the bulk part has a mass spectrum

which has a surprisingly simple form.

In units of the overall factor
√
2
24 e

K
2 , K = 2ϕ1 + 2ϕ2 + 2ϕ3 being the Kähler potential

of the moduli space
(
SU(1,1)
U(1)

)3
, one finds:5

Fermions Bosons

(4)spin 3
2 |mi| i = 1, 2, 3, 4 (12)spin 1 |mi ±mj | i < j

2(4)spin 1
2 |mi| (6)spin 0 m = 0

(16)spin 1
2 |mi ±mj ±mk| i < j < k (12)spin 0 |mi ±mj |

(8)spin 0 |m1 ±m2 ±m3 ±m4|
5Note that we have corrected a mistake in the spin 1 mass formula (5.21)-(5.23) as given in reference [57]
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where mi, i = 1, . . . 4 is the modulus of the complex eigenvalues of the matrix

f IJK−1 (ΓIJK)AB evaluated at the minimum.

Note that in the case α 6= 1 all the masses mi acquire an α-dependent extra factor due

to the relation

F
IJK−

= −
√
2(Reα)

1
2 f IJK−2 = i

√
2
(Reα)

1
2

α
f IJK−1 (7.1)

so that all the spectrum is rescaled by a factor g(α) ≡
√
2 (Reα)

1
2

α
.

This spectrum is identical (in suitable units) to a truncation (to half of the states) of the

mass spectrum of the N = 8 spontaneously broken supergravity à la Scherk-Schwarz [35]–

[37].

The justification of this statement in given in the next section.

We now note some properties of the spectrum. For arbitrary values of mi the spectrum

satisfies the quadratic and quartic mass relations

∑

J

(2J + 1)(−1)2Jm2k
J = 0 k = 1, 2 . (7.2)

Note that, in proving the above relations, the mixed terms for k = 1 are of the form mimj

and they separately cancel for bosons and fermions, due to the symmetry mi −→ −mi of

the spectrum. On the other hand, for k = 2 the mixed terms m2
im

2
j are even in mi and

thus cancel between bosons and fermions.

If we set some of the mi = 0 we recover the spectrum of N = 3, 2, 1, 0 supersymmetric

phases.

If we set |mi| = |mj | for some i, j we recover some unbroken gauge symmetries. This

is impossible with the N = 3 phase (when m2 = m3 = m4 = 0) but it is possible in the

N ≤ 2 phases. For instance in the N = 2 phase, for m3 = m4 = 0 and |m1| = |m2|
there is an additional massless vector multiplet, while in the N = 1 phase, for m4 = 0,

|m1| = |m2| = |m3| there are three massless vector multiplets and finally for the N = 0

phase and all |mi| equal, there are six massless vectors.

The spectrum of the D3-brane sector has an enhanced (N = 4) supersymmetry, so

when the gauge group is spontaneously broken to its Cartan subalgebra U(N) −→ U(1)N ,

N(N − 1) charged gauge bosons become massive and they are 1
2 BPS saturated multiplets

of the N = 4 superalgebra with central charges (the fermionic sector for the brane gaugini

is discussed at the end of section 8). The residual N Cartan multiplets remain massless

and their scalar partners complete the 6+6N dimensional moduli space of the theory, that

is classically given by three copies of SU(1,1+N)
U(1)×SU(1,1+N) .

Adding all these facts together we may say that the spectrum is classified by the

following quantum numbers (q, ei), where q are “charges” of the bulk gauge group, namely

|mi|, |mi ±mj|, |mi ±mj ±mk|, |mi ±mj ±mk ±m`| and ei are the N − 1 charges of the

SU(N) root-lattice. In the supergravity spectrum there is a sector of the type (q, 0) (the

128 states coming from the bulk) and a sector of the type (0, ei) (the sector coming from

the D3-brane).
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α 1 α 2 α 3 α 4

α 5

α 6 α 7

Figure 1: E7(7) Dynkin diagram. The empty circles denote SO(6, 6)T roots, while the filled circle

denotes the SO(6, 6)T spinorial weight.

8. Embedding of the N = 4 model with six matter multiplets in the N = 8

There are two inequivalent ways of embedding the N = 4 model with an action which is

invariant under global SL(2,R) ×GL(6,R), within the N = 8 theory. They correspond to

the two different embeddings of the SL(2,R) × GL(6,R) symmetry of the N = 4 action

inside E7(7) which is the global symmetry group of the N = 8 field equations and Bianchi

identities.

The N = 8 model describes the low energy limit of type-II superstring theory com-

pactified on a six torus T 6. As shown in [60, 61, 62] the ten dimensional origin of the 70

scalar fields of the model can be characterized group theoretically once the embeddings of

the isometry group SO(6, 6)T of the moduli space of T 6 and of the duality groups of higher

dimensional maximal supergravities are specified within E7(7). This analysis makes use of

the solvable Lie algebra representation which consists in describing the scalar manifold as

a solvable group manifold generated by a solvable Lie algebra of which the scalar fields are

the parameters. The solvable Lie algebra associated with E7(7) is defined by its Iwasawa

decomposition and is generated by the seven Cartan generators and by the 63 shift gener-

ators corresponding to all the positive roots. In this representation the Cartan subalgebra

is parametrized by the scalars coming from the diagonal entries of the internal metric while

all the other scalar fields are in one to one correspondence with the E7(7) positive roots. We

shall represent the E7(7) Dynkin diagram as in figure 1. The positive roots are expressed

as combinations α =
∑7

i=1 n
iαi of the simple roots in which the positive integers ni define

the grading of the root α with respect to αi. The isometry group of the T 6 moduli space

SO(6, 6)T is defined by the sub-Dynkin diagram {αi}i=1,...,6 while the Dynkin diagram of

the duality group E11−D(11−D) of the maximal supergravity in dimension D > 4 is ob-

tained from the E7(7) Dynkin diagram by deleting the simple roots {α1, . . . , αD−4}. Using

these conventions in table 1 [62] the correspondence between the 63 non dilatonic scalar

fields deriving from dimensional reduction of type-IIB theories and positive roots of E7(7)
is illustrated.

IIB εi-components ni gradings

C(0) 1
2 (−1,−1,−1,−1,−1,−1,

√
2) (0, 0, 0, 0, 0, 0, 1)

B5 6 (0, 0, 0, 0, 1, 1, 0) (0, 0, 0, 0, 0, 1, 0)

g5 6 (0, 0, 0, 0, 1,−1, 0) (0, 0, 0, 0, 1, 0, 0)

Table 1: Continued.
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IIB εi-components ni gradings

C5 6
1
2(−1,−1,−1,−1, 1, 1,

√
2) (0, 0, 0, 0, 0, 1, 1)

B4 5 (0, 0, 0, 1, 1, 0, 0) (0, 0, 0, 1, 1, 1, 0)

g4 5 (0, 0, 0, 1,−1, 0, 0) (0, 0, 0, 1, 0, 0, 0)

B4 6 (0, 0, 0, 1, 0, 1, 0) (0, 0, 0, 1, 0, 1, 0)

g4 6 (0, 0, 0, 1, 0,−1, 0) (0, 0, 0, 1, 1, 0, 0)

C4 5
1
2(−1,−1,−1, 1, 1,−1,

√
2) (0, 0, 0, 1, 1, 1, 1)

C4 6
1
2(−1,−1,−1, 1,−1, 1,

√
2) (0, 0, 0, 1, 0, 1, 1)

B3 4 (0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 2, 1, 1, 0)

g3 4 (0, 0, 1,−1, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0)

B3 5 (0, 0, 1, 0, 1, 0, 0) (0, 0, 1, 1, 1, 1, 0)

g3 5 (0, 0, 1, 0,−1, 0, 0) (0, 0, 1, 1, 0, 0, 0)

B3 6 (0, 0, 1, 0, 0, 1, 0) (0, 0, 1, 1, 0, 1, 0)

g3 6 (0, 0, 1, 0, 0,−1, 0) (0, 0, 1, 1, 1, 0, 0)

C3 4
1
2(−1,−1, 1, 1,−1,−1,

√
2) (0, 0, 1, 2, 1, 1, 1)

C3 5
1
2(−1,−1, 1,−1, 1,−1,

√
2) (0, 0, 1, 1, 1, 1, 1)

C3 6
1
2(−1,−1, 1,−1,−1, 1,

√
2) (0, 0, 1, 1, 0, 1, 1)

C3 4 5 6
1
2(−1,−1, 1, 1, 1, 1,

√
2) (0, 0, 1, 2, 1, 2, 1) ←

B2 3 (0, 1, 1, 0, 0, 0, 0) (0, 1, 2, 2, 1, 1, 0)

g2 3 (0, 1,−1, 0, 0, 0, 0) (0, 1, 0, 0, 0, 0, 0)

B2 4 (0, 1, 0, 1, 0, 0, 0) (0, 1, 1, 2, 1, 1, 0)

g2 4 (0, 1, 0,−1, 0, 0, 0) (0, 0, 1, 0, 0, 0, 0)

B2 5 (0, 1, 0, 0, 1, 0, 0) (0, 1, 1, 1, 1, 1, 0)

g2 5 (0, 1, 0, 0,−1, 0, 0) (0, 0, 0, 1, 0, 0, 0)

