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Abstract: Recently a new class of theories of electroweak symmetry breaking have been

constructed. These models, based on deconstruction and the physics of theory space,

provide the first alternative to weak-scale supersymmetry with naturally light Higgs fields

and perturbative new physics at the TeV scale. The Higgs is light because it is a pseudo-

Goldstone boson, and the quadratically divergent contributions to the Higgs mass are

cancelled by new TeV scale “partners” of the same statistics. In this paper we present the

minimal theory space model of electroweak symmetry breaking, with two sites and four

link fields, and the minimal set of fermions. There are very few parameters and degrees

of freedom beyond the Standard Model. Below a TeV, we have the Standard Model with

two light Higgs doublets, and an additional complex scalar weak triplet and singlet. At the

TeV scale, the new particles that cancel the 1-loop quadratic divergences in the Higgs mass

are revealed. The entire Higgs potential needed for electroweak symmetry breaking — the

quartic couplings as well as the familiar negative mass squared — can be generated by the

top Yukawa coupling, providing a novel link between the physics of flavor and electroweak

symmetry breaking.
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1. Introduction

The Standard Model provides an excellent description of all particle physics experiments

performed to date. The parameterization of electroweak symmetry breaking in terms of

a fundamental scalar field, however, is almost certainly incomplete. The quadratically

divergent radiative corrections to the Higgs mass suggest a TeV-scale cutoff. A more

complete, natural theory of electroweak symmetry breaking would include a stabilization

mechanism for the Higgs mass through new physics at or below the TeV scale.

Precision electroweak measurements are consistent with perturbative standard model

calculations and a light Higgs. The unreasonable effectiveness of this fundamental Higgs

theory of electroweak symmetry breaking suggests that any new TeV scale physics that

stabilizes the Higgs mass is also perturbative. A widely held belief is that the only per-

turbative candidate for electroweak symmetry breaking that stabilizes the weak scale is

low-energy supersymmetry. In supersymmetric theories every Standard Model field has

a superpartner of opposite statistics. The quadratic sensitivity of the Higgs mass to the

TeV scale is removed by cancellations of the radiative corrections of Standard Model fields

with those of their superpartners.

Recently, counter to this belief, a different class of models with perturbative physics

stabilizing the electroweak scale has been introduced [1, 2], based on “deconstruction” [3, 4]

and the physics of theory space [3, 5]. In these models the light Higgs field appears as a

pseudo-Goldstone boson at TeV energies and below, with conventional gauge, Yukawa and

self-couplings. The quadratic sensitivity to the cutoff scale that these couplings normally

induce are cancelled, not by particles of opposite statistics, but instead by particles of

the same statistics. Global symmetries of the theory ensure these cancellations. The

interactions responsible for the symmetry breaking giving rise to the pseudo-Goldstone

bosons are characterized by a scale ∼ 10TeV.
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The models described in [1] are non-linear sigma models characterized by a toroidal

“theory space”. The small example described in detail in [2] has 4 sites (corresponding

to a gauge group SU(3)3 × SU(2) × U(1)) and 8 links (corresponding to 8 sets of non-

linear sigma model fields). Some of these sigma model fields are eaten, higgsing the gauge

group to the Standard Model group SU(2) × U(1) and giving TeV scale masses to the

corresponding gauge bosons. Additional operators break the global symmetries and give

TeV scale masses to most of the scalars, leaving two pseudo-Goldstone multiplets massless

at tree level. These include a pair of Standard Model Higgs doublets, interacting through

a quartic potential. A set of colored, vector-like fermions were introduced to generate the

top quark Yukawa coupling. The additional TeV scale degrees of freedom cancel the one-

loop Standard Model quadratic divergence in the Higgs mass: the massive gauge bosons

cancel the divergence from the Standard Model gauge loop; the massive scalars cancel the

divergence from the Higgs self-coupling; the massive fermions cancel the divergence from

the top quark loop. Such models are consistent with precision electroweak constraints (such

as the S-parameter), and flavor model building in this context can be explored relatively

unfettered by the bonds of flavor violation.

As emphasized in [1], the essential idea of the Higgs as a pseudo-Goldstone boson

and the models constructed are independent of extra dimensions and their deconstruc-

tion. Models based on deconstruction have the virtue of a large collection of approximate

symmetries protecting the Higgs mass, and a restricted set of symmetry breaking effects.

The symmetry and field content of these theories are naturally represented graphically as

sites and links, in a notation sometimes referred to as “moose” [6] or “quiver” [7]. This

construction makes it evident that these theories realize a theory space in which symme-

try breaking terms are localized, while the lightest pseudo-Goldstone bosons are extended

objects: non-contractible loops in theory space. Such extremely light Goldstone bosons,

which can only receive mass from the combined efforts of more than one symmetry break-

ing term, are known as “little Higgses”. A general analysis [8] reveals that little Higgses

are associated with topological properties of theory spaces: each little Higgs corresponds

to an element of the fundamental group of the theory space; and the little Higgs potential

is obtained from the group relations.

