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1. Introduction

Light-by-light scattering is a paradigm process in quantum field theory even if it is not yet

of experimental relevance.1 The calculation of the process at the one-loop level, the first

non-vanishing order, was accomplished quite some time ago [2]–[6]. Gauge invariance and

IR/UV finiteness leads to enormous cancellation mechanisms when individual Feynman

graphs are summed up. As such the study of light-by-light scattering is an ideal testing

ground for new methods relevant for loop calculations.

The computation of the higher order corrections to this process has been plagued by

the difficulty of evaluating two-loop four point functions with four on-shell legs. At present

it is not possible to include the mass of the particles circulating inside the loops. However,

the complete set of integrals for planar on-shell two-loop graphs with massless internal

particles is now known [7]–[13] together with a set of algorithms for reducing the tensor

integrals down to the basis set of master integrals [14, 15, 16]. This technology has recently

been applied to calculate the two-loop matrix elements for a wide range of 2→ 2 scattering

processes [1] and [17]–[25].

1See the nice review of the current experimental situation in ref. [1].
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Recently the two-loop corrections for light-by-light scattering were calculated [1] by

applying the helicity formalism at the two-loop level. The helicity formalism, which is

strictly defined only in 4-dimensions greatly simplifies the calculation on the one-loop level.

The generalisation to the two-loop case was done only recently [1, 17, 23, 24]. In other

cases [18]–[22] and [25]the interference between two-loop and tree level amplitudes directly

relevant for next-to-next-to-leading order calculations has been computed by working with

n-dimensional kinematics only. This approach is not applicable in the case of four-photon

scattering as a tree level operator simply does not exist.

In the present paper we follow another approach to calculate helicity amplitudes which

in a certain sense interpolates between both methods. Namely by analysing the tensorial

structure of the amplitude [2], valid to all orders in perturbation theory, we define projec-

tors to isolate the coefficients of particular tensor structures. These projectors are defined

in n-dimensions and therefore allow for a completely n-dimensional treatment of the com-

putation of the tensor coefficients. The symmetry of the process dictates that there are

only three independent coefficients. By fixing the helicity of the external photons, it is

then straightforward to apply helicity methods to extract specific helicity amplitudes from

the general tensor in terms of the three n-dimensional coefficients. The relation between

the helicity amplitude and the tensor coefficients is independent of the order that the coef-

ficients are computed at. It is also independent of whether or not the particles circulating

in the loops are massive. As an explicit example, we focus on the circularly polarised

amplitudes. Similar techniques can be applied to obtain linear polarised amplitudes. Note

that in defining the helicity amplitudes the external states are four-dimensional, however,

the tensor coefficients are fully n-dimensional.

We apply the method to a fairly general class of Lagrangians containing photons,

charged and neutral scalars and charged and neutral fermions with prescribed couplings.

There are several gauge invariant classes and we list these contributions separately. We

give explicit results for the N = 1 and N = 2 SUSY QED Lagrangians [26, 27, 28].

Although these unbroken supersymmetric theories have no direct phenomenological rele-

vance, they have a theoretical interest of their own and have led to new insights in the

possibilities of quantum field theory, in particular regarding its divergences. The presence

of a supersymmetry leads to important cancellations between the bosonic and fermionic

degrees of freedom. One of the best known consequences is the disappearance of quadratic

divergences in N = 1 supersymmetric theories. These divergences generally appear in

renormalization constants and have no direct physical consequences. More interesting are

cancellations or simplifications for physical quantities. These can be analysed on the basis

of supersymmetric Ward identities [29, 30, 31]. In the case at hand these lead to the pre-

diction that two of the independent helicity amplitudes vanish, a fact that we will verify

in our calculation. The general analysis of supersymmetric Ward identities is a rather

involved affair, due to the fact that there is no easily implementable supersymmetric regu-

larization. The identification of a supersymmetry preserving regulator is beyond the scope

of this paper. We therefore work in conventional dimensional regularisation which ex-

plicitly breaks supersymmetry by keeping n − 2 polarizations for internal photons while

the photino has only 2 degrees of freedom. However, because the quantities we calculate

– 2 –
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are infrared and ultraviolet finite, they are supersymmetric in the four-dimensional limit.

There may be violations of supersymmetry of O(n − 4), but they are not relevant in the

four-dimensional limit.

