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1. Introduction

The description of electroweak symmetry breaking in the Standard Model, in terms of a

fundamental scalar Higgs field, suffers from a stability crisis. The quadratically divergent

radiative corrections to the Higgs mass suggest that the description of TeV scale physics in

the Standard Model is incomplete. New physics at the TeV scale must emerge to stabilize

the weak scale. Recently, a qualitatively new category of realistic theories of electroweak

symmetry breaking has been introduced [1]. These models, based on deconstruction [2,

3, 4] and the physics of “theory space” [5]–[12] offer a new mechanism for softening the

quadratic divergences in the Higgs mass. Electroweak symmetry breaking is accomplished

with naturally light Higgs bosons that descend from non-linear sigma model fields whose

mass is protected by “chiral” symmetries of the sigma model. The first attempts at models

of this kind were the “composite Higgs” theories [14, 15, 16] that required fine tuning to keep

the Higgs light. More recently, models similar in spirit to the theory space models and using

the same group theory structure as the composite Higgs model have been developed [17].

In all of these theories, the physics is perturbative at energies parametrically above the TeV

scale, ultimately requiring an ultraviolet completion near ∼ 10 TeV where the non-linear

sigma model fields become strongly coupled. However, the physics of electroweak symmetry

breaking and the new physics at the TeV scale are weakly coupled and do not depend on

the ultraviolet completion. These models are fully realistic, incorporating fermion masses

without producing dangerous flavour-changing neutral currents in the low energy theory.
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The general structure of these models is characterized by a “theory space”, consisting

of sites, lines and faces. Each site represents a gauge group, each line represents a non-

linear sigma model link field transforming under the gauge groups at the ends of the line,

and each face corresponds to “plaquette” operators involving a trace of products of the

link fields bounding the face. The little Higgs descend from the link fields, while their

quartic coupling arise from the plaquette interactions. Based on deconstructing extra

dimensional intuitions, the models used in [1, 19] were N × N deconstructed torus. The

basic ingredients that make this class of models successful theory of electroweak symmetry

breaking are the absence of one loop quadratic divergences in the Higgs mass, guaranteed

by the approximate chiral symmetries, and the presence of large quartic self interaction for

the Higgs.

In this paper, we seek a way of extracting the low energy physics of general theory

spaces in order to decide which spaces can be used for electroweak symmetry breaking. We

also develop a method for building theory spaces with a given low energy particle content

and potential. The spectrum of electroweak symmetry breaking theories based on theory

space is characterized by two or more Higgs doublets at roughly 100GeV and at least one

TeV scale particle for each quadratic divergence of the low energy theory. In contrast with

supersymmetric theories, quadratic divergences are canceled by ‘partners’ of the same spin.

In section 2, we review the structure of theory space and present a systematic procedure

to calculate the moduli space of general theory space, allowing us to obtain the low energy

potential of the theory. We illustrate this procedure with several examples. We then reverse

the logic and show how to build theory spaces that possess arbitrary low energy physics.

In section 3, we analyze the structure of radiative corrections in little Higgs model, and

present two simple rules that ensure that a theory space is free of quadratic divergences

at one loop. In section 4 we discuss how to include Yukawa couplings so that they do not

reintroduce one loop quadratic divergences. We also show that it is possible for fermions

to generate the plaquette potential.

Finally, in section 5 we discuss how to lift unnecessary states out of the low energy

theory and into the 1TeV range. When the gauge symmetry is reduced at one site new

plaquette potentials are allowed that can differentiate between the adjoint states and Higgs

( these are the T8 plaquettes of [1, 19]). This allows us to build models free of light

triplet and singlet scalars that were present in other little Higgs models constructed from

theory space [1, 19, 20]. In particular we present an extension of the two sites model

of [20] where the ∼ 100GeV triplet and singlet scalars of [20] are pushed to the TeV

scale.

2. Topology and theory space

There are general statements we can make about the existence of little Higgs and their

potentials from the structure of theory space alone. Understanding the general structure

of theory space and its relation to the low energy dynamics will allow us to classify the

little Higgs theories and determine if they are viable models of electroweak symmetry

breaking.
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Figure 1: The geometry of theory space being built up from points, lines, and faces. These

geometrical objects are identified as gauge groups, fields, potentials in the action.

The physics of little Higgs models is specified by the gauge structure, the link variables

and the scalar potential, these define theory space by points, lines, and faces, respectively.

Gauge groups are labeled by points: Ga. Link variables are labeled by line segments,

Σl = exp(iπl) that transform as bifundamentals under the endpoints of the line l = (a,b)

Σl → gaΣlg
†
b . (2.1)

Finally the plaquette potentials are interpreted as shaded in faces and are the product of

the link fields that bound the faces: Wω = Σl1 . . .ΣlN . The lagrangian for a theory space

is given by:

L =
∑

a

−1

2g2a
Tr F 2

a +
∑

l

f2l
4
Tr
∣

∣DµΣl

∣

∣

2
+
∑

ω

λωf
4 Tr Wω + h.c. (2.2)

The full gauge group of a theory space is given by the product of the gauge groups

associated with each sites: Gtotal =
∏

aGa. However, only a small subgroup of this gauge

symmetry is realized linearly on the πl. This is the low energy unbroken subgroup under

which:

Σl → gΣlg
† (2.3)

So long as all the link fields connect two sites, for each disconnected component of theory

space there is an unbroken gauge symmetry corresponding to the diagonal subgroup of the

product of all the gauge groups associated with the sites in the given component.

