
Journal of High Energy Physics
     

Operator Mixing and the BMN Correspondence
To cite this article: Neil R. Constable et al JHEP10(2002)068

 

View the article online for updates and enhancements.

You may also like
Ultrasonic mist chemical vapor deposition
and dielectric properties of cubic
pyrochlore bismuth magnesium niobate
thin films
Pingfan Ning, Didi Wang, Yuqiang Li et al.

-

Interface stability of electrode/Bi-
containing relaxor ferroelectric oxide for
high-temperature operational capacitor
Takahiro Nagata, Somu
Kumaragurubaran, Yoshifumi Tsunekawa
et al.

-

Transparent Capacitor for the Storage of
Electric Power Produced by Transparent
Solar Cells
Cheng-Ji Xian and Soon-Gil Yoon

-

This content was downloaded from IP address 3.139.233.43 on 04/05/2024 at 04:17

https://doi.org/10.1088/1126-6708/2002/10/068
https://iopscience.iop.org/article/10.7567/1882-0786/ab0759
https://iopscience.iop.org/article/10.7567/1882-0786/ab0759
https://iopscience.iop.org/article/10.7567/1882-0786/ab0759
https://iopscience.iop.org/article/10.7567/1882-0786/ab0759
https://iopscience.iop.org/article/10.7567/JJAP.55.06GJ12
https://iopscience.iop.org/article/10.7567/JJAP.55.06GJ12
https://iopscience.iop.org/article/10.7567/JJAP.55.06GJ12
https://iopscience.iop.org/article/10.1149/1.3212836
https://iopscience.iop.org/article/10.1149/1.3212836
https://iopscience.iop.org/article/10.1149/1.3212836


J
H
E
P
1
0
(
2
0
0
2
)
0
6
8

Published by Institute of Physics Publishing for SISSA/ISAS

Received: October 10, 2002

Accepted: October 28, 2002

Operator mixing and the BMN correspondence

Neil R. Constable

Center for Theoretical Physics and Laboratory for Nuclear Science

Massachusetts Institute of Technology

Cambridge, Ma. 02139, USA

E-mail: constabl@lns.mit.edu

Daniel Z. Freedman

Center for Theoretical Physics and Laboratory for Nuclear Science

Massachusetts Institute of Technology, Department of Mathematics

Cambridge, Ma. 02139, USA

E-mail: dzf@math.mit.edu

Matthew Headrick and Shiraz Minwalla

Jefferson Physical Laboratory, Department of Physics

Harvard University, Cambridge MA 02138, USA

E-mail: headrick@pascal.harvard.edu, minwalla@fas.harvard.edu

Abstract: In this note we update the discussion of the BMN correspondence and string

interactions in [4] to incorporate the effects of operator mixing. We diagonalize the matrix

of two point functions of single and double trace operators, and compute the eigen-operators

and their anomalous dimensions to order g2
2λ
′. Operators in different R symmetry multi-

plets remain degenerate at this order; we propose this is a consequence of supersymmetry.

We also calculate the corresponding energy shifts in string theory, and find a discrepancy

with field theory results, indicating possible new effects in light-cone string field theory.

Keywords: Penrose limit and pp-wave background, AdS/CFT and dS/CFT

Correspondence.

c© SISSA/ISAS 2002 http://jhep.sissa.it/archive/papers/jhep102002068/jhep102002068.pdf

mailto:constabl@lns.mit.edu
mailto:dzf@math.mit.edu
mailto:headrick@pascal.harvard.edu
mailto:minwalla@fas.harvard.edu
http://jhep.sissa.it/stdsearch?keywords=Penrose_limit_and_pp-wave_background+AdS/CFT_and_dS/CFT_Correspondence
http://jhep.sissa.it/stdsearch?keywords=Penrose_limit_and_pp-wave_background+AdS/CFT_and_dS/CFT_Correspondence


J
H
E
P
1
0
(
2
0
0
2
)
0
6
8

Contents

1. Introduction 1

2. Anomalous dimensions of BMN eigen-operators 3

2.1 Two-point functions, three-point functions, and mixing 3

2.2 Construction of eigen-operators 5

2.3 Consistency conditions from three-point functions 6

2.4 Anomalous dimensions of BMN eigen-operators 7

3. String field theory revisited 8

A. The space-time structure of two- and three-point functions 10

B. Absence of mixing with BPS double-trace operators 10

C. Diagonalization procedure 11

D. Deconstruction identities 12

E. Degenerate operators and mixing 14

1. Introduction

Several aspects of the correspondence [1] between operators of N = 4 SU(N) super-Yang-

Mills theory at large R-charge J and type-IIB string theory in a pp-wave background

geometry [2, 3] have been investigated in the recent literature. The map between field

theory operators and free string theory in the pp-wave background was established by [1].

In our paper [4] we attempted to extend this map to a correspondence between Yang-Mills

correlators and interactions in the pp-wave background. In this note we will update and

correct the discussion presented in [4].

