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1. Introduction

One of the common goals in the forthcoming experiments is the search for new phenomena.

In estimation of the discovery potential of the planned experiments the background cross

section (for example, the standard model cross section) is calculated and, for the given

integrated luminosity L, the average number of background events is nb = σb · L. Suppose
the existence of new physics leads to additional non-zero signal cross section σs with the

same signature as for the background cross section that results in the prediction of the

additional average number of signal events ns = σs ·L for the integrated luminosity L. The

total average number of the events is 〈n〉 = ns + nb = (σs + σb) · L. So, as a result of new
physics existence, we expect an excess of the average number of events. The probability of

the realization of n events in the experiment is described by Poisson distribution [1, 2]

f(n;λ) =
λn

n!
e−λ . (1.1)

In the report the approach to determination of the “significance” of predicted signal on

new physics in concern to the predicted background is considered. This approach is based

on the analysis of uncertainty [3, 4], which will take place under the future hypotheses

testing about the existence of a new phenomenon in Nature. We consider a simple statistical

hypothesis H0: new physics is present in Nature (i.e. λ = ns + nb) against a simple

alternative hypothesis H1: new physics is absent (λ = nb). The value of uncertainty is

defined by the values of the probability to reject the hypothesis H0 when it is true (type-I

error α) and the probability to accept the hypothesis H0 when the hypothesis H1 is true

(type-II error β). The concept of the “statistical significance” of an observation is reviewed

in the ref. [5]. All considerations in the paper are restricted to the most simple case of one

channel counting experiment. More advanced statistical analysis based on other technique

can be found, for example, in the ref. [6].
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2. “Signal significance” in planned experiment

“Common practice is to express the significance of an enhancement by quoting the number

of standard deviations” [7]. Let us define the “signal significance” (see, for example, ref. [8])

as “effective significance” s [9]

∞
∑

n=n0+1

f(n;nb) =
1√
2π

∫ ∞

s

exp

(−x2

2

)

dx , (2.1)

where n0 is the critical value for hypotheses testing (if the observed value n ≤ n0 then we

reject H0 else we accept H0). In this case the system

β =
∞
∑

n=n0+1

f(n;nb) ≤ ∆ ,

1− α =

∞
∑

n=n0+1

f(n;ns + nb) (2.2)

allows us to construct dependences ns versus nb on given value of type-II error β ≤ ∆ (the

probability that the observed number of events in planned experiment will be greater than

critical value n0 if hypothesis H1 is true) and given acceptance 1−α (the same probability

if hypothesis H0 is true). If ∆ = 2.85 · 10−7 (s ≥ 5, i.e. the value n0 has 5σ deviation

from average background nb), the corresponding acceptance can be named the probability

of discovery and the dependence of ns versus nb — the 5σ discovery curve; if ∆ = 0.0014

(s ≥ 3), the acceptance is the probability of strong evidence, and, if ∆ = 0.0228 (s ≥ 2),

the acceptance is the probability of weak evidence. The case of weak evidence for 50%

acceptance (s = 2) is shown in figure 1. The 5σ discovery, 3σ strong evidence, and 2σ

weak evidence curves for 90% acceptance are presented in figure 2.

3. Effects of one sided systematic errors on the discovery potential

We consider here forthcoming experiments to search for new physics. In this case we must

take into account the systematic uncertainty which has theoretical origin without any

statistical properties. For example, two loop corrections for most reactions at present are

not known. In principle, it is “reproducible inaccuracy introduced by faulty technique” [10]

and according to [11] it contains the sense of “incompetence”. If the predicted number of

background events strongly exceeds the predicted number of signal events the discovery

potential is the sensitive to this uncertainty. In this case we can only estimate the scale

of influence of background uncertainty on the observability of signal, i.e. we can point the

admissible level of uncertainty in theoretical calculations for given experiment proposal.

Suppose uncertainty in the calculation of exact background cross section is determined

by parameter δ, i.e. the exact cross section lies in the interval (σb, σb(1 + δ)) and the exact

value of the average number of background events lies in the interval (nb, nb(1 + δ)). Let

us suppose nb À ns. As we know nothing about possible values of average number of

– 2 –
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Figure 1: The case nb À 1. Poisson distributions with parameters λ = 1000 (left) and λ = 1064

(right). Here 1− α = 0.5 and β = 0.02275 (i.e. s = 2).

background events, we consider the worst case [3]. Taking into account formulae (2.2) we

have the formulae

β =

∞
∑

n=n0+1

f(n;nb(1 + δ)) ≤ ∆ ,

1− α =
∞
∑

n=n0+1

f(n;nb + ns) . (3.1)

Formulae (3.1) realize the worst case when the background cross section σb(1 + δ) is the

maximal one, but we think that both the signal and the background cross sections are

minimal.