To build realistic models of electroweak symmetry breaking, the Higgs must transform

as 21/2 under SU(2)L × U(1)Y . However, if all the gauge groups of a theory space are

the same and the link fields transform as bifundamentals, the scalars of the theory will be

adjoints under the unbroken gauge group. One way of solving this problem is to reduce

the gauge symmetry at one of the sites. We will in general take all the sites to be SU(3)

gauge group except one where we will gauge only SU(2) × U(1). The link fields are 3 × 3

matrices and a link that touch the site of reduced gauge symmetry transform as:

Σl → hSU(2)e
i
6
θT8Σlg

†
SU(3) (2.4)

– 3 –
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where T8 = diag (1, 1,−2)1 and where hSU(2) commutes with T8. The unbroken diagonal

subgroup is the electroweak SU(2)L ×U(1)Y and the scalars of the theory will decompose

into triplets, doublets and singlet of the unbroken SU(2). The site of reduced symmetry

allows for interesting possibilities that will be discuss in section 5, but for the discussion of

the present section, it is irrelevant.

We want to study the low energy physics of these models at scales beneath the modes

that have tree-level masses. This can be done by integrating out the massive modes, but

this is a cumbersome procedure. To integrate out the heavy modes and have the low

energy theory, it is necessary to find the full spectrum of the theory and to find all trilinear

interactions involving two light scalars and a heavy scalar and all quartic interactions with

only light scalars. When heavy scalars are integrated out, trilinear interactions involving

two light scalars and a heavy scalar can exactly cancel a quartic interaction with only

light scalars. Verifying which light scalars have a tree-level quartic interaction is therefore

rather intricate and avoiding this procedure is desirable. The moduli space captures much

of the relevant low energy physics in the scalar sector and calculating this space will be

the primary goal of this section. We first explain the procedure for calculating the moduli

space of a general theory space and then illustrate it with several examples.

The moduli space is gauge invariant, meaning that we can gauge fix in any convenient

manner. If theory space is arc-wise connected, then it is possible to draw a simply connected

line through theory space that touches every point only once. All the links along this line

can be gauged away and this procedure completely fixes the gauge. When theory space is

not arc-wise connected, there is no simple rule and we must gauge fix by hand. To find the

physical spectrum it is more convenient to go to unitary gauge which is a more difficult

task.

After gauge fixing, we minimize the plaquette potential by setting the products of link

fields corresponding to faces to the identity matrix. This minimization will fix most of the

link fields. The interesting part of the moduli space is then specified by relations between

the remaining link fields. The flat directions of this moduli space are the little Higgs of

the theory. To reproduce this moduli space in the low energy effective action, we include

the relations as a potential so that as we go off the moduli space there is an energy cost.

Theories that have no relations must have potentials generated radiatively and therefore

have the same generic problems that typical pseudo-Goldstone bosons suffer from — that

it is not possible to have a parametric separation between the cut-off and the vacuum

expectation value. Identifying interesting little Higgs theories reduces to finding theory

spaces with interesting relations.

The procedure of gauge fixing then minimizing the potential is precisely equivalent to

calculating the fundamental group of theory space (or first homotopy group), see chapter

four of [24] for more details. In the equivalence, little Higgs are non-contractible cycles

on theory space and the low energy potential is the relation in the homotopy group. This

links all the relevant low energy physics to topological properties and is independent of

the tiling of theory space chosen. When the tilings are taken to be large, the physics of

1The normalization of the U(1) is to have the Higgs doublet have hypercharge 1/2.
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theory space is identical to the physics of an extra dimension. In the extra dimensional

picture, the little Higgs are flat gauge connections and are classified by the fundamental

group. In the extra dimensional limit the physics of theory space and of extra dimensions

are identical, however, this equivalence is valid for any theory space, including ones that

bear no resemblance to an extra dimension. The relation between the low energy physics

and the fundamental group provides a practical way for both analyzing models as well as

constructing new models.

Circles and Disks

A theory space that is topologically a circle is an example of a theory with a little Higgs.

This theory was analyzed in [1] and in more depth in [23]. The link fields transform as

Σa ∼ ¤a × ¤a+1 and can be written as exponential: Σa = exp iπa. The lagrangian is

given by:

LS1 =
∑

a

−
1

2g2a
Tr F 2

a +
∑

a

f2a
4
Tr DµΣaDµΣ

†
a + · · · (2.5)

The ellipses represent higher dimension operators that are irrelevant at low energies. The

residual gauge symmetry indicates that there is a massless gauge boson and N − 1 massive

vector bosons. Of the N non-linear sigma model fields, N − 1 are eaten by the massive

vector bosons and one physical massless scalar is left over. Furthermore, from eq. 2.5, we

see that this scalar does not have a tree-level potential because there are no plaquettes.

We will choose to gauge fix in a manner that eliminates as many of the link fields as

possible. Starting with Σ1, we can choose gauge transformations g1 and g2 so that Σ1 =
�
.

Similarly it is possible to gauge away Σ2 with g3. It is possible to gauge away all but one of

the links. It is not possible to gauge away the last field because the last link closes the circle

and the gauge freedom for g1 had already been used to fix Σ1. In this gauge the physical

scalar, Σ = exp(iσ), mixes with the gauge fields, therefore this gauge is inconvenient for

calculating the physical spectrum of gauge bosons. Unitary gauge is more convenient for

computing the spectrum because there is no vector-scalar mixing. We can interpret Σ as

a classical modulus of the theory. This classically massless mode is a pseudo-Goldstone

boson called a little Higgs. The low energy effective action is just:

LLE = −
1

2g2D
Tr F 2 +

f2LE
4
Tr
∣

∣DµΣ
∣

∣

2
+ · · · (2.6)

where σ is an adjoint under the unbroken gauge symmetry. A potential for σ that lift the

moduli space will be generated at one loop, however, the only gauge invariant operators

are of the form Tr Σ ∼ cos(σ). The pseudo-Goldstone boson, σ, can not have significant

self-interaction without having a significant mass. This form of the low energy potential

is too constrained to be used for electroweak symmetry breaking as it does not allow for

a parametric separation between the vacuum expectation value of the little Higgs and the

cutoff of the theory.