Field theory in the BMN limit, N → ∞, J → ∞ with J 2/N fixed, appears to be

governed by two parameters [1, 4, 5, 6]: an effective gauge coupling λ′ = g2
YMN/J

2, and

an effective genus counting parameter g2 = J2/N . These quantities can be expressed in

terms of the string scale α′ and coupling gs, light-cone momentum p+, and transverse string

mass µ as

λ′ =
1

(µp+α′)2
, g2 = 4πgs(µp

+α′)2 . (1.1)

– 1 –
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In [4] we proposed that free three-point functions of the BMN operators

OJn ≡
1√

JNJ+2

J
∑

l=0

e2πinl/J Tr
(

φZ lψZJ−l
)

(1.2)

are related to matrix elements of the string field theory light-cone hamiltonian according to

〈i|Hint(|j〉 ⊗ |k〉) = µg2(∆i −∆j −∆k)Cijk , (1.3)

where |i〉, |j〉, |k〉 are the dual string states and 〈OiŌjŌk〉 = g2Cijk (we have factored out the

trivial space time dependence). This proposal was intended to describe string transitions in

which the initial and final states have the same number of excitations, so that ∆i−∆j−∆k

is of order λ′. The proposal applies in the limit of large µ, corresponding to weak coupling in

field theory. The r.h.s. of (1.3) was computed in [4] by a direct evaluation of the free three-

point coupling Cijk. Subsequently, the l.h.s. of (1.3) was obtained in [7] (see also [10, 11, 12])

as the large-µ limit of the string field theory interaction Hint in the pp-wave background [13].

Results of [7] confirm the proposal (1.3), which thus appears to be on firm ground.

We claimed in [4] that the proposal (1.3) obeys a non-trivial consistency check, which

we now review. Utilizing hamiltonian matrix elements from (1.3), and second-order non-

degenerate perturbation theory, we computed the one loop mass renormalization of excited

pp-wave string states. We then compared the result to an explicit computation of the order

λ′g2
2 correction to the anomalous dimension of the corresponding BMN operator. In [4] we

reported agreement between these two computations.

In this note we will point out that this agreement is in fact spurious.1 Firstly our

result for the anomalous dimension computed in our paper had the wrong sign (this was

pointed out to us by the authors of [5]). Secondly our computation was incomplete, in that

it did not take into account mixing between single- and double-trace BMN operators. As

we will describe in this paper, this mixing alters the result for the anomalous dimension

at the order under consideration. In this note we will present a corrected result for the

anomalous dimension of BMN operators at order λ′g2
2 .

2

Surprisingly, this corrected anomalous scaling dimension does not match the result of

the analogous perturbative calculation on the string theory side, as we show in section 3.

The discrepancy could be due to presence of a quadratic contact term of order g2
2 in the

string field theory hamiltonian. This is an important issue.

Note added: after submission of this paper for publication we were informed that the

results of [7] (version 2), which claimed to support our proposal (1.3), were erroneous.

Subsequently the correct expression for the three-string vertex (in the large µ limit) has

1In appendix D we show that the relation referred to in [4] as the “unitarity check” (with the sign

corrected) in fact follows purely from field theory considerations, without making use of the BMN duality.
2Operator mixing was first suggested in the BMN context in [14]. A preliminary version of the present

work was presented by one of us (S.M.) at the conference Strings 2002. As we were drafting this note,

the paper [15] was submitted to the archive with similar methodology and results, for a larger class of

operators. One of us (D.Z.F.) acknowledges useful discussions with G. Semenoff at the Aspen Center for

Physics. Mixing is also discussed in the very recent paper [16].
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appeared in [8, 9] as well as version 3 of [7]. This does not effect any of the key results

presented in this paper. In particular our computation of the torus contributions to the

anomalous dimensions of the BMN operators is, of course, independent of the string theory

vertex. We have, however, updated section 3 below in which we compare the results

obtained in section 2 of this paper with the string theory prediction for the one loop mass

renormalization of the string states which are dual to the BMN operators considered here.

We again find that there is a mismatch between the two approaches and we maintain our

position that this provides evidence for a non-trivial contact term in the string field theory

Hamiltonian.

2. Anomalous dimensions of BMN eigen-operators

The BMN limit preserves an SO(4) R-symmetry group. The complex impurity fields φ and

ψ transform in the fundamental representation of an SU(2) subgroup, and operators con-

taining two such impurities transform in the 2⊗2 = 1⊕3 representation. Our calculations

thus split into independent sectors for the two representations.3 For example, if we form

the linear combinations

O±Jn =
1√
2

(

OJn ±OJ
−n

)

(2.1)

of the operators (1.2), then O+J
n is a member of a triplet, while O−Jn is a singlet. In this

section we will determine, to order λ′g2
2 , the anomalous dimension of the eigen-operators

Õ±Jn that reduce to O±Jn at g2 = 0. A priori the results could have been different for the two

representations. We find instead that the degeneracy persists to this order in g2; at the end

of this subsection we will argue that this degeneracy is a consequence of supersymmetry.

The mixing problem requires the diagonalization of the matrix of two-point functions

〈O(1)Ō(1)〉, 〈O(1)Ō(2)〉, 〈O(2)Ō(2)〉 of single- and double-trace operators including free and

order λ′ terms. The mixed two-point functions are of order g2. To obtain the eigen-

operators to this order we need only the order g0
2 parts of 〈O(1)O(1)〉 and 〈O(2)O(2)〉.