The example of using these formulae is shown in figure 3. We see the sample of 200

(with, as expected, 100 background) events that will be enough to reach 90% probability

of discovery with 25% systematic uncertainty of theoretical estimation of background.

4. An account of statistical uncertainty in the determination of ns and nb

Usually, an experimentalist would extract the numbers ns and nb from a Monte Carlo sim-

ulation of the planned experiment, which results in the statistical errors. If the probability

of true value of parameter of Poisson distribution (the conditional probability) to be equal

to any value of λ ≥ 0 in the case when one observation nb = n̂ or ns+ nb = n̂ is known we

have to take into account the statistical uncertainties in the determination of these values.

– 3 –
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Figure 2: Dependences ns versus nb for

1− α = 0.9 and for different values of β.

Figure 3: Discovery probability versus ns
for different values of systematic uncertainty

δ for the case ns = nb. The curves are con-

structed under condition β = 2.85 · 10−7.

Let us write down the density of Gamma distribution Γa,n+1 as

gn(a, λ) =
an+1

Γ(n+ 1)
e−aλλn , (4.1)

where a is a scale parameter, n+ 1 > 0 is a shape parameter, λ > 0 is a random variable,

and Γ(n+ 1) = n! is a Gamma function.

Let us set a = 1, then for each n a continuous function

gn(λ) =
λn

n!
e−λ , λ > 0 , n > −1 (4.2)

is the density of Gamma distribution Γ1,n+1 with the scale parameter a = 1 (see figure 4).

The mean, mode, and variance of this distribution are given by n + 1, n, and n + 1,

respectively.

As it follows from the article [12] and is clearly seen from the identity [13] (figure 5)

∞
∑

n=n̂+1

f(n;λ1) +

∫ λ2

λ1

gn̂(λ)dλ+

n̂
∑

n=0

f(n;λ2) = 1 , i.e.

∞
∑

n=n̂+1

λn1e
−λ1

n!
+

∫ λ2

λ1

λn̂e−λ

n̂!
dλ+

n̂
∑

n=0

λn2e
−λ2

n!
= 1 (4.3)
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Figure 4: The behaviour of the probability density of the true value of parameter λ for the Poisson

distribution in case of n observed events versus λ and n. Here f(n;λ) = gn(λ) = λn

n!
e−λ is both

the Poisson distribution with the parameter λ along the axis n and the Gamma distribution with

a shape parameter n+ 1 and a scale parameter 1 along the axis λ.

Figure 5: The Poisson distributions f(n, λ) for λ’s determined by the confidence limits λ̂1 = 1.51

and λ̂2 = 8.36 in case of the observed number of events n̂ = 4 are shown. The probability density

of Gamma distribution with a scale parameter a = 1 and a shape parameter n + 1 = n̂+ 1 = 5 is

shown within this confidence interval.
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Figure 6: Discovery probability versus ns with and without account for statistical uncertainty

in determination of ns and nb. The case ns = nb. The curves are constructed under condition

β = 2.85 · 10−7.

for any λ1 ≥ 0 and λ2 ≥ 0, the probability of true value of parameter of Poisson distribution

to be equal to the value of λ in the case of one observation n̂ has probability density of

Gamma distribution Γ1,1+n̂. The eq. (4.3) shows that we can mix Bayesian and frequentist

probabilities in the given approach.

It allows to transform the probability distributions f(n;ns + nb) and f(n;nb) accord-

ingly to calculate the probability of discovery [14]

1− α = 1−
∫ ∞

0
gns+nb

(λ)

n0
∑

n=0

f(n;λ)dλ = 1−
n0
∑

n=0

Cn
ns+nb+n

2ns+nb+n+1
, (4.4)

where the critical value n0 under the future hypotheses testing about the observability is

chosen so that the type-II error

β =

∫ ∞

0
gnb

(λ)

∞
∑

n=n0+1

f(n;λ)dλ =

∞
∑

n=n0+1

Cn
nb+n

2nb+n+1
(4.5)

could be less or equal to 2.85 · 10−7. Here Cn
N is N !/n!(N − n)!. Also we suppose that the

Monte Carlo luminosity is exactly the same as the data luminosity later in the experiment.

The behaviour of discovery probability with and without account for this uncertainty is

shown in figure 6.