Next, consider a theory space with the topology of a disk by adding the plaquette

Tr Σ1 . . .ΣN . This space has no non-contractible cycles and therefore has no little Higgs.

After filling in theory space with more sites, links and plaquettes, we can make “holes” in a

– 5 –
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Figure 2: A deconstruction of a disk with two holes.

disk by omitting plaquettes. This creates non-contractible cycles in theory space. A theory

space with the topology of a disk with two holes is shown in figure 2. We can gauge fix by

drawing a line through theory space that goes through every points. Upon minimizing the

potential, there are two moduli corresponding to the two non-contractible cycles. These

moduli are arbitrary non-linear sigma model fields because there is no relation for the

homotopy group. This means that there is no tree-level potential in the low energy theory

and any deconstruction of this space will be unsuitable for electroweak symmetry breaking.

The existence of two little Higgs does not guarantee a tree level potential. Because of the

homotopy arguments, a disk with h holes will have h little Higgs, but none of these scalars

will ever have a tree-level potential because the fundamental group of theory space is (in

the notation of [24]) π1 = {C1, . . . , Ch : −}, where Ci are the non-contractible cycles on

theory space and “−” represents that there is no relation between the cycles.

Torus

A theory space that is topologically a torus has two little Higgs. The primary new feature

with this theory space is the appearance of a relation in the definition of the fundamental

group:

π1(T
2) = {U, V : UV U−1V −1} . (2.7)

This will lead to a tree-level potential for the little Higgs associated with the cycles U and

V . Consider an N × N sites deconstruction of a torus with the sites labeled (a, b). We

will take our fields to be U(a,b) ∼ ¤(a,b) ×¤(a+1,b) and V(a,b) ∼ ¤(a,b) ×¤(a,b+1). To make

this space topologically a torus, we periodically identify (a, b) ≡ (a + N, b) ≡ (a, b + N).

This theory breaks the GN2
gauge symmetry down to the diagonal subgroup GD. There

are N2 − 1 Nambu-Goldstone bosons that are eaten by the massive vectors. From the

continuum limit, we suspect that the potential gives mass to N 2− 1 of the physical modes

leaving two modes massless. The lagrangian for theory space is given by:

LT 2 =
∑

a,b

−
1

g2(a,b)
Tr F 2

(a,b) +
∑

a,b

f2U(a,b)

4
Tr
∣

∣DµU(a,b)
∣

∣

2
+
f2V (a,b)

4
Tr
∣

∣DµV(a,b)
∣

∣

2
+

+
∑

a,b

λ(a,b)f
4 Tr W(a,b) + h.c. (2.8)
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Figure 3: Gauge fixing of the torus where crossed lines are gauged to the identity. The plaquettes

are then minimized. Plaquette W3,3 forces UV U−1V −1 = 1.

where

W(a,b) = U(a,b)V(a+1,b)U
†
(a,b+1)V

†
(a,b) . (2.9)

We can see that there are two massless modes in this theory from the fact that the N 2

plaquettes terms W(a,b) give masses to N
2 − 1 of the scalars.

To analyze the model in more details, we first gauge fix to eliminate as many fields as

possible. We then minimize the potentials by requiring that W(a,b) =
�
. This procedure is

illustrated in figure 3. We find that the vacuum is given by:

UV U−1V −1 =
�
. (2.10)

This is the classical moduli space: two unitary matrices that commute. To enforce this in

the low energy effective action we include this relation as a potential so that there is an

energy cost for going off the moduli space:

Leff = −
1

2g2D
Tr F 2 +

f2U
4
Tr
∣

∣DµU
∣

∣

2
+
f2V
4
Tr
∣

∣DµV
∣

∣

2
+ λefff

4 Tr UV U †V † + h.c. (2.11)

There is now a tree-level quartic potential, and masses are induced radiatively. This allows

a hierarchy between the cut-off and the vacuum expectation value of little Higgs that will

allow stabilization of the electroweak scale.

If one of the plaquette couplings of the torus is taken to vanish, the topology of theory

space has changed. In figure 4 we compute the fundamental group and find that there is no

relation between the cycles and therefore no low energy potential for the little Higgs. We

can calculate the coefficient of the potential for a general torus through a linearized analysis

by diagonalizing the scalar mass matrix and then integrating out the massive modes. We

find that the coefficient of the potential λeff is given by:

λ−1eff =
∑

(a,b)

λ−1(a,b) . (2.12)

We see that if any coefficient vanishes, then the low energy potential vanishes precisely

matching the topological argument.

Toroidal theory spaces of the type shown in figure 3 are not the simplest theory space

having the fundamental group of the torus (eq. 2.7). Consider a theory space with two

sites, four bi-fundamental links Xi and two plaquettes:

V (X) = −λ1f
4 Tr X1X

†
2X3X

†
4 − λ2f

4 Tr X2X
†
3X4X

†
1 . (2.13)
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Figure 4: Gauge fixing of the torus where crossed lines are gauged to the identity. The plaquettes

are then minimized. Since plaquette W3,3 is absent, there is no relation and the moduli space is

arbitrary U and V and there is no low energy potential for the little Higgs.