The eigen-operators are obtained in subsection 2.1, in a treatment which emphasizes

the relation of two- and three-point functions and the issue of correct conformal behav-

ior. In subsection 2.2 we go on to find the order λ′g2
2 correction to the anomalous di-

mension of the eigen-operators Õ±Jn which requires the known [4, 5] order g2
2 parts of

〈O(1)O(1)〉. As discussed in appendix E, in these calculations we make the assumption

that the single-trace operators do not mix with degenerate triple-trace operators, which

is not yet justified by calculation of the relevant two-point functions. However, the mode

n = 1 is not degenerate with any multi-trace operators, so results for n = 1 are safe from

this danger.

2.1 Two-point functions, three-point functions, and mixing

The two-point functions between single-trace BMN operators OJ
n was computed to lowest

order in g2 in [1]:
〈

O±Jn Ō±Jm
〉

= δnm
(

1− λ′m2 ln
(

x2Λ2
))

,
〈

O+J
n Ō−Jm

〉

= 0 . (2.2)

3We thank H. Verlinde and L. Motl for pointing this out to us.
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In order to establish some notation that will be useful below we may express two-point

functions between BMN operators of charge J1 < J as
〈

O±J1
n Ō±J1

m

〉

= δnm
(

1− λ′k2 ln(x2Λ2)
)

, (2.3)

where k = Jm/J1 = m/s, and we have defined s = J1/J (this was denoted y in [4]).

We now turn to the construction of the matrix of two-point functions between single-

trace and double-trace BMN operators. We will find it convenient to first compute, to

order λ′g2, the three-point functions of three single-trace BMN operators located at distinct

spatial points; the requisite two-point functions may then be obtained allowing two of the

insertions in the three-point function to approach each other.

The Feynman graphs that contribute to the three-point function between OJ
n , O

J1
m , and

OJ−J1 ≡ Tr(ZJ−J1)/
√

(J − J1)NJ−J1 at order λ′ are of two kinds, with different space time

dependence. This gives the following general structure for the three-point function:
〈

OJn(x1)Ō
J1
m (x2)Ō

J−J1(x3)
〉

=

= g2Cnms

[

1− λ′
(

ank ln(x12Λ)
2 + bnk ln

(

x13x12Λ

x23

))]

. (2.4)

Here Cnms is the free three-point function between the relevant operators which was com-

puted in [4],

Cnms =

√

1− s
Js

sin2(πns)

π2(n− k)2 . (2.5)

Evaluation of the Feynman diagrams gives the values

ank = k2 , bnk = n(n− k) . (2.6)

but we find it useful to regard ank and bnk as unspecified parameters in much of this section.

Note that (2.4), with the values of ank and bnk given in (2.6) does not take the form

dictated by conformal invariance for the three-point functions of three operators of anoma-

lous dimension n2λ′, k2λ′, and 0, respectively. This already indicates that OJ
n does not

have well defined scaling dimension; we will see this in more detail below.

Transforming (2.4) to the O±Jn basis, and using the properties ank = a−n,−k, bnk =

b−n,−k, we can rewrite the above three-point function as
〈

O±Jn (x1)Ō
±J1
m (x2)Ō

J−J1(x3)
〉

=

= g2C
±
nms

[

1− λ′
(

a±nk ln (x12Λ)
2 + b±nk ln

(

x13x12Λ

x23

))]

(2.7)

and
〈

O±Jn (x1)Ō
∓J1
m (x2)Ō

J−J1(x3)
〉

= 0 , (2.8)

where

C+
nms = Cnms + C−n,m,s = Hnks

2(n2 + k2)

(n2 − k2)2
,

C−nms = Cnms − C−n,m,s = Hnks
4nk

(n2 − k2)2
,

Hnks =

√

1− s
Js

sin2(nπs)

π2
. (2.9)

– 4 –
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When the values in (2.6) are used

a±nk = k2 ,

b+nk =
n2(n2 − k2)

n2 + k2
, b−nk =

n2 − k2

2
. (2.10)

We now turn to the construction of two-point functions between double-trace and

single-trace operators. In appendix A we demonstrate that the two-point function
〈

OJn(0) : Ō
J1
m Ō

J−J1 : (x)
〉

≡
〈

OJn(0)Ō
J
ms(x)

〉

(2.11)

may be obtained from (2.4) by the replacement x12 = x13 → x, x23 → 1/Λ so that
〈

OJn(0)Ō
J
ms(x)

〉

= g2Cnms
(

1− λ′ ln(xΛ)2(ank + bnk)
)

. (2.12)

The final two-point function that we need involves two double-trace operators. It is

straightforward to show that the result up to order g2 is
〈

: OJ1
mO

J−J1 : (0) : ŌJ1
n Ō

J−J1 : (x)
〉

= δmn
(

1− λ′k2 ln(x2Λ2)
)

. (2.13)

The complete matrix of two-point functions can now be assembled from (2.2) and (2.12)

and (2.13). If we introduce the index A = i, j,m, n where m,n index the single-trace

operators OJ
n and i, j index the double-trace operators OJ

ms so that i ≡ (m, s) then the

matrix of two-point functions found in this section can be summarized as

〈OAŌB〉 = gAB − λ′hAB lnx2Λ2 . (2.14)

Here gAB gives an inner product on the space of operators (in fact it is just the Hilbert

space inner product, according to the state-operator mapping), while hAB is the matrix

of anomalous dimensions (obtained by applying the dilatation operator D = xν∂ν). See

appendix C for a schematic discussion of the diagonalization of 〈OAŌB〉.

