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Abstract: In the usual factorization theorems, which give predictions only for inclusive

cross sections, there is considerable freedom in the choice of the scheme to define the parton

distribution functions. These theorems do not directly apply to Monte-Carlo event gen-

erators, and more general factorization theorems which give predictions for fully exclusive

cross sections are needed. It has been shown that appropriate parton distribution functions

are uniquely defined by the showering algorithm. In this paper, we present results of cal-

culations of the Monte-Carlo parton distribution functions in terms of the commonly used

MS parton distribution functions. At small x the differences are large, which demonstrates

the importance of using the correct parton distribution functions in an event generator

rather than MS parton distribution functions. We present some simple approximations

that enable an understanding of the sizes of the results to be obtained.
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1. Introduction

The standard factorization theorems [1] of QCD only give predictions for inclusive cross

sections. In Monte-Carlo (MC) event generators we generate complete events and imple-

ment QCD predictions for the detailed structure of the final state, therefore it is important

to get both the inclusive cross section and the exclusive cross sections right.

For inclusive cross sections, there is freedom in choosing the factorization scheme that

defines the parton distribution functions (pdfs). But one of us has shown [2] that this is

not the case in MC event generators; the specific showering algorithm used in a particular

event generator entails a particular definition of the pdfs that should be used in the event

generator.1 In this paper we first expand these arguments, showing how they are related

to the requirement of obtaining correct exclusive cross sections.

We then present and analyze the results of calculations for pdfs that are appropriate to

the algorithm of Bengtsson, Sjöstrand and van Zijl [3], as is used, for example, in the event

generators PYTHIA and RAPGAP. In order to reach the next-to-leading order (NLO)

accuracy in both the inclusive and the exclusive cross sections, it is important to use the

correct pdfs and the correspondingly determined NLO hard scattering coefficients. As an

example, we show that in the DIS F2 calculation, using MS pdfs instead of the correct ones

for the specific event generator introduces an error of roughly 40% at small x. This can,

of course, substantially affect the phenomenology.

1See the Note added at the end of the paper for earlier work on the same idea.
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2. Factorization schemes and parton distribution functions in

Monte-Carlo event generators

2.1 Factorization theorem and Monte-Carlo event generators

The factorization theorem states that appropriate inclusive cross sections with a large

transverse momentum Q are given [1] (to the leading power in Q) by a hard scattering

coefficient convoluted with pdfs. Each hard scattering coefficient is infrared safe, calculable

in perturbation theory and independent of the external hadron. The pdfs contain all the

infrared sensitivity of the original cross section, they are external-hadron specific and are

independent of the particular hard scattering process.

For inclusive cross sections, it is well known that there is some freedom in choosing

the prescription by which the pdfs are defined. A set of rules that makes the choices is

called a ‘factorization scheme’. Such a scheme both defines the pdfs and implies a rule for

unambiguously calculating the hard scattering coefficients.

It might be concluded that this also applies to the hard scattering coefficients in an

MC event generator. As shown by one of us [2], this is not in fact the case, and we will

now review the reasoning.2

An MC event generator calculates the exclusive components of the cross section, by

using a combination of perturbatively calculated quantities for the larger scales and suitable

modeling for the nonperturbative physics. The perturbative part consists of hard-scattering

coefficients and evolution kernels. For the idea of computing NLO (and even higher order)

corrections to make practical sense, the perturbative expansions of the hard scattering

coefficients and the evolution kernels must be free of logarithms of large ratios of kinematic

variables.

Since the cross section being computed is exclusive rather than inclusive, the reasoning

leading to the factorization theorem for inclusive processes does not directly apply, and

more general arguments are mandatory [2, 6]. Now a pdf fi(x) is essentially the number

density of partons of flavor i and fractional longitudinal momentum x with an integral over

transverse momentum and virtuality. An examination [2] of the derivation of the event

generator algorithms shows that the form of this integral and its cutoff at large transverse

momentum and virtuality are determined by the showering algorithm. For example, if

the Bengtsson-Sjöstrand algorithm of ref. [3] is used for the kinematics of the initial-state

parton, then the pdf is

fi(x) =

∫

d4k δ

(

x−
k · (k + q)

p · q

)

θ(Q2 − |k2|)L(k, p) , (2.1)

where L(k, p) is a two-particle correlation function of two partons in the target hadron,

figure 1. The delta function gives the definition of the longitudinal fractional momentum

variable in the algorithm, and the theta function implements the upper cutoff on virtuality.