This theory was first analyzed in [20]. It can be easily analyzed by first gauge fixing X1 to
�
and then solving for X4 = X†2X3. We are left with the relation

X2X
†
3X
†
2X3 =

�
(2.14)

which is the commutator potential of a torus. One can show that this theory space is

related to the 2× 2 torus by orbifolding by a translational symmetry that sends all points

(i, j) → (i+1, j +1). This symmetry acts freely and does not change the homotopy of the

space and therefore does not change the little Higgs or their self-interaction. The physics

of this theory space is studied in more details in [20].

2.1 Reverse engineering

Finding the low energy physics from a theory space is a straight-forward procedure of gauge

fixing then minimizing the potential. There is also an intuitive procedure for taking a low

energy potential in the form of a product of nonlinear sigma model fields and finding a high

energy theory that produces it at low energy. This construction is reverse engineering the

theory space from the low energy potential. The most interesting theories to consider are

the minimal ones. It is not difficult to conclude that the simplest potential that is viable

for electroweak symmetry breaking is Tr UV U †V †. This means that the theory space

that produces this potential is homotopically equivalent to the torus. The simplest such

theory with more than one site is the two sites four links model of the previous section. To

illustrate this construction we will use non-minimal models that are still viable models of

electroweak symmetry breaking.

Given a set of non-linear sigma model light fields Xi and a potential V (Xi) that is a

product of the fields and their inverses, we draw out the potential as a polygon with each

side being the corresponding link field. Each link begins and ends at the same site, a. For

instance consider three light fields X, Y , Z and a potential V = Tr XY ZX−1Y −1Z−1.

In figure 5, we draw out the unfolded and folded versions of this theory space.

Any theory space that tiles this minimal version of theory space will have the same

low energy potential. Dividing the plaquettes and links by placing new points and links

in theory space will not change the low energy potential. For instance we can divide the

theory space in figure 5 up in figure 6. We can also build different theory spaces that have

– 8 –
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Figure 5: The minimal theory space with three cycles, X , Y , Z and the potential V =

Tr XY ZX−1Y −1Z−1. The arrows along the links indicate whether the fields are Xi or X−1
i .

a

x

a

a

a

a

z

x
w

y z

y
a

x

y

z

w
Fold

a

Figure 6: A larger deconstruction of the XY ZX−1Y −1Z−1 three cycle model where we have intro-

duced four new gauge groups (x, y, z, w). The plaquette structure in the unfolded deconstruction

is obvious, but the field content is harder to visualize because of the identifications. In the folded

version, the gauge and field content is clear, but the plaquettes structure is obscured.

the same low energy physics as the torus. Figure 7 shows three such theory spaces. They

are obtained by requiring a low energy potential of the form XY X−1Y −1 and tiling the

original construction in different manners.

Finally, some spaces have fundamental groups with more than one relation. To con-

struct theory spaces that are homotopically equivalent to these spaces we draw the multiple

relations as disjoint diagrams although theory space is connected. In figure 8 a theory space

with a fundamental group

π1 = {X,Y,Z : XY X−1Y −1, XZX−1Z−1} (2.15)

is constructed.

We have shown how to analyze and build theory spaces with classically massless Higgs

and order one quartic interactions. This is not sufficient to ensure that a theory space can

be used for electroweak symmetry breaking, as radiative corrections might make the Higgs

too heavy. We will show in the next section that in order for that not to be the case, theory

spaces must satisfy mild constraints but there is still an arbitrariness to the theory spaces

that produce a given low energy physics.

3. Radiative corrections

Without gauge couplings and plaquette interactions, a theory space with M link fields has

a G2M global chiral symmetry, under which each link field transform as bifundamental

under independent global symmetries:

Σl → LlΣlR
†
l (3.1)

– 9 –
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Figure 7: Alternative deconstructions of a torus. The last figure is the 2× 2 torus of [19].

Without couplings, the link fields are exact Goldstone bosons with only derivative interac-

tions. Once gauge and plaquette couplings are included, some set of the chiral symmetries

are broken. The coupling constants may be viewed as spurions that give rise to masses and

non-derivative interactions. The essential feature of little Higgs theories that guarantees

ultraviolet insensitivity is that generation of operators containing mass terms for the little

Higgs requires many spurions. Consequently, since ultraviolet physics is analytic in the

parameters, quadratically divergent contributions to the little Higgs mass are suppressed

by many loop factors.

When building theory spaces there must be enough spurions so that there are no one

loop quadratic divergences. However, even if the one loop quadratic divergences are absent,

generically there will be a one loop finite contribution to the little Higgs mass so long as

the little Higgs is not an exact Goldstone boson. Infrared physics is not analytic in the

parameters and the finite contribution is of the order of:

m2
LH ∼

g2

(4π)2
M2

H (3.2)
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Figure 8: Construction of a theory space with relations XY X−1Y −1 and XZX−1Z−1. Note that

the two squares must be tiled with different links.

where MH is the mass of lightest new state which generically is of order MH ∼ gf . Using

this relation we find:

m2
LH ∼

g2

(4π)2
g2f2 ∼

g4

(4π)4
Λ2 (3.3)

where Λ ∼ 4πf is the ultraviolet cut-off of the theory. The infrared contributions are of the

same order of magnitude as a two loop quadratic divergence. Therefore, it is unnecessary to

eliminate anything but the one loop quadratic divergence. The only benefit of eliminating

divergent contribution of higher loop order would be that the little Higgs mass would be

calculable because the mass would be dominated by infrared physics, as opposed to having

ultraviolet and infrared physics providing parametrically the same contribution. Another

possible reason for eliminating more than one loop quadratic divergences would be if a

coupling was so strong so that loops involving this coupling were not suppressed.

Having to only eliminate the one loop quadratic divergences, the constraints on theory

space are very mild and can be stated simply:

Gauge Sector: Every link must connect two different sites.

Scalar Sector: No plaquette can contain the same link twice.

