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ABSTRACT: We derive the lagrangian and the transformation laws of N = 4 gauged su-
pergravity coupled to matter multiplets whose o-model of the scalars is SU(1,1)/U(1) ®
SO(6,6 + n)/SO(6) ® SO(6 + n) and which corresponds to the effective lagrangian of the
type-IIB string compactified on the T'% /Z orientifold with fluxes turned on and in presence
of n D3-branes. The gauge group is 72 ® G where G is the gauge group on the brane and
T1? is the gauge group on the bulk corresponding to the gauged translations of the R-R
scalars coming from the R-R four-form.

The N = 4 bulk sector of this theory can be obtained as a truncation of the Scherk-Schwarz
spontaneously broken N = 8 supergravity. Consequently the full bulk spectrum satisfies
quadratic and quartic mass sum rules, identical to those encountered in Scherk-Schwarz
reduction gauging a flat group.

This theory gives rise to a no scale supergravity extended with partial super-Higgs mech-

anism.
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1. Introduction

In recent time, compactification of higher dimensional theories in presence of p-form fluxes

[M—PR3) has given origin to new four-dimensional vacua with spontaneously broken super-

symmetry and with vanishing vacuum energy. These models realize, at least at the classical

level, the no-scale structure [R4]-[R6] of extended supergravities in an M or String theory

setting [R7]-[B4].

No-scale supergravities also arise from Scherk-Schwarz generalized dimensional reduc-

tion [BH-[B7], where a flat group is gauged.



From a pure four-dimensional point of view all these models can be viewed as partic-
ular cases of gauged-extended supergravities (for recent reviews see [B§-[[0]). The gauge
couplings correspond to fluxes turned on.! This is so because for N > 1 supersymmetry a
scalar potential is necessarily due to the presence of gauge symmetries. It has been shown
that a common feature of all no-scale structures is that the complete gauge group of the
theory contains a sector where “axionic” symmetries are gauged [[]-[[7].

The Higgs effect in this sector is then tightly connected to the super-Higgs mecha-
nism [@, @] The complete gauge group is usually larger than this sector and the ad-
ditional gauge bosons are frequently associated to central charges of the supersymmetry
algebra.

For instance, in N = 8 spontaneously broken supergravity a la Scherk-Schwarz, the
translational part T is 27-dimensional and the extra sector Ty is one-dimensional, then
completing a 28-dimensional flat group [BH, [4]

[Ta, To) = faoTa;  [Ta,Te]=0;  AY=1...27. (1.1)

This algebra is a 28-dimensional subalgebra of ¢77. In the case of the IIB orientifold 7¢/Z,
the translational part T is 12-dimensional, while the extra sector T; are the Yang-Mills
generators on the brane [§, fl,

[TA, T3] =0; [Ta,Te] =05 [T,Tj] =c;"Th; AS =1...12;4,j,k=1...dimG.
(1.2)
What is common to these groups is that they must have a symplectic action on the vector
field strengths and their dual [FI]. This implies that they must be embedded in Sp(2n,R),
where n = 12 + dim G in the orientifold case.

The particular choice of the embedding determines the structure of the gauged su-
pergravity. In the case of the type-IIB supergravity in presence of D3-branes, the strong
requirement is that the original SL(2,R) symmetry acts linearly on the twelve bulk vec-
tors (Bua,Cun), A = 1...6, but acts as an electric magnetic duality on the vectors Af“
i=1...n living on the D3-branes.?

Mathematically this corresponds to a very particular embedding of SL(2,R) x SO(6, 6+
n) into Sp(24 + 2n,R).

The relevant decomposition is

50(6,6+n) = s1(6,R)+s0(1,1)°+s0(n)°+ (15", 1) +(15,1) "24+(6/,n) " +(6,n) " (1.3)

where s0(n) D Adj G(gimn) (note that if G = U(N), then n = N?). The symplectic
embedding of the 12 + n vectors such that SL(2,R) is diagonal on 12 vectors and off
diagonal in the remaining Yang-Mills vectors on the branes, is performed in section B

Interestingly, the full bulk sector of the T°/Zs type IIB orientifold can be related
to a N = 4 truncation of the N = 8 spontaneously broken supergravity a la Scherk-
Schwarz [BH, B6]. This will be proven in detail in section §.

!Note that in String and M theories the fluxes satisfy some quantization conditions [ﬂ]f[@]
2(Bur,Cur) are the SL(2,R) doublet N-S and R-R two-forms with one leg on space-time and one leg on
the torus



The U(4) R-symmetry of the type-1IB theory is identified with the U(4) C USp(8) of
the N = 8 theory, while SL(2,R) x GL(6) is related to the subgroup of Eg) x SO(1,1) C

E7¢7). The N = 4 truncation is obtained by deleting the left-handed gravitino in the

)
_ 1
4 2 and keeping the 4*7 in the decomposition of the 8 of USp(8) into U(4) irreducible
_ 1
representations: 8 — 4 2 + 4+3,
The N = 8 gravitino mass matrix (the 36 of USp(8)) decomposes as follows

-1

36 —1°+15°+10™ +10 (1.4)

and the representation 10! corresponds to the N = 4 gravitino mass matrix of the orien-
tifold theory [5d, b7

The vacuum condition of the N = 8 Scherk-Schwarz model corresponds to the vanish-
ing of a certain representation 42 of USp(8) [B7, [4]. Its N = 4 decomposition is

42 —20°+172+1724+70 T+ 107! (1.5)

and the vacuum condition of the N = 4 orientifold theory corresponds to setting to zero [f0}
B7] the representation 10~! (the other representations being deleted in the truncation).
This theory has a six-dimensional moduli space (6 + 6N, N being the dimensional
of the Cartan subalgebra of G, if the D3-brane coordinates are added) which is locally
three copies of SU(1,1)/U(1) [, 2, F0]. The spectrum depends on the overall scale
v=(RiR2R3) ' =e 12( , where K is the Kéahler potential of the moduli space. In units of this
scale, if we call m; (i = 1,2,3,4) the four gravitino masses, the overall mass spectrum has a
surprisingly simple form, and in fact it coincides with a particular truncation (to half of the
states) of the N = 8 spectrum of Scherk-Schwarz spontaneously broken supergravity [B6].
The mass spectrum satisfies the quadratic and quartic relations:

> @I+ 1)(-1)*m3 =0
J

> @I+ 1)(-1)*m) = 0. (1.6)
J
These relations imply that the one-loop divergent contribution to the vacuum energy is
absent, in the field theory approximation [@, @] In the present investigation we complete
the analysis performed in reference [f7, p0]. In these previous works the part referring to
the bulk sector of the theory and the vacua in presence of D3-branes degrees of freedom
were obtained.

The paper is organized as follows:

e In section P we describe the N = 4 o-model geometry of the bulk sector coupled to
n D3-branes.

e In section ] we give in detail the symplectic embedding which describes the bulk 1IB
theory coupled to D3-brane gauge fields.

e In section ¢ the gauging of the N = 4 theory is given.



e In section [ the lagrangian (up to four fermions terms) and the supersymmetry trans-
formation laws (up to three fermions terms) are obtained.

e In section [ the potential and its extrema are discussed.
e In section [ the mass spectrum is given.

e In section § we describe the embedding of our model in the N = 8 supergravity and
its relation with the Scherk-Schwarz compactification.

e In appendix [A] we describe the geometric method of the Bianchi identities in super-
space in order to find the supersymmetry transformation laws on space-time.

e In appendix B we use the geometric method (rheonomic approach)in order to find
a superspace lagrangian which reduces to the space-time lagrangian after suitable
projection on the space-time.

e In appendix [(J we give a more detailed discussion of the freezing of the moduli when
we reduce in steps N = 4 — 3, 2, 1, 0 using holomorphic coordinates on the 76
torus.

e In appendix [D] we give some conventions.

2. The geometry of the scalar sector of the T°/Z, orientifold in presence
of D3-branes

2.1 The o-model of the bulk supergravity sector

For the sake of establishing notations, let us first recall the physical content of the N = 4
matter coupled supergravity theory.
The gravitational multiplet is

(Vi aps s Als X xas 613 da} (2.1)

where 14, and wl‘f are chiral and antichiral gravitini, while x4 and ya are chiral and
antichiral dilatini; V)" is the vierbein, Al uo I =1,...6 are the graviphotons and the complex
scalar fields ¢1, @9 satisfy the constraint ¢1¢p; — oy = 1.

We also introduce 6 + n Yang-Mills vector multiplets, from which 6 will be considered
as vector multiplets of the bulk, namely

{As,; My M4 57} (2.2)

where )\114 and M4 are respectively chiral and antichiral gaugini, Agu are matter vectors
and s", r =1,...36 are real scalar fields.
Correspondingly we denote the n vector multiplets, which microscopically live on the
D3-branes, as
{AL; Nas A qf) (2.3)

where i = 1,...n.



It is well known that the scalar manifold of the IV = 4 supergravity coupled to 6 + n
vector multiplets is given by the coset space [5, f6]
SU(1,1) SO(6,6 + n)
U(1) SO(6) x SO(6 +n)
Denoting by w] |, the weights of the fields under the U(1) factor of the U(4) R-symmetry,

(2.4)

the weights of the chiral spinors are?
1 o 3 1 1
=c; =2, ==, 4] =—= 2.
?UWA] 9 ’U)[X ] 92 wP‘IA] 9’ w[)\ZA] 9 ( 5)
and for the SU(1,1)/U(1) scalars we have
wlpr] = wlpe] = =1;  wlg] =w[d] =1. (2.6)

Let us now describe the geometry of the coset o-model.
For the SU(1,1)/U(1) factor of the N = 4 o-model we use the following parameteri-

zation [p7):

o1 ?2) (6181 — 6982 = 1) (2.7)

Ssu(1,1) = <¢2 5

Introducing the 2-vector
<L1>_L< o1+ @2 )
L’ V2 \ —i(d1 — 2)

w[ll*] = -1; w[L’]=1 (2.8)
the identity ¢1¢; — dadpy = 1 becomes:
LT’ —T°LP = ie™? (2.9)

The indices o = 1,2 are lowered by the Ricci tensor €,3, namely:
Lo = eapl?. (2.10)

A useful parametrization of the SU(1,1)/U(1) coset is in terms of the N-S, R-R string
dilatons of type-I1IB theory [5(]

¢p2 108
R 2.11
o1 i+ S (2.11)
with S = ie® + C, from which follows, fixing an arbitrary U(1) phase:
L2
S=-71 (2.12)
1
¢1 = —gli(e? +1)+ Cle % (2.13)
1
b2 = li(e” = 1) + Cle 2 (2.14)
ARSI 2.15
e (215
1 @ @
2 = 5 s ¥
L* = NG <e2 iCe 2> . (2.16)

Note that the physical complex dilaton S is U(1) independent.

3Throughout the paper lower SU(4) indices belong to the fundamental representation, while upper SU(4)
indices belong to its complex conjugate



We will also use the isomorphism SU(1, 1) ~ SL(2, R) realized with the Cayley matrix C

e~ L) 2

1 (L'+T' i(Lr-TY a B
SsLer) = CSsua,nC ' = 7 <L2 LT 2T )> = (7 5) . (2.18)

We note that the 2-vector (L* L%) transform as a vector of SL(2,R) on the left and
SU(1,1) on the right. Indeed:

2

~ L' L
S = CSSU(l,l) = ( —2) . (219)
The left-invariant Lie algebra valued 1-form of SU(1,1)is defined by:
f=S"1ds = (q P ) (2.20)
P —q
where the coset connection [Horm ¢ and the vielbein 1-form p are given by:

q = icapl®dT’ (2.21)
p = —icapL¥dLP. (2.22)
Note that we have the following relations
VL® = dL® +qL® = —L"p (2.23)
VL" =dL" — ¢L” = —L°p. (2.24)
To discuss the geometry of the SO(6,6+n)/SO(6) x SO(6+n) o-model, it is convenient

to consider first the case n = 0, that is the case when only six out the 6+n vector multiplets

are present (no D3-branes). This case was studied in reference [f7].

In this case the coset reduces to % ; with respect to the subgroup SL(6,R) x

SO(1,1) the SO(6,6) generators decompose as follows:
50(6,6) = s[(6,R)? +s0(1,1)° + (15/,1)"2 + (15,1) 72 (2.25)

where the superscripts refer to the SO(1,1) grading. We work in the basis where the
SO(6,6) invariant metric has the following form

0 1
,'7 — ( 6x6 6><6> ) (2'26)

lsx6 Oexe

Thus, the generators in the right hand side of (R.25) are:

s((6,R) : (gl _?4T> s0(1,1) : <]$ _O]1>

0 ¢ _
(15, 1) Ty = (0 [%E]> (15,1) 72 : (Tjaxy)” (2.27)



where we have defined:
tas' S =0y8: A S=1,....6 (2.28)

and A are the SL(6,R) generators. It is useful to split the scalar fields s” into those which
span the GL(6,R)/SO(6)4 submanifold and which parametrize the corresponding coset
representative Ly (g,r) from the axions parametrizing the 15’72 translations. We indicate
them respectively with £ = ET = EL, E~! = (E~!)} symmetric 6 x 6 matrices and with
B=-BT=BA A, ¥=1,...,6, ] =1,...,6. Note that the capital Greek indices refer
to global GL(6) while the capital Latin indices refer to local SO(6) 4 transformations. The
coset representatives Lqr,r) and the full coset representative L can thus be constructed

as follows:
E-! —BE
L = exp (=B Tjsxy) Lavr) = ( 0 > )
E-1 0
Larer) = ( 0 E) : (2:29)

Note that the coset representatives L are orthogonal with respect to the metric (R.26),
namely LTnL = 7.
The left invariant 1-form L~'dL = T satisfying dI" + ' AT = 0 turns out to be

r— (EdE—1 —EdBE)

0 E~1dE (2:30)

As usual we can decompose the left invariant 1-form into the connection €2, plus the viel-
bein P:
L =0Ty + PETy . (2.31)

The matrices Ty are the generators of the isotropy group SO(6); x SO(6)2, where we have
indicated with SO(6); ~ SU(4) the semisimple part of the R-symmetry group U(4) and
with SO(6)2 the “matter group”.