2.2 Construction of eigen-operators

In order to find eigen-operators we must now diagonalize the matrix of two-point functions.

The eigen-operators Õ±Jn and ÕJms must, by definition, reduce to O±Jn and : OJ1
mO

J−J1 :,

respectively at g2 = 0. These operators take the form

Õ±Jn = O±Jn + g2

∞
∑

m=0

J
∑

J1=0

C±nmsMnm : O±J1
m OJ−J1 : + · · · ,

Õ±Jms = : O±J1
m OJ−J1 : −g2

∞
∑

m=0

C±nmsNnmO
±J
n + · · · , (2.15)

where Mnk and Nnk are coefficients to be determined.4 The two-point function between

Õ±Jn and Õ±Jms is easily computed using the results of the previous subsection

(4π2x2)J+2
〈

Õ±Jn (0) ¯̃O±Jms(x)
〉

=

= g2C
±
nms

[

(1 +Mnm −Nnm)−λ′ ln(Λx)2
(

a±nk + b±nk +Mnmk
2 −Nnmn

2
)]

. (2.16)

4The transformation to the ± basis implies that the summation symbol in (2.15) and other formulas in

this basis should be defined as
∑∞

m=0
≡ 1

2

∑∞
m=−∞.
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As Õ±Jn and ÕJms are eigen-operators in a conformal field theory, (2.16) must vanish iden-

tically; this yields the set of simultaneous equations

1 +Mnm −Nnm = 0 ,

a±nk + b±nk +Mnmk
2 −Nnmn

2 = 0 (2.17)

which may easily be solved for Mnm and Nnm. Carrying out the algebra we find

Õ±Jn = O±Jn + g2

∞
∑

m=0

J
∑

J1=0

C±nms
a±nk + b±nk − n2

n2 − k2
O±J1
m OJ−J1 + · · · ,

Õ±Jms = : O±J1
m OJ−J1 :− g2

∞
∑

m=0

C±nms
a±nk + b±nk − k2

n2 − k2
O±Jn + · · · . (2.18)

2.3 Consistency conditions from three-point functions

Having determined the BMN eigen-operators to first order in g2λ
′, we now turn to the

determination of their three-point functions. We will demonstrate that the three-point

functions of these operators do indeed take the form required by conformal invariance.

We find that this is true for any value of bnk provided the coefficient ank = k2. This is

consistent with (2.6) and provides a check on our algebra.

Combining (2.2), (2.3) and (2.4) and (2.18) (and using the fact that double trace

correlators factorize to lowest order in g2) we find
〈

Õ±Jn (x1)
¯̃O
±J1

m (x2)Ō
J−J1(x3)

〉

=

= g2C
±J
nms

a±nk + b±nk − k2

n2 − k2

(

1− λ′
[

ln |x12Λ|
2n2k2 − b±nk(k2 + n2)− 2a±nkn

2

k2 − a±nk − b±nk
+

+x ln

∣

∣

∣

∣

x13x12Λ

x23

∣

∣

∣

∣

b±nk
k2 − n2

k2 − a±nk − b±nk

])

. (2.19)

(2.19) takes the standard CFT form for a three-point function between operators of anoma-

lous dimension n2, k2, and 0, respectively, provided that

2n2k2 − b±nk(k2 + n2)− 2a±nkn
2

k2 − a±nk − b±nk
= k2 + n2 ,

b±nk
k2 − n2

k2 − a±nk − b±nk
= k2 . (2.20)

It is easily verified that the two eqs. (2.20) are not independent; they are both satisfied for

any value of bnk if and only if

a±nk = k2 , (2.21)

as promised at the beginning of this subsection.

Notice that the three-point coupling between three normalized eigen-operators involves

the coefficient

C̃±nms = C±nms
b±nk

n2 − k2

– 6 –
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which is distinct from the free three-point coupling C±nms even at lowest order in λ′! Even

though this modification is independent of λ′, it is clearly a quantum effect as the modified

three-point function depends on bnk, the coefficient of the order λ′ term in (2.7).