B2 6 (0, 1, 0, 0, 0, 1, 0) (0, 1, 1, 1, 0, 1, 0)

g2 6 (0, 1, 0, 0, 0,−1, 0) (0, 0, 0, 0, 1, 0, 0)

C2 3
1
2(−1, 1, 1,−1,−1,−1,

√
2) (0, 1, 2, 2, 1, 1, 1)

C2 4
1
2(−1, 1,−1, 1,−1,−1,

√
2) (0, 1, 1, 2, 1, 1, 1)

C2 5
1
2(−1, 1,−1,−1, 1,−1,

√
2) (0, 1, 1, 1, 1, 1, 1)

C2 6
1
2(−1, 1,−1,−1,−1, 1,

√
2) (0, 1, 1, 1, 0, 1, 1)

C2 4 5 6
1
2(−1, 1,−1, 1, 1, 1,

√
2) (0, 1, 1, 2, 1, 2, 1) ←

C2 3 5 6
1
2(−1, 1, 1,−1, 1, 1,

√
2) (0, 1, 2, 2, 1, 2, 1) ←

C2 3 4 6
1
2(−1, 1, 1, 1,−1, 1,

√
2) (0, 1, 2, 3, 1, 2, 1) ←

C2 3 4 5
1
2(−1, 1, 1, 1, 1,−1,

√
2) (0, 1, 2, 3, 1, 2, 1) ←

B1 2 (1, 1, 0, 0, 0, 0, 0) (1, 2, 2, 2, 1, 1, 0)

g1 2 (1,−1, 0, 0, 0, 0, 0) (1, 0, 0, 0, 0, 0, 0)

B1 3 (1, 0, 1, 0, 0, 0, 0) (1, 1, 2, 2, 1, 1, 0)

g1 3 (1, 0,−1, 0, 0, 0, 0) (1, 1, 0, 0, 0, 0, 0)

B1 4 (1, 0, 0, 1, 0, 0, 0) (1, 1, 1, 2, 1, 1, 0)

g1 4 (1, 0, 0,−1, 0, 0, 0) (1, 1, 1, 0, 0, 0, 0)

Table 1: Continued.
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IIB εi-components ni gradings

B1 5 (1, 0, 0, 0, 1, 0, 0) (1, 1, 1, 1, 1, 1, 0)

g1 5 (1, 0, 0, 0,−1, 0, 0) (1, 1, 1, 1, 0, 0, 0)

B1 6 (1, 0, 0, 0, 0, 1, 0) (1, 1, 1, 1, 0, 1, 0)

g1 6 (1, 0, 0, 0, 0,−1, 0) (1, 1, 1, 1, 1, 0, 0)

Bµν (0, 0, 0, 0, 0, 0,
√
2) (1, 2, 3, 4, 2, 3, 2)

Cµν
1
2 (1, 1, 1, 1, 1, 1,

√
2) (1, 2, 3, 4, 2, 3, 1)

C1 2
1
2(1, 1,−1,−1,−1,−1,

√
2) (1, 2, 2, 2, 1, 1, 1)

C1 3
1
2(1,−1, 1,−1,−1,−1,

√
2) (1, 1, 2, 2, 1, 1, 1)

C1 4
1
2(1,−1,−1, 1,−1,−1,

√
2) (1, 1, 1, 2, 1, 1, 1)

C1 5
1
2(1,−1,−1,−1, 1,−1,

√
2) (1, 1, 1, 1, 1, 1, 1)

C1 6
1
2(1,−1,−1,−1,−1, 1,

√
2) (1, 1, 1, 1, 0, 1, 1)

C1 4 5 6
1
2(1,−1,−1, 1, 1, 1,

√
2) (1, 1, 1, 2, 1, 2, 1) ←

C1 3 5 6
1
2(1,−1, 1,−1, 1, 1,

√
2) (1, 1, 2, 2, 1, 2, 1) ←

C1 3 4 6
1
2(1,−1, 1, 1,−1, 1,

√
2) (1, 1, 2, 3, 1, 2, 1) ←

C1 3 4 5
1
2(1,−1, 1, 1, 1,−1,

√
2) (1, 1, 2, 3, 2, 2, 1) ←

C1 2 5 6
1
2(1, 1,−1,−1, 1, 1,

√
2) (1, 2, 2, 2, 1, 2, 1) ←

C1 2 4 6
1
2(1, 1,−1, 1,−1, 1,

√
2) (1, 2, 2, 3, 1, 2, 1) ←

C1 2 4 5
1
2(1, 1,−1, 1, 1,−1,

√
2) (1, 2, 2, 3, 2, 2, 1) ←

C1 2 3 6
1
2(1, 1, 1,−1,−1, 1,

√
2) (1, 2, 3, 3, 1, 2, 1) ←

C1 2 3 5
1
2(1, 1, 1,−1, 1,−1,

√
2) (1, 2, 3, 3, 2, 2, 1) ←

C1 2 3 4
1
2(1, 1, 1, 1,−1,−1,

√
2) (1, 2, 3, 4, 2, 2, 1) ←

Table 1: Correspondence between the 63 non dilatonic scalar fields from type-IIB string theory

on T 6 (C(0), C(2) ≡ Cij and C(4) ≡ Cijkl) and positive roots of E7(7) according to the solvable

Lie algebra formalism. The N = 4 Peccei-Quinn scalars correspond to roots with grading 1 with

respect to β, namely those with n6 = 2 and n7 = 1 which are marked by an arrow in the table.

In this framework the R-R scalars, for instance, are defined by the positive roots which

are spinorial with respect to SO(6, 6)T , i.e. which have grading n7 = 1 with respect to the

spinorial simple root α7. On the contrary the NS-NS scalars are defined by the roots with

n7 = 0, 2.

Let us first discuss the embedding of the SL(2,R)×SO(6, 6) duality group of our model

within E7(7). In the solvable Lie algebra language the Peccei-Quinn scalars parametrize the

maximal abelian ideal of the solvable Lie algebra generating the scalar manifold. As far as

the manifold SO(6, 6)/SO(6)×SO(6) is concerned, this abelian ideal is 15 dimensional and

is generated by the shift operators corresponding to positive SO(6, 6) roots with grading one

with respect to the simple root placed at one of the two symmetric ends of the corresponding

Dynkin diagram D6. Since in our model the Peccei-Quinn scalars are of R-R type, the

SO(6, 6) duality group embedded in E7(7) does not coincide with SO(6, 6)T . Indeed one of

its symmetric ends should be a spinorial root of SO(6, 6)T . Moreover the SL(2,R) group

commuting with SO(6, 6) should coincide with the SL(2,R)IIB symmetry group of the ten

dimensional type-IIB theory, whose Dynkin diagram consists in our formalism of the simple
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α 7

SL(2, R)
IIB

α 3 α 4α 1 α 5

GL(6, R)1

GL(6, R)2

α

α

2

SO(6,6)x

β

α 5

α 3 α 4 α 6α 1 α 2

TSO(6,6)SL(2, R) x

Figure 2: SL(2,R)× SO(6, 6)T and SL(2,R)× SO(6, 6) Dynkin diagrams. The root α is the E7(7)

highest root while β is α3 + 2α4 + α5 + 2α6 + α7. The group SL(2,R)IIB is the symmetry group

of the ten dimensional type-IIB theory.

root α7. This latter condition uniquely determines the embedding of SO(6, 6) to be the one

defined by D6 = {α1, α2, α3, α4, α5, β}, where β = α3+2α4+α5+2α6+α7 is the spinorial

root (see figure 2). On the other hand the 20 scalar fields parametrizing the manifold

SL(6,R)/SO(6) are all of NS-NS type (they come from the components of the T 6 metric).

This fixes the embedding of SL(6,R) within E7(7) which we shall denote by SL(6,R)1: its

Dynkin diagram is {α1, α2, α3, α4, α5}. The Peccei-Quinn scalars are then defined by the

positive roots with grading one with respect to the spinorial end β of D6 which is not

contained in SL(6,R)1. In table 1 the scalar fields in SO(1, 1)×SL(6,R)1/SO(6) which are

not dilatonic (i.e. do not correspond to diagonal entries of the T 6 metric) correspond to the

SL(6,R)1 positive roots which are characterized by n6 = n7 = 0 and are the off-diagonal

entries of the internal metric. The Peccei-Quinn scalars on the other hand correspond to

the roots with grading one with respect to β, which in table 1 are those with n6 = 2, n7 = 1

and indeed, as expected, are identified with the internal components of the type-IIB four

form.