Since we are also interested in the connection of the diagonal subgroup SO(6)q), we
will use in the following two different basis for the generators, the first one that makes
explicit the direct product structure of the isotropy group (Cartan basis) and the latter
in which we identify the diagonal subgroup of the two factors (diagonal basis). We have

7 0 T, T,
Ty = ( ! ) T} = ( @) (“>> (2.32)
where T(,) is the generator of the diagonal SO(6)qy of SO(6)1 x SO(6)2 and T{,) is the
generator of the orthogonal complement. The two basis are related by

respectively:

Ty =D 'TyD (2.33)

where D is the matrix:

D:%G _11> (2.34)



In the diagonal basis we can extract the connections w(® and @ of the diagonal SO(6) (4
subgroup and of its orthogonal part by tracing with the T}{ generators or, more simply, by
decomposing L~ 'dL into its antisymmetric part, giving the connection, and its symmetric
part giving the vielbein. In the following we will write 2 and P as follows:

Q=04+
@ 1 (EdE™'—dET'E 0
YT 0 EdE~' —dE~'E
1 0 —FEdBE
O == 2.
YT (—EdBE 0 > (2:35)
The vielbein P is, by definition P =I'" —  so that we get
wl _pliJ] pdJ)  _pllJ]
Q= (_P[IJ] e > ; P = (P[IJ] _P(IJ)> (2.36)
where
Wl = %(EdE*l —dE'E)lY (2.37)
1
PUI) — 5(EdE—1 +dE Y EYY (2.38)
1
pll = §(EdBE)”. (2.39)
In particular:
VADE!L =dE", — E\w; 7 = —E\ PUD (2.40)

In this basis the Maurer-Cartan equation

dl' +TAT'=0 (2.41)
take the form:
R@OIJ — _pUK) 5 p(KJ) (2.42)
v@ pllJ] — _pUK) o plEJ] | plUK] 5 p(KJ) (2.43)
v pl)) — (2.44)

where V() is the SO(6)4 covariant derivative and R(Y is the SO(6)4 curvature:
RO — gl7 4 K A (2.45)

The usual Cartan basis (Ty-basis) where the connection is block-diagonal and the vielbein
is block off-diagonal is obtained by rotating I' with the matrix D. We find:

- < w{‘] _(PIJ)T> ( u)IJ_P[IJ} P(IJ) +P[IJ]>

_pl I p)) _ pliy] 17 L pliJ] (2.46)

where w; and wy are the connections of SO(6); and SO(6)y respectively, while —(P1/)T =
PUJ) 1 Pl s the vielbein. In this case the the curvature of the SO(6,6)/SO(6) ® SO(6)

manifold takes the form: R 0
R= ("1 2.47
(5 &) 27



where:

Rl =dol” + 0" w7 = =PRI AP (2.48)
Ry = dwy” + Wi Awy e 7 = =P AP (2.49)

and the vanishing torsion equation is
VP =dP! + PP Nwd + 0l o AnPET =0, (2.50)

2.2 Geometry of the c-model in presence of n D3-branes

We now introduce additional n Yang-Mills multiplets (AZ, iy Mg T=1...6,
i1=1...n
The isometry group is now SL(2,R) x SO(6,6 + n) and the coset representative L

factorizes in the product of the % coset representative L and the S;(()2(,211§) coset
representative S
L=SL. (2.51)

In the following we shall characterize the matrix form of the various SO(6,6+n) generators
in the 12 4+ n and define the embedding of SU(1,1) ® SO(6,6 + n) inside Sp(24 + 2n,R).

With respect to the subgroup SL(6,R) x SO(1,1) x SO(n) the SO(6,6 + n) generators
decompose as follows:

50(6,6 4+ n) = sI(6,R)? +50(1,1)° + s0(n)° + (15, 1) + (15,1) "2+ (6/,n) ™" + (6,n) !

(2.52)
where the superscript refers to the so(1, 1) grading. Let us choose for the 12 + n invariant
metric n the following matrix:

O6x6  Lexe  Opxn
n= ( Texs Osxc  Osxn ) (2.53)
0n><6 On><6 _nnxn

where the blocks are defined by the decomposition of the 12 +n into 6 + 6 + n. The
generators in the right hand side of (P.52) have the following form:

A 0 0 1 0 0
sl(6,R): | 0 —AT 0|; so(1,1): | 0 -1 0 (2.54)
0 0 0
t[Az] 0
(15, 1) : Tjpyy = ( D (15,1) 7 (Thayy)” (2.55)
0 t(Ai)
(6, n)" Ty = {0 0 0 |:  (6m) " (T (2.56)
0 (tap)t 0

where we have used the following notation:

tas)' S =0AS: tan" =630y AS=1,...,6; dik=1,...,n. (257)



GL(6,R)
SO(6)q
manifold and which parametrize the corresponding coset representative Lqy, s r) from the

As in the preceding case, we split the scalar fields into those which span the sub-

axions parametrizing the (15/,1)%2 translations and we indicate them as before respec-

tively with E/I\ and BA¥. In presence of D3-branes we have in addition the generators in
A

the (6/,n)"" that we parametrize with the 6 x n matrices a = a;* (in the following we will
also use the notation ¢; = E/I\aé\ ). The coset representatives Larer) and L can thus be

constructed as follows:

E-1 —CE a
L= exp (—BAEﬂAE] =+ aAZT(Ai))LGL(G,R) = 0 FE 0
0 «'E 1

E1 0 0

Lerermy = 0 £ 0

0 0O 1

1
C=B- 3 aa” (2.58)

where the sum over repeated indices is understood. Note that the coset representative L
is orthogonal respect the metric 7.
The left invariant 1-form I' = L~'dL turns out to be:

EdE™! —E[dB - }(daa” —ada")|E Eda
I'= Osx6 E~YdE Ogxn | - (259)
Onx6 da E 1,xn

Proceeding as before we can extract, from the left invariant 1-form, the connection and the
vielbein (R.31)) in the basis where we take the diagonal subgroup SO(6)4 inside SO(6) x
SO(6 + n), where now Ty are the generators of SO(6); x SO(6)2 x SO(n). It is sufficient
to take the antisymmetric and symmetric part of I' corresponding to the connection and

the vielbein respectively. We find:

Y _ pliJ] pli pdJ) _pliJ]  pli
Q=|(-PW W _pl). p=|pWad _pl)) ph (2.60)
_Pil Pi[ 0 Pi[ Pi[ 0
where
1
Wl = 5(EdE—l —dE B)IY (2.61)
1
pUI) — 5(EdE*l +dE~L B (2.62)
g _ 1 1 T T 7
Pl =~ E|dB - < (daa" —ada’ )| E (2.63)
2 2
1 .
Pl = §E,{dam. (2.64)

From the Maurer-Cartan equations

AL +TAT =0 (2.65)

,10,



we derive the expression of the curvatures and the equations expressing the absence of
torsion in the diagonal basis:

v pll — _pUK) o plEJl . plUE] o p(ET) 4 9pl A piJ (2.66)
vdpi = pi, A plY (2.67)

while equations (R.49), (R.44) remain unchanged.

Note that, as it is apparent from equation (R.60), the connection of SO(n) is zero in this
gauge: w” = 0. To retrieve the form of the connection in the Cartan basis it is sufficient
to rotate Q and P, given in equation (P.60), by the generalized D matrix (P.34)

1 0
D= |1 -1 0 (2.68)
V2 0 1
We find
wh! — P[U]‘ O6x6  Opxn
Q= Ogxs |w!/ + PUJT pli (2.69)
On><6 —P” On><n
066 ‘P(IJ) +P[IJ] pli
P = | pU) — plt 066 06xn (2.70)
Pi[ O6xn Onxn
RY = dwl? 4+ Wl Nwy o7 = =PRI A P — 2P A PY (2.71)
RY = dwl? + wlE ANwy i 7 = —PE A P+ 2PT A PV (2.72)
and the vanishing torsion equation is
VP! =dP + PIE Nw +WlE AP + 2P AP =0 (2.73)
dPY 4 wl7 AP+ PED AP =0, (2.74)

3. The symplectic embedding and duality rotations

Let us now discuss the embedding of the isometry group SL(2,R) x SO(6,6 + n) inside
Sp(24 + 2n,R). We start from the embedding in which the SO(6,6 + n) is diagonal:*

SO(6,6 + n) — Sp(24 + 2n,R)
g € SO(6,6 +n) —— 1(g) = <g (9—01)T> € Sp(24 + 2n,R)
S = (O‘ 5) € SL(2,R) - «(S) = ( ol _5’7> € Sp(24 + 2n, R)

v 0 —yn ol
ad —fy =1 (3.1)

4The signs in the embedding ¢ of SL(2,R) have been chosen in such a way that the action on the doublet
charges in the final embedding " were the same as S.
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where each block of the symplectic matrices is a (12 + n) x (12 + n) matrix. In this

embedding a generic symplectic section has the following grading structure with respect to
s0(1,1):

EE)
NO!

(£1) (£1)

where v and u are six dimensional vectors while v(*) and «(?) have dimension n.
Identifying the v’s with the electric field strengths and the u’s with their magnetic dual,
we note that the embedding ¢ (B.1]) corresponds to the standard embedding where SL(2, R)

acts as electric-magnetic duality while SO(6,6 + n) is purely electric.

We are interested in defining an embedding " in which the generators in the (15, 1)+2
act as nilpotent off diagonal matrices or Peccei-Quinn generators and the SL(2,R) group

(£1)

has a block diagonal action on the v and w1 components and an off diagonal action

on the v(© and u(©) components.

Indeed, our aim is to gauge (at most) twelve of the fifteen translation generators in
the representation (15’,1)2 and a suitable subgroup G C SO(n).

The symplectic transformation O which realizes this embedding starting from the one
in (B) is easily found by noticing that (v*1), w(*1D) and (v, (V) transform in the
(6',2)™ and (6,2) " with respect to GL(6,R) x SL(2,R) respectively. Therefore we define
the new embedding:

S = 0071
0 0 0 lgx6 0 0
0 T6xe 0 0 0 0
0 0 1 0 0
O = mm (3.3)
—lgx¢ O 0 0 0 0
0 0 0 0  lgxe 0
0 0 0 0 0 1 xm
In this embedding the generic SL(2,R) element S has the following form:
d0lexs  —7 Lexe 0 0 0 0
—Blexe alpxe 0 0 0 0
L,(S) _ 0 0 alpyxm 0 0 B Lyxm (3 4)
0 0 0 (6% ]16><6 ﬁ ]16><6 0
0 0 0 Ylexe 0 lexe 0
0 0 Y Ilmxm 0 0 o ]lmxm

- 12 —



E 0 0 0 0 0
0 E 0 0 0 0
0 o'E 1 0 0 0
"(L) = 3.5
v (L) 0 CE —a E* 0 0 (3.5)
—-CE 0 0 0 E!' —qa

-« 0 0 0 0 1

The product ¥ = ¢/(L)J/(S) of these two matrices gives the desired embedding in Sp(24 +
2n,R) of the relevant coset. If we write the Sp(24 + 2n,R) matrix in the form

A B
5= ( . D) (3.6)
and define 1 1
= —(A—iB); h=—(C—-1iD 3.7
f \/5( iB) \/5( iD) (3.7)
we obtain [Bg]
1 oF —~E 0
f=5| BE aE 0 (3-8)
—Ba’E ad’E o —ip
. —BCE —iaE™' oCE —iBE™' —(a—iB)a
h = 3 —6CE —iyE~™'  ~yCE —iSE™'  —(y—id)a |. (3.9)

—6a’E va'E v — 10
The kinetic matrix of the vectors is defined as [f1], 5§ N = h - f~! and we find

—2%L'T E-1E laaT-2L0TYE-E-1-2%BLITY  —q
N=|LaaT-2LCT BB 2%BLPTY  —2%L?T°E'E' 4+ LaaT  -La
—aT _L2.r L2
! L1
(3.10)

or in components

-1
_ _ T
NADB — o TP (p1A(E=1)IZ | BAZ a8 (4 T)AS [(a <L6) 9 —L1>

) e
NAaz — _aAz 71
. 2 ..
N = 276 (3.11)

where we have used the relation (R.9).