In this paper and its companion [9] we further abstract the essential features of the little

Higgs idea. We construct models, based on a moose with 2 sites and 4 links, which have the

same low-energy structure as the toroidal theory space models, and are economical enough

to obviate the need for moose notation. We also point out a new possibility for the origin

of the Higgs potential: both the Higgs negative mass squared and the quartic couplings

can have their source in the same operators that generate the top Yukawa coupling. This

leads to a relation between the Higgs and top masses mH ∼ mt, and a fascinating link

between the physics of flavor and electroweak symmetry breaking.

The companion paper [9] considers sigma models based on more general cosets, with

no obvious moose description. Remarkably the Higgs quartic potential in such models can

be generated by the gauge interactions alone. These more general coset constructions allow

the theory below a TeV to contain only the Standard Model particles with a single Higgs,

and the smallest number of new states at a TeV.
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2. A minimal moose

2.1 The model

As a warm-up, in this section we present an example of a minimal moose with only two

sites and four links. It is related to the 2 × 2 toroidal construction of [1], but is half as

large.1

The gauge symmetry at one of the sites is G1 = SU(3). (Alternatively an SU(2)×U(1)

subgroup would suffice.) At the other site the gauge symmetry is G2 = SU(2) × U(1).

There are 4 link fields Xj , j = 1, . . . , 4, which are 3× 3 non-linear sigma model fields Xj =

exp(2ixj/f), each transforming as a bi-fundamental under G1 ×G2, where a fundamental

of G2 is taken to be 21/6⊕1−1/3. All the Standard Model fermions are charged under the

G2 gauge symmetry with their usual quantum numbers, so the model is anomaly free. The

theory has a large, approximate SU(3)8 global symmetry spontaneously broken to SU(3)4,

with the non-linear realization

Xj → LjXjR
†
j , j = 1, 2, 3, 4 . (2.1)

The cutoff of this non-linear sigma model is Λ ∼ 4πf , which we take to be ∼ 10TeV. The

effective theory beneath this cutoff is described by the lagrangian

L = LG + LX + Lt + Lψ . (2.2)

Here LG includes the conventional non-linear sigma model field kinetic terms and gauge

interactions, while LX contains “plaquette” couplings between the Xj :

LX = f4 tr
(

AX1X
†
2X3X

†
4

)

+ f4 tr
(

A′X1X
†
4X3X

†
2

)

+ h.c. (2.3)

where A = κ1+εT8 and A
′ = κ′1+ε′T8. Each of these terms breaks the global symmetries,

but preserves a sufficiently large subgroup of the global symmetries to leave some Goldstone

bosons massless. In writing down these couplings, we allow a specific set of global symmetry

breaking operators without addressing their UV origin. We then include all terms needed to

renormalize the theory at 1-loop, with coefficients which are no smaller than their natural

size. Possible difficulties with a natural origin of the plaquette terms from QCD-like UV

completions of the non-linear sigma model are discussed in ref. [10]. In section 3, we show

that the necessary plaquette terms can be generated, quite naturally, from the top sector.

The remaining terms generate the Standard Model Yukawa couplings; to avoid intro-

ducing quadratic divergences, we also introduce a vector-like pair of colored Weyl fermions

U,U c and couple them to the top quark with Lt:

Lt = λf
(

0 0 uc′3

)

X1X
†
2

(

q3
U

)

+ λ′fUU c . (2.4)

1To see the relation, consider a version of the 4 site toroidal moose with 2 SU(2)×U(1) sites and 2 SU(3)

sites — the SU(2) × U(1) sites are at opposite corners. Now identify links and sites which are exchanged

by a Z2 discrete symmetry, or, in other words, orbifold by a translation along the diagonal of the moose.
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Finally, Lψ contains the Yukawa couplings for the light fermions; since these are very small,

the quadratic divergences associated with them are negligible for our cutoff Λ ∼ 10TeV.

For the light up-type quarks, Lψ has the same form as Lt with U,U c removed, while for

the down and charged lepton sectors Lψ contains

Lψ ⊃
(

q 0
)

X1X
†
2λDf







0

0

dc






+
(

l 0
)

X1X
†
2λEf







0

0

ec






. (2.5)

This completes the description of the model.

2.2 Tree-level spectrum and interactions

Let us examine this theory at tree-level, for the moment putting ε = ε′ = 0 in LX . The non-

linear sigma model fields Higgs theG1×G2 gauge group down to the SU(2)×U(1) subgroup.