Some details concerning gauge invariance have not been precisely specified, but for our

2This implies that we disagree with the reasoning about NLO corrections to event generators that

assumes an opposite conclusion, as in refs [4, 5].

– 2 –



J
H
E
P
0
6
(
2
0
0
2
)
0
1
8

k

P
L

Figure 1: Two-parton correlation function used in definition of parton distribution function.

purposes this will not matter. In any case the definition is different from the MS definition,

and the specification of the showering algorithm implies a specific prescription for defining

the pdfs, without any further choice.

In an event generator, the definitions of the parton kinematics in an initial-state shower

are phenomenologically manifested in the kinematics of the hadronic final state. Hence

if the parton kinematics are mismatched between the parton-shower algorithm and the

definition of the pdf, the calculation of the final state is incorrect. This contrasts with

the calculation of an inclusive cross section, where the relevant part of the final state is

summed over; all that matters in an inclusive cross section is that given the kinematics for

the struck parton a final state is generated with probability unity.

As usual, at lowest order it is legitimate to approximate the pdfs in the correct scheme

by those in some other conveniently chosen scheme (e.g., MS). This is because the error

caused by the incorrect pdf is of the same order as the error caused by the unimplemented

NLO correction in the hard scattering. But beyond LO, this is not an appropriate approx-

imation.

The methods of, for example, Pötter [5], suggest that the scheme for the pdfs can

be chosen at will, with the scheme dependence of the pdfs being compensated for in the

computation of the hard scattering. This reasoning appears to be incorrect. It starts

from the assertion that the cross section is given by (‘bare’) pdfs convoluted with on-shell

partonic matrix elements computed without any subtractions. Although this statement is

often repeated in the literature, we know of no proof. Indeed it is a clearly unphysical

statement, since in the real world of QCD partons are never on-shell. Moreover it is not

necessary [7] for a correct proof of factorization. The incorrect starting assumption is

particularly inappropriate for work with an event generator, where one explicitly treats

the showering of partons that have much lower virtuality than that largest scale in the

process. Furthermore, as we stated above, the standard factorization theorem and its

derivation are not sufficient by themselves to derive an algorithm for parton showering, at

NLO accuracy.

Moreover, the method of Pötter results in the real-emission part of the NLO hard

scattering being obtained from unsubtracted partonic scattering graphs integrated down to

a small cutoff smin. Real emission at NLO below the cutoff is assigned to the same parton

configuration as the LO term; for this to be a useful approximation, smin must be substan-
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tially smaller than the primary scale Q2 of the hard scattering. This immediately implies

that there is a double logarithm of the ratio smin/Q
2 in the integrated hard scattering coef-

ficient. Since there will be corresponding logarithms in higher orders, this implies that the

NLO hard scattering in this method is an inappropriate way of truncating a perturbation

expansion.

Similar remarks apply to other proposals along similar lines, for example that of

Dobbs [4].

2.2 Pdfs in MC event generators

In [2], a subtraction method was introduced to consistently take into account the LO

and the NLO contributions for DIS in PYTHIA. Two different algorithms were discussed

and formulas for the appropriate pdfs in terms of MS pdfs were derived at the level of

gluon-induced NLO terms. The gluon-induced term is particularly important because

of the large size of the gluon distribution functions at small x. The algorithms are the

standard Bengtsson-Sjöstrand algorithm [3] and a modified algorithm of Collins [2] which

has improved kinematic properties. We label these algorithms “BS” and “JCC”.

In this section we review the derivation, which is made by comparing calculations of

the contribution of quark a to F2 in the MS scheme with the corresponding calculation in

each of the event-generator algorithms:

F a
2 (x,Q

2) = xf (MS)
a (x, µ2) +

+
αs(µ

2)

2π

∫ 1

x

dξ
x

ξ
f (MS)

g (ξ, µ2)

[

P (z) ln
Q2(1− z)

µ2z
−

1

2
+ 4z(1 − z)

]

+

+ NLO quark terms +O(α2
s) (2.2)

= xfBS
a (x,Q2) +

αs(Q
2)

2π

∫ 1

x

dξ

∫ 1

−1
d cos θ

x

ξ
fg(ξ,Q

2)×

×
1

1− cos θ

{[

P (z) −C(−t̂)
fa(x)

fa(x1)
P

(

x1

ξ

)]