We can prove these rules by computing the quadratically divergent part of the one loop

Coleman-Weinberg potential. We turn on a little Higgs background fields and calculate

Tr M †M where M is the mass matrix of the theory in the presence of the background.

We first consider the gauge sector and show that gauge interactions never produce one

loop quadratic divergences so long as all the link connect two different sites or equivalently

all link fields are in bifundamentals as opposed to adjoint representations. Consider a link

field between two different sites i and j. The gauge boson mass matrix comes from the

covariant derivative, Aa
iM

2ij
ab[Ũ ]A

b
j , where a, b are gauge indices and

M2
ab[Ũ ] =

f2

4

(

1
2g

2
i δab −gigjmab[Ũ ]

−gigjm
†
ab[Ũ ]

1
2g

2
j δab

)

mab[Ũ ] = Tr TaŨTbŨ
†

– 11 –
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The important point is that diag M 2 is always independent of the background field, Ũ ,

and therefore will never produce a one loop quadratic divergence for any link field mass.

If a field is in the adjoint, then this argument will break down and a one loop quadratic

divergence will appear.

We now turn to the scalar sector. Consider an arbitrary plaquette:

V (Ui) = −λf
4 Tr M1U1 . . .MNUN + h.c. (3.4)

where Mi are arbitrary matrices. We rewrite the link fields as a linearized fluctuations, ui,

and a background fields, Ũi: Ui = exp(iui)Ũi. By dividing Ui in this way, the background

field drops off the kinetic term and we can extract the mass of ui directly from the potential

without having to worry about putting the kinetic term in canonical form. We expand out

the plaquette to quadratic order in the fluctuations and find the mass matrix, uaiM
2ij
abu

b
j .

The diagonal of the mass matrix is

diag M2ij
ab ∼ λf2 Tr M1Ũ1 . . .MiTaTaŨiMi+1Ũi+1 . . .MN ŨN (3.5)

where Ta are gauge group generators. Then summing over the diagonal entries of the

mass matrix and using
∑

a T2
a ∼

�
, we find Tr M 2 ∝ M1Ũ1 . . .MiŨiMi+1Ũi+1 . . .MN ŨN

which is just the plaquette operator. Since, by definition, the plaquettes do no contain

mass term for the little Higgs, this shows that plaquettes never produce one loop quadratic

divergences to the little Higgs mass unless fields appear in plaquettes more than once. If a

field appears in a plaquette more than once, than this argument will break down because

the mass matrix will have a more complicated form with Ũ dependent diagonal entries.

We are left with two requirements for a theory space to have no one loop quadratic

divergences: that no link begins and ends on the same point — that no link field is in an

adjoint representation, and that no plaquette contains a link twice. These constraints can

be easily satisfied, even with small theory spaces. These requirements place restrictions on

the minimal field content at the TeV scale. For instance, there must be at least a second

SU(2)×U(1) (or SU(3)) gauge symmetry broken around the TeV scale with massive gauge

bosons W ′ and B′. There must also be a massive multiplet of triplet, doublet and singlet

scalars φ, h, and η at the TeV scale to ensure that the scalar potential does not induce a

one loop quadratic divergence.

4. Fermions

The Standard Model Higgs is a pseudo Goldstone boson in little Higgs models and has

the same quantum numbers as the kaon. The Higgs mass is only protected from one loop

quadratic divergences if we preserve some of the global SU(3) chiral symmetry. In the

gauge and scalar sectors of these theories this was automatic at one loop, however, in the

fermion sector one loop quadratic divergences are possible if all the SU(3) chiral symmetry

that is protecting the Higgs mass is broken by one coupling.

– 12 –
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It is useful to write the Standard Model fermions as incomplete SU(3) triplets at the

SU(2) ×U(1) site 0 in order to make manifest the SU(3) symmetries we want to preserve

in the Yukawa couplings.

Q =

(

q

0

)

U c =







0

0

uc






Dc =







0

0

dc






L =

(

l

0

)

Ec =







0

0

ec






(4.1)

Under a U(1)0 transformation, θ, these fields transform as:

Q→ e
i
6
θQ U c → e−

2i
3
θU c Dc → e

i
3
θDc L→ e−

i
2
θL Ec → eiθEc (4.2)

At low energies, the effective coupling to the little Higgs is just through a Wilson line

operator W that stretches from site 0 back to site 0. Under a U(1)0 transformation, W

transforms as:

W → exp

(

i

6
T8θ

)

W exp

(

−
i

6
T8θ

)

(4.3)

with T8 = diag (1, 1,−2). Let us introduce projections matrices P1 = diag (1, 1, 0) and

P2 = diag (0, 0, 1). The gauge invariant Yukawa couplings2 are given by:

yufQ
TP1WP2U

c ydfQ
TP1W

∗P2D
c yefL

TP1W
∗P2E

c . (4.4)

These couplings arise from an ultraviolet completion in the ∼ 10TeV range. Having parti-

cles that carry flavour at this scale can produce unacceptably large flavour changing neutral

currents [18]. Flavour physics places constraints on possible completions. A simple solution

is to complete these theories into supersymmetric linear sigma models at this scale. These

couplings introduce quadratic divergences of the form:

Leff =
y2f
16π2

f2Λ2 Tr P1WP2W
† . (4.5)

This is just the usual quadratic divergence to the Higgs mass coming from Yukawa cou-

plings. For everything, but the top quark, the Yukawa couplings are small enough so that

the quadratic divergences are small enough to be ignored. For the top quark, removing

the one-loop quadratic divergence is of paramount importance. A solution was discussed

in [1, 19] where additional Dirac fermions were introduced on intermediate SU(3) sites.