While the simplifications in N = 1 supersymmetry are already very interesting,

stronger results are possible in the case of N = 2 supersymmetry. For instance it is

known that the beta function in N = 2 super Yang-Mills theories is fully determined at

the one-loop level. Since the infinite contributions that determine the beta function sat-

isfy such strong non-renormalization theorems, one can also expect large cancellations for

finite quantities. In order to check for such cancellations in the photon-photon scattering

amplitude it is necessary to work at the two-loop level, since at the one-loop level there is

no difference between N = 1 and N = 2 supersymmetry. We will indeed find an interesting

pattern of simplifications taking place going up in the number of supersymmetries. Similar

simplifications for certain supersymmetric higher-loop amplitudes were already reported in

the case of N = 4 Super-Yang-Mills [32] and N = 8 Supergravity [33].

Our paper is organised as follows. In section 2 we recall the lagrangian for Supersym-

metric QED and review the particle content of the theory. The relevant Feynman rules

are collected in appendix A. The general tensor structure for light-by-light scattering is

detailed in section 3, together with the constraints from transversality of the external po-

larisation vectors, Bose symmetry and the gauge Ward identities that reduce the number

of independent tensor coefficients to three. The general tensor is mapped onto circularly

polarised helicity amplitudes in section 3.1. We explicitly show how each of the three in-

dependent helicity amplitudes can be written in terms of the three n-dimensional tensor

coefficients. In section 3.2 we introduce projection operators that can be applied to the full

tensor to isolate any of the tensor coefficients. A discussion of the Supersymmetric Ward

identities is given in section 4.1 while the results of an explicit calculation of the one- and

two-loop helicity amplitudes are given in sections 4.2 and 4.3, respectively. The individual

contributions to the two-loop amplitudes from the gauge invariant sub-classes of diagrams

are listed in appendix B. Finally our findings are summarised in section 5.

2. The SUSY QED lagrangian

N = 1 Supersymmetric QED [26, 27] is an abelian gauge theory containing a vector

multiplet (Aµ, λα, λ̄
α̇) containing the vector photon field and the Majorana photino and

two chiral multiplets (ψα
L, φ

−
L ) and (ψα

R, φ
+
R) with charge QL = −1 and QR = +1, each

consisting of a Weyl spinor and a scalar field representing the electron and scalar electron

matter fields. The N = 1 SUSY QED lagrangian with massless matter fields is given by,

LN=1
SQED = −1

4
FµνF

µν +
1

2
γ̃1iγ

µ∂µγ̃1 + |Dµφ
−
L |2 + |D†µφ+

R|2 +ΨiγµDµΨ+

+
√
2e
(

ΨPRγ̃1φ
−
L − φ+

Rγ̃1PRΨ+ h.c.
)

− 1

2
e2
(

|φ−L |2 − |φ+
R|2
)2
, (2.1)

where

Ψ =

(

ψLα
ψ
α̇

R

)

, γ̃1 =

(−iλα
iλ̄α̇

)

, (2.2)
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and where Dµ is the gauge covariant derivative and Fµν is the field strength of the photon.

This lagrangian corresponds to the Wess-Zumino gauge where all unphysical fields are

removed by gauge transformations.

N = 2 Supersymmetric QED [26] contains in addition a chiral multiplet, a Majorana

gaugino and a complex scalar photon, (ψ0
α, ψ̄

0α̇, φ0). The N = 2 SUSY QED lagrangian

with massless matter fields is given by,

LN=2
SQED = LN=1

SQED +
1

2
γ̃2iγ

µ∂µγ̃2 + |∂µφ0|2 +
√
2e
(

ΨPLγ̃2φ
−
L + φ+

Rγ̃2PLΨ+ h.c.
)

+

+
√
2e
(

ΨPLΨφ
0 + φ0∗ΨPRΨ

)

− 2e2
(

|φ−L |2 + |φ+
R|2
)2 |φ0|2 −

− 1

2
e2
(

|φ−L |2 + |φ+
R|2
)2

+
1

2
e2
(

|φ−L |2 − |φ+
R|2
)2
, (2.3)

where

γ̃2 =

(

ψ0α

ψ
α̇
0

)

.