4. The gauging
Our aim is to gauge a group of the following form:

Tis x G C SO(G, 6 + TL) (41)
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where Tyy denote 12 of the (15’,1)*? Peccei-Quinn translations Tiax) in SO(6,6) and the
group G is in general a compact semisimple subgroup of SO(n) of dimension n. In particular
if G = U(N) we must have N? = n. The gauge group is a subgroup of the global symmetry
group of the ungauged action whose algebra, for the choice of the symplectic embedding
defined in the previous section, is:

sl(6,R)? 4+ s0(1,1)° +s0(n) + (15’,1)™% 4 (6/,n) " (4.2)

We note that the maximal translation group T2 which can be gauged is of dimension twelve
since the corresponding gauge vector fields are Ay, belong to the (6,2)~! of GL(6,R) x
SL(2,R). Let us denote the gauge generators of the Tyo factor by T2%, corresponding to
the gauge vectors Ap, and by 7% (i = 1,...,n) those of the G factor associated with the
vectors A;. These two sets of generators are expressed in terms of the (15’,1)%? generators

Tiax) and of the SO(n) generators 17;;) respectively by means of suitable embedding matrices

FISAa g (kid

TAa — fFEAoz T[FE}

T" = M Ty (4.3)
where ¢ are the structure constants of G, with ijk completely antisymmetric. The
constants fI¥A? are totally antisymmetric in TXA as a consequence both of supersymmetry

and gauge invariance or, in our approach, of the closure of the Bianchi identities. They
transform therefore with respect to SL(6,R) x SO(1,1) x SL(2,R) in the (20’,2)*3. Note
that fT>A are the remnants in D = 4 of the fluxes of the type-IIB three-forms.

We may identify the scalar fields of the theory with the elements of the coset repre-
sentative L of SO(6,6 4+ n)/SO(6) x SO(6 + n) namely, E®, BA¥ al. The scalar field
associated with the coset SL(2,R)/SO(2) ~ SU(1,1)/U(1) is instead represented by the
complex 2-vector L satisfying the constraint (P.9).

The gauging can be performed in the usual way replacing the coordinates differentials
with the gauge covariant differentials V :

dL* — V(g)La =dL”®
dE} — V() E} =dE}
dBAE N v(g)BAE _ dBAE + fAEFaAFa

(4.

(4.

(4.

da} — Vga} = da} +¢;/" Ajapy. (4.

Note that fA¥I'* are the constant components of the translational Killing vectors in the

chosen coordinate system, namely kASITe = fAXT [@], where the couple AY are coordinate

indices while I'w are indices in the adjoint representation of the gauge subgroup T1o; in the

same way the Killing vectors of the compact gauge subgroup G are given by k:ZA - ¢’ kaﬁ

where the couple Ai are coordinate indices, while jk are in the adjoint representation of G.

From equations ([£4)-(.7) we can derive the structure of the gauged left-invariant
1-form I

D' =T+ 8(7,,)l + ()T (4.8)
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where d(p,,)I" and 0 I" are the shifts of I' due to the gauging of T12 and G respectively.
From these we can compute the shifts of the vielbein and of the connections. We obtain:

P = P 4 5y, P + 6P (4.9)

phi — pli ¢ 5(T12)PH + 5(;P“ (4.10)

D1 = Wi+ d(mwi + dewi’ (4.11)

where

5(T12)PU = %E/I\fAEFaAFaE% (4.12)

da P! = %cijkE/I\af\AjaEEé (4.13)

Sy PT" =0 (4.14)

daP"" = %C”kEiaﬁAj (4.15)

Stiawi” = —O(rws” = —%Eﬁf[‘” * Aro B, (4.16)

Sqwi’! = —sgwl’ = —%cijkEf\aé\AjaEEg. (4.17)

Note that only the antisymmetric part of P!/ is shifted, while the diagonal connection wg =
w1 + wo remains untouched. An important issue of the gauging is the computation of the
“fermion shifts”, that is of the extra pieces appearing in the supersymmetry transformation
laws of the fermions when the gauging is turned on. Indeed the scalar potential can be
computed from the supersymmetry of the lagrangian as a quadratic form in the fermion
shifts. The shifts have been computed using the (gauged) Bianchi identities in superspace
as it is explained in appendix [A] We have:

5¢S21ft) = Sapyuel = —é <FUK_ —|—6UK_) (T 1K) aBVue? (4.18)
5 (shift) _ NAB _% <FIJK+ +EIJK+) (PIJK)ABEB (4.19)
SN M) — Z1Bep — %(FUK + O (T yk) fen (4.20)

SN — y Bep = éLg E{ES a™a™ cijp(T k) Len (4.21)

where we have used the selfduality relation (see appendix D for conventions) (I'7jx)ap =

£

€EIJKLM Nl“ﬁ%[ N and introduced the quantities

3!
FEVE — % (FUK j:i*F”K) (4.22)
CHIIE = % (C”K j:i*CUK) (4.23)
where
FUK Z [l | piiKe _ paStepl plpl - FUK D0 oy
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CIJK

and are the boosted structure constants defined as

1J

CIJK = LQEII\EéEIIw(aAzG,E]aFk Cijk » C = LQl?ll\l?%l?{w(a/\lazjG,FIc Cijk (425)

while the complex conjugates of the self-dual and antiself-dual components are

(FELTK Y = FHIE (CELTE Y = oTK (4.26)

)

For the purpose of the study of the potential, it is convenient to decompose the 24
dimensional representation of SU(4) ) C SU(4)1 x SU(4)2 to which A/ belongs, into its
irreducible parts, namely 24 = 20 + 4. Setting:

J— 1 —
My = )\2(20) — E(PI)AB)\B(4) (4.27)
where B —
)\A(4) _ (F[)AB)\I ; (FI)AB)\IB(QO) =0 (428)
we get
T 1 1
N = ZABD ey — g(F“JK + CTH YT k)P ep (4.29)
50 20 1
5/\114(20) _ Zi(m) BGB _ g(F—IJK + C—IJK)(FJK)ABEB (4.30)

5. Space-time lagrangian

The space-time lagrangian and the associated supersymmetry transformation laws, have
been computed using the geometric approach in superspace. We give in the appendices A
and B a complete derivation of the main results of this section.

In the following, in order to simplify the notation, we have suppressed the “hats” to
the gauged covariant quantities: V-V, P— P; &19 — wi2. In particular, the gauged
covariant derivatives on the spinors of the gravitational multiplet and of the Yang-Mills
multiplets are defined as follows:

Vipg = Dpa + %QQ/)A - i(FIJ)AB wi’Yp (5.1)
Vx?t =Dyt + ;qu - i(FIJ)AB wi’xP? (5.2)
VArs = DA — 3aha — (1) P o Ars +wf A (5.3)
VAia = DAja — %qm — i(ru)AB wi'\ip (5.4)

(5.5)

V is the gauged covariant derivative with respect to all the connections that act on the
field, while D is the Lorentz covariant derivative acting on a generic spinor 6 as follows

DO = df — iwab%be. (5.6)
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The action of the U(1) connection ¢ (R.21]) appearing in the covariant derivative V is defined
as a consequence of the different U(1) weights of the fields (P.5).

The complete action is:

S = / V—gLd'z (5.7)

L= ﬁ(kin) + ‘C(Pauli) + ﬁ(mass) - 'C(potential) (58)

Buv

—2i (/\/izﬂfjﬂ”fgﬁw — N §BW> +

- ] T+ UV T+ v — UV —
i (NIEE, - N F N EL,) +

1 ) o v 2
Loan) = —5R—1i (NA PN Feg =~ N FL Eﬁ,uu) +

+§fA2”e“ﬁArwAmyFAa oo €77 + P + %P,{J Pl + PIiPE 4
g\;u—i; (%‘%VWAU - &Au%va?) -2 (XA’Y“VMXA + XA’Y“VMXA) +
—i (AN N 4+ Apay VA A) = 20 (WY N + Niay" V) (5.9)
where, using equations (P.22), (B-69), (R.63)), (R.64) we have:

puP" = LaLpd,L*0"T’ (5.10)

1J pk _ 1)) pt 1J] pi
PPl = P P(IJ)“LP;B ]P[IJ}

PP = —40,EL0 (BT} = 4gaxd, (B~ )7 or (B~
1 1 — . 1 — .
1J A A ) T'A r A
P‘LE ]P[!;J} = ZgAFgEA <v(g)uB — 5(1@- Vigu@ ) <V;(Lg)B — —a; V(g)aj )

PL{jPI’Lj = gAgﬁﬂafﬁ“am (5.11)

_l’_

and we have defined gay, = EryEL, FE %(.7: +i*F)

‘C(Pauli) = _2p,u>_<A'7V’7“¢AV - PJJF?BXJA7V7ﬂ¢BV -
—QPJi(P[)ABS\Z’A’YV’)/ﬂTZJBV — 2Im (N)A¥F

X

Fadr (LﬁEzI(FI)ABwAWBu +2iLgEs" (C1)* P xavbpy, +
. 1 . R
+ QZL/;EEI)\A%TZ);‘ + ZLﬁEé (FI)ABA§VMVAJB + LﬁEéA?VWXA+
1 _ .
+ §L5E£(F1)AB)\ZA7W>\ZB)] —2Im (V)™ x

x [ﬁﬂw (LﬁEzl(FI)AB%Z_)AMZ)Bu +2iLgEs" (T1) P xavbp, +

R 1 - -
+ 2L BLN 0t + ZLﬁEé(FI) ABNYu A B + T EEN 0 xa+
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1 .
+ §L6E§(FI)AB)\2AWV>\¢B > +

+ f;éw <E£Q§\L2(F1)AB¢AH¢BV + 2iE{a Lo(T ) * P X avubpy +
+ QZ'E[IXG,?ZQS\]A’)/VIAZX + 4Z'Z25\i,4’yy1/}f +
1 - — _
+ ZLQE{}GJZZ(FI)AB)‘I}W;LU)\JB + LQE%]CLZZ)\?’)/HVXA +

1 _ . —
+ §L2E§]azz (PI)AB)‘fVMV)\jB + QLQA?’YMVXA>] -

—2Tm (V)"

F <E£a§\L2(F1)AB¢Au¢Bu + 208005 Lo(C) P Xam bt

+ 2iENay LoNyyab) + 4iLaXjan ) + (5.12)

1 — _ _
+ ZLZEéaiE (PI)AB)‘?'Y;W)‘JB + LZEéaiZ)‘?’Y;wXA +

1 _ : _
+ §L2Eéai2(F1)AB)\f7W)\]B + 2L2>\2A7WXA> + c.c.
E(mass) = +2iSABT;EAu7“V7;Z)BV - 42’NABTZMA’7”XB - 2iZIBA7;EAu7“)‘IB -
— 4iWiBA1;Au’Y“)\iB + 6(@‘1435&1)(3 + R?Bif'AXB + Tf]Bj‘il)‘]l]% +
+ UABNY N, + +VI§‘BX{4A{§) +ee. (5.13)
1 :
Lpotential) = 7 (—125488S4p + ANABN g + 22,52 215 4 + AW WE 4) . (5.14)
The structures appearing in L(,,455) and Lpotential) are given by
U (=IJK—  =IJK—
Sap = 5 <F +C ) (Crix)aB (5.15)
1 /— _
NAB — —— <F”K+ +C”K+> (Cr7x)AB (5.16)
1
ZiB = S (FE 4 MR (k) £ (5.17)
1 ,
Wip = gl2 a7 " cijrTur) (5.18)
1
IA — -5 (FHME + C1TEY (T k)% (5.19)
. 1 :
R = —op L g7 q"* ¢ (Crr) (5.20)
1 1 /— —
TAP = —25NAP 4 (FY5+ T () (5.21)
g 2 1— .
[JiIAB _ _§5z]NAB _ ngqéc”k(Fj)AB (5.22)
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VIiAB _ —%ciijquI»qf(TK)AB . (5.23)
The lagrangian is invariant under the following supersymmetry transformation laws:
SV = —i&AufyaaA +c.c.
0Anap = —LaB{(TD)*Pauen +iLa B (T1) anx 1ue” +
—i—iLaEAIj\IAfyMaA + c.c.
0Ai = —L2ERa} T1)*PPanep + iLa E{a}(T1) apX yue” +
—i—iLQEAIaZAS\IA’yMEA + 2iL25\f"m€A +c.c.
pﬁéLﬁ = = 2y4e? = 0L = 2L yae?
5%EX)5 (E_l)AK = —(F(I)ABj\i)esB + c.c.
%E[I\Eé (6BAE - 5a£Aa2]i) = (I’[I)ABS\il]eB + c.c.
%E/I\&LM = (MHABNyep + c.c.
0ua = Duea — L (E™)F () apFry,,1"e” + Saprue®

i i o
Xt = opatet + L LN (BT (O FL, 0" e + N Pep

i 7 _ _
S = g(rJ)ABPJ,m#gB — 5L P F o EA + ZiRen
g g 11 ___ y
0Aia = 5 () apLry,ne” + Zz—zﬁwﬂu €A~
11
——a} Fyp V" ea + Widen (5.24)

_4 Lo v Y 20\ |pv

where we have defined
qf = EXa}. (5.25)

6. The scalar potential and its extrema

From the expression of the potential given in the lagrangian (p.14)) and using the fermionic
shifts given in equations (5.15)—(F.I8)), one obtains that the potential is given by a sum of
two terms, each being a square modulus, namely:

1 _ 2 1 . 2
V= 5 |FIJK L olIK | n = ‘Lz%kquqm{‘ (6.1)

where FI7E= and CT/K~ were defined in equations ([22) and (f23) and ¢! in equa-
tion (p.29).

In the first term F//5X~ represents the contribution to the potential of the bulk fields,
while C'/K~ is the contribution from the D-branes sector. On the other hand the sec-
ond term is the generalization of the potential already present in the super Yang-Mills
theory [p(].

We note that using the decomposition given in equations (f.29),({.30]), namely:

1B20) 1 1
24 = 2,700 — () £ 26 (6.2)
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in equation (5.14), the contribution of the gravitino shift Sap cancels exactly against the
contribution ZX% of the representation 4 of the gaugino; furthermore, since ZiB(QO) is
proportional to N4p, the bulk part of the potential is proportional to N4z NB4.