The key ingredient was preserving at least one of the SU(3) global symmetries protecting

the Higgs mass. In this note we will consider an alternative mechanism. We can imagine

introducing an Dirac SU(2) doublet S, Sc such that we complete U c into an SU(3) triplet:

U c =

(

Sc

uc

)

. (4.6)

With the lagrangian:

Ltop = yufQ
TP1WU c +mSSS

c + h.c. (4.7)

2The low energy llhh dimension five Yukawa coupling that gives a neutrino mass is written in this

language as LT P1W
T P2WP1L.
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the one-loop quadratic divergence is Tr P1WW †, where there is not a second projection

matrix because of the global SU(3) symmetry of U c. If W is unitary, i.e. a product of link

fields, then this removes the one loop quadratic divergence. The chiral symmetry protects

the little Higgs’ mass. Similarly to the gauge and scalar sectors, we now have a rule for

avoiding quadratic divergence in the fermionic sector:

Fermion Sector: The top Yukawa couplings must preserve either a left (W → LW ) or

right (W →WR†) chiral symmetry.

The effective top quark Yukawa coupling is

y−2eff = (yu)
−2 +

(

mS

f

)−2

(4.8)

meaning that mS/f and yu should both be at least order unity to have an adequately large

top Yukawa coupling.

4.1 Plaquettes from Yukawa interactions

We now restrict ourselves to the model of [20] involving two sites and four links. If

we consider an alternate Wilson line: W1 = X1X
†
2 + X4X

†
3 , for the top quark then

we find a quadratic divergence in eq. 4.7. However, this divergence is to the operator

Tr P1X1X
†
2X3X

†
4 – one of the requisite plaquettes. This indicates that with this choice

of Yukawa coupling, it is unnatural for the coefficient of this plaquette to be small. In

other words, if we choose to set the tree-level coefficient of the operator to zero, it will be

generated at one-loop with an order f 4 coefficient, precisely the value we want. This is

only one of the plaquettes in the model of [20], but with a slightly more elaborate fermion

sector it is possible to generate both plaquettes from the top sector alone. The emphasis is

that plaquette operators are naturally generated with a sizeable coefficients from physics

below 10TeV.

A simple realization of top physics inducing the entire Higgs potential uses an ad-

ditional colored weak doublet Dirac fermion q̃, q̃c. Introducing two Wilson lines W1 =

c1X1X
†
2 + c′1X4X

†
3 and W2 = c2X4X

†
1 + c′2X3X

†
2 , we couple one Wilson line to each two

quark doublet in the Yukawa interactions:

Ltop = yufQW1U
c + ỹufQ̃W2MU c +mq̃q̃q̃

c +mSSS
c . (4.9)

where M = diag (1, 1, i) is a unitary matrix of phases and Q̃ = (q̃, 0). The one loop

quadratic divergence gives each plaquette:

Leff =
y2u
16π2

f2Λ2 Tr P1|W1|
2 +

ỹ2u
16π2

f2Λ2 Tr P1|W2|
2 . (4.10)

The one loop Coleman-Weinberg analysis gives a negative contribution to the Higgs mass

driving it negative and breaking electroweak symmetry.
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b

a

1Ω

Figure 9: Minima of the potential in eq. 5.2 labeled in eq. 5.3.

5. Lifting states

As mentioned in section 2, the theory spaces we are considering for realistic models have

mostly SU(3) sites, one SU(2) × U(1) site, and 3 × 3 matrix link fields transforming as

bifundamentals under the SU(3) chiral symmetries. Scalars decompose into triplets, dou-

blets and singlets under the unbroken SU(2). In all the models presented in the previous

sections, the triplets, doublets and singlets were classically degenerate. To construct real-

istic theories we need light doublets, but the triplets and singlets appear as extra adjoint

matter that appears to make the doublets into a full SU(3) adjoint multiplets. Finding the

minimal 100 GeV field content is an interesting question for phenomenological signatures

of the model. The natural question is whether it is possible to remove the light triplets

and singlets from the 100 GeV spectrum. Until now we have considered plaquettes that

were SU(3) symmetric, and treated triplets, doublets and singlets on equal footing. In this

section we generalize plaquette operators to include matrices that are invariant under the

SU(2)×U(1) gauge symmetry, but break the SU(3) chiral symmetry. This will allow lifting

the extra adjoint matter up to the TeV scale while leaving the doublets at the 100 GeV

scale.

The new types of operators that we will consider are of the form:

Tr MΣ0,nΣn,m . . . (5.1)

with 0 being the SU(2) × U(1) site and M = diag(a, a, b). The analysis of the low energy

physics of theory spaces that contain these generalized plaquettes proceeds as before, by

first gauge fixing and then minimizing the potential plaquette by plaquette. However, the

plaquette might not be minimized when the product of link fields is the identity as before.

For a plaquette of the form:

−λ Tr MΣ+ h.c. (5.2)

with λ real and positive, there are three different phases for the minimum, depending on

the choice of a and b.

a > 0 b > −
1

2
|a| 〈Σ〉 =

�

a < 0 b > −
1

2
|a| 〈Σ〉 = Ω

b < −
1

2
|a| 〈Σ〉 = Σ0

(5.3)

– 15 –



J
H
E
P
0
8
(
2
0
0
2
)
0
1
9

with Σ0 = exp
(

iT8η0
)

, η0 = cos
−1(−2b/a), and Ω = diag (−1−1, 1), T8 = diag (1, 1,−2).

Typically the Σ0 vacuum is uninteresting because it produces tree level masses for all the

fields and we will not consider it any further.