2.4 Anomalous dimensions of BMN eigen-operators

It is now a simple matter to compute the two-point function of the operator (2.18) and

thereby determine its anomalous dimension to order g2
2λ
′.5 The two-point functions of

single-trace BMN operators with double-trace operators were presented above while the

complete order λ′g2
2 two-point functions of single-trace BMN operators were presented

in [4, 5] and we reproduce here (with different relative signs than [4]) the relevant equations,

〈

OJn(0)Ō
J
m

〉

=
(

δnm + g2
2Anm

) (

1−(n2 − nm+m2)λ′ lnx2Λ2
)

−g
2
2λ
′

4π2
Bmn lnx

2Λ2 , (2.22)

where the matrices Amn and Bmn are given by

Anm =































1
24 , if m = n = 0 ,

0, if m = 0 , n 6= 0 or n = 0 ,m 6= 0 ,
1
60 − 1

6u2 + 7
u4 , if m = n 6= 0 ,

1
4u2

(

1
3 + 35

2u2

)

, if m = −n 6= 0 ,
1

(u−v)2

(

1
3 + 4

v2
+ 4

u2 − 6
uv − 2

(u−v)2

)

, all other cases ,

(2.23)

Bnm =



















0 , n=0 if m = 0 ,
1
3 + 10

u2 , if n = m 6= 0 ,

− 15
2u2 , if n = −m 6= 0 ,

6
uv +

2
(u−v)2

, all other cases ,

(2.24)

and

u = 2πm , v = 2πn .

As explained in appendix C, the anomalous dimension of the Õ±Jn can be readily com-

puted from the diagonal two-point functions 〈Õ±n ¯̃O
±

n 〉. The required algebra is straightfor-

ward using the ingredients (2.12), (2.18), (2.22), (2.23) and (2.24). The result is

Γ±n
λ′g2

2

= ∓2n2An,−n +
1

4π2
(Bnn ±Bn,−n)−

∞
∑

m=0

J
∑

J1=0

(C±nms)
2 (b
±
nk − n2 + k2)2

n2 − k2
. (2.25)

where we use the value for b±nk given in (2.10). Using the identities in appendix D this may

be re-written as

Γ±n = g2
2λ
′n2An−n =

g2
2λ
′

4π2

(

1

12
+

35

32π2n2

)

. (2.26)

5We do not need to know the form of the operator to order g2
2 in order to perform this computation.

The only order g2
2 correction to this operator that can contribute to its two-point function at order g2

2 is

a piece proportional to OJ
n ; such an addition can be absorbed into a normalization of the operator at this

order, and so does not contribute to its scaling dimension.

– 7 –
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The full anomalous dimension of this operator (including the planar contribution) is

∆±n − J − 2 = λ′n2
(

1 + g2
2An,−n

)

= λ′
[

n2 +
g2
2

4π2

(

1

12
+

35

32π2n2

)]

. (2.27)

This is the principal result of this note.

It is striking that the degeneracy between the even and odd operators (obvious at

g2 = 0) persists to order g2
2 . It appears that this degeneracy is a consequence of super-

symmetry;6 all two-impurity BMN operators lie in a single representation of the pp-wave

supersymmetry algebra and so are guaranteed to have equal anomalous dimensions. Note

that 16 of the 32 supercharges of the N = 4 d = 4 superconformal algebra commute with

p− = µ
2 (∆ − J); further all supercharges commute with p+ which is a central element

of this algebra in the pp-wave limit. Consequently, states in long representations of the

pp-wave superalgebra appear in multiplets whose minimum degeneracy is 216/2 = 16× 16.

But this is precisely the number of two-impurity BMN operators; it is natural to conjec-

ture that the two-impurity BMN operators may be related to one another by the action

of the 16 supercharges that commute with p−; their degeneracy is thus a consequence of

supersymmetry. Special examples of such relations have been worked out directly in the

gauge theory in [17, 18]. We hope to return to this issue in more detail in future work.

3. String field theory revisited

In this section we will use quantum mechanical perturbation theory to compute the energy

shifts of a particular set of excited string states in the pp-wave background. This section

is almost a direct transcription of section 5 of [4], now adapted to the O±Jn basis.7

Utilizing the large µ expression for the three string vertex [7, 8, 9]

1

µ
〈n|Hint|i〉 =

1

2
(n− k)2Cni (3.1)

and second order non-degenerate perturbation theory (see section 5 of [4]) we find,

1

µ

∑

i

|〈n|Hint|i〉|2
En −Ei

=
g2
2λ
′

4

∑

i

(n− k)4
n2 − k2

C2
ni = −

1

4

g2
2λ
′

4π2
Bn,−n =

g2
2λ
′

4π2

15

32π2n2
(3.2)

and

1

µ

∑

i

〈n|Hint|i〉〈i|Hint| − n〉
En −Ei

=
g2
2λ
′

4

∑

i

(n2 − k2)2

n2 − k2
CniC−n,i = −1

4

g2
2λ
′

4π2
Bn,−n

=
g2
2λ
′

4π2

15

32π2n2
(3.3)

where we have used i as a collective index for (m, s) as well as for the states in which the φ

and ψ excitations are on different strings, corresponding to the BPS operator : OJ1

φ O
J−J1

ψ :.