We now discuss the extrema of this potential. Since V is positive semidefinite, its
extrema are given by the solution of V' = 0, that is
gk =0,  FIE= L ol7E= <9, (6.3)

Lacijrg’ " q

In absence of fluxes F//K = 0, the only solution is that the ¢/’ belong to the Cartan
subalgebra of G, then C!/X =0, but all the moduli of the orientifold are not stabilized as
well as the L. In this case the moduli space is

SU(1,1) SO(6,6 + N)
U(1) ~ SO(6) x SO(6+ N)

(6.4)

where N is the dimension of the Cartan subalgebra of G.

In presence of fluxes, F//% £ 0 we have, besides ¢77 belonging to the Cartan subalgebra
of G, also F!/K= = (0. We now show that this condition freezes the dilaton field S and
several moduli of GL(6)/SO(6)4. We note that the equation F//K~ = 0 can be rewritten
as:

1 pIJK 2 (IJK P %
L f; + L7 f, =0= IJK—:_ﬁES (6.5)
2
so that S must be a constant. We set:
2
1—
S = ia — 1——¢a:>@: a (6.6)
0 1+
where a is a complex constant and Rea = e#° > 0 Equation (B.5) becomes:
AXA — L Rea *f%A —Imafisa. (6.7)
We rewrite this equation using f{éK_ = % ( {éK — z*f{‘éK) and by replacing the SO(6)
indices I, J, K with GL(6) indices via the coset representatives E{; we find:
1 _ Rsile Vi
1AZF +Ima 2AEF = I Rea detE 1€AZFAHQQAA/QHH/QQQ/JCQA re (68)

~ 3!

where ¢g"* = ERE*! is the (inverse) moduli metric of 7 in GL(6)/SO(6)4.

It is convenient to analyze equation (f.§) using the complex basis defined in appendix [}
In this basis only 4 fluxes (together with their complex conjugates) corresponding to the
eigenvalues of the gravitino mass matrix, are different from zero.

Going to the complex basis where each Greek index decomposes as A = (i,7), i =
1,2,3 [p7 and lowering the indices on both sides, one obtains an equation relating a (p, q)
form on the Lh.s (p,g = 0,1,2,3; p + ¢ = 3) to a combination of (p’,¢’) forms on the
r.h.s. Requiring that all the terms with p’ # p, ¢ # q are zero and that the r.h.s. of
equation (p.§) be a constant, on is led to fix different subsets of the ¢** moduli, depending
on the residual degree of supersymmetry.
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Suppose now that we have N = 3 unbroken supersymmetry, that is m; = mo = m3 =
0, my o< |f*23] # 0 (see appendix [0). The previous argument, concerning (p, q)-forms,
allows us to conclude that all the components g;; and g;; are zero, so that at the N = 3

gi; 0 >
AS — . 6.9
gAY ( 0 gy (6.9)
In the N = 2 case we have mg = mg = 0, my o< | f123] #£ 0, myg o |f123| # 0 and a careful
analysis of equation (.§) shows that, besides the previous frozen moduli, also the ¢,3, g;3

minimum we have:

components are frozen.

Finally, in the N = 1 case we set one of the masses equal to zero, say mo = 0, and
my o [f123] £ 0, mg o [f123] # 0 my o |f123] # 0; in this case the only surviving moduli
are the diagonal ones, namely g;, so that, using the results given in appendix [J, also the
real components of gpx are diagonal

gas, — diag {€271, 272, 23, 21 %2 03} (6.10)

the exponentials representing the radii of the manifold T(21 2 X T(225) x T?... In terms of the

(36)°
vielbein E/I\ we have:
Ef = diag(e®?, %2, e%3, %1, eP2, e¥3) . (6.11)

Finally, when all the masses are different from zero (N = 0), no further condition on the
moduli is obtained.
Note that in every case equation (B.8) reduces to the SL(2,R) x GL(6,R) non covariant

constraint among the fluxes:
1
ASE [y o fAST o Rea ASTAIR pALQ. (6.12)

In the particular case a = 1, which implies ¢ = C' = 0, from equations (f.5), (f.6), we
obtain:

In this case the minimum of the scalar potential is given by

or, in terms of the L® fields, L' = %, L? = —% (up to an arbitrary phase) . Further-
more (B.7) reduces to the duality relation:
1

which is the SL(2,R) x GL(6) non covariant constraint imposed in [[f3].

Let us now discuss the residual moduli space in each case. For this purpose we in-
troduce, beside the metric g"*, also the 15 axions B** with enlarge GL(6)/SO(6)4 to
SO(6,6)/SO(6) x SO(6) (using complex coordinates B> = (BY, BY = —BJ?),

Since we have seen that for N = 1, 0, the frozen moduli from F//X~ = 0 are all the
¢"7 and g% except the diagonal ones ¢%, correspondingly, in the BA* sector, all BY and
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B are frozen, except the diagonal B, and they are eaten by the 12 bosons through the
Higgs mechanism. Indeed the three diagonal B¥ are inert under gauge transformation (see
appendix [0). The metric moduli space is (O(1,1))3 which, adding the axions, enlarges to
the coset space (U(1,1)/U(1) x U(1))®. Adding the Yang-Mills moduli in the D3-brane
sector, the full moduli space of a generic vacuum with completely broken supersymmetry,
or N = 1 supersymmetry contains 6+6/N moduli which parametrize three copies of U(1, 1+
N)/U(1) x U(1 + N).

Let us consider now the situation of partial supersymmetry breaking ( for a more
detailed discussion see appendix [0). For N = 3 supersymmetry the equation F//5— =
freezes all ¢ moduli but none of the ¢g”7. The relevant moduli space of metric ¢” is nine
dimensional and given by GL(3,C)/U(3). Correspondingly there are six massive vectors
whose longitudinal components are the B% axions. Adding the nine uneaten B¥ axions
the total moduli space is U(3,3)/U(3) x U(3). Further adding the 6 N Cartan moduli, the
complete moduli space is U(3,3 + N)/U(3) x U(3 + N).

For N = 2 unbroken supersymmetry the equation F'//5~ = 0 fixes all ¢”/ and ¢ except
the diagonal ones and g23. The moduli space of the metric is SO(1,1) x GL(2,C)/U(2).
There are 10 massive vectors which eat all BY moduli and B7 except the diagonal ones and
B2: the complete moduli space enlarges to SU(1,1)/U(1) x SU(2,2)/SU(2) x SU(2) x U(1).
This space is the product of the one-dimensional Kéhler manifold and the two-dimensional
quaternionic manifold as required by N = 2 supergravity. By further adding the 6 N
Cartan moduli, the moduli space enlarges to SU(1,1+ N)/U(1) x SU(1 + N) x SU(2,2 +
N)/SU(2) x SU(2+ N) x U(1).

Finally in the case of N = 1 unbroken supersymmetry, the frozen moduli are the
same as in the N = 0 case, and the moduli space is indeed the product of three copies of
Kahler-Hodge manifolds, as appropriate to chiral multiplets.

7. The mass spectrum

The spectrum of this theory contains 128 states (64 bosons and 64 fermions) coming from
the bulk states of IIB supergravity and 16 N? states coming from the n D3-branes. The
brane sector is N = 4 supersymmetric. Setting o = 1, the bulk part has a mass spectrum
which has a surprisingly simple form.

In units of the overall factor %e%, K = 2¢p1 4 2p2 + 203 being the Kéahler potential

3
of the moduli space (S%((ll’)1)> , one finds:®

Fermions Bosons
(4)spin 3 |my i=1,2,3,4

(12)spinl  |m; £ m;| i<y
2(4)spin s |my| (6)spin0  m =0
(16)spin 3 |mitmjtmg| i<j<k |(12)spin0 [m;=£m;l

(8)spin0  |my £ ma + mg £ my|

®Note that we have corrected a mistake in the spin 1 mass formula (5.21)-(5.23) as given in reference [@}
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where m;, ¢« = 1,...4 is the modulus of the complex eigenvalues of the matrix
{JKf(I’UK)AB evaluated at the minimum.

Note that in the case v # 1 all the masses m; acquire an a-dependent extra factor due
to the relation

1
FlIE= _ —V2(Re a)%fQIJK— — iﬂM TIK= (7.1)
a

so that all the spectrum is rescaled by a factor g(«a) = ﬂ%

This spectrum is identical (in suitable units) to a truncation (to half of the states) of the
mass spectrum of the N = 8 spontaneously broken supergravity a la Scherk-Schwarz [B5—
BD.

The justification of this statement in given in the next section.

We now note some properties of the spectrum. For arbitrary values of m; the spectrum

satisfies the quadratic and quartic mass relations

Y I+1n(-D)¥m¥F =0 k=12 (7.2)
J

Note that, in proving the above relations, the mixed terms for £ = 1 are of the form m;m;
and they separately cancel for bosons and fermions, due to the symmetry m; — —m,; of

?m? are even in m; and

the spectrum. On the other hand, for £ = 2 the mixed terms m
thus cancel between bosons and fermions.

If we set some of the m; = 0 we recover the spectrum of N = 3, 2, 1, 0 supersymmetric
phases.

If we set |m;| = |m;| for some ¢, j we recover some unbroken gauge symmetries. This
is impossible with the N = 3 phase (when my = mg = my4 = 0) but it is possible in the
N < 2 phases. For instance in the N = 2 phase, for mg = my = 0 and |my| = |ma|
there is an additional massless vector multiplet, while in the N = 1 phase, for my4 = 0,
|mi| = |ma| = |mg| there are three massless vector multiplets and finally for the N = 0
phase and all |m;| equal, there are six massless vectors.

The spectrum of the D3-brane sector has an enhanced (N = 4) supersymmetry, so
when the gauge group is spontaneously broken to its Cartan subalgebra U(N) — U(1)",
N(N —1) charged gauge bosons become massive and they are % BPS saturated multiplets
of the N = 4 superalgebra with central charges (the fermionic sector for the brane gaugini
is discussed at the end of section F). The residual N Cartan multiplets remain massless

and their scalar partners complete the 6+ 6N dimensional moduli space of the theory, that
SU(1,14N)

UM xSU(L,1+N)

Adding all these facts together we may say that the spectrum is classified by the

is classically given by three copies of

following quantum numbers (g, e;), where ¢ are “charges” of the bulk gauge group, namely
Im;l, |m; £ mj|, |m; £m; £myl, |m; =mj & my, £ my| and e; are the N — 1 charges of the
SU(N) root-lattice. In the supergravity spectrum there is a sector of the type (g,0) (the
128 states coming from the bulk) and a sector of the type (0,¢e;) (the sector coming from
the D3-brane).
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Figure 1: E7(;) Dynkin diagram. The empty circles denote SO(6,6)r roots, while the filled circle
denotes the SO(6, 6)7 spinorial weight.

8. Embedding of the N = 4 model with six matter multiplets in the N =8

There are two inequivalent ways of embedding the N = 4 model with an action which is
invariant under global SL(2,R) x GL(6,R), within the N = 8 theory. They correspond to
the two different embeddings of the SL(2,R) x GL(6,R) symmetry of the N = 4 action
inside E(7) which is the global symmetry group of the NV = 8 field equations and Bianchi
identities.

The N = 8 model describes the low energy limit of type-II superstring theory com-
pactified on a six torus T°. As shown in [p{, B, fZ] the ten dimensional origin of the 70
scalar fields of the model can be characterized group theoretically once the embeddings of
the isometry group SO(6,6)r of the moduli space of T and of the duality groups of higher
dimensional maximal supergravities are specified within E(7). This analysis makes use of
the solvable Lie algebra representation which consists in describing the scalar manifold as
a solvable group manifold generated by a solvable Lie algebra of which the scalar fields are
the parameters. The solvable Lie algebra associated with E7(7) is defined by its Iwasawa
decomposition and is generated by the seven Cartan generators and by the 63 shift gener-
ators corresponding to all the positive roots. In this representation the Cartan subalgebra
is parametrized by the scalars coming from the diagonal entries of the internal metric while
all the other scalar fields are in one to one correspondence with the Er(7) positive roots. We
shall represent the E77) Dynkin diagram as in figure . The positive roots are expressed
as combinations a = 22721 n'a; of the simple roots in which the positive integers n’ define
the grading of the root o with respect to a;. The isometry group of the 7% moduli space
SO(6,6)r is defined by the sub-Dynkin diagram {a;}i=1,. ¢ while the Dynkin diagram of
the duality group Ey;_p(11-p) of the maximal supergravity in dimension D > 4 is ob-
tained from the E7(7) Dynkin diagram by deleting the simple roots {a1,...,ap_4}. Using
these conventions in table 1 [63] the correspondence between the 63 non dilatonic scalar
fields deriving from dimensional reduction of type-IIB theories and positive roots of Ez)
is illustrated.