The massive SU(3) gauge bosons have a mass ∼ gf . The linear combination of Goldstone

bosons (x1 + · · · + x4) is eaten, while the quartic terms in LX give mass to the linear

combination x1 − x2 + x3 − x4, of order ∼ κ f . (Here and in what follows we assume κ, κ′

are real and positive, although it suffices for Re(κ, κ′) > 0.) At tree-level two orthogonal

combinations of pseudo-Goldstone boson multiplets, which we can take to be x1 − x3 and

x2−x4, are massless. They decompose under the unbroken SU(2)×U(1) gauge symmetry

as a pair of Higgs doublets, as well as a complex weak triplet and singlet. Furthermore,

these classically massless pseudo-Goldstone bosons, or “little Higgses”, receive no 1-loop

quadratically cutoff sensitive corrections to their masses.

At tree-level the little Higgses interact through a quartic potential, with one linear

combination of the doublets coupling to the top quark. The quartic potential can very

quicly be found in the limit κ = κ′; with this choice LX has a symmetry under which

Xj → X†j , or equivalently xj → −xj. This ensures that the potential is even in the fields,

and in deriving the potential for the light fields, we can simply set the heavy fields to zero.

The light fields corresponding to x1 − x3 and x2 − x4 can be parameterized as

X1 = X†3 = U ≡ e2i(x+y)/f (2.6)

X4 = X†2 = V ≡ e2i(x−y)/f . (2.7)

The plaquette interactions then give rise to the potential

−κf4 tr
(

UV U−1V −1
)

+ V ↔ V −1 + h.c. = κ tr [x, y]2 + · · · . (2.8)

where we have further assumed for simplicity that κ is real.

It is extremely interesting that we have found a potential for x, y with no mass terms

but with a quartic potential. Why did this happen? In order to understand this, first

take a limit where one of the plaquettes is turned off, say by taking κ′ = 0. The κ

plaquette still gives mass to the linear combination x1 − x2 + x3 − x4, but it is easy to

see that no potential can be generated at all for the other goldstones. This is because

the κ plaquette still preserves an SU(3)4 subgroup of the SU(3)8 global symmetry, where

– 4 –



J
H
E
P
0
8
(
2
0
0
2
)
0
2
1

R1 = R2, L2 = L3, R3 = R4, L4 = L1. This is spontaneously broken to the diagonal

SU(3), leaving three exactly massless goldstone bosons (one of which is eaten). We can

also see this directly in expanding the plaquette interaction in terms of the heavy multiplet

z ∝ x1 − x2 + x3 − x4 as well as the uneaten x, y fields, which yields schematically

κ tr(fz + i[x, y] + · · · )2 (2.9)

Upon integrating out the heavy z multiplet there is no potential for x, y. Diagramatically,

there is a quartic coupling tr[x, y]2, as well as a cubic coupling tr z[x, y]. Integrating out z

exactly cancels the quartic coupling, as it must since x, y are exact Goldstone bosons. An

exactly analagous argument holds for the κ′ coupling. However, κ′ preserves a different

SU(3)4 global symmetry, and the potential from the κ′ plaquette is of the form

κ′ tr(fz − i[x, y] + · · · )2 (2.10)

In the presence of both κ and κ′, there is only an SU(3) × SU(3) global symmetry broken

to SU(3), and only one exactly massless goldstone boson, which is the one that is eaten.

Therefore, x, y are not exact Goldstone bosons and can acquire a potential. However, since

their potential is the sum of two pieces, one proportional to κ and the other proprtional

to κ′, it is impossible for x, y to pick up a mass at tree level. They can acquire a quartic

potential, however: upon integrating out z we have

κκ′

κ+ κ′
tr[x, y]2 (2.11)

Note the non-analytic dependence on κ, κ′ in the denominator, arising from integrating

out z which has a mass squared proprtional to f 2(κ+ κ′). This quartic coupling vanishes

as it must in the limit where either κ or κ′ vanishes. Thus we have generated a quartic

potential for the little Higgses, without a mass term, by breaking the global symmetry with

two different couplings. Any one of these couplings preserves enough global symmetry to

ensure that the little Higgses are exact Goldstone bosons. But together the couplings

break all these symmetries and the little Higgses can acquire a quartic potential. In the

next section, we see that this same mechanism ensures the absence of 1-loop quadratic

divergences for the mass of the little Higgses.

We can exhibit the components of x as a 3× 3 hermitian matrix

x =

(

ϕx + ηx hx

h†x −2ηx

)

(2.12)

and similarly for y. Here ϕ, η are fields in the 30,10 representation of SU(2) × U(1)

respectively, while the h have the quantum numbers 21/2 of the standard model Higgs.

The quartic potential is then

κ tr [x, y]2 = κ tr(hxh
†
y − hyh

†
x)

2 + κ(h†xhy − h†yhx)
2 + terms involving ϕ, η . (2.13)

This can be recast in a more familiar form by defining h1 = hx + ihy, h2 = hx − ihy . The

quartic potential is then

κ tr(h1h
†
1 − h2h

†
2)

2 + κ(h†1h1 − h†2h2)
2 + terms involving ϕ, η . (2.14)

– 5 –
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This two-Higgs doublet quartic potential is similar to that of the supersymmetric Standard

Model.