−
1

4
+

3

2
z(1− z)

}

+

+ NLO quark terms +O(α2
s) (2.3)

= xfJCC
a (x,Q2) +

+
αs(Q

2)

2π

∫ 1

x

dξ
x

ξ
fg(ξ,Q

2)

[

P (z) ln
1

z
−

1

2
+ 3z(1 − z)

]

+

+ NLO quark terms +O(α2
s) . (2.4)

Here z = x/ξ while P (z) = 1
2 [z

2 + (1 − z)2] is the splitting kernel for gluon → quark-

antiquark pair. In the formula for the BS algorithm, x1 = x − 1
2ξ(1 − cos θ) and −t̂ =

Q2(1− cos θ)ξ/2x, while C(−t̂) = θ(Q2 + t̂) is the cutoff function for the showering.

We define F LO
2,MS

, FLO
2,BS and F LO

2,JCC to be the first terms on the right of each of eqs.

(2.2), (2.3) and (2.4) respectively. Similarly the second terms are called F NLO
2,MS

, FNLO
2,BS and

FNLO
2,JCC, respectively.
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Formulas follow immediately [2, 8] for the quark distribution function in the BS scheme

and the JCC scheme in terms of those in the MS scheme:

xfJCC
a (x, µ2) = xf (MS)

a (x, µ2) +

+
αs(µ

2)

2π

∫ 1

x

dξ
x

ξ
f (MS)

g (ξ, µ2) [P (z) ln(1− z) + z(1− z)] +

+ NLO quark terms +O(α2
s)

= xf (MS)
a (x, µ2) + FNLO

2,MS
− FNLO

2,JCC + NLO quark terms +O(α2
s) . (2.5)

xfBS
a (x, µ2) = xf (MS)

a (x, µ2) +

+
αs(µ

2)

2π

∫ 1

x

dξ
x

ξ
f (MS)

g (ξ, µ2)

{

P (z) ln
1− z

z
+ z(1− z)−

−

∫ 1

−1

d cos θ

1− cos θ

[

P (z)− C(−t̂)
fBS

a (x)

fBS
a (x1)

P

(

x1

ξ

)]}

+

+ NLO quark terms +O(α2
s) ,

= xf (MS)
a (x, µ2) + FNLO

2,MS
− FNLO

2,BS + NLO quark terms +O(α2
s) . (2.6)

Note that eq. (2.6) is a nonlinear equation in terms of fBS
a ; this arises from the particular

treatment of parton kinematics in the BS algorithm. When we calculate the numerical value

of fBS
a , we will use fMS

a in the integrand. We will justify this simplification in section 2.4.

We have performed numerical calcu-
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0.5

1
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x 
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2
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BS PDF
MS PDF
 fit 1
 fit 2

−4 −3 −2 −1 0
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(b)

BS PDF
MS PDF

Figure 2: The left-hand graph gives the u-quark

distribution at small x at Q2 = 625GeV2. The

lines are simple power law fits to the curves:

xu(x) = 0.135x−0.32 and xu(x) = 0.14x−0.27 for

the upper (MS) and lower (BS scheme) curves.

The inset gives the pdf at all x.

lations of the quark densities. Our code

is based on earlier work by Sabine Schil-

ling [9]. We have made the code avail-

able at [10]. Some results are shown in

figure 2, which gives the u quark distribu-

tion function in the MS and BS schemes

at Q2 = 625GeV2, with the MS density

being that of CTEQ5 [11]. This figure

clearly shows a large difference between

the BS pdf and the MS pdf at small x. The

curves for the d-quark distribution func-

tion are quite similar, so we do not show

them. In sections 2.3 and 2.4, we will an-

alyze the scheme dependence of the pdfs

in more detail.

If we use MS pdfs rather than the ones

appropriate to the BS algorithm of the

event generator, the exclusive cross sec-

tion will be in error by ∼ 40% at small x, although it is possible to get the correct inclusive

cross section, with the use of the well-known NLO correction in this scheme. As we will

explain, this correction is unusually small, so that good results can be obtained for the

inclusive cross section, i.e., for F2, even without the use of the NLO correction, if the MS

scheme is used.

– 5 –
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We conclude that, while MS pdfs are well-defined quantities and are appropriately

used in calculations of inclusive cross sections, they are not suitable for use in MC event

generators where the fully exclusive cross sections are our main concern.