‘ 1B ‘ €;-components ‘ n' gradings ‘
| O | 1(-1,-1,-1,-1,-1,-1,v/2) | (0,0,0,0,0,0,1) |
Bso 0,0,0,0,1,1,0) 0,0,0,0,0,1,0)
g56 (0,0,0,0,1,—1,0) (0,0,0,0,1,0,0)

Table 1: Continued.
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1B €;-components ‘ n' gradings

Cs 2(-1,-1,-1,-1,1,1,v2) | (0,0,0,0,0,1,1)
Bys (0,0,0,1,1,0,0) (0,0,0,1,1,1,0)
gas (0,0,0,1,—1,0,0) (0,0,0,1,0,0,0)
Buis (0,0,0,1,0,1,0) (0,0,0,1,0,1,0)
946 (0,0,0,1,0,—1,0) (0,0,0,1,1,0,0)
Cus 1(-1,-1,-1,1,1,-1,V2) (0,0,0,1,1,1,1)
Cug 1(-1,-1,-1,1,-1,1,V?2) (0,0,0,1,0,1,1)
B3y (0,0,1,1,0,0,0) (0,0,1,2,1,1,0)
934 (0,0,1,-1,0,0,0) (0,0,1,0,0,0,0)
Bss (0,0,1,0,1,0,0) (0,0,1,1,1,1,0)
g35 (0,0,1,0,—-1,0,0) (0,0,1,1,0,0,0)
Bsg (0,0,1,0,0,1,0) (0,0,1,1,0,1,0)
936 (0,0,1,0,0,—1,0) (0,0,1,1,1,0,0)
Cs4 1(-1,-1,1,1,-1,-1,V2) (0,0,1,2,1,1,1)
Css 1(-1,-1,1,-1,1,-1,V?2) (0,0,1,1,1,1,1)
Cs6 2(-1,-1,1,-1,-1,1,v2) (0,0,1,1,0,1,1)
Cs456 $(-1,-1,1,1,1,1,/2) (0,0,1,2,1,2,1) «
B3 (0,1,1,0,0,0,0) (0,1,2,2,1,1,0)
g23 (0,1,-1,0,0,0,0) (0,1,0,0,0,0,0)
Bay (0,1,0,1,0,0,0) (0,1,1,2,1,1,0)
G24 (0,1,0,—1,0,0,0) (0,0,1,0,0,0,0)
Bas (0,1,0,0,1,0,0) (0,1,1,1,1,1,0)
925 (0,1,0,0,—1,0,0) (0,0,0,1,0,0,0)
Bas (0,1,0,0,0,1,0) (0,1,1,1,0,1,0)
926 (0,1,0,0,0,—1,0) (0,0,0,0,1,0,0)
Cy3 $(-1,1,1,-1,-1,-1,V/2) 0,1,2,2,1,1,1)
Coy 1(-1,1,-1,1,-1,-1,v2) (0,1,1,2,1,1,1)
Cys 1(-1,1,-1,-1,1,-1,v?2) (0,1,1,1,1,1,1)
Caé (-1,1,-1,-1,-1,1,v2) (0,1,1,1,0,1,1)
Coas6 3(-1,1,-1,1,1,1,/2) (0,1,1,2,1,2,1) «
Cass6 1(-1,1,1,-1,1,1,V2) (0,1,2,2,1,2,1) «
Cosa 2(-1,1,1,1,-1,1,/2) (0,1,2,3,1,2,1) «
Co345s $(-1,1,1,1,1,-1,V2) (0,1,2,3,1,2,1) «
Bio (1,1,0,0,0,0,0) (1,2,2,2,1,1,0)
g12 (1,—-1,0,0,0,0,0) (1,0,0,0,0,0,0)
Bis (1,0,1,0,0,0,0) (1,1,2,2,1,1,0)
g13 (1,0,—-1,0,0,0,0) (1,1,0,0,0,0,0)
B4 (1,0,0,1,0,0,0) (1,1,1,2,1,1,0)
g14 (1,0,0,—1,0,0,0) (1,1,1,0,0,0,0)

Table 1: Continued.
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| 1B

€;-components

n' gradings

Bis (1,0,0,0,1,0,0) (1,1,1,1,1,1,0)
gis (1,0,0,0,—1,0,0) (1,1,1,1,0,0,0)
B (1,0,0,0,0,1,0) (1,1,1,1,0,1,0)
gi6 (1,0,0,0,0,—1,0) (1,1,1,1,1,0,0)
B, (0,0,0,0,0,0,2) (1,2,3,4,2,3,2)
Chuw $(1,1,1,1,1,1,V/2) (1,2,3,4,2,3,1)
Cio 1(1,1,-1,-1,-1,—-1,V2) (1,2,2,2,1,1,1)
Ci3 2(1,-1,1,-1,-1,-1,V/?2) (1,1,2,2,1,1,1)
Ciy 2(1,-1,-1,1,-1,—-1,V/2) (1,1,1,2,1,1,1)
Cis 1(1,-1,-1,-1,1,—-1,V2) (1,1,1,1,1,1,1)
Cie %(1,—1 —1,-1,-1,1,V2) (1,1,1,1,0,1,1)
Clasg $(1,-1,-1,1,1 1,\/2) (1,1,1,2,1,2,1) «
Cisse $(1,-1,1,-1,1,1,/2) (1,1,2,2,1,2,1) «
Cisa6 (1, - 1,1,1 -1,1,V2) (1,1,2,3,1,2,1) «
Clisas 1(1,-1,1,1,1,-1,v?2) (1,1,2,3,2,2,1) «
Cias6 %(1,1,—1 -1,1,1,v2) (1,2,2,2,1,2,1) «
Cla4s (1,1, ,—1,1,v/2) (1,2,2,3,1,2,1) «
Ciaas $(1,1, 1 1 1,-1,v/2) (1,2,2,3,2,2,1) «
Ci236 1(1,1,1,-1,-1,1,V/2) (1,2,3,3,1,2,1) «
Ci235 %(1,1,1, 1,\/5) (1,2,3,3,2,2,1) «
Ci234 l(1,1,1,1, —1,\/5) (1,2,3,4,2,2,1) «

Table 1: Correspondence between the 63 non dilatonic scalar fields from type-IIB string theory
on 76 (C©, ¢ = C;; and C®W = Cyjiq) and positive roots of Eq(7) according to the solvable
Lie algebra formalism. The N = 4 Peccei-Quinn scalars correspond to roots with grading 1 with
respect to 3, namely those with n® = 2 and n” = 1 which are marked by an arrow in the table.

In this framework the R-R scalars, for instance, are defined by the positive roots which
are spinorial with respect to SO(6,6)7, i.e. which have grading n” = 1 with respect to the
spinorial simple root a7. On the contrary the NS-NS scalars are defined by the roots with
n’ =0, 2.

Let us first discuss the embedding of the SL(2,
within E7(7). In the solvable Lie algebra language the Peccei-Quinn scalars parametrize the

R) xSO(6,6) duality group of our model

maximal abelian ideal of the solvable Lie algebra generating the scalar manifold. As far as
the manifold SO(6,6)/SO(6) x SO(6) is concerned, this abelian ideal is 15 dimensional and
is generated by the shift operators corresponding to positive SO(6, 6) roots with grading one
with respect to the simple root placed at one of the two symmetric ends of the corresponding
Dynkin diagram Dg. Since in our model the Peccei-Quinn scalars are of R-R type, the
SO(6,6) duality group embedded in E7(7) does not coincide with SO(6,6)7. Indeed one of
. Moreover the SL(2,R) group
)11 symmetry group of the ten

its symmetric ends should be a spinorial root of SO(6,6)r
commuting with SO(6, 6) should coincide with the SL(2,R
dimensional type-IIB theory, whose Dynkin diagram consists in our formalism of the simple
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B GL(6,R),

SL@2 R),, X S0(6,6)

Figure 2: SL(2,R) x SO(6,6)7 and SL(2,R) x SO(6, 6) Dynkin diagrams. The root « is the E7
highest root while § is as + 2a4 + a5 + 2a6 + a7. The group SL(2,R);;p is the symmetry group
of the ten dimensional type-IIB theory.

root a7. This latter condition uniquely determines the embedding of SO(6,6) to be the one
defined by D¢ = {a1, ag, as, ay, as, 5}, where § = as + 2a4 + a5 + 206 + a7 is the spinorial
root (see figure fl). On the other hand the 20 scalar fields parametrizing the manifold
SL(6,R)/SO(6) are all of NS-NS type (they come from the components of the 7 metric).
This fixes the embedding of SL(6,R) within E;(;) which we shall denote by SL(6,R): its
Dynkin diagram is {a, a9, as, a4, a5}. The Peccei-Quinn scalars are then defined by the
positive roots with grading one with respect to the spinorial end 8 of Dg which is not
contained in SL(6,R);. In table 1 the scalar fields in SO(1,1) x SL(6,R);/SO(6) which are
not dilatonic (i.e. do not correspond to diagonal entries of the 7% metric) correspond to the
SL(6,R); positive roots which are characterized by n% = n” = 0 and are the off-diagonal
entries of the internal metric. The Peccei-Quinn scalars on the other hand correspond to
the roots with grading one with respect to 3, which in table 1 are those with n® =2, n” =1
and indeed, as expected, are identified with the internal components of the type-IIB four
form.

The above analysis based on the microscopic nature of the scalars present in our model
has led us to select one out of two inequivalent embeddings of the SL(6,R) group within
E7(7y which we shall denote by SL(6,R); and SL(6,R)2. The former corresponds to the As
Dynkin diagram running from «; to as while the latter to the A5 diagram running from S
to as. The SL(6,R); symmetry group of our N = 4 lagrangian is uniquely defined as part
of the maximal subgroup SL(3,R) x SL(6,R); of E7(7) (in which SL(3,R) represents an
enhancement of SL(2,R);rp [p0]) with respect to which the relevant E7(7) representations
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branch as follows:
56 — (1,20) + (3/,6) + (3,6') (8.1)
133 — (8,1) + (3,15) + (3', 15/) +(1,35). (8.2)

Moreover with respect to the SO(3) x SO(6) subgroup of SL(3,R) x SL(6,R); the relevant
SU(8) representations branch in the following way:

— (2,4)
56 — (2,20) + (4,4)
63 — (1,15) + (3,1) + (3,15)
70 — (1,20) + (3,15) + (5,1). (8.3)

The group GL(6, R)2 on the other hand is contained inside both SL(8, R) and Egg) x O(1, 1)
as opposite to GL(6,R);. As a consequence of this it is possible in the N = 8 theory to
choose electric field strengths and their duals in such a way that SL(2,R) x GL(6,R)2 is
contained in the global symmetry group of the action while this is not the case for the group
SL(2,R) x GL(6,R); C SL(3,R) x SL(6,R);. Indeed as it is apparent from eq. (B.1]) the
electric/magnetic charges in the 56 of E(7) do not branch with respect to SL(6,R); into
two 28 dimensional reducible representations as it would be required in order for SL(6,R);
to be contained in the symmetry group of the lagrangian. On the other hand with respect
to the group SL(2,R) x O(1,1) x SO(6) C SL(3,R) x SL(6,R); the 56 branches as follows
(the grading as usual refers to the O(1,1) factor):

56 — (1,10),+ (1,10),+ (1,6) ., + (1,6)_, + (2,6),, +(2,6)_,. (8.4)

In truncating to the N' = 4 model the charges in the (1,10),+(1,10),+(1,6),,+(1,6)_,
are projected out and the symmetry group of the lagrangian is enhanced to SL(2,R) x
GL(6,R);.

8.1 The masses in the N = 4 theory with gauged Peccei-Quinn isometries and
USp(8) weights

As we have seen, in the N = 4 theory with gauged Peccei-Quinn isometries, the parameters

of the effective action at the origin of the scalar manifold are encoded in the tensor f,//X.

The condition for the origin to be an extremum of the potential, when o = 1, constrains

the fluxes in the following way:
. (8.5)

therefore all the independent gauge parameters will be contained in the combination
fi K 4ify~ 17K transforming in the 10+! with respect to U(4) and in its complex conju-
gate which belongs to the 0. Using the gamma matrices each of these two tensors can
be mapped into 4 x 4 symmetric complex matrices:

BAB _ (flffJK+if271JK) FIJKAB c 10+1

—AB . —
B = (ntE —ify TR AP e 107 (8.6)
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where the matrix Bap is proportional to the gravitino mass matrix Sap. If we denote
by As” a generic generator of u(4) we may formally build the representation of a generic
usp(8) generator in the 8:

Ax”  Bac
<_§DB AP € usp(8). (8.7)
The U(1) group in U(4) is generated by A4® =i645. Under a U(4) transformation A the

matrix B transforms as follows:

B — ABA! (8.8)

Therefore using U(4) transformations the off diagonal generators in the usp(8)/u(4) can be
brought to the following form

0 B
(—B(d) 0 >:mZHZ

B9 = diag(my, ma, ms,ms) m; >0 (8.9)

where the phases and thus the signs of the m; were fixed using the U(1)* transformations
inside U(4) and H; denote a basis of generators of the usp(8) Cartan subalgebra. The
gravitino mass matrix represents just the upper off diagonal block of the usp(8) Cartan
generators in the 8.

As far as the vectors are concerned we may build the usp(8) generators in the 27 in
much the same way as we did for the gravitini case, by using the u(4) generators in the 15
and in the 6 + 6 to form the diagonal 15 x 15 and 12 x 12 blocks of a 27 x 27 matrix.