To exhibit the top Yukawa coupling, we expand Lt to first order in the Higgs doublet

fields

λuc′3 (fU + hxq3) + · · ·+ λ′fUU c (2.15)

One linear combination of U c and uc′3 marries U to become a massive fermion with mass

∼ λf ; the orthogonal combination uc3 remains massless with a Yukawa coupling to q3

λtu
c
3hxq3 , where λt =

λλ′√
λ2 + λ′2

(2.16)

The mixing of the top quark with vector-like Fermions at the TeV scale is similar to

Frogatt-Nielsen models of flavor [11] and the top see-saw [12, 13].

In summary, at the classical level there are two massless Higgs doublets, together with

a complex triplet and singlet. These scalars have a tree-level quartic potential, and one

linear combination of the Higgs doublets has a Yukawa coupling to the top quark fields

q3, u
c
3. We also have a set of massive vectors, scalars and fermions with masses ∼ gf, κf, λf

respectively. All these scales are of order a TeV.

2.3 Power-counting and absence of 1-loop quadratic divergences

Radiative corrections generate masses for the little Higgses that are only logarithmically

sensitive to the cutoff. We establish this through two different routes. First we examine

how the non-linearly realized symmetries which protect the little Higgs masses are explic-

itly broken: we show that any one of the gauge, plaquette or Yukawa interactions alone

preserve enough of these symmetries to forbid masses for the Goldstone multiplets. Any

quadratically divergent correction to the masses must then arise from a combination of

more than one of these couplings, and is absent at 1-loop. Secondly we give a simple, gen-

eral set of rules which are sufficient (though not necessary) to ensure an arbitrary theory

space to be free of 1-loop quadratic divergences, and verify the validity of these rules by

directly computing the 1-loop Coleman-Weinberg potential. Our model can trivially be

seen to satisfy these rules.

The nonlinearly realized SU(3)8 symmetry is explicitly broken by the gauge, plaquette

and Yukawa interactions, and these will in turn induce other operators. We do a standard

power-counting analysis [14, 15, 16] in order to determine the natural size of these interac-

tions. This is most straightforwardly done following [15, 16]. The lagrangian is written as

L = Λ4/16π2L̂, where Λ ∼ 4πf is the UV cutoff and all the mass scales in L̂ are scaled by

powers of Λ. This rule leads to the familar f 2 coefficient for the goldstone kinetic terms.

Also all non-derivative terms involving the X’s naturally have a coefficient Λ2f2, while the

fermion mass terms and coupling to X ′s are scaled by Λ. The small symmetry breaking

effects of the spurions in LX then have small dimensionless size ∼ κ(′)/(16π2), ε(′)/(16π)2,

while those in Lt are ∼ λ(′)/(4π). Note that we can independently rephase λ and λ′

by rephasing the fermions uc and U c, therefore in any induced operator only involving the

X’s, these spurions can only enter as |λ(′)/4π|2. The gauge interaction spurion is g2/(16π2).

Therefore each one of our spurions counts as a loop factor.

– 6 –
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The power-counting is now straightforward. Every operator is proportional to Λ2f2

times the appropriate product of spurions needed to generate it. In particular, any induced

little Higgs masses are proprtional to Λ2 times the product of spurions. The generation

of little Higgs masses will require at least 2 spurions, and therefore will have quadratic

sensitivity to the cutoff only at 2-loop level. This happens because each one of our inter-

action terms preserves a large subset of the global symmetry. Consider the limit where

only one of the gauge couplings, say the G1 gauge coupling, is non-zero. This coupling

preserves a symmetry under which L1 = L2 = · · · = l but all four of the Rj arbitrary.

One combination of the Goldstone multiplets is eaten, but three sets of Goldstone modes

remain massless. Exactly the same happens when only the couplings of G2 are non-zero.

The presence of both couplings breaks all the chiral symmetries and there are no exact

Goldstone modes. However two sets are left classically massless. Any quadratically di-

vergent mass must involve both couplings, arising at 2-loop order. A similar analysis

applies to the plaquette interactions. As we discussed in the last section, in the limit

where only κ is non-zero, the global symmetry is the SU(3)4 subgroup of SU(3)8 with

R1 = R2, L2 = L3, R3 = R4, L4 = L1. This is spontaneously broken to the diagonal SU(4),

leaving three massless Goldstone multiplets. With only κ′ non-zero a different SU(3)4 is

broken, while in the presence of both κ and κ′ only an SU(3) × SU(3) symmetry is left,

with the one exact Goldstone boson eaten via the Higgs mechanism. The remaining two

approximate Goldstone multiplets only acquire quadratically divergent masses if both κ

and κ′ are present, again requiring at least 2 loops. Finally a similar analysis applies to the

fermions. The addition of U to the q3 gives the λ piece of Lt an SU(3) global symmetry,

which ensures that hx is a Goldstone mode. This symmetry is broken by the mass term

λ′fUU c. But again this requires both λ and λ′, and arises only at 2-loop level. Note that

it is important here that there are rephasing symmetries that force any one of our spurions

to appear quadratically as |λ(′)/(4π)|2. This would not be the case if we add a mass term

λ
′′
fuc′3U . Then, the combination (λ∗/4π)(λ

′′
/4π) is invariant, and would lead to a 1-loop

quadratically divergent Higgs mass. However this uc′3 U mass term can be prohibited by

chiral symmetries.