Note that the N = 2 supersymmetry leads to a SU(2) symmetry under which the photinos

and scalar electrons transform nontrivially. By writing them as doublets
(

φ+
L

φ+
R

)

,

(

γ̃1

γ̃2

)

,

the photino–electron–selectron interactions can then be written as

Lγeẽ =
√
2e(φ−L , φ

−
R)

[

ΨPR

(

1 0

0 1

)

+ΨPL

(

0 1

−1 0

)](

γ̃1

γ̃2

)

+ h.c. (2.4)

which is equivalent to the manifestly SU(2) invariant form presented in [28].

For completeness, the Feynman rules for these Lagrangians are given in appendix A.

3. The tensor structure of the four photon amplitude

We consider the process where all particles are incoming

γ(p1, λ1) + γ(p2, λ2) + γ(p3, λ3) + γ(p4, λ4) −→ 0 , (3.1)

and photon i carries momentum pi and has helicity λi. The amplitude has the form

M = ε1,µ1
ε2,µ2

ε3,µ3
ε4,µ4

Mµ1µ2µ3µ4(p1, p2, p3, p4) , (3.2)

where the scattering tensor Mµ1µ2µ3µ4 has the following general decomposition

Mµ1µ2µ3µ4 = A1g
µ1µ2gµ3µ4 +A2g

µ1µ3gµ2µ4 +A3g
µ1µ4gµ2µ3 +

+
3
∑

j1,j2=1

(

B1
j1j2

gµ1µ2 pµ3

j1
pµ4

j2
+B2

j1j2
gµ1µ3 pµ2

j1
pµ4

j2
+B3

j1j2
gµ1µ4 pµ2

j1
pµ3

j2
+

+B4
j1j2

gµ2µ3 pµ1

j1
pµ4

j2
+B5

j1j2
gµ2µ4 pµ1

j1
pµ3

j2
+B6

j1j2
gµ3µ4 pµ1

j1
pµ2

j2

)

+

+
3
∑

j1,j2,j3,j4=1

Cj1j2j3j4p
µ1

j1
pµ2

j2
pµ3

j3
pµ4

j4
. (3.3)

Terms such as εµ1µ2µ3µ4 are forbidden on the grounds of parity invariance. The functions

Ai, B
i
jk and Cijkl are functions of the Mandelstam variables, s = (p1 + p2)

2, t = (p2 + p3)
2,

– 4 –
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u = (p1+p3)
2 and the spacetime dimension n. They also depend on the mass of the electron

and any other particles that may be involved in the scattering process. This decomposition

is valid for arbitrary loop order since it is based solely on the Lorentz structure of the

external particles. Altogether, there are 138 coefficients. However, many coefficients are

irrelevant since they drop out when contracted with the photon polarisation vectors due

to the transversality condition,

εj · pj = 0, for j ∈ {1, 2, 3, 4} . (3.4)

This reduces the number of coefficients to 57.

Bose symmetry of the external photons means that these coefficients are not inde-

pendent. Requiring invariance under the exchange of any index pair (j, µj), where the

first labels the external vector and the second is the Lorentz index of the corresponding

polarisation vector reduces the number of independent functions to 11.

The number of independent functions is further reduced by gauge symmetry. The

related Ward identities read in an obvious notation,

Mp1ε2ε3ε4 =Mε1p2ε3ε4 =Mε1ε2p3ε4 =Mε1ε2ε3p4 = 0 . (3.5)

Applying the gauge symmetry reduces the number of independent functions to three which

we take to be,

A1(s, t, u) , B1
11(s, t, u) , C2111(s, t, u) . (3.6)

Once these functions are known, the full tensor can be reconstructed.

3.1 Helicity amplitudes

It is often convenient to express the amplitude in terms of the helicity structure of the

scattering process. This can straightforwardly be achieved using the Lorentz structure of

the tensor. In principle there are 16 helicity amplitudes - two polarisations for each photon.

However, parity, time-reversal and Bose symmetry reduce this number to four which is fur-

ther reduced to three by crossing symmetry. Note that the number of independent helicity

amplitudes matches the number of independent functions describing the tensor. We take

M++++ , M+++− , M++−− , (3.7)

to be a basis from which the other helicity amplitudes can be reconstructed.