The above analysis based on the microscopic nature of the scalars present in our model

has led us to select one out of two inequivalent embeddings of the SL(6,R) group within

E7(7) which we shall denote by SL(6,R)1 and SL(6,R)2. The former corresponds to the A5
Dynkin diagram running from α1 to α5 while the latter to the A5 diagram running from β

to α5. The SL(6,R)1 symmetry group of our N = 4 lagrangian is uniquely defined as part

of the maximal subgroup SL(3,R) × SL(6,R)1 of E7(7) (in which SL(3,R) represents an

enhancement of SL(2,R)IIB [60]) with respect to which the relevant E7(7) representations
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branch as follows:

56 → (1,20) + (3′,6) + (3,6′) (8.1)

133 → (8,1) + (3,15) + (3′,15′) + (1,35) . (8.2)

Moreover with respect to the SO(3)×SO(6) subgroup of SL(3,R)× SL(6,R)1 the relevant

SU(8) representations branch in the following way:

8 → (2,4)

56 → (2,20) + (4,4)

63 → (1,15) + (3,1) + (3,15)

70 → (1,20) + (3,15) + (5,1) . (8.3)

The group GL(6,R)2 on the other hand is contained inside both SL(8,R) and E6(6)×O(1, 1)

as opposite to GL(6,R)1. As a consequence of this it is possible in the N = 8 theory to

choose electric field strengths and their duals in such a way that SL(2,R) × GL(6,R)2 is

contained in the global symmetry group of the action while this is not the case for the group

SL(2,R) × GL(6,R)1 ⊂ SL(3,R) × SL(6,R)1. Indeed as it is apparent from eq. (8.1) the

electric/magnetic charges in the 56 of E7(7) do not branch with respect to SL(6,R)1 into

two 28 dimensional reducible representations as it would be required in order for SL(6,R)1
to be contained in the symmetry group of the lagrangian. On the other hand with respect

to the group SL(2,R)×O(1, 1)× SO(6) ⊂ SL(3,R)× SL(6,R)1 the 56 branches as follows

(the grading as usual refers to the O(1, 1) factor):

56 → (1,10)0 +
(
1,10

)
0
+ (1,6)+2 + (1,6)−2 + (2,6)+1 + (2,6)−1 . (8.4)

In truncating to the N = 4 model the charges in the (1,10)0+(1,10)0+(1,6)+2+(1,6)−2
are projected out and the symmetry group of the lagrangian is enhanced to SL(2,R) ×
GL(6,R)1.

8.1 The masses in the N = 4 theory with gauged Peccei-Quinn isometries and

USp(8) weights

As we have seen, in the N = 4 theory with gauged Peccei-Quinn isometries, the parameters

of the effective action at the origin of the scalar manifold are encoded in the tensor fα
IJK .

The condition for the origin to be an extremum of the potential, when α = 1, constrains

the fluxes in the following way:

f1
−IJK − if2

−IJK = 0 (8.5)

therefore all the independent gauge parameters will be contained in the combination

f1
−IJK +if2

−IJK transforming in the 10+1 with respect to U(4) and in its complex conju-

gate which belongs to the 10
−1

. Using the gamma matrices each of these two tensors can

be mapped into 4× 4 symmetric complex matrices:

BAB =
(
f1
−IJK + if2

−IJK)ΓIJKAB ∈ 10+1

B
AB

=
(
f1
+IJK − if2

+IJK
)
ΓIJK

AB ∈ 10
−1

(8.6)
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where the matrix BAB is proportional to the gravitino mass matrix SAB . If we denote

by AA
B a generic generator of u(4) we may formally build the representation of a generic

usp(8) generator in the 8:
(

AA
B BAC

−BDB −AC
D

)
∈ usp(8) . (8.7)

The U(1) group in U(4) is generated by AA
B = i δA

B. Under a U(4) transformation A the

matrix B transforms as follows:

B → ABAt (8.8)

Therefore using U(4) transformations the off diagonal generators in the usp(8)/u(4) can be

brought to the following form
(

0 B(d)

−B(d) 0

)
≡ miHi

B(d) = diag(m1,m2,m3,m4) mi > 0 (8.9)

where the phases and thus the signs of the mi were fixed using the U(1)4 transformations

inside U(4) and Hi denote a basis of generators of the usp(8) Cartan subalgebra. The

gravitino mass matrix represents just the upper off diagonal block of the usp(8) Cartan

generators in the 8.

As far as the vectors are concerned we may build the usp(8) generators in the 27 in

much the same way as we did for the gravitini case, by using the u(4) generators in the 15

and in the 6 + 6 to form the diagonal 15× 15 and 12× 12 blocks of a 27× 27 matrix.
(
A15×15 K15×12
K12×15 A12×12

)
∈ usp(8) (8.10)

Here A15×15 ≡ AΛΣΓ∆, A12×12 ≡ AΛαΓβ while K15×12 ≡ KΛΣ|Γα = fΛΣΓα and K12×15 =

−KT
15×12.
The vector mass matrix is:

M2
(vector) ∝ Kt

15×12K15×12 . (8.11)

By acting by means of U(4) on the rectangular matrix K15×12 it is possible to reduce it to

the upper off-diagonal part of a generic element of the usp(8) Cartan subalgebra:

K15×12 =




a1 0 . . . . . . 0

0 a2 0 . . . 0
...

. . .
...

...
. . .

...

0 . . . . . . 0 a12
0 0 . . . . . . 0

0 0 . . . . . . 0

0 0 . . . . . . 0




a` = |mi ±mj| 1 ≤ i < j ≤ 4 ; mi ≥ 0 . (8.12)

Using equation (8.11) we may read the mass eigenvalues for the vectors which are just a`.

The above argument may be extended also to the gaugini and the scalars as discussed

in the next section.
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8.2 Duality with a truncation of the spontaneously broken N = 8 theory from

Scherk-Schwarz reduction

As discussed in the previous sections the microscopic interpretation of the fields in our

N = 4 model is achieved by its identification, at the ungauged level, with a truncation of

the N = 8 theory describing the field theory limit of IIB string theory on T 6. To this end

the symmetry group of the N = 4 action is interpreted as the SL(2,R) ×GL(6,R)1 inside

the SL(3,R)×SL(6,R)1 maximal subgroup of E7(7), which is the natural group to consider

when interpreting the four dimensional theory from the type-IIB point of view, since the

SL(3,R) factor represents an enhancement of the type-IIB symmetry group SL(2,R)IIB ×
SO(1, 1), where SO(1, 1) is associated to the T 6 volume, while SL(6,R)1 is the group acting

on the moduli of the T 6 metric. A different microscopic interpretation of the ungauged

N = 4 theory would follow from the identification of its symmetry group with the group

SL(2,R) × GL(6,R)2 contained in both E6(6) × O(1, 1) and SL(8,R) subgroups of E7(7),

where, although the SL(2,R) factor is still SL(2,R)IIB , the fields are naturally interpreted

in terms of dimensionally reduced M-theory since GL(6,R)2 this time is the group acting

on the moduli of the T 6 torus from D = 11 to D = 5. At the level of the N = 4 theory

the SL(6,R)1 and the SL(6,R)2 are equivalent, while their embedding in E7(7) is different

and so is the microscopic interpretation of the fields in the corresponding theories. Our

gauged model is obtained by introducing in the model with SL(2,R)×GL(6,R)1 manifest

symmetry a gauge group characterized by a flux tensor transforming in the (2,20)+3. It

is interesting to notice that if the symmetry of the ungauged action were identified with

SL(2,R)×GL(6,R)2 formally we would have the same N = 4 gauged model, but, as we are

going to show, this time we could interpret it as a truncation to N = 4 of the spontaneously

broken N = 8 theory deriving from a Scherk-Schwarz reduction from D = 5. The latter, as

mentioned in the introduction, is a gauged N = 8 theory which is completely defined once

we specify the gauge generator T0 ∈ e6,6 to be gauged by the graviphoton arising from the

five dimensional metric. The gauging (couplings, masses etc. . . ) is therefore characterized

by the 27 representation of T0, namely by the flux matrix f sr 0 (r, s = 1, . . . , 27), element of

Adj(e6,6) = 78 [47]. Decomposing this representation with respect to SL(2,R)× SL(6,R)2
we have:

78 → (3,1) + (1,35) + (2,20) . (8.13)

The representation (2,20) defines the gaugings in which we choose:

T0 ∈
e6,6

sl(2,R) + sl(6,R)2
. (8.14)

These generators can be either compact or non-compact. However, it is known that only

for compact T0 the gauged N = 8 theory is a “no-scale” model with a Minkowski vacuum

at the origin of the moduli space (flat gaugings). Let us consider the relevant branchings

of E7(7) representations with respect to SL(2,R)× SL(6,R)2:

56→(2,6′)+1 + (2,6)−1 + (1,15′)−1 + (1,15)+1 + (1,1)−3 + (1,1)+3

133→(3,1)0+ (1,1)0+ (1,35)0+ (2,20)0+ (2,6)+2+ (2,6′)−2+ (1,15′)+2 + (1,15)−2

– 30 –



J
H
E
P
0
6
(
2
0
0
3
)
0
4
5

where the (2,6)−1 + (1,15′)−1 in the first branching denote the vectors deriving from five

dimensional vectors while (1,1)−3 is the graviphoton. The truncation to N = 4 is achieved

at the bosonic level by projecting the 56 into (2,6′)+1 + (2,6)−1 and the 133 into the

adjoint of SL(2,R)× SO(6, 6), namely (3,1)0 + (1,1)0 + (1,35)0 + (1,15′)+2 + (1,15)−2.
If we chose T0 within (2,20) as a 27 × 27 generator it has only non vanishing entries

fΛΣΓα in the blocks (1,15′)× (2,6′) and (2,6′)× (1,15′) and inspection into the couplings

of these theories shows that the truncation to N = 4 is indeed consistent and that we

formally get the N = 4 gauged theory considered in this paper with six matter multiplets.