The resulting moduli space might not be SU(3) symmetric, and when the link fields are

expanded around the appropriate vacuum, the number of triplet and singlet zero modes

might be different than the number of doublet zero modes. To see how this happens,

consider a general 3× 3 special unitary matrix:

Z = exp(iz) = exp i

(

φ+ η h

h† −2η

)

(5.4)

then

ΩZΩ = exp(iΩzΩ) = exp i

(

φ+ η −h

−h† −2η

)

(5.5)

and a relation of the form

ΩZΩZ =
�

⇒ V = −λf 4 Tr ZΩZΩ ∼ λf 2 Tr
(

φ2 + η2
)

+ · · · (5.6)

indicates that around Z =
�
, the triplet and singlet, φ and η are massive while the doublet

h is massless. We can now use this tool to lift the triplet and singlet zero modes that were

present in the models considered until now. The most obvious set of relations that would

produce this result is given by:

UV U−1V −1 =
�

UΩUΩ =
�

V ΩV Ω =
�

(5.7)

The first relation guarantees the presence of a commutator quartic potential as in the torus,

and the last two relations, when expanded around U, V =
�
lift the singlet and triplet zero

modes.

We now need to build a theory space which yield those relations. We use a very

similar procedure to the one described in section 2.1. As before, we first draw the relations

using only one site but we now insert Ω as they appear in the relations. We then tile

this construction in a way that satisfies the rules mentioned earlier. The insertion of Ω

represents a plaquette that is minimized at Ω. Figure 10 shows the building of the theory

space in question.

5.1 Minimal model

We can also build simpler theory spaces with the same relations. Consider the two sites

model presented in section 2. In addition to the plaquettes in eq. 2.13 we add two new

plaquettes containing Ω. The total potential is given by:

V = −λ1X1X
†
2X3X

†
4 − λ2 Tr X

†
1X2X

†
3X4 −

− λ3 Tr ΩX1X
†
2ΩX4X

†
3 − λ4 Tr ΩX1X

†
4ΩX2X

†
3 (5.8)

The analysis of this model is straight forward. We can gauge fix by setting X1 =
�
. We

then minimize the first plaquette which gives X3 = X2X4. Minimization of the second
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Figure 10: Construction of a theory space with relation in eq. 5.7 that lift triplet and singlet Higgs.

The starting point is the first picture where the three relations are drawn with the Ω inserted. The

second picture shows a tiling that has no one loop quadratic divergences.

a b

Figure 11: A minimal model for electroweak symmetry breaking by little Higgs.

plaquette gives X2X
†
4X
†
2X4 =

�
. The third plaquette then requires ΩX †2ΩX

†
2 =

�
. Finally

the fourth plaquette yields ΩX †4ΩX
†
4 =

�
. Therefore we see that this theory space has

the same relations and consequently the same low energy physics as the theory space of

figure 10. The spectrum of this theory can also be understood by expanding the plaquettes

around the vacuum which we choose to be at Xi =
�
. Using eq. 5.5, we can see the

plaquettes give mass to three combinations of triplets and singlets and to one combination

of doublets. One triplet, one singlet and one doublet scalar are eaten by the SU(3) gauge

field multiplet that pick up a mass and we are left at low energy with two doublet zero

modes. These are the little Higgs of our theory and they pick up a negative mass squared

through top Yukawa interaction which can be implemented as in section 4. There is a

large stabilizing quartic interaction which is guaranteed by the potential and can be tied to

the top quark Yukawa coupling in the manner described in section 4.1. At the TeV scale,

the theory contains one doublet, three triplet and three singlet scalars and one multiplet

of SU(3) vector bosons. It also contains heavy fermions that were introduced in order to

cancel the quadratic divergence associated with the top Yukawa coupling. Because the top

Yukawa is in general larger than the gauge couplings and quartic interactions, these heavy

fermions will typically be the lightest of the new TeV scale particles.
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6. Conclusion

The stability of the weak scale requires new physics at the TeV scale. This physics could be

strongly coupled as in technicolor models or weakly coupled as in supersymmetry. There

is now a new class of models that stabilize the weak scale with weakly coupled new physics

qualitatively different than supersymmetry [1, 17]. Higgs bosons in these theories are

pseudo-Goldstone bosons and therefore naturally light. We studied models of this kind

that can be described by general theory spaces. This generalize the analysis of [1, 19]

which used toroidal theory spaces. The physics however remains the same: the Higgs are

pseudo-Goldstone bosons and have their mass protected by approximate chiral symmetries.

The quadratic divergences caused by couplings of the Higgs to particles of the low energy

theory are softened at the TeV scale by “partners” of the same spin. The theory remains

perturbative up to scales of ∼ 10TeV where an ultraviolet completion is needed.

The main result of this paper is the development of systematic procedures for extracting

the low energy particle content and potential form arbitrary theory spaces and for building

theory spaces that produce arbitrary low energy field content and potential. The former

consists in calculating the classical moduli space of the theory by first gauge fixing and

then minimizing each plaquette, and is equivalent to calculating the fundamental group of

the theory space. We thus learn that the low energy physics of a theory space is determined

by its topology, and different theory spaces with the same first homotopy group will have

the same low energy physics. They will differ only in their TeV scale spectrum.

We also derived two simple properties that a theory space must satisfy in order to be

free of quadratic divergences at one loop. This put some mild constraints on the shape

of admissible theory spaces. We also showed a simple way of introducing the top Yukawa

coupling without reintroducing quadratic divergences. The one loop constraints make for

minimal TeV scale physics predictions. To solve the one loop gauge quadratic divergence

there must be a W ′ and B′ massive vectors in the 1–2TeV range. To remove the one

loop quadratic divergences from the tree level scalar potential, there must be at least pair

of triplets and a pair of singlets in the 100GeV–1TeV range and an additional set of

triplet, doublet of singlet scalars in the 1–2 TeV range. Finally, for the top quark coupling,

a coloured Dirac fermion in the 700GeV–1TeV range is necessary. The lack of striking

experimental signatures in the 100–500 GeV range is the surprising feature of this class of

models. In particular, distinguishing this set of models from supersymmetric models from

the two light doublets would be a challenging task at the Tevatron or LHC.