There are simple rules which are sufficient (although not necessary) to ensure the

absence of 1-loop quadratic divergences for the little Higgs mass from the gauge, quartic

and top Yukawa sectors in a general moose. For the gauge and quartic couplings these

rules are simply phrased as properties of the theory space:

Gauge couplings: Every link connects two different sites.

Quartic couplings: No plaquette contains the same link twice.

There are a variety of ways to ensure the absence of 1-loop quadratic divergences from the

top sector. The simplest possibility is just what we have done for Lt, but which we phrase

here slightly more generally:

Top Yukawa couplings: The top Yukawa comes from interactions of the form

λf
(

0 0 uc′3

)

W

(

q3
U

)

+ λ′fUU c (2.17)

– 7 –
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where W is a product of link fields.

Note that our specific 2-site, 4-link theory space satisfies all of these properties: each

link connects the two sites, the plaquette interactions in LX contain each link only once, and

Lt has precisely the form of our rule. This also makes it clear why the minimal model has 2

sites and 4 links. These rules are a manifestation of the general requirement that all order

one symmetry breaking terms must preserve at least one global symmetry under which the

little Higgses transform nonlinearly. Any order one couplings for the little Higgses must

arise from a collaboration between at least two such symmetry breaking terms.

To show that these rules suffice to eliminate 1-loop quadratic divergences to the little

Higgs masses, we compute the quadratically divergent part of the 1-loop Coleman-Weinberg

potential. We turn on a background Xi = X̃i for the link fields. The 1-loop quadratic

divergences in the Coleman-Weinberg potential are proportional to

Λ2

16π2
StrM †M [X̃ ] . (2.18)

We must therefore calculate StrM †M [X̃ ] where M [X̃ ] is the mass matrix of the theory in

the presence of the background.

First consider the gauge sector. Consider a link field between two different sites i

and j. The gauge boson mass matrix comes from expanding the covariant kinetic term for

the link fields to quadratic order in the gauge fields, yielding Aa
i (M

2[X̃ ])ijabA
b
j , where a, b

are gauge indices and

M2
ab[X̃ ] =

f2

4

(

1
2g

2
i δab gigjm

2
ab

gigjm
2†
ab

1
2g

2
j δab

)

m2
ab = trTaX̃TbX̃

†

The important point is that M 2
aa is always independent of the background field, X̃, and

therefore so is the trace. Hence there are no 1-loop gauge quadratic divergences for any

link field mass. This argument breaks down if a link field connects a site to itself.

Now consider the 1-loop corrections involving the quartic couplings, which arise from

the plaquette interactions. Consider a general plaquette:

V (Xi) = −κf4 trM1X1 . . .MNXN + h.c. (2.19)

where the Mi are arbitrary matrices. Write the link fields as a linearized fluctuation,

xi ≡ xaiTa, about a background field, X̃i: Xi = exp(ixi)X̃i. In this decomposition, the

kinetic terms for xai are independent of the background field, which greatly simplifies the

analysis. We expand the plaquette to quadratic order in the fluctuations and find the mass

matrix, xai (M
2)ijabx

b
j . The diagonal component of this mass matrix is

(M2)iiab ∼ κf2 trM1X̃1 . . .MiTaTaX̃iMi+1X̃i+1 . . .MN X̃N + h.c. (2.20)

Summing over the diagonal entries of the mass matrix and using
∑

aT2
a ∝ 1, we find

trM2 ∝ trM1X̃1 . . . MiX̃iMi+1X̃i+1 . . .MN X̃N + h.c., which is just the plaquette oper-

ator itself! Therefore, the 1-loop quadratic divergences only renormalize the plaquette

– 8 –
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interactions, and do not generate any new operators in the theory. If a field appears in a

plaquette more than once, then this argument breaks down: the mass matrix will have a

more complicated form with X-dependent diagonal entries.

Let us finally check that the absence of 1-loop quadratic divergences from the Yukawa

couplings. For this purpose, it is enough to consider only the interaction proportional to

λ. The mass matrix for the relevant fermions in a general background W̃ is then

M = λfPW̃ , where P = diag(0, 0, 1) . (2.21)

The quadratic divergence is then proportional to

trM †M = λ2f2 tr W̃ †PPW̃ = λ2f2 trP (2.22)

which is independent of the background W̃ . Once again, there are no 1-loop quadratic

divergences. Note that the presence of the U fields is crucial here. In its absence, we would

have instead M = λfPW̃ (1 − P ), and trM †M would indeed depend on the background

field W̃ . This is of course a direct consequence of our spurion analysis. In the absence

of λ′, the Yukawa sector has an enhanced SU(3) global symmetry acting on W and the

(q3, U) triplet, and no potential for the components of W can be generated.