Atsx15 K15><12>
€ usp(8 8.10
<K12><15 Al2x12 p() (8.10)

KAS[Pa — fAZFa and Kioxis =

Here A15><15 = AAXI:‘A, A12><12 = AAOfﬁ while K15><12 =
T
—Kisx12-
The vector mass matrix is:
2 t
M(Vector) x K15><12K15><12 : (811)

By acting by means of U(4) on the rectangular matrix Ky5x12 it is possible to reduce it to
the upper off-diagonal part of a generic element of the usp(8) Cartan subalgebra:

al 0 0
0 a9 0 0
Kisxiz = | :
0 0 a2
0 O 0
0 O 0
0 O 0
ag =|mixtm;| 1<i<j<4; my>0. (8.12)

Using equation (B.11)) we may read the mass eigenvalues for the vectors which are just a,.
The above argument may be extended also to the gaugini and the scalars as discussed

in the next section.
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8.2 Duality with a truncation of the spontaneously broken N = 8 theory from
Scherk-Schwarz reduction

As discussed in the previous sections the microscopic interpretation of the fields in our
N = 4 model is achieved by its identification, at the ungauged level, with a truncation of
the N = 8 theory describing the field theory limit of IIB string theory on 7'%. To this end
the symmetry group of the N = 4 action is interpreted as the SL(2,R) x GL(6,R); inside
the SL(3,IR) x SL(6, R); maximal subgroup of E7(), which is the natural group to consider
when interpreting the four dimensional theory from the type-IIB point of view, since the
SL(3,R) factor represents an enhancement of the type-IIB symmetry group SL(2,R) /5 X
SO(1,1), where SO(1, 1) is associated to the T® volume, while SL(6,R); is the group acting
on the moduli of the 7% metric. A different microscopic interpretation of the ungauged
N = 4 theory would follow from the identification of its symmetry group with the group
SL(2,R) x GL(6,R)2 contained in both Egey x O(1,1) and SL(8,R) subgroups of E;,
where, although the SL(2,R) factor is still SL(2,R);p, the fields are naturally interpreted
in terms of dimensionally reduced M-theory since GL(6,R), this time is the group acting
on the moduli of the T torus from D = 11 to D = 5. At the level of the N = 4 theory
the SL(6,R); and the SL(6,IR)2 are equivalent, while their embedding in Er(7) is different
and so is the microscopic interpretation of the fields in the corresponding theories. Our
gauged model is obtained by introducing in the model with SL(2,R) x GL(6,R); manifest
symmetry a gauge group characterized by a flux tensor transforming in the (2, 20)+3. It
is interesting to notice that if the symmetry of the ungauged action were identified with
SL(2,R) x GL(6,R)2 formally we would have the same N = 4 gauged model, but, as we are
going to show, this time we could interpret it as a truncation to N = 4 of the spontaneously
broken N = 8 theory deriving from a Scherk-Schwarz reduction from D = 5. The latter, as
mentioned in the introduction, is a gauged N = 8 theory which is completely defined once
we specify the gauge generator Tj € ¢s 6 to be gauged by the graviphoton arising from the
five dimensional metric. The gauging (couplings, masses etc. .. ) is therefore characterized
by the 27 representation of Tj, namely by the flux matrix f?o (r,s =1,...,27), element of
Adj(es ) = 78 [I7]. Decomposing this representation with respect to SL(2,R) x SL(6,R)
we have:

78 — (3,1) + (1,35) + (2,20). (8.13)

The representation (2,20) defines the gaugings in which we choose:

€6,6
sl(2,R) + sl(6,R)s

Ty € (8.14)

These generators can be either compact or non-compact. However, it is known that only
for compact Ty the gauged N = 8 theory is a “no-scale” model with a Minkowski vacuum
at the origin of the moduli space (flat gaugings). Let us consider the relevant branchings
of Er(7) representations with respect to SL(2,R) x SL(6,R)a:

56%(276,)+1 + (276)—1 + (17 15/)—1 + (17 15)+1 + (17 1)73 + (17 1)+3
133—)(3a 1)0+ (1a 1)0+ (1735)0+ (23 20)0+ (276)+2+ (276/)—2+ (17 15/)-{-2 + (17 15)—2
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where the (2,6)_; +(1,15)_; in the first branching denote the vectors deriving from five
dimensional vectors while (1,1)_ is the graviphoton. The truncation to N = 4 is achieved
at the bosonic level by projecting the 56 into (2,6"),; + (2,6)_; and the 133 into the
adjoint of SL(2,R) x SO(6,6), namely (3,1), + (1,1), + (1,35), + (1,15') ., + (1,15)_,.

If we chose Ty within (2,20) as a 27 x 27 generator it has only non vanishing entries
fA¥Te in the blocks (1,15’) x (2,6') and (2, 6’) x (1,15’) and inspection into the couplings
of these theories shows that the truncation to N = 4 is indeed consistent and that we
formally get the N = 4 gauged theory considered in this paper with six matter multiplets.

—LIK _j f,~ 1K

Moreover the extremality condition f; = 0 discussed in the previous section

coincides with the condition on T to be compact:

usp(8)

~IJK _ g —1JK
— =0 & 1Tp € ————
h if2 0 50(2) + s0(6)

(N = 8 flat gauging)
After restricting the (2,20) generators Ty to usp(8) they will transform in the 1071410 !
with respect to SO(2) x SO(6), 107! being the same representation as the gravitino mass
matrix. In the previous section the itinerary just described from the N = 8 to the N =4
theory was followed backwards: we have reconstructed the 27 x 27 usp(8) matrix T starting
from the symmetry u(4) of the ungauged N = 4 action and the fluxes f,//% defining the
gauging.

As far as the fermions are concerned, we note that in the N = 8 theory, the gravitini

in the 8 of USp(8) decompose under SO(2) x SO(6)2 C USp(8) as

__ 1
84tz +4 2 (8.15)

so that a vector in the 8 can be written as

L2
Ve = A AB=1,...8; ab=1,...8. (8.16)

USp(8)
U4)

the U(4) representation 10*! + 10 ~! among which we find the symplectic invariant

O4x4 ]14><4>
C, = . 8.17
ab <_]14><4 O4x4 (8.17)

From equation (B.7) we see that the off diagonal generators in the coset belong to

The basic quantities which define the fermionic masses and the gradient flows equations
of the N =4 model (in absence of D3-brane couplings) are the symmetric matrices

1 (=IJK— —=IJK-—

Sap = T (F +C ) (Trrx)aB (8.18)
1

Nap = ~18 (FIJK_ + CIJK_) (Trsx)AB (8.19)

that belong to the representations 107!, 10! of U(4) respectively. Note that they have
opposite U(1)r weight
w[Sap] = —w[Nap] =1. (8.20)
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If we indicate with )\(j), )\g?) the 4, 20 irreducible representations of the 24 )\114 bulk gaugini,

the weights of the left handed gravitini, dilatini and gaugini as given in equation (P.H) give
in this case
1 A 3 20 1 A% 1 . 1
wpal = 3w =3 whl =55 wMP) =25 e =—5.  (821)
From equations (p.13)—(f.23) it follows that, by suitable projection on the irreducible rep-

resentations 4, 20, the following mass matrices associated to the various bilinears either

depend on the Syp or Nap matrices, according to the following scheme:©
YA\ B@ (8.22)
KAONP — 547 (8.23)
XA(4))\B(4) — Nuag (8.24)
A%’_juffg s Sap (8.25)
MONED 5,5 (8.26)
A@NED __, yAB (8.27)
baxsy) — NAP (8.28)
¢A)\g) — S4B (8.29)
PN B — Ny (8.30)
bavp — S48 (8.31)
Ay Ny — NAB (8.32)

All these assignments come from the fact that Sap, Nap are in the 107! 10~! representa-
tions of U(4) and the mass matrices must have grading opposite to the bilinear fermions,
since the lagrangian has zero grading. Indeed, from the group theoretical decomposition
we find, for each of the listed bilinear fermions

(I[N
Njw

42 x 42 5 10%! (8.33)

17 x20 7 5 10! (8.34)
x4 75710 " (8.35)
20 :x20 :510'+10 " (8.36)
1 :x4d 570 " (8.37)
272x320 7510 (8.38)
47 x 472 5 107! (8.39)

47 x 47 S 10™! (8.40)

42 x 202 510 (8.41)

47 x 43 510 ™ (8.42)

472 x472 5107 . (8.43)

SWe remind that (S4Z, N48) have opposite U(1) weights, since they transform in the complex conjugate
representation with respect to (Sag, Nag).
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1
The decomposition of the 20 2 x 20

NAB appearing in the A(IQX)ASQE) mass term. However an explicit calculation shows that

1
2 jmplies that in principle we have both S4p and

the representation 10~!, corresponding to N4p is missing.

The above assignments are consistent with the Scherk-Schwarz truncation of N = 8
supergravity [B7], where the two matrices Qsap, Psapea contain the 10,10 of SU(4) of the
N = 4 theory. More explicitly:

Qsab — (Sap, S*P)

Psaped — (Nap, N4B)

which is consistent with the fact that, on the vacuum, Ps.pcq = 0 in the Scherk-Schwarz
N = 8 model and N4p = 0 in our N = 4 orientifold model.
Let us consider now the decomposition of the dilatino in the 48 of USp(8) under U(4).
We get:
Xabe — XABC ® X*Bo + hc. (8.44)

corresponding to
48 — 4+ 20 +4 + 20. (8.45)

We may then identify the chiral dilatino and gaugino as follows:

XA = ABODy )\é(?O) = THasx*Pe. (8.46)

. . +1 . I(4) - -1 .
identifies 472 with A\, and 4 2 with

MA@ ag they come from the C-trace part or the threefold antisymmetric product 8 x 8 x 8.

N

Moreover the decomposition 8 — 4+3 +4

These results are consistent with the explicit reduction appearing in reference [B7].
Indeed the mass term of reference [B7] are of the following form’

Qs P} (8.47)
QsaC "¢ (8.48)
Qs "¢ (8.49)
Q5 X X ebe (8.50)
PN Y Xbea (8.51)
PN X e - (8.52)

The term (B.47) gives rise to the mass term of the gravitino S ABy), Ap Y 0By; the term
NABy 4, vy and the term Zfl BiZJAM*y“)\I B are obtained by reduction of the structures
(8.49), (B.51) via the decompositions (B.39), (B.40). The mass term of the bulk gaugini
TfIB 5\{4)\é is reconstructed from the terms (8.48), (B.50), (B.52) through the decomposi-
tions (8.37), (8.36]), (B.3§). Finally, the mass term Qﬁl B)ZA)\IB is obtained by reducing
equation (B.5(), (B.52) via the decomposition (B.48)), (B.5().

"Note that the terms (7 ( do not appear explicitly in the lagrangian of reference [@] but they
would appear after diagonalization of the fermionic kinetic terms.
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In conclusion we see that our theory can be thought as a truncation of the Scherk-
Schwarz N = 8 supergravity. Once the Goldstino M@ s absorbed to give mass to the
gravitino 1 4, the spin % mass matrix is given by the entries (xy, X)\(%), )\(%))\(2_0)). There-
fore the full spin % mass spectrum is the truncation of the Scherk-Schwarz N = 8 spin %
to this sectors.

This justifies the results for the mass spectrum given in section ] Analogous consid-
erations can be done for the scalar sector.

We conclude by arguing that there is a duality between two microscopically different
theories:

N = 4 truncation of N = 8 theories

type-11B ientifold with fl
[type Ot At onentiiold wi uxesfes spontaneously broken a la Scherk-Schwarz

since they are described by the same N = 4 four dimensional effective field theory.
Finally we consider the fermionic bilinear involving D3-brane gaugini /\f4. From the
structure of the matrices W, 2, R, B, VIt equations (b.1§), (B.20), (5:23), we notice that

7

they vanish when the D3-brane coordinates commute (i.e. the scalars qu are in the Cartan
subalgebra of G).

The diagonal mass U}, (5.29) has a gravitational part 6 Ny which vanishes on the
vacuum while the second term is non vanishing for those gaugini which are not in the

Cartan subalgebra of G. Indeed, for G = SU(N), there are exactly N(N — 1) (1 BPS)

vector multiplets which become massive when SU(V) is spontaneously broken to U(1)™V~1.
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A. The solution of the Bianchi identities and the supersymmetry trans-
formation laws

In this appendix we describe the geometric approach for the derivation of the N = 4
supersymmetry transformation laws of the physical fields.

The first step to perform is to extend the physical fields to superfields in N = 4
superspace: that means that the space-time 1-forms w®®?, V* 44, 4, Apa, A; and the
space-time zero-forms x4, xa, A4, M4, Xy, N4 LY Ea;, BM®, alA are promoted to one-
superforms and zero-superforms in N = 4 superspace, respectively.
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As a consequence the superforms must depend on the superspace coordinates {z*; 0%}
(where z#, p = 1,2,3,4 are the ordinary space-time coordinates and 0%, o = 1,2,3,4,
A =1,2,3,4 are anticommuting fermionic coordinates ) in such a way that projected on
the space-time submanifold (i.e. setting % = 0,df% = 0) they correspond to the ordinary
physical fields.

A basis of one-forms on the superspace is given by {V¢, 4%}, a = 1,2,3,4; here V* are
the vierbein, and 1% are the fermionic vielbein identified with the gravitini fields.

The appropriate definition for the super-curvatures (or super-field strengths)of the
superfield p-forms in the N = 4 superspace is® as follows (we omit for simplicity the sign
of wedge product):

R® = dw® — %0 (A.1)
T% = DV — ith gy = 0 (A.2)
Fro = dApa — %LaEf\(FI)AB&AlﬁB - %ZaEf\(FI)ABT,EATPB (A.3)
Fy = dA; - %Lw@'[(FI)AB@A%B - %fzq{(FI)ABiﬁAiﬁB (A.4)
pa = Dpa+ %QQ/)A —2Q 1Y (A.5)
Vx* =Dx* - ;qu —2Qpx" (A.6)
VAra = DAra— 5aha —2Q P Ars + b A (A7)
Via = DXia — %q)\m —2Q4 \iB (A.8)
p = —icqpLYdLP (A.9)

1 1 1 7
Pl = —i(EdE’l +dEE)Y 4 3 {E [VB -3 (Vaa® — aVaT)} E} (A.10)
Pl = %E,{Va“. (A.11)

V is the covariant derivative with respect to all the connections that act on the field,
including the gauge contribution, while D is the Lorentz covariant derivative acting on a
generic vector A% and a generic spinor 6 respectively as follows

1
DA® = dA® — w™ A, ; DO = db — Zwabwabﬂ. (A.12)

The coefficients appearing in front of the U(1) connection ¢ correspond to the different
U(1) weights of the fields as shown in equation (R.H).