6This explanation was suggested to us by J. Maldacena and M. Van Raamsdonk in response to an earlier

version of this paper.
7This section has been updated to account for the corrected three string vertex which now appears in

[8, 9] and version 3 of [7]. Our results agree with those obtained in [8, 9].
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Unlike in the Yang-Mills calculation of the previous section, the degeneracy between the

+ and − sectors of the string theory is thus broken: the correct zeroth-order eigenvectors

are

|n,±〉 ≡ 1√
2
(|n〉 ± | − n〉) , (3.4)

and their second order energy shifts are

1

µ

∑

i

|〈n,+|Hint|i,+〉|2
En,+ −Ei,+

= −1

2

g2
2λ
′

4π2
Bn,−n =

g2
2λ
′

4π2

15

16π2n2

1

µ

∑

i

|〈n,−|Hint|i,−〉|2
En,− −Ei,−

=
1

2

g2
2λ
′

4π2
(Bn,−n −Bn,−n) = 0. (3.5)

Sadly, neither of these energy shifts agrees with the anomalous dimension computed in the

previous section.

It is possible that this disagreement is resolved by the presence of an explicit quadratic

contact term in the string field theory Hamiltonian. In order to restore the degeneracy

of string states and resolve the discrepancy, this contact term would have to have matrix

elements

1

µ
〈n,+|V2|n,+〉 =

g2
2λ
′

4π2

(

1

12
+

5

32π2n2

)

1

µ
〈n,−|V2|n,−〉 =

g2
2λ
′

4π2

(

1

12
+

35

32π2n2

)

. (3.6)

Since these expressions are positive it is at least possible that they come from a contact term

in the string field theory Hamiltonian, which would be determined by the anti-commutator

of two supersymmetry generators [19, 20, 21]. It would be very interesting to compare 3.6

with a direct computation of contact terms in string field theory.

It should also be mentioned that the energy shifts could possibly receive contributions

at this order from states with 4 or more impurities, due to enhanced matrix elements

between states with different numbers of impurities, as reported in [7]. Note, however,

that this effect could not alone cure the apparent discrepancy between string theory and

gauge theory, since the contributions, if any, due to such massive intermediate states would

be negative.
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A. The space-time structure of two- and three-point functions

In this appendix we will justify the space time dependence of the order λ′ terms in the

eq. (2.4) for the three-point function 〈OJ
n(x1)Ō

J1
m1

(x2)Ō
J2(x3)〉, and discuss its relation to

mixed two-point functions as in (2.12). There are two distinct structures coming from

the quartic interactions in contributing Feynman diagrams. The first structure occurs in

diagrams in which one pair of lines from the operator OJ
n(x1) and one pair from ŌJ1

m1
(x2)

terminate at the interaction vertex at z. This leads to the the same space time integral

which occurs in two-point functions, namely

∫

d4z

z4(z − x12)4
= 2π2 ln(x

2
12Λ

2)

x4
12

. (A.1)

The second structure occurs in diagrams where lines from all three operators are connected

to the interaction vertex. This leads to the integral

∫

d4z

z4(x12 − z)2(x13 − z)2
= π2 ln

(

x2
12x

2
13Λ

2

x2
23

)

. (A.2)

This integral was evaluated using dimensional regularization in [22] and with differential

regularization [23] in our work. The integrals above determine the general structure in (2.4),

and the specific values of the parameters ank, bnk which come from our summation of the

contributing diagrams are given in (2.6).

The two-point function 〈OJ
n(x1) : Ō

J1
m1
ŌJ2 : (x2)〉 can be obtained from the three-point

function in the OPE limit x3 → x2. See [24]. It can also be found simply by setting

x13 = x12 and x23 = 1/Λ, since (A.2) reduces to (A.1) if this is done. Two-point functions

were also obtained directly from summation of Feynman diagrams in our work.

B. Absence of mixing with BPS double-trace operators

In [4] — see also [22, 25] — non-vanishing three-point functions 〈OJ
nŌ

J1

φ Ō
J−J1

ψ 〉 were com-

puted, where OJ
φ = Tr(φZJ)/

√
NJ+1 and OJ

ψ = tr(ψZJ)/
√
NJ+1 are BPS operators. The

corresponding dual two-string state contributed to the sum over intermediate states in the

consistency check in [4]. One may then wonder why the double-trace : ŌJ1

φ Ō
J−J1

ψ : was

not included in the initial ansatz (2.18) for our mixing calculation, and we now justify its

omission.

Let OJ = Tr(ZJ)/
√
JNJ denote the chiral primary operator. It is quite easy to verify

that the linear combination

OJsusy ≡
(

√

J1 − 1

J2 + 1
: OJ1−1

0 OJ2+1 : + : OJ1

φ O
J2

ψ :

)

+ (J1 ↔ J2) (B.1)

is an SU(4) descendant of the chiral primary : Tr(ZJ1+1)Tr(ZJ2+1) :. Thus the operator

OJsusy decouples from OJ
n and from : OJ1

mO
J2 : for n,m 6= 0. The decoupling can easily be

observed; the appropriate combination of mixed two-point functions which can be obtained
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from the three-point functions given in [4, (3.10) and (3.11)] vanish.8 The decoupling means

that we can simply omit the operators : ŌJ1

φ Ō
J2

ψ : from the mixing calculation, if we keep

: OJ1

0 OJ2 :. However, one may also observe directly from the solution for ÕJn in (2.18) that

: OJ1

0 OJ2 : also decouples.

C. Diagonalization procedure

In this appendix we provide an overview of the diagonalization procedure used to obtain

the eigen-operators in (2.18) and their scale dimension.