We have verified the absence of quadratic divergences explicitly by seeing that the

trace of the mass squared matrix for the fields in the theory is independent of the back-

ground little Higgs fields. In terms of mass eigenstates, this means that as the little Higgs

background is turned on, the classically massless modes become heavier, but the heavy

modes become lighter in just such a way that the sum of the mass squareds is independent

of the background. Thus the cancellation of quadratic divergences is between particles of

the same statistics: the massive gauge bosons cancel the quadratic divergences associated

with the massless Standard Model gauge fields, the massive scalars cancel the quadratic di-

vergence associated with the little Higgs quartic coupling, and the massive fermion cancels

the quadratic divergence from the top-Yukawa coupling.

2.4 Electroweak symmetry breaking

While there are no quadratically divergent corrections to the masses of the little Higgses,

in this model there are logarithmically divergent corrections at 1-loop, and quadratically

divergent 2-loop corrections. In the general model of [1], the quadratic divergences can be

pushed to N + 1 loops. However, there are always finite 1-loop corrections to the Higgs

mass squared, which are at least of order 3λ4
t f

2/(16π2) and so we expect f ∼TeV. Since

the cutoff can not go far above 4πf ∼ 10TeV, removing quadratic divergences beyond

1-loop is an unnecessary extravagance. In order to compute the magnitude and sign of

the radiative corrections to the little Higgs masses in our model, we look at the 1-loop

contribution, which is slightly log enhanced.

The gauge and quartic couplings give a positive mass squared to all of φx,y, ηx,y, hx,y. It

is easy to understand this qualitatively: the usual quadratic divergences of the low energy

theory are cut off at the mass of the heavy field which cancels the divergence. For instance,

the gauge loops generate a mass squared ∼ [g2/(16π2)](gf)2. The fermion loop does not
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generate any potential for φx,y, ηx,y, since the interactions in Lt do not break the SU(2)×
U(1) chiral symmetries under which the φ and η fields transform nonlinearly. However, the

fermion loop does produce a negative mass squared ∼ −[3λ2/(16π2)](λf)2 for hx, which

can dominate over the positive gauge and plaquette contributions, and so we can have

m2
hy

> 0 while m2
hx

< 0. This forces hx to acquire a vev. However the quartic potential has

flat directions where hx has any value while hy = 0, and therefore hx runs away along this

flat direction. The flat direction analysis is perhaps more familiar in the h1, h2 basis, where

our quartic potential has the same form as in the supersymmetric standard model. In this

basis, the Higgs mass terms are of the form (m2
x+m2

y)(|h1|2+ |h2|2)+(m2
x−m2

y)h
†
1h2+h.c.

The familiar flat direction where h1 = h2 is not stabilized since m2
h1

= m2
h2
. This is why we

have added the ε, ε′ terms to LX , where ε can be naturally small. Expanding these pieces

to quadratic order generates the mass term =(ε′ − ε)f 2(|h1|2 − |h2|2), which splits h1, h2

and lifts the flat direction, stabilizing electroweak symmetry breaking.

We have seen that EWSB can arise naturally in this very simple model with a light

Higgs, avoiding 1-loop quadratic divergences, and allowing for a cutoff Λ ∼ 10TeV.

2.5 Precision electroweak and FCNC constraints

The bounds from precision electroweak data can be satisfied, since all the new physics

in these models decouples in the large mass limit. There are decoupling effects that can

nevertheless be close to experimental bounds. For instance, the expansion of the non-

linear sigma model kinetic terms can give rise to operators that violate custodial SU(2)

and generate a contribution to the ρ (or T ) parameter. Also, the triplet fields φ can acquire

vacuum expectation values, after electroweak symmetry breaking, from cubic terms of the

form hφh, and contribute to the T parameter. Such couplings may arise at tree-level for

the heavy triplets, or at 1-loop for the light triplets. However, all of these correction to

mW /mZ are of order ∼ (v/f)2, parametrically the same size as 1-loop Standard Model

corrections, and give a correction to T close to the bound. Another potential problem

is that a cutoff-sensitive tadpole might be generated for the light singlets, which would

lead to a singlet vev of order f and destabilize the desired ground state. In [2] a Z4

global symmetry was imposed which forbids such a tadpole and also makes this singlet

a stable dark matter candidate. However the Z4 symmetry is not necessary simply to

eliminate the tadpole. We have seen directly that no tadpole is generated at 1-loop: the

plaquette interactions do not contain linear terms, and the fermion loop does not generate

any potential for the triplets or singlets. More generally, the generation of any such tadpole

requires both interactions which break the global diagonal SU(3) and interactions which

break the nonlinearly realized U(1) subgroups of the SU(3)8 under which the η′s transform

nonlinearly. The κ, κ′ terms in LX preserve the SU(3), while LG or Lt preserve all the