Moreover the extremality condition f1
−IJK− if2

−IJK = 0 discussed in the previous section

coincides with the condition on T0 to be compact:

f1
−IJK − if2

−IJK = 0 ⇔ T0 ∈
usp(8)

so(2) + so(6)
(N = 8 flat gauging)

After restricting the (2,20) generators T0 to usp(8) they will transform in the 10+1+10
−1

with respect to SO(2)× SO(6), 10+1 being the same representation as the gravitino mass

matrix. In the previous section the itinerary just described from the N = 8 to the N = 4

theory was followed backwards: we have reconstructed the 27×27 usp(8) matrix T0 starting

from the symmetry u(4) of the ungauged N = 4 action and the fluxes fα
IJK defining the

gauging.

As far as the fermions are concerned, we note that in the N = 8 theory, the gravitini

in the 8 of USp(8) decompose under SO(2) × SO(6)2 ⊂ USp(8) as

8 −→ 4+
1
2 + 4

− 1
2 (8.15)

so that a vector in the 8 can be written as

V a =

(
v
(+ 1

2
)

A

vA(−
1
2
)

)
A,B = 1, . . . 8 ; a, b = 1, . . . 8 . (8.16)

From equation (8.7) we see that the off diagonal generators in the coset USp(8)
U(4) belong to

the U(4) representation 10+1 + 10
−1

among which we find the symplectic invariant

Cab =

(
04×4 114×4
−114×4 04×4

)
. (8.17)

The basic quantities which define the fermionic masses and the gradient flows equations

of the N = 4 model (in absence of D3-brane couplings) are the symmetric matrices

SAB = − i

48

(
F
IJK−

+ C
IJK−)

(ΓIJK)AB (8.18)

NAB = − 1

48

(
F IJK− + CIJK−) (ΓIJK)AB (8.19)

that belong to the representations 10+1, 10−1 of U(4) respectively. Note that they have

opposite U(1)R weight

w[SAB ] = −w[NAB ] = 1 . (8.20)
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If we indicate with λ
(4)
A , λ

(20)
IA the 4, 20 irreducible representations of the 24 λIA bulk gaugini,

the weights of the left handed gravitini, dilatini and gaugini as given in equation (2.5) give

in this case

w[ψA] =
1

2
; w[χA] =

3

2
; w[λ

(20)
IA ] = −1

2
; w[λA(4)] = −1

2
; w[λiA] = −

1

2
. (8.21)

From equations (5.13)–(5.23) it follows that, by suitable projection on the irreducible rep-

resentations 4, 20, the following mass matrices associated to the various bilinears either

depend on the SAB or NAB matrices, according to the following scheme:6

χA(4)χB(4) −→ 0 (8.22)

χA(4)λ
(20)
IB −→ SAB (8.23)

χA(4)λB(4) −→ NAB (8.24)

λ
(20)
IA λ

(20)
JB −→ SAB (8.25)

λA(4)λB(4) −→ SAB (8.26)

λA(4)λ
(20)
IB −→ NAB (8.27)

ψAχ
(4)
B −→ NAB (8.28)

ψAλ
(4)
B −→ SAB (8.29)

ψAλ
IB(20) −→ NAB (8.30)

ψAψB −→ SAB (8.31)

λiA λ
j
B −→ NAB (8.32)

All these assignments come from the fact that SAB, NAB are in the 10+1 10−1 representa-
tions of U(4) and the mass matrices must have grading opposite to the bilinear fermions,

since the lagrangian has zero grading. Indeed, from the group theoretical decomposition

we find, for each of the listed bilinear fermions

4
3
2 × 4

3
2 6⊃ 10±1 (8.33)

4
3
2 × 20

− 1
2 ⊃ 10+1 (8.34)

4
3
2 × 4

− 1
2 ⊃ 10

+1
(8.35)

20
− 1

2 × 20
− 1

2 ⊃ 10−1 + 10
−1

(8.36)

4
− 1

2 × 4
− 1

2 ⊃ 10
−1

(8.37)

4
− 1

2 × 20
− 1

2 ⊃ 10−1 (8.38)

4
1
2 × 4−

3
2 ⊃ 10−1 (8.39)

4
1
2 × 4

1
2 ⊃ 10+1 (8.40)

4
1
2 × 20

1
2 ⊃ 10

+1
(8.41)

4
1
2 × 4

1
2 ⊃ 10 +1 (8.42)

4−
1
2 × 4−

1
2 ⊃ 10−1 . (8.43)

6We remind that (SAB, NAB) have opposite U(1) weights, since they transform in the complex conjugate

representation with respect to (SAB , NAB).
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The decomposition of the 20
− 1

2 × 20
− 1

2 implies that in principle we have both SAB and

NAB appearing in the λ
(20)
IA λ

(20)
JB mass term. However an explicit calculation shows that

the representation 10−1, corresponding to NAB is missing.

The above assignments are consistent with the Scherk-Schwarz truncation of N = 8

supergravity [37], where the two matrices Q5ab, P5abcd contain the 10,10 of SU(4) of the

N = 4 theory. More explicitly:

Q5ab −→ (SAB, S
AB)

P5abcd −→ (NAB , N
AB)

which is consistent with the fact that, on the vacuum, P5abcd = 0 in the Scherk-Schwarz

N = 8 model and NAB = 0 in our N = 4 orientifold model.

Let us consider now the decomposition of the dilatino in the 48 of USp(8) under U(4).

We get:

χabc −→ χABC ⊕ χABC + h.c. (8.44)

corresponding to

48 −→ 4 + 20 + 4 + 20 . (8.45)

We may then identify the chiral dilatino and gaugino as follows:

χA = εABCDχBCD ; λ
I(20)
C = (ΓI)ABχ

AB
C . (8.46)

Moreover the decomposition 8 −→ 4+
1
2 + 4

− 1
2 identifies 4+

1
2 with λ

I(4)
A and 4

− 1
2 with

λIA(4) as they come from the C-trace part or the threefold antisymmetric product 8×8×8.

These results are consistent with the explicit reduction appearing in reference [37].

Indeed the mass term of reference [37] are of the following form7

Q5abψ̄
′a
µ γ

µρψ
′b
ρ (8.47)

Q5abζ
′a
ζ
′b (8.48)

Q5abψ̄
′a
µ γ

µζ
′b (8.49)

Q e
5a χ̄

′abcχ′ebc (8.50)

P abcd
5 ψ̄

′

µaγ
µγ5χ

′

bcd (8.51)

P abcd
5 ζ

′

aγ
5χ

′

bcd . (8.52)

The term (8.47) gives rise to the mass term of the gravitino SABψ̄Aµγ
µνψBν ; the term

NABψAνγ
µχB and the term ZI B

A ψ̄Aµγ
µλIB are obtained by reduction of the structures

(8.49), (8.51) via the decompositions (8.39), (8.40). The mass term of the bulk gaugini

TAB
IJ λ̄IAλ

J
B is reconstructed from the terms (8.48), (8.50), (8.52) through the decomposi-

tions (8.37), (8.36), (8.38). Finally, the mass term QI B
A χ̄AλIB is obtained by reducing

equation (8.50), (8.52) via the decomposition (8.48), (8.50).

7Note that the terms (8.48), (8.49) do not appear explicitly in the lagrangian of reference [37] but they

would appear after diagonalization of the fermionic kinetic terms.
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In conclusion we see that our theory can be thought as a truncation of the Scherk-

Schwarz N = 8 supergravity. Once the Goldstino λ̄A(4) is absorbed to give mass to the

gravitino ψAµ the spin 1
2 mass matrix is given by the entries (χχ, χλ(20), λ(20)λ(20)). There-

fore the full spin 1
2 mass spectrum is the truncation of the Scherk-Schwarz N = 8 spin 1

2

to this sectors.

This justifies the results for the mass spectrum given in section 7. Analogous consid-

erations can be done for the scalar sector.

We conclude by arguing that there is a duality between two microscopically different

theories:

[type-IIB on an orientifold with fluxes]↔
[

N = 4 truncation of N = 8 theories

spontaneously broken à la Scherk-Schwarz

]

since they are described by the same N = 4 four dimensional effective field theory.

Finally we consider the fermionic bilinear involving D3-brane gaugini λiA. From the

structure of the matrices W B
iA , R B

iA , V Ii
AB , equations (5.18), (5.20), (5.23), we notice that

they vanish when the D3-brane coordinates commute (i.e. the scalars qIi are in the Cartan

subalgebra of G).

The diagonal mass U ij
AB (5.22) has a gravitational part δijNAB which vanishes on the

vacuum while the second term is non vanishing for those gaugini which are not in the

Cartan subalgebra of G. Indeed, for G = SU(N), there are exactly N(N − 1) ( 12 BPS)

vector multiplets which become massive when SU(N) is spontaneously broken to U(1)N−1.
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A. The solution of the Bianchi identities and the supersymmetry trans-

formation laws

In this appendix we describe the geometric approach for the derivation of the N = 4

supersymmetry transformation laws of the physical fields.