Finally, we made use of the presence of a site of reduced gauge symmetry and intro-

duced generalized plaquettes that are gauge invariant but break the chiral symmetries (the

“T8 plaquette” of [1, 19]). This allowed us to push to the TeV scale the light singlet and

triplet scalars that were present before [1, 19, 20] and were the “SU(3) companions” of the

Higgs doublets. Using these generalized plaquette we built a minimal model of electroweak

symmetry breaking from theory space. It is very similar to the model of [20] but with the

light triplet and singlet scalar lifted to the TeV scale. In the 100GeV region the model

has only two Higgs doublets and in the TeV range has three singlet and triplet scalars, one

doublet scalar, one SU(3) vector boson multiplet and one coloured fermion.
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Little Higgs theories are still largely unexplored and there are a lot of model building

and phenomenological studies to be done. Interesting possibilities include combining the

ideas of [21] with little Higgs, pushing the cutoff to higher energies by using a “cascade”

of theory spaces, detailed studies of collider signatures, and cosmological implications.
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[10] C. Csáki, J. Erlich, C. Grojean and G.D. Kribs, 4D constructions of supersymmetric extra

dimensions and gaugino mediation, Phys. Rev. D 65 (2002) 015003 [hep-ph/0106044].

[11] H.C. Cheng, D.E. Kaplan, M. Schmaltz and W. Skiba, Deconstructing gaugino mediation,

Phys. Lett. B 515 (2001) 395 [hep-ph/0106098].

[12] W. Skiba and D. Smith, Localized fermions and anomaly inflow via deconstruction, Phys.

Rev. D 65 (2002) 095002 [hep-ph/0201056].

[13] H.-C. Cheng, C.T. Hill and J. Wang, Dynamical electroweak breaking and latticized extra

dimensions, Phys. Rev. D 64 (2001) 095003 [hep-ph/0105323].

[14] D.B. Kaplan and H. Georgi, SU(2)×U(1) breaking by vacuum misalignment, Phys. Lett. B

136 (1984) 183.

– 19 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB513%2C232
http://xxx.lanl.gov/abs/hep-ph/0105239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C4757
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C86%2C4757
http://xxx.lanl.gov/abs/hep-th/0104005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C105005
http://xxx.lanl.gov/abs/hep-th/0104035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C065007
http://xxx.lanl.gov/abs/hep-th/0104179
http://xxx.lanl.gov/abs/hep-th/0108089
http://jhep.sissa.it/stdsearch?paper=07%282002%29020
http://xxx.lanl.gov/abs/hep-th/0109082
http://xxx.lanl.gov/abs/hep-th/0110146
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB538%2C426
http://xxx.lanl.gov/abs/hep-th/0204195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB535%2C258
http://xxx.lanl.gov/abs/hep-ph/0203033
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C015003
http://xxx.lanl.gov/abs/hep-ph/0106044
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB515%2C395
http://xxx.lanl.gov/abs/hep-ph/0106098
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C095002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C095002
http://xxx.lanl.gov/abs/hep-ph/0201056
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD64%2C095003
http://xxx.lanl.gov/abs/hep-ph/0105323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C183


J
H
E
P
0
8
(
2
0
0
2
)
0
1
9

[15] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs scalars, Phys. Lett. B 136

(1984) 187.

[16] H. Georgi and D.B. Kaplan, Composite Higgs and custodial SU(2), Phys. Lett. B 145 (1984)

216.

[17] N. Arkani-Hamed, A.G. Cohen, E. Katz and A.E. Nelson, The littlest Higgs, J. High Energy

Phys. 07 (2002) 034 [hep-ph/0206021].

[18] R.S. Chivukula, N. Evans and E.H. Simmons, Flavor physics and fine-tuning in theory space,

hep-ph/0204193.

[19] N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak

symmetry breaking from theory space, hep-ph/0202089.

[20] N. Arkani-Hamed et al., The minimal moose for a little Higgs, hep-ph/0206020.

[21] S. Dimopoulos and D.E. Kaplan, The weak mixing angle from an SU(3) symmetry at a TeV,

Phys. Lett. B 531 (2002) 127 [hep-ph/0201148].

[22] K. Lane, A case study in dimensional deconstruction, Phys. Rev. D 65 (2002) 115001

[hep-ph/0202093].

[23] C.T. Hill and A.K. Leibovich, Deconstructing 5-D QED, Phys. Rev. D 66 (2002) 016006

[hep-ph/0205057].

[24] M. Nakahara, Geometry, topology and physics, Bristol, UK: Hilger 1990. Graduate student

series in physics.

– 20 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB136%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB145%2C216
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB145%2C216
http://jhep.sissa.it/stdsearch?paper=07%282002%29034
http://jhep.sissa.it/stdsearch?paper=07%282002%29034
http://xxx.lanl.gov/abs/hep-ph/0206021
http://xxx.lanl.gov/abs/hep-ph/0204193
http://xxx.lanl.gov/abs/hep-ph/0202089
http://xxx.lanl.gov/abs/hep-ph/0206020
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB531%2C127
http://xxx.lanl.gov/abs/hep-ph/0201148
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C115001
http://xxx.lanl.gov/abs/hep-ph/0202093
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD66%2C016006
http://xxx.lanl.gov/abs/hep-ph/0205057