By specifying polarisation vectors for the external photons and applying them to the

full tensor, we can derive the helicity amplitudes in terms of the three independent functions

A1, B
1
11 and C2111. We find that, up to overall phases,

M++++ = A1(s, t, u) +A1(t, u, s) +A1(u, t, s) −
u2

4t
B1

11(s, t, u)−

− t(2s+ t)

4u
B1

11(s, u, t) −
u2

4s
B1

11(t, s, u)−
s(t− u)

4u
B1

11(t, u, s) +

+
(2s− t)t

4s
B1

11(u, s, t) −
s(s− 2t)

4t
B1

11(u, t, s) +
s(s− 2t)u

8t
C2111(s, t, u) +

– 5 –
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+
st(t− u)

8u
C2111(s, u, t) +

t2u

8s
C2111(t, s, u)−

st2

8u
C2111(t, u, s) +

+
tu2

8s
C2111(u, s, t) +

su2

8t
C2111(u, t, s) , (3.8)

M+++− = −u
2

4t
B1

11(s, t, u)−
t2

4u
B1

11(s, u, t) +
u2

4s
B1

11(t, s, u) +
s(t− u)

4u
B1

11(t, u, s) +

+
t2

4s
B1

11(u, s, t) +
s(−t+ u)

4t
B1

11(u, t, s) +
s(t− u)u

8t
C2111(s, t, u)−

− st(t− u)
8u

C2111(s, u, t)−
t2u

8s
C2111(t, s, u) +

st2

8u
C2111(t, u, s) −

− tu2

8s
C2111(u, s, t) +

su2

8t
C2111(u, t, s) , (3.9)

and

M++−− = A1(s, t, u) +A1(t, u, s) +A1(u, t, s) −
u2

4t
B1

11(s, t, u)−

− t(2s+ t)

4u
B1

11(s, u, t) −
u2

4s
B1

11(t, s, u)−
s(t− u)

4u
B1

11(t, u, s) +

+
(2s− t)t

4s
B1

11(u, s, t) −
s(s− 2t)

4t
B1

11(u, t, s) +
s(s− 2t)u

8t
C2111(s, t, u) +

+
st(t− u)

8u
C2111(s, u, t) +

t2u

8s
C2111(t, s, u)−

st2

8u
C2111(t, u, s) +

+
tu2

8s
C2111(u, s, t) +

su2

8t
C2111(u, t, s) . (3.10)

Amplitudes for linearly polarised light can also be straightforwardly obtained from the

general tensor and are given in terms of A1, B
1
11 and C2111.

Note that in deriving the helicity amplitudes, we have made no assumptions about how

the functions A1, B
1
11 and C2111 are calculated. In the conventional approach to computing

loop helicity amplitudes one has to define a description to deal with scalar products between

loop momenta and polarisation vectors. Furthermore, we have made no assumptions about

the masses of particles in the loops.

3.2 Projection operators

To calculate the independent functions A1, B
1
11 and C2111 it is convenient to define pro-

jection operators that (a) isolate the function and (b) saturate the free Lorentz indices.

This latter point is important for practical calculations since it allows for the cancellation

of reducible scalar products between loop momenta and external vectors in the Feynman

diagram integrals. These reducible scalar products can be expressed in terms of inverse

propagators and many cancellations already happen at this level. For example at the one-

loop level, no tensor box integral needs to be evaluated since any loop momentum appearing

in the numerator will immediately cancel one of the propagators. This reduces the com-

plexity of the one-loop calculation enormously. For higher-loop or multi-leg applications

such simplifications are highly appreciated.

– 6 –
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To invert eq. (3.3) and isolate the independent functions, it is useful to define the

following tensors,

Pµν = gµν − 2

3
∑

j=1

3
∑

k=1

pµj Hjk p
ν
k ,

Rν
j = 2

3
∑

k=1

Hjk p
ν
k , (3.11)

where H = G−1 is the inverse of the 3 by 3 Gram matrix defined by the momenta p1, p2,

p3. In terms of Mandelstam variables, these matrices are given by

G =





0 s u

s 0 t

u t 0



 , H =
1

2





1/s+ 1/u 1/s 1/u

1/s 1/s+ 1/t 1/t

1/u 1/t 1/t+ 1/u



 (3.12)

P is a projector onto the (n− 3)-dimensional subspace perpendicular to the 3-dimensional

space spanned by the vectors p1, p2, p3, p4. Rj,ν is the dual vector to pνj relative to this 3-

dimensional space. One may easily check the following relations for the objects Pµν andRµ
j ,