– 6 –
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The Poisson distributed random values have a property: if ξi ∼ Pois(λi), i = 1, 2, . . . ,m

then
∑m

i=1 ξi ∼ Pois(
∑m

i=1 λi). It means that if we have m observations n̂1, n̂2, . . . , n̂m of

the same random value ξ ∼ Pois(λ), we can consider these observations as one observa-

tion
∑m

i=1 n̂i of the Poisson distributed random value with parameter m · λ. According

to eq. (4.3) the probability of true value of parameter of this Poisson distribution has

probability density of Gamma distribution Γ1,1+
∑m

i=1 n̂i
. Using the scale parameter m one

can show that the probability of true value of parameter of Poisson distribution in the

case of m observations of the random value ξ ∼ Pois(λ) has probability density of Gamma

distribution Γm,1+
∑m

i=1 n̂i
, i.e. (see eq. (4.1))

G
(

∑

n̂i,m, λ
)

= g(
∑m

i=1 n̂i)(m,λ) =
m(1+

∑m
i=1 n̂i)

(
∑m

i=1 n̂i)!
e−mλλ(

∑m
i=1 n̂i) . (4.6)

Let us assume that the integrated luminosity of planned experiment is L and the

integrated luminosity of Monte Carlo data is m · L. For instance, we can divide the

Monte Carlo data into m parts with luminosity corresponding to the planned experiment.

The result of Monte Carlo experiment in this case looks as set of m pairs of numbers

((nb)i, (nb)i + (ns)i), where (nb)i and (ns)i are the numbers of background and signal

events observed in each part of Monte Carlo data. Let us denote Nb =
∑m

i=1 (nb)i and

Ns+b =
∑m

i=1 ((ns)i + (nb)i). Correspondingly (see page 98, [7]),

β =

∫ ∞

0
G(Nb,m, λ)

∞
∑

n=n0+1

f(n;λ)dλ =
∞
∑

n=n0+1

Cn
Nb+n

m1+Nb

(m+ 1)1+Nb+n
≤ ∆ ,

1− α = 1−
∫ ∞

0
G(Nb+s,m, λ)

n0
∑

n=0

f(n;λ)dλ = 1−
n0
∑

n=0

Cn
Ns+b+n

m1+Ns+b

(m+ 1)1+Ns+b+n
. (4.7)

As a result, we have a generalized system of equations for the case of different luminosity

in planned data and Monte Carlo data. The set of values Cn
N+n

m1+N

(m+1)N+n+1 , n = 0, 1, . . . is

a negative binomial (Pascal) distribution with real parameters N +1 and 1
m+1 , mean value

1+N
m

and variance (1 +m)(1 +N)/m2.

5. Conclusions

In this paper we have described a method to estimate the discovery potential on new physics

in planned experiments where only the average number of background nb and signal ns
events is known. The “effective significance” s of signal for given probability of observation

is discussed. We also estimate the influence of systematic uncertainty related to non-

exact knowledge of signal and background cross sections on the probability to discover new

physics in planned experiments. An account of such kind of systematics is very essential

in the search for supersymmetry and leads to an essential decrease in the probability

to discover new physics in future experiments. The texts of programs can be found in

http://home.cern.ch/bityukov. A method for account of statistical uncertainties in

determination of mean numbers of signal and background events is proposed. Appendix

demonstrates the interrelation between Gamma- and Poisson distributions.

– 7 –
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A. The interrelation between Gamma- and Poisson distributions

The identity (4.3) (figure 5)

∞
∑

n=n̂+1

f(n;λ1) +

∫ λ2

λ1

gn̂(λ)dλ+
n̂
∑

n=0

f(n;λ2) = 1 ,

can be easy generalized, as an example,1 to

∞
∑

n=km+1

f(n;λ1) +

m
∑

i=1





∫ λi+1

λi

gkm+1−i
(λ)dλ+

km+1−i
∑

n=km−i+1

f(n;λi+1)



+

+ f(k0;λm+1) = 1 (A.1)

for any real λi ≥ 0, i ∈ [1,m+ 1], integer m > 0, kl > kl−1 ≥ 0, l ∈ [1,m], k0 = 0.

As a result of such type generalizations we have got

∫ λ2

λ1

gm(λ)dλ +
m
∑

i=n+1

f(i;λ2) +

∫ λ1

λ2

gn(λ)dλ−
m
∑

i=n+1

f(i;λ1) = 0 ,

i.e.

∫ λ2

λ1

λme−λ

m!
dλ+

m
∑

i=n+1

λi2e
−λ2

i!
+

∫ λ1

λ2

λne−λ

n!
dλ−

m
∑

i=n+1

λi1e
−λ1

i!
= 0 , (A.2)

for any real λ1 ≥ 0, λ2 ≥ 0, and integer m > n ≥ 0.
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