The first step to perform is to extend the physical fields to superfields in N = 4

superspace: that means that the space-time 1-forms ωa b, V a,ψA, ψA, AΛα, Ai and the

space-time zero-forms χA, χA, λ
I
A, λ

IA, λiA, λ
iA, Lα, EΛI , B

ΛΣ, aΛi are promoted to one-

superforms and zero-superforms in N = 4 superspace, respectively.
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As a consequence the superforms must depend on the superspace coordinates {xµ; θαA}
(where xµ, µ = 1, 2, 3, 4 are the ordinary space-time coordinates and θαA, α = 1, 2, 3, 4,

A = 1, 2, 3, 4 are anticommuting fermionic coordinates ) in such a way that projected on

the space-time submanifold (i.e. setting θαA = 0, dθαA = 0) they correspond to the ordinary

physical fields.

A basis of one-forms on the superspace is given by {V a, ψαA}, a = 1, 2, 3, 4; here V a are

the vierbein, and ψαA are the fermionic vielbein identified with the gravitini fields.

The appropriate definition for the super-curvatures (or super-field strengths)of the

superfield p-forms in the N = 4 superspace is8 as follows (we omit for simplicity the sign

of wedge product):

Rab = dωab − ωacωcb (A.1)

T a = DV a − iψ̄AγaψA = 0 (A.2)

FΛα = dAΛα −
1

2
LαE

I
Λ(ΓI)

ABψ̄AψB −
1

2
LαE

I
Λ(ΓI)ABψ̄

AψB (A.3)

Fi = dAi −
1

2
L2q

I
i (ΓI)

ABψ̄AψB −
1

2
L2q

I
i (ΓI)ABψ̄

AψB (A.4)

ρA = DψA +
1

2
qψA − 2Q B

A ψB (A.5)

∇χA = DχA − 3

2
qχA − 2QA

Bχ
B (A.6)

∇λIA = DλIA −
1

2
qλIA − 2Q B

A λIB + ωIJ2 λJA (A.7)

∇λiA = DλiA −
1

2
qλiA − 2Q B

A λiB (A.8)

p = −iεαβLαdLβ (A.9)

P IJ = −1

2
(EdE−1 + dE−1 E)IJ +

1

2

{
E

[
∇B − 1

2

(
∇a aT − a∇aT

)]
E

}IJ

(A.10)

P Ii =
1

2
EI
Λ∇aΛi . (A.11)

∇ is the covariant derivative with respect to all the connections that act on the field,

including the gauge contribution, while D is the Lorentz covariant derivative acting on a

generic vector Aa and a generic spinor θ respectively as follows

DAa ≡ dAa − ωabAb ; Dθ ≡ dθ − 1

4
ωabγabθ . (A.12)

The coefficients appearing in front of the U(1) connection q correspond to the different

U(1) weights of the fields as shown in equation (2.5).

QA
B is the R-symmetry SU(4)1 connection, that in terms of the gauged SO(6)1 con-

nection ωIJ1 reads as QA
B = 1

8(ΓIJ)
B

A ωIJ1 (see appendix D for details).

Equation (A.2) is a superspace constraint imposing the absence of supertorsion, on the

N = 4 superspace.

8Here and in the following by “curvatures” we mean not only two-forms, but also the one-forms defined

as covariant differentials of the zero-form superfields
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Note that the definition of the “curvatures” has been chosen in such a way that in

absence of vector multiplets the equations by setting Rab = T a = ρA = ρA = F I = 0, I =

1, . . . , 6 give the Maurer-Cartan equations of the N = 4 Poincaré superalgebra dual to the

N = 4 superalgebra of (anti)-commutators, (the 1-forms ωab, V a, ψA, ψA, A
I are dual to

the corresponding generators of the supergroup).

By d-differentiating the supercurvatures definition (A.1)–(A.11), one obtains the Bian-

chi identities that are their integrability conditions:

RabVb + iψ̄Aγ
aρA + iψ̄AγaρA = 0

DRab = 0

∇FΛα−LαEI
Λ(ΓI)

ABψ̄AρB−LαEI
Λ(ΓI)ABψ̄

AρB+
1

2
∇LαEI

Λ(ΓI)
ABψ̄AψB+

+
1

2
∇LαEI

Λ(ΓI)ABψ̄
AψB+

1

2
Lα∇EI

Λ(ΓI)
ABψ̄AψB+

1

2
Lα∇EI

Λ(ΓI)ABψ̄
AψB = 0

∇Fi − L2qIi (ΓI)ABψ̄AρB − L2qIi (ΓI)ABψ̄AρB +
1

2
∇L2qIi (ΓI)ABψ̄AψB +

+
1

2
∇L2qIi (ΓI)ABψ̄AψB +

1

2
L2∇qIi (ΓI)ABψ̄AψB +

1

2
L2∇qIi (ΓI)ABψ̄AψB = 0

∇ρA +
1

4
RabγabψA −

1

2
RψA + 2R B

A ψB = 0

∇2χA +
1

4
Rabγabχ

A +
3

2
RχA + 2RA

Bχ
B = 0

∇2λIA +
1

4
RabγabλIA +

1

2
RλIA + 2R B

A λIB −R2IJλJA = 0

∇2λiA +
1

4
RabγabλiA +

1

2
RλiA + 2R B

A λiB = 0

∇p = 0

∇P IJ +
1

2
EI
Λ(f

ΛΣΓαFΓα + cijkaΛi a
Σ
k Fj)E

J
Σ = 0

∇P Ii +
1

2
aΛkE

I
Λc

ijkFj = 0 . (A.13)

Here R B
A = 1

8(ΓIJ)
B

A RIJ
1 is the gauged SU(4) curvature with

RIJ
1 = dωIJ1 + ωIK ∧ ω J

K − 1

2
EI
Λf

ΛΣΓαFΓαE
J
Σ (A.14)

and R = dq is the U(1) curvature.

The solution can be obtained as follows: first of all one requires that the expansion of

the curvatures along the intrinsic p-forms basis in superspace namely: V a, V a ∧ V b, ψ, ψ ∧
V b, ψ ∧ ψ, is given in terms only of the physical fields (rheonomy). This insures that no

new degree of freedom is introduced in the theory.

Secondly one writes down such expansion in a form which is compatible with all the

symmetries of the theory, that is: covariance under U(1) and SOd(6) ⊗ SO(n), Lorentz

transformations and reparametrization of the scalar manifold. Besides it is very useful to

take into account the invariance under the following rigid rescalings of the fields (and their

corresponding curvatures):

(ωab, AΛα, E
I
Λ, B

ΛΣ, aΛi ) → (ωab, AΛα, E
I
Λ, B

ΛΣ, aΛi ) (A.15)
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V a → `V a (A.16)

(ψA, ψA) → `
1
2 (ψA, ψA) (A.17)

(λiA, λ
I
A, χ

A) → `−
1
2 (λiA, λ

I
A, χ

A) (A.18)

Indeed the first three rescalings and the corresponding ones for the curvatures leave invari-

ant the definitions of the curvatures and the Bianchi identities. The last one follows from

the fact that in the solution for the σ- model vielbeins p, P IJ , P Ii the spin 1
2 fermions

must appear contracted with the gravitino 1-form.

Performing all the steps one finds the final parametrizations of the superspace curva-

tures, namely:

FΛα = Fab
ΛαVaVb + i

(
LαE

I
Λ(ΓI)

ABχ̄AγaψB + LαE
I
Λ(ΓI)AB χ̄

Aγaψ
B +

+ LαE
I
Λλ̄

A
I γaψA + LαE

I
Λλ̄IAγaψ

A
)
V a (A.19)

Fi = Fab
i VaVb + i

(
L2q

I
i (ΓI)

ABχ̄AγaψB + L2q
I
i (ΓI)AB χ̄

Aγaψ
B + L2q

I
i λ̄

A
I γaψA +

+ L2q
I
i λ̄IAγaψ

A + 2L2λ̄
A
i γaψA + 2L2λ̄iAγaψ

A
)
V a (A.20)

ρA = ρAabV
aV b − Lα(E−1)ΛI (ΓI)ABF−abΛα γbψ

BVa +

+εABCDχ
Bψ̄CψD + SABγaψ

BV a (A.21)

∇χA = ∇χAa V a +
i

2
paγ

aψA +
i

4
L
α
(E−1)ΛI (Γ

I)ABF−abΛα γabψB +NABψB (A.22)

∇λIA = ∇λIAaV a +
i

2
(ΓJ)ABP

JI
a γaψB − i

2
Lα(E−1)ΛI F−abΛα γabψA + Z B

IAψB (A.23)

∇λiA = ∇λiAaV a +
i

2
(ΓI)ABP

iI
a γ

aψB − 1

4L2
qIi (E

−1)ΛI F−abΛ2 γabψA +

+
1

4L2
F−abi γabψA +W B

iA ψB (A.24)

p = paV
a + 2χ̄Aψ

A (A.25)

P IJ = P IJ
a V a + (ΓI)AB λ̄JAψB + (ΓI)AB λ̄

JAψB (A.26)

P Ii = P Ii
a V

a + (ΓI)AB λ̄iAψB + (ΓI)AB λ̄
iAψB . (A.27)

The previous parametrizations are given up to three fermions terms, except equation (A.21)

where the term with two gravitini has been computed; in fact this term is in principle in-

volved in the computation of the gravitino shift but by explicit computation its contribution

vanishes

As promised the solution for the curvatures is given as an expansion along the 2-form

basis (V ∧ V , V ∧ ψ , ψ ∧ ψ) or the 1-form basis (V , ψ) with coefficients given in terms of

the physical fields.