PµρP ν
ρ = Pµν ,

Pµ
νp

ν
j = 0 ,

Pµ
µ = tr(P) = tr(P · P) = n− 3 ,

Pµ
νRν

j = 0 ,

Rj,νp
ν
k = δjk ,

Rj,νR ν
l = 2Hjl . (3.13)

To determine the tensor coefficients, Aj , we define the following linear operators

Ã1(M) =
1

(n− 1)(n− 3)
Pµ1µ2

Pµ3µ4
Mµ1µ2µ3µ4 ,

Ã2(M) =
1

(n− 1)(n− 3)
Pµ1µ3

Pµ2µ4
Mµ1µ2µ3µ4 ,

Ã3(M) =
1

(n− 1)(n− 3)
Pµ1µ4

Pµ2µ3
Mµ1µ2µ3µ4 . (3.14)

One finds by direct calculation that





Ã1(M)

Ã2(M)

Ã3(M)



 =
tr(P)

(n− 1)(n− 3)





tr(P) 1 1

1 tr(P) 1

1 1 tr(P)









A1(s, t, u)

A2(s, t, u)

A3(s, t, u)



 . (3.15)

Staying in n-dimensions and inverting the system of equations yields,





A1(s, t, u)

A2(s, t, u)

A3(s, t, u)



 =
1

(n− 4)





(n− 2) −1 −1
−1 (n− 2) −1
−1 −1 (n− 2)









Ã1(M)

Ã2(M)

Ã3(M)



 . (3.16)

– 7 –
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We see that the right-hand side appears to introduce an additional factor of 1/(n− 4). On

the other hand, the sum

A1(s, t, u) +A2(s, t, u) +A3(s, t, u) = Ã1(M) + Ã1(M) + Ã1(M)

is free of spurious poles. We will discuss how these apparent extra poles cancel each other

directly in the helicity amplitudes below. It is straightforward to define projectors for the

coefficients Bα
lk ,

B̃1
kl(M) =

1

(n− 3)
Pµ1µ2

Rkµ3
Rlµ4

Mµ1µ2µ3µ4 −

− 2

(n− 4)
Hkl

(

(n− 2)Ã1(M)− Ã2(M)− Ã3(M)
)

, (3.17)

where the last term is proportional to A1. The other Bα’s are found by permuting the

Lorentz indices in (3.17) and subtracting the respective A’s. Acting with eq. (3.17) on the

general tensor one finds the desired property,

B̃α
kl(M) = Bα

kl(s, t, u) ,

by using relations (3.13).

In the same spirit one can construct projectors for the coefficients Cjklm,

C̃jklm(M) = Rjµ1
Rkµ2

Rlµ3
Rmµ4

Mµ1µ2µ3µ4 −
− 2

[

HjkB̃
1
lm(M) +HjlB̃

2
km(M) +HjmB̃

3
kl(M)+

+HklB̃
4
jm(M) +HkmB̃

5
jl(M) +HlmB̃

6
jk(M)

]

−

− 4

[

HjkHlm

(n− 4)

(

(n− 2)Ã1(M)− Ã2(M) − Ã3(M)
)

+

+
HjlHkm

(n− 4)

(

(n− 2)Ã2(M)− Ã3(M)− Ã1(M)
)

+

+
HjmHkl

(n− 4)

(

(n− 2)Ã3(M) − Ã1(M)− Ã2(M)
)

]

, (3.18)

where the last three terms are proportional to A1, A2 and A3, respectively, and which again

satisfies,

C̃ijkl(M) = Cijkl(s, t, u) .

The linear operators acting on the amplitude defined in eqs. (3.14), (3.17) and (3.18)

are sufficient to determine any of the coefficients on the right-hand side of the general

tensor decomposition of the amplitude in eq. (3.3). The linear nature ensures that one can

apply these projectors on a graph by graph basis.

All of the tensor coefficients are linearly related to the basis set of eq. (3.6) by gauge

invariance and permutation symmetry. An important and non-trivial check of a full di-

agrammatic calculation is to evaluate each of the tensor coefficients and to verify the

relations amongst them imposed by the Ward identities.