Q4 is the R-symmetry SU(4); connection, that in terms of the gauged SO(6); con-
nection w!” reads as Q“ = 2(I'ry) sBw!” (see appendix [ for details).

Equation ([A.2) is a superspace constraint imposing the absence of supertorsion, on the

N = 4 superspace.

8Here and in the following by “curvatures” we mean not only two-forms, but also the one-forms defined
as covariant differentials of the zero-form superfields
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Note that the definition of the “curvatures” has been chosen in such a way that in
absence of vector multiplets the equations by setting R?® =T* = pA = py = F =0, 1 =
1,...,6 give the Maurer-Cartan equations of the N = 4 Poincaré superalgebra dual to the
N = 4 superalgebra of (anti)-commutators, (the 1-forms w®, V¢ ¢4 44, AT are dual to
the corresponding generators of the supergroup).

By d-differentiating the supercurvatures definition (A.1))—(A.11)), one obtains the Bian-
chi identities that are their integrability conditions:

R“Vy + ihay*p™ + ip"ypa = 0
DR™ =0
V Fra Lo (1) 6 a5~ Lo B (1) 4 P4 5V Lo A1) P +

1_— _ 1 _ 1— _
+5VLQE£(F1)ABM¢B+§LQVE£<F1)AB¢A¢B+§LQVE£(F1)ABM¢B =0
_ _ _ 1 _
VEF; — Lol T 2B aps — Lagl (T1) a0 p® + §VL2Q¢I(FI)AB¢A¢B +
1_— _ 1 _ 1— _
+§VL2QZ'I(FI)ABT/)AT/)B + §L2VQ{(FI)AB¢A¢B + §L2vqu(FI)ABZZ)A¢B =0

1 1
Vpa+ ZRab’YabT/JA — §R¢A + QRAB¢B =0

1 3
VXA + Ry + SRX + 2R = 0
1 1
VA + ZRab'Yab)\IA + §R)\IA + 2R PN — Rorg Ay = 0

1 1
V2\ia + ZRab%bAiA + §RAZ-A +2RFPNip =0
Vp=20
1 y
VP S B + a5 = 0

1 g
VP 4 iagch”ij =0. (A.13)
B_1 BplJ ; :
Here Ry = g(I'rs) 47 Ry is the gauged SU(4) curvature with
1
R = dwl’ + W8 Awp — gEﬁfAEFaFMEg (A.14)

and R = dq is the U(1) curvature.

The solution can be obtained as follows: first of all one requires that the expansion of
the curvatures along the intrinsic p-forms basis in superspace namely: Vo Ve AV 1), 1) A
V4 A, is given in terms only of the physical fields (rheonomy). This insures that no
new degree of freedom is introduced in the theory.

Secondly one writes down such expansion in a form which is compatible with all the
symmetries of the theory, that is: covariance under U(1) and SO4(6) ® SO(n), Lorentz
transformations and reparametrization of the scalar manifold. Besides it is very useful to
take into account the invariance under the following rigid rescalings of the fields (and their
corresponding curvatures):

(wab,AAa,E/I\,BAZ,aé\) — (w“b,AAa,E/I\,BAE,aZA) (A.15)
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Ve — ve (A.16)

(W 0a) — £2 (4, 10a) (A.17)
ias My ™) = 072 (\a, My, ) (A.18)

Indeed the first three rescalings and the corresponding ones for the curvatures leave invari-
ant the definitions of the curvatures and the Bianchi identities. The last one follows from
the fact that in the solution for the o- model vielbeins p, P!/, P!* the spin % fermions
must appear contracted with the gravitino 1-form.

Performing all the steps one finds the final parametrizations of the superspace curva-
tures, namely:

Faa = FitVaVi + i(Ta AT PR arats + LaBA (T ax a0 +

+ LaB{ A 7atba + La i 47" )V (A.19)
F;, = -ﬁqbVaVb + i<Z2QiI(F1)AB>_CA7a7;Z)B + L2Q{(F1)AB>_(A70L7;Z)B + LQQ{X?WGTJZ)A +
+ Log A rayah™ 4+ 2Lo N2y ath 4 + QZZS\iA'YawA> Ve (A.20)
pa = paaVV? = LY(E) P apFr Loy PVa +
+eanepX PP + SapyabBve (A.21)
7 T—a, —a
Vx4 = VxAve 4+ 51_9a7“¢A + LB HMCHABFE Soygpp + NPy (A.22)
i i Y
VALA = VA1aaV + S (C)ap Py P — S LB Fra vana + Z5vs (A.23)
i A 1 A a
Via = ViaV*+ §(F1)ABP£IWQ¢B - EQ{(E DY yaptha +
2
1 —a
+—=F; Py tha + W; Pop (A.24)
414
p = paV* +2xav” (A.25)
PIJ — PaIJva + (FI)ABS\:QTZJB + (FI)ABS\JAwB (A26)

The previous parametrizations are given up to three fermions terms, except equation ()
where the term with two gravitini has been computed; in fact this term is in principle in-
volved in the computation of the gravitino shift but by explicit computation its contribution
vanishes

As promised the solution for the curvatures is given as an expansion along the 2-form
basis (V AV, V A, ¥ Av) or the 1-form basis (V', 1) with coefficients given in terms of
the physical fields.

It is important to stress that the components of the field strengths along the bosonic
vielbeins are not the space-time field strengths since V¢ = Vidz# + V3do® where (V,?, V)
is a submatrix of the super-vielbein matrix E/ = (V' ¢). The physical field strengths are
given by the expansion of the forms along the dz*-differentials and by restricting the su-
perfields to space-time (f = 0 component). For example, from the parametrization (A.19),
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expanding along the dx*-basis one finds:

Ep, = FaVEVE +iLaEA(C DY X avh + iLa EA(T1) ABX vu0)]
+iLa BN Y4 + D6 BAN LAY (A.28)

where F é\u is defined by the expansion of eq. (A.J) along the dx#-differentials. When all
the superfields are restricted to space-time we may treat the V' vielbein as the usual 4-
dimensional invertible matrix converting intrinsic indices in coordinate indices and we see
that the physical field-strength Faq,, differs from Fjy, abV[Z Vyb] = FAWV by a set of spinor
currents (FAaW is referred to as the supercovariant field-strength).

Analougous considerations hold for the other field-strengths components along the
bosonic vielbeins.

Note that the solution of the Bianchi identities also implies a set of differential con-
straints on the components along the bosonic vielbeins which are to be identified, when
the fields are restricted to space-time only, with the equations of motion of the theory.
Indeed the analysis of the Bianchi identities for the fermion fields give such equations (in
the sector containing the 2-form basis 1)4v%)4). Further the superspace derivative along
the ¥4 (¢A) directions, which amounts to a supersymmetry transformation, yields the
equations of motion of the bosonic fields. Indeed the closure of the Bianchi identities is
equivalent to the closure of the N = 4 supersymmetry algebra on the physical fields and
we know that in general such closure implies the equations of motion .

The determination of the superspace curvatures enables us to write down the N = 4
SUSY transformation laws. Indeed we recall that from the superspace point of view a
supersymmetry transformation is a Lie derivative along the tangent vector:

e=e"Dy + ea DA (A.29)
where the basis tangent vectors Dy , DA are dual to the gravitino 1-forms:
Da(v®) =D (yp) =1 (A.30)

and 1 is the unit in spinor space.
Denoting by p! and R’ the set of one-forms (V“, Va, VA, Apa, Ai> and of two-forms

<T“ =0, pa, p*, Fra, FZ) respectively, one has:
tp' = (icd + die) p* = (De)! + i.R! (A.31)

where D is the derivative covariant with respect to the N = 4 Poincaré superalgebra and
ic is the contraction operator along the tangent vector e.
In our case:

(De)* = —i (Par"e* + P %4) (A.32)
(De)* = Ve (A.33)
(Dé€)p,, = (De); =0 (A.34)

(here « is a spinor index).
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For the 0-forms which we denote shortly as ! we have the simpler result:
b =idv! =i, (VVI — connection terms) (A.35)

Using the parametrizations given for R and V! and identifying d, with the restriction of
L. to space-time it is immediate to find the N = 4 susy laws for all the fields. The explicit
formulae are given by the equations (p.24).

B. Derivation of the space time lagrangian from the geometric approach

We have seen how to reconstruct the N = 4 susy transformation laws of the physical fields
from the solution of the Bianchi identities in superspace.

In principle, since the Bianchi identities imply the equations of motion, the lagrangian
could also be completely determined. However this would be a cumbersome procedure.

In this appendix we give a short account of the construction of the lagrangian on
space-time from a geometrical lagrangian in superspace. Note that while the solution
of the Bianchi identities is completely equivalent to the ordinary “Superspace approach”
(apart from notations and a different emphasis on the group-theoretical structure),the
geometric approach for the construction of the lagrangian is completely different from the
usual superspace approach via integration in superspace.

In the geometric (rheonomic) approach the superspace action is a 4-form in superspace
integrated on a 4-dimensional (bosonic) hypersurface M* locally embedded in superspace

A= L (B.1)
MACSM

where SM is the superspace manifold. Provided we do not introduce the Hodge duality
operator in the construction of £ the equations of motions derived from the generalized
variational principle 6.4 = 0 are 3-form or 4-form equations independent from the particular
hypersurface M* on which we integrate and they are therefore valid in all superspace.
(Indeed in the variational principle we have also to vary the hypersurface which can always
compensated by a diffeomorphism of the fields if the lagrangian is written olnly in terms
of differential forms).

These superspace equations of motion can be analyzed along the 3-form basis. The
components of the equations obtained along bosonic vielbeins give the differential equations
for the fields which, identifying M* with space-time, are the ordinary equations of motion
of the theory. The components of the same equations along 3-forms containing at least
one gravitino (“outer components”) give instead algebraic relations which identify the
components of the various “supercurvatures” in the outer directions in terms of the physical
fields along the bosonic vierbeins (rhenomy principle).

Actually if we have already solved the Bianchi identities this requirement is equivalent
to identify the outer components of the curvatures obtained from the variational principle
with those obtained from the Bianchi identities.

There are simple rules which can be used in order to write down the most general

lagrangian compatible with this requirement.
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The implementation of these rules is described in detail in the literature [f9] to which
we refer the interested reader. Actually one writes down the most general 4-form as a sum
of terms with indeterminate coefficients in such a way that £ be a scalar with respect to
all the symmetry transformations of the theory (Lorentz invariance,U(1), SO(6)4 ® SO(n)
invariance, invariance under the rescaling ([A.1§). Varying the action and comparing the
outer equations of motion with the actual solution of the Bianchi identities one then fixes
all the undetermined coefficients.

Let us perform the steps previously indicated. The most general lagrangian has the
following form: (we will determine the complete lagrangian up to four fermion terms):

Lyinetic = Rabvcvdfabcd +ax (&AV@PAVG - @A'YQPAVG) +
—A av - av A X[A av)\ 5\ av)\IA
+laz (X**Vxa + xav*Vx?) + ag (M 9*V A4 + Aray )+
+ag(N Y VN4 + XNiay VAV Ve g +
1
+ay [p“(z_? —2xa) + P (p — 2xav?) — Zﬁfpfva} VOV Ve peq +
_ - 1
a5 [P (P = (D)4 M — (D) apX 40 P) — SRR IV | VPV eV ey +
o _ . 1.
tar|[PE (P = (D) AP Ny s — (D) apX 0 P) — SRV VIV eV ey +
+a [ N fab J\/’AC“EBF Wb 4 \EARFab | NiEﬁF'fab] %
(2 (2
X [FEB - i(ngé(TI)ABXA’Y%B + LgEL(T 1) apx P +
+ LeELN Y pa + ZﬁE§X1A7d¢A> Vd} VoV +
+a |:NAoz]F+ab —i—./\/Aa]F ab —i—,/\/ijF—-’—ab —i—ﬁijF-_ab] x
(3 (3
x [FJ - i<fij (C)APxav"p + Lagl (T1) apx 0P +
+ qu] Ay Mpa + LogiAray™ ™ + LoXfyhpa + sz\jA'deA> Vd} X
XVaVh = 57 (NMWF” F s~ N RR ) VOV e +
B 4 (N@EﬁF“mF Fog — NOR IR ) VAV e +

—ﬁa (Niﬂ’ijgFjgi ~ NIFIF; ) VvV erde o + (B.2)

Lpaui = b1 [pX a4 — PXaTa0t?] VEV? +
+ho P! [P Ny — (D) an N 9P| V VP +
b3 P[P8 Nyyantop — (T) apX ) ® | VoV +
+Faaer (N Ly BT Y + NI LB apd v ) +
+ c2 (N NS0T BT )P Y avahp + N AaZﬁLﬁEé(FI)ABXA%ZDB> Vet

+ 3N PLg BIN aba + N Aamfﬂm%w)va] +
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+Fpa {04 (NAaiLQQ{(PI)ABT/;AT/JB + NA isz{(FI)AB@AiﬁB) +
+ s </\/'Aa Log! (T1)*PXavats + NAML%]{(FI)ABXA%?/)B) Ve +
+ ¢ (NAMLQQ{X?’W/JA + A ifzqi[;\m%w) Vet
+er (WAL e + N Todianap® ) V2| +
+,|or (N L BE(T )Pt + N T BT ) apd*v®) +
+ &2 (N L BLT ) P avatn + N LaBET ) apx a0 ) Ve +
+ s (NP Ly BN yaa + N Lodanat ) Vo] +
+F s (N7 Lag! (TP faion + N Tog (T and 9®) +
+c5 (/\/'”L2q] (TP X avatn + N7 Log! (T1) anx %¢B) Ve +
e (N Lagi X vutoa + N Tag Aranap )V +
+c7 (NZJLQ)\]' YaA + ./T/'ZJZQXJ'A%W )V“} + more terms (B.3)
Lgauge = g1 (@A%WBSAB - @A%bibBSAB) Vevt 4
92 (047" X NP + 49X Nap ) VIV Yeqpeq +
+93 (T,Z_)AVGAIBZIJ? + NG ZT A) VOVV eqpea +
91 (Pay" NEWig + 99"\ WiBA) VIV e +
<)\1 xBQLE + AP QI + Mixs MLy P + NaxP My )VaVchVdeabcd+
+<5\IA)\JBTIJAB + MANTBT, p 4 j\iA)\jBUz‘jAB 4
+ NANB AB) VIV ey e oy + (B.4)
—i (— 125405+ A Noc N4 2216, 2L Ay 4wic i A )V“VbVCV e abed

£torsi0n = Tavavb (tl)ZA’YbXa + tZS\IA’Yb)\IA + t35\iA7b)‘iA) . (B5)

Note that in equation (B.J) the statement “+ more terms” means Pauli terms con-
taining currents made out spin % bilinears which can not be computed in this geometric
approach without knowledge of the four fermion couplings. However these terms have been
included in the space-time lagrangian given in section [ by imposing the invariance of the
space-time lagrangian under supersymmetry transformations.