It is important to stress that the components of the field strengths along the bosonic

vielbeins are not the space-time field strengths since V a = V a
µ dx

µ + V a
α dθ

α where (V a
µ , V

a
α )

is a submatrix of the super-vielbein matrix EI ≡ (V a , ψ). The physical field strengths are

given by the expansion of the forms along the dxµ-differentials and by restricting the su-

perfields to space-time (θ = 0 component). For example, from the parametrization (A.19),
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expanding along the dxµ-basis one finds:

FΛµν = FΛabV
a
[µV

b
ν] + iLαE

I
Λ(ΓI)

AB χ̄Aγ[µψν]B + iLαE
I
Λ(ΓI)AB χ̄

Aγ[µψ
B
ν]

+iLαE
I
Λλ̄

A
I γ[µψν]A + iLαE

I
Λλ̄IAγ[µψ

A
ν] (A.28)

where FΛµν is defined by the expansion of eq. (A.3) along the dxµ-differentials. When all

the superfields are restricted to space-time we may treat the V a
µ vielbein as the usual 4-

dimensional invertible matrix converting intrinsic indices in coordinate indices and we see

that the physical field-strength FΛαµν differs from FΛα abV
a
[µV

b
ν] ≡ F̃Λαµν by a set of spinor

currents (F̃Λαµν is referred to as the supercovariant field-strength).

Analougous considerations hold for the other field-strengths components along the

bosonic vielbeins.

Note that the solution of the Bianchi identities also implies a set of differential con-

straints on the components along the bosonic vielbeins which are to be identified, when

the fields are restricted to space-time only, with the equations of motion of the theory.

Indeed the analysis of the Bianchi identities for the fermion fields give such equations (in

the sector containing the 2-form basis ψ̄Aγ
aψA). Further the superspace derivative along

the ψA
(
ψA
)
directions, which amounts to a supersymmetry transformation, yields the

equations of motion of the bosonic fields. Indeed the closure of the Bianchi identities is

equivalent to the closure of the N = 4 supersymmetry algebra on the physical fields and

we know that in general such closure implies the equations of motion .

The determination of the superspace curvatures enables us to write down the N = 4

SUSY transformation laws. Indeed we recall that from the superspace point of view a

supersymmetry transformation is a Lie derivative along the tangent vector:

ε = ε̄A ~DA + ε̄A ~DA (A.29)

where the basis tangent vectors ~DA , ~D
A are dual to the gravitino 1-forms:

~DA

(
ψB
)
= ~DA (ψB) = 1 (A.30)

and 1 is the unit in spinor space.

Denoting by µI and RI the set of one-forms
(
V a, ψA, ψ

A, AΛα, Ai

)
and of two-forms

(
T a = 0, ρA, ρ

A, FΛα, Fi

)
respectively, one has:

`µI = (iεd + diε)µ
I ≡ (Dε)I + iεR

I (A.31)

where D is the derivative covariant with respect to the N = 4 Poincaré superalgebra and

iε is the contraction operator along the tangent vector ε.

In our case:

(Dε)a = −i
(
ψ̄Aγ

aεA + ψ̄AγaεA
)

(A.32)

(Dε)α = ∇εα (A.33)

(Dε)Λα = (Dε)i = 0 (A.34)

(here α is a spinor index).
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For the 0-forms which we denote shortly as ν I we have the simpler result:

`ε = iεdν
I = iε

(
∇νI − connection terms

)
(A.35)

Using the parametrizations given for RI and ∇νI and identifying δε with the restriction of

`ε to space-time it is immediate to find the N = 4 susy laws for all the fields. The explicit

formulae are given by the equations (5.24).

B. Derivation of the space time lagrangian from the geometric approach

We have seen how to reconstruct the N = 4 susy transformation laws of the physical fields

from the solution of the Bianchi identities in superspace.

In principle, since the Bianchi identities imply the equations of motion, the lagrangian

could also be completely determined. However this would be a cumbersome procedure.

In this appendix we give a short account of the construction of the lagrangian on

space-time from a geometrical lagrangian in superspace. Note that while the solution

of the Bianchi identities is completely equivalent to the ordinary “Superspace approach”

(apart from notations and a different emphasis on the group-theoretical structure),the

geometric approach for the construction of the lagrangian is completely different from the

usual superspace approach via integration in superspace.

In the geometric (rheonomic) approach the superspace action is a 4-form in superspace

integrated on a 4-dimensional (bosonic) hypersurfaceM4 locally embedded in superspace

A =

∫

M4⊂SM
L (B.1)

where SM is the superspace manifold. Provided we do not introduce the Hodge duality

operator in the construction of L the equations of motions derived from the generalized

variational principle δA = 0 are 3-form or 4-form equations independent from the particular

hypersurface M4 on which we integrate and they are therefore valid in all superspace.

(Indeed in the variational principle we have also to vary the hypersurface which can always

compensated by a diffeomorphism of the fields if the lagrangian is written olnly in terms

of differential forms).

These superspace equations of motion can be analyzed along the 3-form basis. The

components of the equations obtained along bosonic vielbeins give the differential equations

for the fields which, identifyingM4 with space-time, are the ordinary equations of motion

of the theory. The components of the same equations along 3-forms containing at least

one gravitino (“outer components”) give instead algebraic relations which identify the

components of the various “supercurvatures” in the outer directions in terms of the physical

fields along the bosonic vierbeins (rhenomy principle).

Actually if we have already solved the Bianchi identities this requirement is equivalent

to identify the outer components of the curvatures obtained from the variational principle

with those obtained from the Bianchi identities.

There are simple rules which can be used in order to write down the most general

lagrangian compatible with this requirement.
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The implementation of these rules is described in detail in the literature [59] to which

we refer the interested reader. Actually one writes down the most general 4-form as a sum

of terms with indeterminate coefficients in such a way that L be a scalar with respect to

all the symmetry transformations of the theory (Lorentz invariance,U(1), SO(6)d ⊗ SO(n)

invariance, invariance under the rescaling (A.18). Varying the action and comparing the

outer equations of motion with the actual solution of the Bianchi identities one then fixes

all the undetermined coefficients.

Let us perform the steps previously indicated. The most general lagrangian has the

following form: (we will determine the complete lagrangian up to four fermion terms):

Lkinetic = RabV cV dεabcd + a1
(
ψ̄Aγaρ

AV a − ψ̄AγaρAV a
)
+

+[a2
(
χ̄Aγa∇χA + χ̄Aγ

a∇χA
)
+ a3

(
λ̄IAγa∇λIA + λ̄IAγ

a∇λIA
)
+

+a6(λ̄
iAγa∇λiA + λ̄iAγ

a∇λiA)V bV cV dεabcd +

+a4

[
pa(p− 2χ̄AψA) + pa(p− 2χ̄Aψ

A)− 1

4
pfp

fV a
]
V bV cV dεabcd +

+a5

[
PIJ
a (P IJ−(ΓI)AB λ̄JAψB−(ΓI)AB λ̄JAψB)−

1

8
PIJ
f PIJ fV a

]
V bV cV dεabcd +

+a7

[
PIi
a (P

Ii−(ΓI)AB λ̄iAψB−(ΓI)AB λ̄iAψB)−
1

8
PIi
f PIi fV a

]
V bV cV dεabcd +

+a
[
NΛαΣβF+abΛα +NΛαΣβ

F−abΛα +N iΣβF+abi +N iΣβ
F−abi

]
×

×
[
FΣβ − i

(
LβE

I
Σ(ΓI)

AB χ̄Aγ
dψB + LβE

I
Σ(ΓI)AB χ̄

AγdψB +

+ LβE
I
Σλ̄

A
I γ

dψA + LβE
I
Σλ̄IAγ

dψA
)
Vd

]
VaVb +

+a
[
NΛαjF+abΛα +NΛαj

F−abΛα +N ijF+abi +N ij
F−abi

]
×

×
[
Fj − i

(
L2q

I
j (ΓI)

ABχ̄Aγ
dψB + L2q

I
j (ΓI)AB χ̄

AγdψB +

+ L2q
I
j λ̄

A
I γ

dψA + L2q
I
j λ̄IAγ

dψA + L2λ̄
A
j γ

dψA + L2λ̄jAγ
dψA

)
Vd

]
×

×VaVb −
i

24
a
(
NΛαΣβF

+fg
Λα F+fgΣβ −N

ΛαΣβ
F
−fg
Λα F−fgΣβ

)
V aV bV cV dεabcd +

− i

24
a
(
N iΣβF+lmi F+fgΣβ −N

iΣβ
F
−fg
i F−fgΣβ

)
V aV bV cV dεabcd +

− i

24
a
(
N ijF

+fg
i F+fg i −N

ij
F
−fg
i F−fg j

)
V aV bV cV dεabcd + (B.2)

LPauli = b1
[
pχ̄AγabψA − pχ̄AγabψA

]
V aV b +

+b2P
IJ
[
(ΓI)AB λ̄JAγabψB−(ΓI)ABλ̄JAγabψB

]
V aV b +

+b3P
Ii
[
(ΓI)AB λ̄iAγabψB−(ΓI)AB λ̄iAγabψB

]
V aV b +

+FΛα

[
c1

(
NΛαΣβ

LβE
I
Σ(ΓI)