U(1)′s. Any tadpole must involve at least κ, κ′ and one of the other couplings, and is small

enough that any resulting singlet vev is of orderMW or less. An η tadpole is also forbidden

by CP , since the η’s are CP -odd. Therefore, if κ, κ′ are real, no η tadpole is ever generated

from this sector of the theory. The ε, ε′ terms break both the SU(3) and some of U(1)’s,

as well as CP . Any tadpole involving one of these couplings must further involve at least

a κ or κ′, again to leading to an acceptably small tadpole.
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Another challenge for TeV extensions of the Standard Model is ensuring sufficient

suppression of flavor changing neutral currents (FCNC). Any flavor changing neutral cur-

rents mediated by particles in this effective theory are smaller than those of the Standard

Model. Furthermore, our cutoff is high enough to make most FCNC from physics above

the cutoff sufficiently small. There are a few significant constraints on flavor physics and

the UV origin of Lψ, particularly from kaon CP violation and D − D̄ mixing [17]. As an

existence proof that FCNC are not necessarily a problem, we note that this moose is easily

UV completed into a renormalizable supersymmetric theory with supersymmetry break-

ing scale of order the cutoff [18] which allows the couplings needed for quark and lepton

masses while satisfying FCNC constraints. An alternative is a “cascade” theory, in which

the nonlinear sigma model is UV completed into a linear sigma model whose sigma field

is itself a little Higgs of a nonlinear sigma model with a cutoff on the order of hundreds of

TeV — high enough that FCNC from beyond are not a problem.

3. Higgs potential from top Yukawa

In this section, we construct a model where all of the interactions needed to generate the

Higgs potential — both the negative mass squared and the plaquette interactions producing

the quartic interactions — arise from the same couplings that generate the top Yukawa

coupling. The site and link structure is exactly the same as before. We add two sets of

vector-like triplet Fermions to the theory, T1,2, T
c
1,2, where Ti = (Qi, Ui), T

c
i = (Qc

i , U
c
i ).

The lagrangian is of the form

L = LG + Lψ + L′t + · · · (3.1)

Note that we don’t have any “plaquette” interactions analagous to LX ; neverthelss, we will
see that these interactions must be included with the naturally correct size, induced from

those in the Yukawa interactions of L′t. L′t is of the form

L′t = LT + Lmix (3.2)

Here LT represents the interaction of the vector-like T, T c with the X ′s as

L′t = fT c1W1T1 + fT c2W2T2 (3.3)

where

W1 = λ1X2X
†
1 + λ̃1X3X

†
4 , W2 = λ2X4X

†
1 + λ̃2X3X

†
2 (3.4)

while Lmix are mass mixing terms between T, T c and the Standard Model top sector q′3, u
c′
3

Lmix = fq′3(ζ1Q
c
1 + ζ2Q

c
2) + fuc′3 (ζ̃1U1 + ζ̃2U2) (3.5)

Note that the form of LT violates the “Yukawa coupling” rule of the previous section, and

there will indeed be 1-loop quadratic divergences in this theory. However, it is easy to see

that these quadratic divergences do not generate masses for the little Higgses; instead they
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generate the plaquette interaction of the previous section! This is easy to see both from

power-counting, and also directly from the quadratically divergent part of the Coleman-

Weinberg potential, which is proportional to

1

16π2
Λ2f2 tr

(

|W1|2 + |W2|2
)

∼ const. + f 4λ∗1λ̃1 trX1X
†
2X3X

†
4 + f4λ∗2λ̃2 trX1X

†
4X3X

†
2

(3.6)

Therefore the presence of the Yukawa interactions requires plaquette interactions with

a natural size ∼ λ2. It is easy to extend our power-counting analysis to conclude that

quadratically divergence little Higgs masses are only generated at 2-loop order as before.

In particular, the operators

εf4 trT8X1X
†
2X3X

†
4 + ε′f4 trT8X1X

†
4X3X

†
2 (3.7)

are generated; since they require SU(3) breaking they have a natural size ∼ λ2g2/(16π2)

or ∼ λ2ζ2/(16π2), and will in general have non-zero imaginary parts. Therefore we also

generate the ε plaquettes needed in the previous section, with the correct natural size! Due

to the presence of these terms, all flat directions can be lifted an electroweak symmetry

breaking can be triggered and stabilized. It is also straightforward to check that that any

tadpole for the η’s can only arise at 3-loop order or higher, and is sufficiently small.

After mixing with the Standard Model fermions, at low energies we have two massless

Weyl fermions q3, u
c
3 with a Yukawa couplings to a linear combination of little Higgses

q3(αhx + βhy)u
c
3 (3.8)

which give rise to top quark mass after electroweak symmetry breaking.

Note that the plaquette interactions have a natural size ∼ λ2 which is parametrically

∼ λ2
t . These give rise to a Higgs quartic potential which is ∼ λ2

t , and therefore in this

model the physical Higgs mass is parametrically mH ∼ mt.