The introduction of the auxiliary 0-forms p?, P1’ F/j\tgb, Fiab is a trick which avoids
the use of the Hodge operator for the construction of the kinetic terms for the vectors and
scalar fields which otherwise would spoil the validity of the 3-form equations of motion in
all superspace; indeed the equation of of motion of these auxiliary 0-forms identifies them
with the components of the physical field-strengths p%, P!/ F/ﬁ‘b, Fli“b along the bosonic
vielbeins V® thus reconstructing the usual kinetic terms on space-time.
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The Liorsion-term has been constructed in such a way as to give T = 0.
Performing the variation of all the fields one fixes all the undetermined coefficients,

namely:

— 4- — 4'. — 2'. _2 2. — 4'.
a1_47 az = 327 az = 327 a4_37 a’5_37 ag = 317
a7:§; 012—2; 62=—4i; 63:—4i; C4:—2; C5:—4i;
06:—4i; C7=—8i; b1=4i; b2:2i; 63:4i;

8. 4. 8.
po=—4  g2=-—gis gs=—gi g = gl
t1 = —4; ty = —2; t3 = —4; a=—4. (B.6)

In order to obtain the space-time lagrangian the last step to perform is the restriction of
the 4-form lagrangian from superspace to space-time. Namely we restrict all the terms
to the # = 0, df = 0 hypersurface M*. In practice one first goes to the second order
formalism by identifying the auxiliary 0-form fields as explained before. Then one expands
all the forms along the dz#* differentials and restricts the superfields to their lowest (6 = 0)
component. Finally the coefficients of:

eHvpo
V9

give the lagrangian density written in section []. The overall normalization of the space-time

dx" ANdx¥ NdxP Adz® =

(Vgd'z) (B.7)

action has been chosen such as to be the standard one for the Einstein term. (To conform
to the usual definition of the Riemann tensor R%_; we have set R% = —%R“bchch).

C. The moduli of 7° in real and complex coordinates

Appendix we give a more detailed discussion of the extrema of the potential using a complex
basis for the GL(6,R) indices for the moduli of the T torus.

Let us consider the basis vectors {ep}, (A =1...6) of the fundamental representation
of GL(6,R). We introduce a complex basis {F;, E;} with i = 1, 2, 3 or, to avoid confusion
on indices, ¢ = z, ¥y, z in the following way:

e1+ieq = Ey; ey + ies = Ey ; es +ieg = F, (Cl)

e1 —ies = By ey —ies = Iy ; es —ieg = F, . (C.2)

The axion fields and the (inverse) metric of T can then be written using (anti)holomorphic
indices 1, j, 7, 7 as follows:

BAE SN BU, sz’ Bij, Bij (03)
g — 9", 97, 47, 47 (C.4)
In particular, the fluxes flAEF = fAT are given by

Fove = %{fu?) — fI0 4 p26 g5 g (128w 156 Lk 246k p3)Y (O 5)
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Y e R e R R A0 I (Y)

FUE = {1 0 6 (¢ 1 g 156 e 6 e )} ()

Fo* = é {123 4 f156 4 p26 4 315 4 g (+ 128 e p190 px p246 5 31 (COg)
while

FITY = fTE . fYUT — fYTE IR £2RY () (C.9)

AYA
1

and therefore, the twenty entries of f are reduced to eight.

In this holomorphic basis the gravitino mass eigenvalues assume the rather simple

form:
— ./ 1 TYZ
. 1 -
ma = ‘/’L2+Z/’L2‘ = 6’L2"fxyz‘ (C]‘l)
. 1 =
o 1

We note that the three axions BA* = {Byy, Bos, Bsg} = {—2iB,z, —2iByy, —2iB.z} are
inert under Tho-gauge transformations, since we have 15 axions but only 12 bulk vectors.

When we consider the truncation to the NV = 3 theory we expect that only 9 complex
scalar fields become massless moduli parametrizing SU(3,3)/SU(3) x SU(3) x U(1). More-
over, it is easy to see that if we set e.g. 1 = po = ug =0 ( //1 = ,u/2 = ,ug = 0) which implies
f345 — f156 — _f123 — _f246 (*f345 % f156 — _*f123 — _*f246) inthe N =3 theory, we
get that also the 6 fields B2 — B, B13 _p46 p2t_pl> p31_pi6 p23_ps6 p35_ B2
are inert under gauge transformations.

In holomorphic coordinates, the translational gauging implies that the differential of
the axionic fields become covariant and they are given by:

V(g BY = dBY + (Re f7%) Ay + (Re f7F) Az, + (Im f9%2) Ay + (T f7R2) Ap, (C.14)
V(g B” = dB7 + (Re f7*) Ay + (Re f7F) Ag, + (Im f7%2) Ay + (Im f7%2) Ay, . (C.15)

Since in the N =4 — N = 3 truncation the only surviving massless moduli fields are
Bz + igi7, then the 343 axions {B;j, B;;} give mass to 6 vectors, while 6 Bj; must be zero.
We see from equation () we see that we must put to zero the components

fijk _ fijE _ fz‘jE —0 (C.16)

while
[k = peiik £ g, (C.17)

Looking at the equations ([C.10]) we see that these relations are exactly the same which
set py + z',ull = U2 + i,u/z = us + z',ug = 0 and pq + i,uil # 0, confirming that the chosen
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complex structure corresponds to the N = 3 theory. Note that the corresponding g%
fields partners of B in the chosen complex structure parametrize the coset O(1,1) x
SL(3,C)/SU(3). Actually the freezing of the holomorphic ¢g¥ gives the following relations
among the components in the real basis of g**:

g =g =¢* =0 (C.18)
Rt — G2 g5 =0, g3 g% = (C.19)
g2 gB— 0, g3 — g —0, g — g —0 (C.20)
g5 g% =0, g6 4 g% =0, g% 4 g% =0, (C.21)

B12 _ B45 — 07 Bl3 _ B46 =0, 323 . B56 -0 (C22)
BY + B*¥ = 0, B+ B8 =0, B 1 B =0 (C.23)
B = pB%» =p3% =0. (C.24)

The massless ¢ and BY are instead given by the following combinations:

1 o1 .1
g =5l +g"), =507 +e7), ¢ =507 +") (C.25)
B:Bf _ %B14 ’ Byy — %BQE) ’ BZ? — %B36 (026)
— 1 , - 1 . z 1 .
g7 =57 +ig?), T =500 +ig"), ¢ =S(0" +ig™) (C.27)
1 .1 o1
B — 5(312 + iBl5), B%% — 5(313 + ,L'Blﬁ), BYZ — §(B23 + Z'BQG) (028)
B* = BYW = B¥* =) (C.29)

Let us now consider the reduction N = 4 — N = 2 for which the relevant moduli space
is SU(2,2)/ (SU(2) x SU(2) x U(1)) ® SU(1,1)/U(1). Setting po + ipiy = pi3 + iptg = 0 we
find:

[ = fUE = (C.30)

which, in real components implies:
f123 + f156 — 0’ f246 + f345 — 0 (031)

and analogous equations for their Hodge dual. This implies that in the N = 2 phase
two more axions are gauge inert namely B2?3 + B% = 2B and B%* + B3 = 2B%
or, in holomorphic components, BY?. The remaining fields are ¢g'4, ¢?°, 9%, ¢?3, %6 and
B B%» B3 B2 B2 the last ones parametrize the coset SO(1,1) x SO(2,2)/SO(2) x
SO(2).

If we now consider the truncation N = 4 — N = 1 the relevant coset manifold is
(SU(1,1)/U(1))3 which contains 3 complex moduli. To obtain the corresponding complex
structure, it is sufficient to freeze g%, BY with i # j. In particular the SU(1,1)3 can be
decomposed into O(1,1)3 ®° T where the three O(1,1) and the three translations T3 are
parametrized by ¢*%, ¢¥¥, ¢°7 and B**, BYY B? respectively.
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These axions are massless because of equation ([C.9) (Note that the further truncation
N =1 — N = 0 does not alter the coset manifold SU(1,1)? since we have no loss of
massless fields in this process). In this case we may easily compute the moduli dependence

of the gravitino masses. Indeed, O(1,1)3, using equations ([C.19), (C.2§), will have as coset

representative the matrix

e 0 0 0 0 0
0 e2 0 0 0 0
0 0 e* 0 0 0
Ef = C.32
A 0 0 0 e 0 0 (C.32)
0 0 0 0 e 0
0 0 0 0 0 e

%P2 gas = €293, the exponentials representing the

where we have set g11 = 629"1, gog = €
radii of the manifold T(214) X T(225) X T(236)'
We see that in the gravitino mass formula the vielbein E/I\ reduces to the diagonal

components of the matrix ([C.39) A straightforward computation then gives:

m? 0 0 O
2

( 2)2 (201 +202+2¢03) 0 m; O 0

48 0

0 0 0 mi

Sapst? = (C.33)

We note that in the present formulation where we have used a contravariant BA* as basic
charged fields, the gravitino mass depends on the 7% volume. However if we made use of
the dual 4-form Cpsyra, as it comes from type-1IB string theory, then the charge coupling
would be given in terms of * f{s and the gravitino mass matrix would be trilinear in Ej\
instead of E/I\ Therefore all our results can be translated in the new one by replacing
R, — R; ..

D. Conventions

We realize the isomorphism between the two fold antisymmetric representation of SU(4)
and the fundamental of SO(6) using the 4 x 4 -matrix (I'!)ap = —(T') a.
We have used the following representation

0 001 000 i
- 0 010 p_| 000
0 -100 0i00
-1 000 —i0 00
00 -10 0 0i0
. .

N O p_| 0 00 (D.1)
10 00 —i 000
0-100 0 —i00
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0100 0—- 00

3 _ -10 0 0 F622'000
0001 00 0 ¢
0 0-10 00 —0
Note that their anticommutator is {TI';,T sy} = —6;, where the complex conjugation acts
as 1
AB _ (f1> _ L ABCD(IY D9
(") =5 (D.2)
We define
1 CB
e, = |(rr) () D.3
" = 5 [(1), (03
1
THEY 5 = 3 [(T1) ac(T))OP(T5) pp + perm.] . (D.4)
Here the matrices (I''/%) 45 are symmetric and satisfy the relation
1
(FIJK)AB _ EéJJKLMN(FLMN)AB_ (D.5)

In this representation, the following matrices are diagonal:

1000 ~100 0
s _ [0100 pse_ [ 0100
0010 0010
0001 000-1
~10 0 0 100 0
1 1
b _ [ 0100 s _ [01 00 (D)
00-10 00—1 0
0001 000 —1

as well as the matrices T'#4%6, 234 T'135 and I''?6 related with them through the rela-

tion (D.F).

We define for a generic tensor

T.rj. = ---%(PI)AB%(PJ)CD---T...[AB] [CD)...
T [aB|[CD].. = --- %(FI)AB%(FJ)CD T (D.7)
so that
E\(E™Y)] = ERP(E™")ip = 0% (D-8)
ENEY) =6 <= EXP(E")ep =083 (D.9)

In particular we need to convert the SO(6); indices of w!” into SU(4) R-symmetry indices as
they appear in the covariant derivative on spinors. For this purpose we apply the previous
definition (D-7) to the connection w{’ defining

1
wAop = Z(PI)AB(FJ)CD wi’ (D.10)
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then we introduce the connection QAB defined as

and thus

A B
wAB, = 6[[CQ g)} (D.11)
1 1
QAD = —iwABBD = g(FIJ)AD W{J (D.12)

One can easily realize that given the definition of the SO(6); curvature as

Rl = dwl’ + ol o AWEY (D.13)
one finds for consistence that
1
R =dQ"% —2Q°c N Q% = 5(T1) s Ry (D.14)

As a consequence, the covariant derivative acting on spinors turns out to be

1
D04 =dly —2Q7%0p = dis — Z(PU)AB wl’op . (D.15)
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