ABψ̄AψB +NΛαΣβLβE
I
Σ(ΓI)ABψ̄

AψB
)
+

+ c2

(
NΛαΣβLβE

I
Σ(ΓI)

AB χ̄AγaψB +NΛαΣβ
LβE

I
Σ(ΓI)ABχ̄

Aγaψ
B
)
V a+

+ c3(NΛαΣβLβE
I
Σλ̄

A
I γaψA +NΛαΣβ

Lβλ̄IAγaψ
A)V a

]
+
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+FΛα

[
c4

(
NΛα i

L2q
I
i (ΓI)

ABψ̄AψB +NΛα iL2q
I
i (ΓI)ABψ̄

AψB
)
+

+ c5

(
NΛα iL2q

I
i (ΓI)

AB χ̄AγaψB +NΛα i
L2q

I
i (ΓI)AB χ̄

Aγaψ
B
)
V a +

+ c6

(
NΛα iL2q

I
i λ̄

A
I γaψA +NΛα i

L2q
I
i λ̄IAγaψ

A
)
V a +

+ c7

(
NΛα iL2λ̄

A
i γaψA +NΛα i

L2λ̄iAγaψ
A
)
V a
]
+

+Fi

[
c1

(
N iΣβ

LβE
I
Σ(ΓI)

ABψ̄AψB +N iΣβLβE
I
Σ(ΓI)ABψ̄

AψB
)
+

+ c2

(
N iΣβLβE

I
Σ(ΓI)

AB χ̄AγaψB +N iΣβ
LβE

I
Σ(ΓI)AB χ̄

Aγaψ
B
)
V a +

+ c3

(
N iΣβLβE

I
Σλ̄

A
I γaψA +N iΣβ

Lβλ̄IAγaψ
A
)
V a
]
+

+Fi

[
c4

(
N ij

L2q
I
j (ΓI)

ABψ̄AψB +N ijL2q
I
j (ΓI)ABψ̄

AψB
)
+

+c5

(
N ijL2q

I
j (ΓI)

ABχ̄AγaψB +N ij
L2q

I
j (ΓI)AB χ̄

Aγaψ
B
)
V a +

+c6

(
N ijL2q

I
j λ̄

A
I γaψA +N ij

L2q
I
j λ̄IAγaψ

A
)
V a +

+c7

(
N ijL2λ̄

A
j γaψA +N ij

L2λ̄jAγaψ
A
)
V a
]
+more terms (B.3)

Lgauge = g1

(
ψ̄AγabψBS

AB − ψ̄AγabψBSAB
)
V aV b +

g2

(
ψ̄Aγ

aχBN
AB + ψ̄AγaχBNAB

)
V bV cV dεabcd +

+g3

(
ψ̄Aγ

aλIBZ A
IB + ψ̄AγaλIBZ

B
I A

)
V bV cV dεabcd +

+g4

(
ψ̄Aγ

aλiBW A
iB + ψ̄AγaλiB WB

i A

)
V bV cV dεabcd +

+
(
λ̄AI χBQ

I B
A + λ̄IAχ

BQIA
B + λ̄Ai χBM

i B
A + λ̄iAχ

BM iA
B

)
V aV bV cV dεabcd+

+
(
λ̄IAλJBT

IJAB + λ̄IAλJBTIJAB + λ̄iAλjBU
ijAB +

+ λ̄iAλjBUijAB

)
V aV bV cV dεabcd + (B.4)

− 1

24

(
−12SACSCA+ 4NACN

CA
+ 2ZIC

AZ
I A
C + 4W iC

AW
i A
C

)
V aV bV cV dεabcd

Ltorsion = TaV
aV b

(
t1χ̄

Aγbχa + t2λ̄IAγbλ
IA + t3λ̄iAγbλ

iA
)
. (B.5)

Note that in equation (B.3) the statement “+ more terms” means Pauli terms con-

taining currents made out spin 1
2 bilinears which can not be computed in this geometric

approach without knowledge of the four fermion couplings. However these terms have been

included in the space-time lagrangian given in section 5 by imposing the invariance of the

space-time lagrangian under supersymmetry transformations.

The introduction of the auxiliary 0-forms pa,PIJ
a ,F±abΛα ,F

±ab
i is a trick which avoids

the use of the Hodge operator for the construction of the kinetic terms for the vectors and

scalar fields which otherwise would spoil the validity of the 3-form equations of motion in

all superspace; indeed the equation of of motion of these auxiliary 0-forms identifies them

with the components of the physical field-strengths pa, P IJ
a , F±abΛα , F±abi along the bosonic

vielbeins V a thus reconstructing the usual kinetic terms on space-time.
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The Ltorsion-term has been constructed in such a way as to give T a = 0.

Performing the variation of all the fields one fixes all the undetermined coefficients,

namely:

a1 = 4 ; a2 = −4

3
i ; a3 = −2

3
i ; a4 =

2

3
; a5 =

2

3
; a6 = −4

3
i ;

a7 =
4

3
; c1 = −2 ; c2 = −4i ; c3 = −4i ; c4 = −2 ; c5 = −4i;

c6 = −4i ; c7 = −8i ; b1 = 4i ; b2 = 2i ; b3 = 4i ;

g1 = −4 ; g2 = −8

3
i ; g3 = −4

3
i ; g4 = −8

3
i ;

t1 = −4 ; t2 = −2 ; t3 = −4 ; a = −4 . (B.6)

In order to obtain the space-time lagrangian the last step to perform is the restriction of

the 4-form lagrangian from superspace to space-time. Namely we restrict all the terms

to the θ = 0 , dθ = 0 hypersurface M4. In practice one first goes to the second order

formalism by identifying the auxiliary 0-form fields as explained before. Then one expands

all the forms along the dxµ differentials and restricts the superfields to their lowest (θ = 0)

component. Finally the coefficients of:

dxµ ∧ dxν ∧ dxρ ∧ dxσ =
εµνρσ√
g

(√
gd4x

)
(B.7)

give the lagrangian density written in section 5. The overall normalization of the space-time

action has been chosen such as to be the standard one for the Einstein term. (To conform

to the usual definition of the Riemann tensor Rab
cd we have set Rab = −12Rab

cdV
cV d).

C. The moduli of T 6 in real and complex coordinates

Appendix we give a more detailed discussion of the extrema of the potential using a complex

basis for the GL(6,R) indices for the moduli of the T 6 torus.

Let us consider the basis vectors {eΛ}, (Λ = 1 . . . 6) of the fundamental representation

of GL(6,R). We introduce a complex basis {Ei, Ei} with i = 1, 2, 3 or, to avoid confusion

on indices, i = x, y, z in the following way:

e1 + ie4 = Ex ; e2 + ie5 = Ey ; e3 + ie6 = Ez (C.1)

e1 − ie4 = Ex ; e2 − ie5 = Ey ; e3 − ie6 = Ez . (C.2)

The axion fields and the (inverse) metric of T 6 can then be written using (anti)holomorphic

indices i, j, ı,  as follows:

BΛΣ −→ Bij, Bi, Bıj , Bı  (C.3)

gΛΣ −→ gij , gi, gıj, gı  . (C.4)

In particular, the fluxes fΛΣΓ1 ≡ fΛΣΓ are given by

fxyz =
1

8

{
f123 − f156 + f246 − f345 + i

(∗f123 −∗ f156 +∗ f246 −∗ f345
)}

(C.5)
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fxyz =
1

8

{
f123 − f156 − f246 + f345 + i

(∗f123 −∗ f156 −∗ f246 +∗ f345
)}

(C.6)

fxyz =
1

8

{
f123 + f156 − f246 − f345 + i

(∗f123 +∗ f156 −∗ f246 −∗ f345
)}

(C.7)

fxyk =
1

8

{
f123 + f156 + f246 + f345 + i

(∗f123 +∗ f156 +∗ f246 +∗ f345
)}

(C.8)

while

fxxy = fxxz = fyyx = fyyz = f zzx = f zzy = 0 (C.9)

and therefore, the twenty entries of fΛΣ∆1 are reduced to eight.

In this holomorphic basis the gravitino mass eigenvalues assume the rather simple

form:

m1 ≡ |µ1 + iµ
′

1| =
1

6|L2| |f
xyz| (C.10)

m2 ≡ |µ2 + iµ
′

2| =
1

6|L2| |f
xyz| (C.11)

m3 ≡ |µ3 + iµ
′

3| =
1

6|L2| |f
xyz| (C.12)

m4 ≡ |µ4 + iµ
′

4| =
1

6|L2| |f
xyz| . (C.13)

We note that the three axions BΛΣ = {B14, B25, B36} ≡ {−2iBxx, −2iByy, −2iBzz} are

inert under T12-gauge transformations, since we have 15 axions but only 12 bulk vectors.

When we consider the truncation to the N = 3 theory we expect that only 9 complex

scalar fields become massless moduli parametrizing SU(3, 3)/SU(3)×SU(3)×U(1). More-

over, it is easy to see that if we set e.g. µ1 = µ2 = µ3 = 0 ( µ
′

1 = µ
′

2 = µ
′

3 = 0) which implies

f345 = f156 = −f 123 = −f 246 (∗f345 =∗ f156 = −∗f123 = −∗f246) in the N = 3 theory, we

get that also the 6 fields B12−B45, B13−B46, B24−B15, B34−B16, B23−B56, B35−B26
are inert under gauge transformations.