– 8 –
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It remains to be shown that the poles present in eq. (3.16) cancel. This is seen by

focussing on the dangerous Ãj terms only. For C2111 one finds that the 1/(n − 4) pole

drops out directly,

C2111(s, t, u) = C̃2111(M) = · · · + 4H11H12 [A1(s, t, u) +A2(s, t, u) +A3(s, t, u)] .

For B1
11 one has,

B1
11(s, t, u) = B̃1

11(M) = · · ·+ t

su
A1(s, t, u) . (3.19)

Using the Bose symmetry relations,

A1(s, t, u) = A1(s, u, t) , A2(s, t, u) = A1(u, t, s) , A3(s, t, u) = A1(t, s, u) ,

a short calculation shows that in eqs. (3.8), (3.9) and (3.10) only the sum of the Aj ’s is

present so that the helicity amplitudes are free of spurious poles. This ensures that the

projector method can be applied on a graph by graph basis without the need to expand

one order higher in ε.

4. Light-by-light scattering in SUSY QED

4.1 The SUSY ward identity

Supersymmetric amplitudes are expected to satisfy the Supersymmetric Ward identity [29,

30, 31],

0 = 〈0| [Q, a†1 . . . a†n] |0〉 , (4.1)

where Q is the Supersymmetry generator that satisfies Q|0〉 = 0 and a†i are the creation

operators for particles in the initial state. Application of eq. (4.1) to states with three

photons and a photino yields the following identities,

M++++ ≡ 0 ,

M+++− ≡ 0 . (4.2)

At tree level these identities are trivially satisfied due to the abelian nature of the photon.

Beyond tree-level, couplings with the matter multiplet give rise to non-trivial interactions,

that we investigate in the subsequent subsections. As mentioned in the introduction, we

work in conventional dimensional regularisation and treat all momenta and Lorentz indices

as n-dimensional. This breaks supersymmetry because the fermionic and bosonic degrees of

freedom for the gauge multiplet are no longer equivalent. We therefore expect that there will

be non-trivial corrections to the SUSYWard identity that vanish in the 4-dimensional limit.

For convenience we decompose the helicity amplitudes perturbatively as

Mλ1λ2λ3λ4
= α2

(

M(1)
λ1λ2λ3λ4

+
α

π
M(2)

λ1λ2λ3λ4
+O(α2)

)

. (4.3)
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4.2 One-loop SUSY QED helicity amplitudes

Because of the abelian nature of QED, there is no quartic photon coupling at tree level. At

one loop a four-point contribution is generated by the interaction of the photon with the

matter multiplet. The one-loop amplitude can be decomposed according to gauge invariant

subsets of graphs. There are two such groups at one-loop so that

M(1) =M(1),S +M(1),F , (4.4)

where the dependence on the helicities has been suppressed. These two contributions,

M(1),S and M(1),F , denote the scalar electron and electron loops, respectively. In the

Standard Model, only the electron loops, M(1),F , contribute. We find

M(1),S
++++ = 8 +O(ε) ,

M(1),F
++++ = −8 +O(ε) ,

M(1),S
+++− = −8 +O(ε) ,

M(1),F
+++− = 8 +O(ε) ,

M(1),S
++−− = 4− 2

(

(X − Y )2 + π2
)

+ 4
(

(X − Y )2 + π2 − 2(X − Y )
) t2

s2
+

+ {u↔ t}+O(ε) ,

M(1),F
++−− = −4− 4

(

(X − Y )2 + π2 − 2(X − Y )
) t2

s2
+ {u↔ t}+O(ε) , (4.5)

where

X = log

(−t
s

)

, Y = log

(−u
s

)

. (4.6)

Combining all graphs together, the one-loop light-by-light scattering amplitudes in

SUSY QED are rather compact and are given by,

M(1)
++++ ≡ 0 , M(1)

+++− ≡ 0 ,

M(1)
++−− ≡ 4s(n− 4)

(

Box6(s, t) + Box6(s, u)
)

− 4s(n− 2)Box6(t, u)

= −4
(

(X − Y )2 + π2
)

+O(ε) , (4.7)

where Box6(s, t) is the (infrared and ultraviolet finite) one-loop box graph in 6−2ε dimen-

sions. At one loop there is no contribution from the gauge multiplet and this is therefore

the result for both N = 1 and N = 2 SUSY QED.