For the same reason, the pdfs used in [4, 5] which are essentially MS pdfs with “scheme-

dependence” corrections, are not appropriate pdfs to use in the event generators.

2.3 The NLO contributions to F2

In this section we investigate the relative size of the NLO and LO contributions to F2,

with the aid of some useful approximations, and we show that the substantial differences

between the schemes are to be expected, because of the large size of the gluon distribution

function. A surprising result is that the NLO corrections to F2 in the MS scheme are

unusually small, as the result of special cancellations.

From eqs. (2.2), (2.3) and (2.4), the relative sizes of the NLO terms can be estimated

as follows:

FNLO
2

FLO
2

=
αs

2π

∫ 1

x

dξ
x

ξ
fg(ξ)O(1)

∼
αs

2π

fg(2x)

fa(x)
. (2.7)

This estimate is appropriate to the small x region. We have first observed that each integral

contains a factor αs/2π, a factor of the gluon distribution function and a factor of order

unity. At small x, the important values of ξ range from x to a modest factor times x, so

that we set the argument of the gluon distribution function to 2x, as an estimate of the

typical value of ξ.

The ratio of NLO to LO would gen-

−4 −3 −2 −1 0
log10(x)

−0.5

−0.3
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0.3
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N
LO

/L
O

 in
 F

2 
fr

om
 u

 q
ua

rk
 c

on
tr

ib
ut

io
n

NLO/LO BS scheme
NLO/LO MS scheme
Estimated ratio

Q
2
=33.8GeV

2

Figure 3: Ratio of the NLO and LO terms in F2

from u quark contribution for different factoriza-

tion schemes. We also show the simple estimate
αs

2π
fg(2x)
fa(x) eq. (2.7).

erally be at most of order αs/2π, which

is appropriate for a generic NLO correc-

tion, were it not that the gluon distribu-

tion function is large at small x. Clearly,

there should be an enhancement of the

NLO contribution, and the above formula

gives the expected size.

Figure 3 displays the numerical value

of the ratio of the NLO and the LO terms

in F2 for different factorization schemes

at Q2 = 33.8GeV2, in the case of the u

quark. The figure also show the results

for the simple estimate (2.7). Results for

other flavors would be similar.

For the BS scheme, the large gluon

distribution function at small x does in-

deed give a substantial effect: the NLO

contribution is close to 100% of the LO contribution at x = 10−4. The effect is much

– 6 –
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smaller at large x. The plot of the simple estimate (2.7) shows that this behavior is com-

pletely expected. The accuracy of the approximation is an accident, but the overall size is

not.

For the commonly used MS scheme, the NLO corrections are rather small for all x.

In view of the expected size of generic NLO corrections, we should regard the small size

of the correction in MS as an accident that is useful for phenomenology rather than as a

fundamental expectation. The cancellation is associated with the particular sizes of the

positive and negative terms in the second line of eq. (2.2).

To understand this cancellation better, it is convenient to perform a slightly different

approximation where we replace the pdfs by power laws. At small x, the gluon distribution

function fg(x) is roughly C/x
q and the quark distribution function fa(x) is roughly C

′/xr.

This gives the following approximations for each of the F NLO
2 s:

FNLO
2,MS

(x,Q2) ≈
αs(Q

2)

2π
Cx1−q

∫ 1

0
dzzq−1

[

P (z) ln
1

z
+ 4z(1 − z)

]

−

−
αs(Q

2)

2π
Cx1−q

∫ 1

0
dzzq−1

[

P (z) ln
1

1− z
+

1

2

]

, (2.8)

FNLO
2,BS (x,Q2) ≈

αs(Q
2)

2π
Cx1−q

∫ 1

0
dzzq−1

{

P (z) ln
1

z
−

1

2
+ 3z(1 − z) +

+

∫ 2z

O

dy

[

P (z)
1− (1− y

2z
)r

y
−
(

1−
y

2z

)r
(

1

4
y − z +

1

2

)]

}

≈
αs(Q

2)

2π
Cx1−q

∫ 1

0
dzzq−1

[

P (z) ln
1

z
+

3

2
z(1− z) +

1

3
z2

]

, (2.9)

FNLO
2,JCC(x,Q

2) ≈
αs(Q

2)

2π
Cx1−q

∫ 1

0
dzzq−1

[

P (z) ln
1

z
+ 3z(1 − z)−

1

2

]

. (2.10)

In each case, the lower limit of the z integral can be set to zero when x is small, and we

therefore have a simple power of x times a fixed integral over z.