In holomorphic coordinates, the translational gauging implies that the differential of

the axionic fields become covariant and they are given by:

∇(g)Bij ≡ dBij + (Re f ijk1)Ak1 + (Re f ijk1)Ak1 + (Im f ijk2)Ak2 + (Im f ijk2)Ak2 (C.14)

∇(g)Bi≡ dBi + (Re f ik1)Ak1 + (Re f ik1)Ak1 + (Im f ik2)Ak2 + (Im f ik2)Ak2 . (C.15)

Since in the N = 4 −→ N = 3 truncation the only surviving massless moduli fields are

Bi+ igi, then the 3+3 axions {Bij , Bı } give mass to 6 vectors, while δBi must be zero.

We see from equation (C.15) we see that we must put to zero the components

f ik = f ik = f ijk = 0 (C.16)

while

f ijk ≡ fεijk 6= 0 . (C.17)

Looking at the equations (C.10) we see that these relations are exactly the same which

set µ1 + iµ
′

1 = µ2 + iµ
′

2 = µ3 + iµ
′

3 = 0 and µ4 + iµ
′

4 6= 0, confirming that the chosen
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complex structure corresponds to the N = 3 theory. Note that the corresponding g i

fields partners of Bi in the chosen complex structure parametrize the coset O(1, 1) ×
SL(3,C)/SU(3). Actually the freezing of the holomorphic g ij gives the following relations

among the components in the real basis of gΛΣ:

g14 = g25 = g36 = 0 (C.18)

g11 − g44 = 0 , g22 − g55 = 0 , g33 − g66 = 0 (C.19)

g12 − g45 = 0 , g13 − g46 = 0 , g23 − g56 = 0 (C.20)

g15 + g24 = 0 , g16 + g34 = 0 , g26 + g35 = 0 . (C.21)

The freezing of the axions Bij in the holomorphic basis give the analogous equations:

B12 −B45 = 0 , B13 −B46 = 0 , B23 −B56 = 0 (C.22)

B15 +B42 = 0 , B16 +B43 = 0 , B26 +B53 = 0 (C.23)

B14 = B25 = B36 = 0 . (C.24)

The massless gi and Bi are instead given by the following combinations:

gxx =
1

2
(g11 + g44) , gyy =

1

2
(g22 + g55) , gzz =

1

2
(g33 + g66) (C.25)

Bxx =
i

2
B14 , Byy =

i

2
B25 , Bzz =

i

2
B36 (C.26)

gxy =
1

2
(g12 + ig15) , gxz =

1

2
(g13 + ig16) , gyz =

1

2
(g23 + ig26) (C.27)

Bxy =
1

2
(B12 + iB15), Bxz =

1

2
(B13 + iB16), Byz =

1

2
(B23 + iB26) (C.28)

Bxx = Byy = Bzz = 0 (C.29)

Let us now consider the reduction N = 4 −→ N = 2 for which the relevant moduli space

is SU(2, 2)/ (SU(2)× SU(2)×U(1)) ⊗ SU(1, 1)/U(1). Setting µ2 + iµ
′

2 = µ3 + iµ
′

3 = 0 we

find:

fxyz = fxyz = 0 (C.30)

which, in real components implies:

f123 + f156 = 0 ; f246 + f345 = 0 (C.31)

and analogous equations for their Hodge dual. This implies that in the N = 2 phase

two more axions are gauge inert namely B23 + B56 = 2B23 and B26 + B35 = 2B26

or, in holomorphic components, Byz. The remaining fields are g14, g25, g36, g23, g26 and

B14, B25, B36, B23, B26, the last ones parametrize the coset SO(1, 1) × SO(2, 2)/SO(2) ×
SO(2).

If we now consider the truncation N = 4 −→ N = 1 the relevant coset manifold is

(SU(1, 1)/U(1))3 which contains 3 complex moduli. To obtain the corresponding complex

structure, it is sufficient to freeze gi, Bi with i 6= j. In particular the SU(1, 1)3 can be

decomposed into O(1, 1)3 ⊗s T 3 where the three O(1, 1) and the three translations T 3 are

parametrized by gxx, gyy, gzz and Bxx, Byy, Bzz respectively.
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These axions are massless because of equation (C.9) (Note that the further truncation

N = 1 −→ N = 0 does not alter the coset manifold SU(1, 1)3 since we have no loss of

massless fields in this process). In this case we may easily compute the moduli dependence

of the gravitino masses. Indeed, O(1, 1)3, using equations (C.19), (C.25), will have as coset

representative the matrix

EI
Λ =




eϕ1 0 0 0 0 0

0 eϕ2 0 0 0 0

0 0 eϕ3 0 0 0

0 0 0 eϕ1 0 0

0 0 0 0 eϕ2 0

0 0 0 0 0 eϕ3




(C.32)

where we have set g11 = e2ϕ1 , g22 = e2ϕ2 , g33 = e2ϕ3 , the exponentials representing the

radii of the manifold T 2(14) × T 2(25) × T 2(36).
We see that in the gravitino mass formula the vielbein EI

Λ reduces to the diagonal

components of the matrix (C.32) A straightforward computation then gives:

SABS
AB

=
2

(48)2
e(2ϕ1+2ϕ2+2ϕ3)




m2
1 0 0 0

0 m2
2 0 0

0 0 m2
3 0

0 0 0 m2
4


 . (C.33)

We note that in the present formulation where we have used a contravariant BΛΣ as basic

charged fields, the gravitino mass depends on the T 6 volume. However if we made use of

the dual 4-form CΛΣΓ∆, as it comes from type-IIB string theory, then the charge coupling

would be given in terms of ∗fαΛΣΓ and the gravitino mass matrix would be trilinear in EΛI
instead of EI

Λ. Therefore all our results can be translated in the new one by replacing

Ri → R−1i .

D. Conventions

We realize the isomorphism between the two fold antisymmetric representation of SU(4)

and the fundamental of SO(6) using the 4× 4 Γ-matrix (ΓI)AB = −(ΓI)BA.
We have used the following representation

Γ1 =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


 Γ4 =




0 0 0 i

0 0 −i 0
0 i 0 0

−i 0 0 0




Γ2 =




0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


 Γ5 =




0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0


 (D.1)
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Γ3 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 Γ6 =




0 −i 0 0

i 0 0 0

0 0 0 i

0 0 −i 0


 .

Note that their anticommutator is {ΓI ,ΓJ} = −δIJ , where the complex conjugation acts

as

(ΓI)AB =
(
Γ
I
)
AB

=
1

2
εABCD(ΓI)CD . (D.2)

We define

(ΓIJ) B
A =

1

2

[(
Γ[I
)
AC

(
ΓJ ]
)CB]

(D.3)

(ΓIJK)AB =
1

3!

[
(ΓI)AC(Γ

J)CD(ΓK)DB + perm.
]
. (D.4)

Here the matrices (ΓIJK)AB are symmetric and satisfy the relation

(
ΓIJK

)
AB

=
i

6
εIJKLMN(ΓLMN )AB . (D.5)

In this representation, the following matrices are diagonal:

Γ123 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 Γ156 =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1




Γ246 =




−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


 Γ345 =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 (D.6)

as well as the matrices Γ456, Γ234, Γ135 and Γ126 related with them through the rela-

tion (D.5).

We define for a generic tensor

T...I J... = . . .
1

2
(ΓI)

AB 1

2
(ΓJ )

CD . . . T...[AB] [CD]...

T...[AB] [CD]... = . . .
1

2
(ΓI)AB

1

2
(ΓJ )CD . . . T...I J... (D.7)

so that

EI
Λ(E

−1)ΣI = EAB
Λ (E−1)ΣAB = δΣΛ (D.8)

EI
Λ(E

−1)ΛJ = δJI ⇐⇒ EAB
Λ (E−1)ΛCD = δABCD (D.9)

In particular we need to convert the SO(6)1 indices of ω
IJ
1 into SU(4) R-symmetry indices as

they appear in the covariant derivative on spinors. For this purpose we apply the previous

definition (D.7) to the connection ωIJ1 defining

ωABCD ≡
1

4
(ΓI)

AB(ΓJ)CD ω
IJ
1 (D.10)
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then we introduce the connection QA
B defined as

ωABCD ≡ δ[A[CQ
B]
D] (D.11)

and thus

QA
D = −1

2
ωABBD =

1

8
(ΓIJ)

A
D ω

IJ
1 (D.12)

One can easily realize that given the definition of the SO(6)1 curvature as

RIJ
1 ≡ dωIJ1 + ωI1 K ∧ ωKJ

1 (D.13)

one finds for consistence that

RA
B ≡ dQA

B − 2QA
C ∧QC

B =
1

8
(ΓIJ)

A
B R

IJ
1 . (D.14)

As a consequence, the covariant derivative acting on spinors turns out to be

DθA = dθA − 2QA
BθB = dθA −

1

4
(ΓIJ)

A
B ω

IJ
1 θB . (D.15)
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