4. Conclusions

In this paper we have presented a model of electroweak symmetry breaking accomplished by

a naturally light Higgs scalar. The Higgs particle is a pseudo-Goldstone boson, and its mass

is therefore protected against large radiative corrections. The technology of theory space

is useful in constructing general models of this kind, eliminating sensitive dependence on

short distance physics to arbitrary loop order. Since in constructing models of electroweak

symmetry breaking this dependence need only be postponed to a scale of tens of TeV,

the extremely simple model presented here is entirely suitable as a realistic theory of

electroweak symmetry breaking.

At the TeV scale the physics is perturbative and well described by an effective la-

grangian with a small number of parameters. There are only a small number of new states

beyond the Standard Model. Counting all the helicity states, we introduce 56 new states

beyond those of the Standard Model. As a point of comparison, the supersymmetric

standard model introduces 126 new states. More importantly, the essential features of our
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model are characterized by very few parameters beyond the Standard Model. Electroweak

symmetry breaking can be triggered through the top quark couplings, much as in the

MSSM. There is some freedom in how the top quark couplings are incorporated, leading to

the possibility that the entire Higgs potential can arise as a radiative effect at low energies.

In this case the Higgs mass is naturally of the same size as the top quark mass.

In this effective theory, flavor changing interactions are only induced through the op-

erators which give rise to the fermion Yukawa couplings, and dangerous flavor changing

effects (often associated with physics beyond the standard model) do not arise. As al-

ways in an effective theory, there is the possibility of flavor changing neutral currents from

physics above the cutoff, but it is straightforward to conceive scenarios where this also is

not a problem.

For twenty years the domain of perturbative electroweak symmetry breaking models

with a naturally light Higgs has been ruled by supersymmetric theories. In the last year a

viable challenger has emerged: “little Higgs theories” which realize the Higgs as a pseudo-

Goldstone boson in a low energy effective theory with a cutoff parametrically above the

weak scale of order Λ ∼ 10TeV. In this paper and its companion we have presented

two minimal models of this sort. In the “minimal moose” model described here, two

Higgs doublets, a complex weak triplet and a complex scalar are the only new degrees of

freedom below the TeV scale. At the TeV scale a set of SU(3) gauge bosons, an additional

Higgs doublet, weak triplet and singlet and colored fermion appear. These same-statistics

partners of the Standard Model fields are responsible for eliminating the 1-loop quadratic

sensitivity of the little Higgs masses to the UV physics at scale Λ.

Our purpose in this paper and its companion has been to construct the smallest exam-

ples of the little Higgs phenomenon, both for the sake of economy as well as to illustrate the

physics as clearly as possible. There is still much left to explore, and many further issues to

be addressed by generalizations of these ideas. For example, perhaps the most compelling

argument for low-energy supersymmetry is the spectacular prediction of the weak mixing

angle with gauge coupling unification not far from the Planck scale. Recently it has been

realized that the weak mixing angle can also be correctly predicted by electroweak unifi-

cation into an SU(3) symmetry at the ∼ 10TeV scale [19]. Little Higgs models offer the

possibility to implement this mechanism in a natural way, and explicit models of this type

are currently being constructed.

It is also of obvious interest to construct UV completions of these models at scales

above Λ. The non-linear sigma model can be completed into a linear sigma model. This

leads to a new “hierarchy problem” at the scale 10TeV, which can then be solved by

supersymmetry broken at ∼ 100 TeV, alleviating nearly all the conventional constraints on

low-energy supersymmetry. More daringly, the linear sigma model fields themselves may

arise as little Higgses in a larger theory, perhaps extrapolating to extremely high energies

in a “cascade” of little Higgs models.

We can also imagine UV completions where the link fields emerge from fermion con-

densates in a strongly interacting gauge theory with a strong scale ∼ Λ ∼ 10TeV. Since we

have seen that all the interactions required to produce the Higgs potential can be triggered

from the same couplings generating the top quark mass, the main (and familiar) challenge
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is the implementation of the ETC-like interactions needed to generate the Yukawa cou-

pling operators. However, the usual fatal flaws of strong dynamics at the TeV scale, such

as large corrections to precision electroweak observables and too-light pseudo-Goldstone

bosons, are eliminated in this framework, since the scale of strong dynamics would be well

above the TeV scale. As we have seen the physics of electroweak symmetry breaking is

still perturbative with a light Higgs, and so precision electroweak corrections are under

control, and the lightest pseudo-Goldstone bosons are the little Higgses themselves. Fur-

thermore, the difficulty of generating flavor without excessively large FCNCs is also greatly

ameliorated [17], and is a more tractable model-building task.

The models presented here are new, fully realistic theories of TeV physics with natural

electroweak symmetry breaking. As such the detailed phenomenology, constraints from

precision low-energy measurements, and the implications for present and future colliders

demand further exploration.
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