The matrix of two point functions is given in (2.14). The problem is to diagonalize

the matrix of anomalous scaling dimensions hAB relative to the inner product gAB . Both

hAB and gAB are functions of g2 and we will perform our analysis up to and including

contributions at order g2
2 . To explain the notion of relative diagonalization, we note that

the goal is to find a set of operators,

ÕA = OBS
B
A (C.1)

and numbers γA such that

(4π2x2)J+2
〈

ÕA(0)
¯̃OB(x)

〉

= δAB
(

1− λγA lnx2Λ2
)

. (C.2)

Hence the matrix S must satisfy

S†gS = I , S†hS = γ , (C.3)

where γAB = γAδAB is the diagonalized matrix of anomalous scaling dimensions. Together

these imply

S−1g−1hS = γ . (C.4)

Thus we must find the eigenvalues and eigenvectors of the matrix

hAC = gABhBC , (C.5)

where gAB is the inverse matrix of gAB . This diagonalization process is essentially equiva-

lent to non-degenerate quantum mechanical perturbation theory. We use a two-step process

in which we first find the eigenvectors to order g2, and then use the two-point function of

the eigen-operators to compute the scale dimension to order g2
2 .

To make the method clear consider the toy eigen-value problem

Ma
bV

b
(c) = λ(c)V

a
(c) . (C.6)

Diagonal elements are given by M a
a = ρ(a), and we wish to work to first order in all

off-diagonal elements. To zero order, the eigenvalues are λ(c) = ρ(c) and eigenvectors are

V a
(c) = δac. It is then trivial to see that the first order eigenvectors are

V a
(c) = 1 , if a = c ,

V a
(c) =

Ma
c

ρ(c) − ρ(a)
, if a 6= c . (C.7)

8To correct an error the right side of (3.11) in [4] should be multiplied by −1.
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The correction is well-defined if there is no degeneracy. This toy model is pertinent to

our block matrix hAB because the non-diagonal corrections to hnm and hij are of order

g2
2 and can be temporarily ignored. One immediately finds the (dominantly single-trace)

eigenvectors to first order in g2:

Õn = On +
∑

i

Oih
i
n

n2 − k2
= On − g2

∑

i

k

n+ k
Cn,iOi . (C.8)

One may also write an analogous expression for the dominantly double-trace eigenvectors

of the structure Õi = Oi + O(g2Om). From linear combinations of On and O−n one can

easily obtain the eigen-operators in (2.18) (with (2.6) inserted).

The second step of our procedure is based on the matrix of two-point functions 〈ÕA ¯̃OB〉
(in the ± basis). Because of the approximate diagonalization, off-diagonal entries 〈Õn ¯̃Oi〉
are of order g3

2 and can be dropped. We can confine our attention to the upper block of

the matrix which is again of the form

〈

Õ±n Õ
±
m

〉

= Gnm − λHnm lnx2 . (C.9)

(with superscripts omitted on the r.h.s. to avoid clutter). We need to think about diago-

nalizing the matrix Hn
m = GnpHpm, in which Gnm,Hnm have the structure

Gnm = δnm + g2
2g
′
mn ,

Hnm = n2δnm + g2
2h
′
nm . (C.10)

The off-diagonal elements of Hn
m are of order g2

2 . There is no degeneracy so these affect

eigenvalues beginning only in order g4
2 . Much as in the toy model above, the anomalous

dimension of the eigen-operator Õ±n is then simply the diagonal element

Hn
n = n2 + g2

2

(

h′nn − n2g′nn
)

. (C.11)

It is this quantity in the ± channels that is computed in (2.25).

D. Deconstruction identities

In this appendix we note several useful identities which relate the three point and two-point

coefficients that appear in this paper. We follow the notation of section 3 in which i is used

as a collective index labeling both types of double-trace operators: : OJ1
mO

J−J1 : (for which

s = J1/J and k = m/s) and : OJ1

φ O
J−J1

ψ : (for which s = J1/J and k = 0). We then have:

∑

i

CniCmi = 2Anm ,

∑

i

kCniCmi = (n+m)Anm ,

∑

i

k2CniCmi =
(

n2 +m2
)

Anm +
1

4π2
Bnm . (D.1)
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The first of these was pointed out in [10]. The first and last can be combined to obtain the

relation
∑

i

(

n2 − k2
)

C2
ni = −

1

4π2
Bnn , (D.2)

which is the content (up to a sign) of the “unitarity check” of [4].

These formulas are not numerical coincidences, nor do they in and of themselves provide

evidence for the BMN correspondence, since they can be derived purely within the gauge

theory. Non-etheless the derivation, which we will explain in this appendix, naturally calls

to mind a picture of interacting strings, and may in the future be useful in gaining a deeper

understanding of the correspondence.