The integrals of z in the above equations are basically all of O(1). The exponent q is

about 1.2 ∼ 1.4 for the gluon distribution function. The exponent r for the quark distri-

bution is close to 1 and less than q. Therefore, the NLO corrections will be enhanced at

small x. However there are negative terms in the MS integral which results in a cancella-

tion. There is a weaker cancellation in the integral for the JCC scheme, but there is no

cancellation in the integral for the BS scheme.

2.4 Accuracy of nonlinear term in BS pdfs

The BS quark distribution function is related to the MS distribution function by the non-

linear integral shown in eq. (2.6). As is normal, we replace the BS pdfs on the right-hand

side by the MS pdfs, so that we get a formula involving MS pdfs only. Generally this is

the normal procedure since the change involves an effect of relative order αs in an NLO

term. In transformations that are linear in the pdfs, this is quite sensible: All the errors are

handled by the uncalculated terms of yet higher order. However, this is more delicate for

the nonlinear formula, particularly given that the quark distribution functions have large

– 7 –
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corrections. A linear formula, as for the JCC scheme, only needs the gluon distribution

function, but our nonlinear formula also involves the quark distribution functions.

In this section we will show that this issue does not in fact affect the accuracy of our

calculations, since the right-hand side of eq. (2.6) only involves a ratio of quark distribution

functions; the ratio of BS quark distribution functions, fBS
a (x)/fBS

a (x1), is equal to the ratio

of the MS distribution functions to a good approximation.

Our demonstration is semi-analytic, so that we can see that the result is robust against

changes in the pdfs.

In figure 2, we fit the small x pdfs with y = AxB . The exponent B of x depends on

Q2, but the difference of exponent between the BS scheme and the MS scheme is roughly

the same for all Q2 and approximately equal to 0.05.

The error introduced by the replacement of the BS quark distribution functions by the

MS distribution functions on the right-hand side of eq. (2.6) is then

δ ≡
αs(Q

2)

2π

∫ 1

0
dz
x

z
fg

(x

z

)

∫ 1

1−2z

d cos θ

1− cos θ
P (z1)

[

fMS
a (x)

fMS
a (x1)

−
fBS

a (x)

fBS
a (x1)

]

, (2.11)

where z1 = z − (1− cos θ)/2.

The error δ is the largest in small x region because of the large difference between the

MS pdfs and the BS pdfs. When cos θ → 1 − 2z, x1 → 0, and then fa(x)/fa(x1) → 0,

therefore δ is very small. When cos θ→ 1, x1 ∼ x, we have

fa(x)

fa(x1)
≈ 1−

ξ

2
(1− cos θ)

f ′a(x)

fa(x)
(2.12)

and fMS
a (x) ∼ A1/x

1.32, fBS
a (x) ∼ A2/x

1.27.

We can see that δ depends on the pdfs through their difference in exponents of x,

rather than on the actual value of pdfs. Given the exponents of the BS pdf and the MS

pdf, we have,

δ ≈
αs

2π

∫ 1

0
dz
x

z
fg

(x

z

)P (z)

z
× 0.025 (2.13)

which is less than 5% of FNLO
2,BS . Therefore, our simplification is valid up to NLO accuracy.

3. Conclusion

We explained that the pdfs in MC event generators are determined by the showering algo-

rithm, and cannot be freely chosen, unlike the case for pdfs used in inclusive calculations.

The rules for calculating the hard-scattering coefficients at higher orders are then unam-

biguously defined. We then presented some numerical calculations of the quark distribution

functions to be used with the BS algorithm. At small x the corrections are large, so that

the commonly used MS pdfs are inappropriate for use in event generators. We used some

simple approximations to understand the size of the corrections and to show that the large

correction is to be expected.

The code for the MC-specific pdfs is available at [10].
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Note added. Early papers on HERWIG, for example the paper of Marchesini and Web-

ber [12], also mentioned the idea that the showering algorithm entails a particular definition

of the pdfs, with cutoffs on parton kinematics that correspond to cutoffs in the showering.

However, since the event generator was only implemented at leading order, the need for

modified pdfs was not emphasized in ref. [12]; it was sufficient to use unmodified pdfs from

standard fits.

We thank the referee for bringing this work to our attention.
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