We imagine the string of Zs in the operator OJ
n to be a circle on which the φ and ψ

impurities are quantum mechanical particles moving with momentum n and −n, respec-
tively, — their wave function is the weight of each possible configuration in the definition

of the operator (1.2). (Morally this point of view is a “de-second quantization” of the

worldsheet field theory, which is appropriate in the large-µ limit where the excitations are

very massive and we are fixing their number and type.) A free torus diagram contributing

to Anm can be represented by a unitary operator T (s, j1, j3) which acts on this 2-particle

Hilbert space by dividing the circle (of length 1, for simplicity) into 4 blocks of lengths

j1, j2, j3, j4 (where j2 = s− j1, j4 = 1− s− j3) and transposing blocks 1 and 2 and blocks

3 and 4 (see [4, figure 3], for example). We thus have

Anm = φ〈n|ψ〈−n|R|n〉φ|−n〉ψ , (D.3)

where

R =
1

4

∫ 1

0
ds

∫ s

0
dj1

∫ 1−s

0
dj3 T (s, j1, j3) (D.4)

(the integrals count each diagram 4 times, hence the 1/4). But if we imagine pinching

the circle into two circles of lengths s and 1 − s, T (s, j1, j3) acts by rotating the s circle

through an angle 2πj1 and the 1 − s circle through an angle 2πj3. The integration over

these rotation angles will ensure a factorization over physical intermediate states. Let us

see this more explicitly.

In such a pinching, the 2-particle Hilbert space decomposes into a direct sum of four

Hilbert spaces depending on which little circle each impurity is on:

Hφ(1)Hψ(1)=Hφ(s)Hψ(s)⊕Hφ(1−s)Hψ(1−s)⊕Hφ(s)Hψ(1−s)⊕Hφ(1−s)Hφ(s) . (D.5)

The integral over the rotation angle j1 projects out any state with non-zero total momentum

on the s circle, and similarly the integral over j3 projects out any state with non-zero total

momentum on the 1− s circle. Hence we have

∫ s

0
dj1

∫ 1−s

0
dj3 T (s, j1, j3) =

= s(1− s)
(

∑

m

Pm(s) +
∑

m

Pm(1− s) + P0′(s) + P0′(1− s)
)

, (D.6)
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where Pm(s) projects onto the state |m, s〉φ|−m, s〉ψ corresponding to the operator : OJ1
m×

OJ−J1 :, and P0′(s) projects onto the state |0, s〉φ|0, 1− s〉ψ corresponding to the operator

: OJ1

φ O
J−J1

ψ :. Using

Cni =
√

s(1− s)
{

φ〈n|ψ〈−n|m, s〉φ|−m, s〉ψ , for : OJ1
mO

J−J1 : ,

φ〈n|ψ〈−n|0, s〉φ|0, 1 − s〉ψ , for : OJ1

φ O
J−J1

ψ :
(D.7)

we recover the first identity of (D.1).

Inserting k2/2 in the sum means including interaction vertices in the diagrams. How-

ever, the vertex is included only if it is between two lines on the same small circle. Thus

(in the language of [4]) all the nearest neighbor interactions are counted, but only half the

semi-nearest neighbor interactions. The non-nearest neighbor interactions are also under

counted by a factor of 2, but this is a little more complicated: only 1/3 of them are counted,

but overall diagrams with three blocks are over counted by a factor of 3/2. Hence we have

1

2

∑

i

k2CniCmi = nmAnm +
1

2
(n−m)2Anm +

1

8π2
Bnm , (D.8)

which is equivalent to the last identity in (D.1).

The second identity of (D.1) can also be derived by similar but more involved reasoning.

E. Degenerate operators and mixing

The diagonalization process is an application of non-degenerate quantum mechanical per-

turbation theory. A potential complication occurs because single and double-trace oper-

ators have equal zeroth-order eigenvalues when n = k, threatening a divergence in the

calculation of eigenvectors to order g2. This would signal the breakdown of non-degenerate

perturbation theory and the necessity of using the degenerate theory. As one can see from

the right-hand side of (2.18), such a divergence does not occur, thanks to some rather

delicate cancellations. These cancellations have an interesting reflection in the dual string

theory [4]. The amplitude for an excited string state corresponding to a 2 impurity BMN

operator to decay into two particles vanishes onshell at lowest order in 1/µ; thus these

excited string states are stable to lowest order in g2.

Let us now consider higher rank r ≥ 3 multi-trace operators which we call Or for short.

The two-point functions 〈ŌnOr〉 are of order gr−1
2 . Generically such operators contribute

to eigenvalues beginning in higher order than g2
2 . There could be a complication for triple-

trace operators O3 = : OJ1
m Tr(ZJ2)Tr(ZJ3) : which are degenerate with single-traces when

n = m/s. If the relevant interaction matrix elements do not vanish, eigen-operators change

at zeroth order and scale dimensions at order g2
2 . The vanishing or otherwise of these

interaction matrix elements is linked to the vanishing or otherwise of the onshell one-three

particle decay amplitudes of string field theory.

Degeneracy cannot occur for momentum n = 1 since m ∈ Z+ and 0 < J1 < J . A

calculation of two-point functions 〈ŌnO3〉 to order g2
2 and λ′g2

2 would be needed to see if

the interaction matrix elements vanish, as they do for double-traces. The calculation has

– 14 –



J
H
E
P
1
0
(
2
0
0
2
)
0
6
8

not been done yet, so a conservative position is that present mixing results are valid for

momentum n = 1, where degeneracy cannot occur, but may need modification for n ≥ 2 if

such mixing does occur.
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