The fact that M(1)
++++ and M(1)

+++− both vanish is directly attributable to the SUSY

Ward identity. The zeroes for M(1)
++++ and M(1)

+++− occur at the level of the master

integrals, i.e. to all orders in n−4. This is perhaps not surprising since although dimensional

regularisation breaks the supersymmetry for the gauge multiplet, the photon and photino

are not present as internal particles in any of the one-loop graphs. At this order, we are

not sensitive to the SUSY breaking engendered by dimensional regularisation.

At one-loop we expect that amplitudes contain terms of weight 0, 1 and 2 (counting

logarithms and π as weight 1, squares of logarithms as weight 2 and constants (excluding

π) as weight 0). By inspection of eq. (4.5), we see that all such terms are present in the

– 10 –
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Figure 1: Typical diagrams involving the photino that are related by charge conjugation. The

dashed line represents the scalar electron, while the overlaid solid and wavy lines represent the

photino. Similar graphs can be drawn where the dashed line represents the scalar photon and the

overlaid solid and wavy lines represent the electron.

fermion and scalar contributions. However, the supersymmetric cancellation is such that

only terms of weight 2 remain in eq. (4.7), all weight 0 and weight 1 contributions are

eliminated. We also note that terms proportional to ratios of the kinematic scales t2/s2

in the individual contributions (4.5) completely cancel in the supersymmetric result of

eq. (4.7).

4.3 Two-loop SUSY QED helicity amplitudes

Unlike the one-loop case, the chiral photino-electron-selectron coupling is present and it

is necessary to address the issue of how to treat γ5. Because of the parity invariance of

the process, the scattering amplitude contains no antisymmetric part, indicating that the

γ5 contributions drop out. We can see this by considering a typical pair of diagrams with

a photino exchange that are related by charge conjugation as shown in figure 1. Up to

overall factors, the contribution from the first diagram is given by

I1 ∼
∫

dnk

(2π)n
dn`

(2π)n
Tr(PR/̀PL/kε1/k1ε2/k12ε3/k123ε4/k)

(k2)2(k1)2(k12)2(k123)2`2(k − `)2
, (4.8)

where ki···j = k + pi + · · ·+ pj and

PL =

(

1− γ5

2

)

, PR =

(

1 + γ5

2

)

. (4.9)

Similarly the second graph is

I2 ∼
∫

dnk

(2π)n
dn`

(2π)n
Tr(PR/̀PL/kε4/k4ε3/k34ε2/k234ε1/k)

(k2)2(k4)2(k34)2(k234)2`2(k − `)2
. (4.10)

Relabelling k → −k, `→ −` and using charge conjugation to reverse the trace, we find that,

I2 ∼
∫

dnk

(2π)n
dn`

(2π)n
Tr(PL/̀PR/kε1/k1ε2/k12ε3/k123ε4/k)

(k2)2(k1)2(k12)2(k123)2`2(k − `)2
(4.11)

so that, up to common factors

I1 + I2 ∼ [PR/̀PL + PL/̀PR] · · · =
1

2
[/̀ − γ5/̀γ5] · · · . (4.12)
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A B C

Figure 2: Graphs relevant for the electron, photino, scalar electron and scalar photon contributions

M(2),F , M(2),P , M(2),S and M(2),X . The solid lines represent particles from the matter multiplets,

i.e. the electron or scalar electron while the internal wavy lines denote particles from the gauge

multiplets, the photon, the photino or the scalar photon.

D E F

G H

Figure 3: Graphs relevant for the photino and scalar electron contributions M(2),P and M(2),S.

The solid lines represent the scalar electron while the wavy lines denote either the photon or photino.

As expected, traces with single γ5 factors drop out entirely. Since the amplitudes are finite,

we therefore use an anti-commuting γ5 such that,

1

2
[/̀ − γ5/̀γ5] = /̀ . (4.13)

Similar arguments apply to the chiral couplings of the scalar photon with the electron.

4.3.1 N = 1 SUSY QED

As in the one-loop case, it is convenient to break the amplitude up according to the different

gauge-invariant pieces so that

M(2) =M(2),S +M(2),F +M(2),P +M(2),V , (4.14)

where the dependence on the helicities has been suppressed. At two-loops there are con-

tributions from photino exchange, M(2),P , and the four scalar vertex, M(2),V , as well as

graphs where the electron or scalar electron couple directly to the photons, M(2),F and

M(2),S . Altogether there are 1902 Feynman graphs which we generate using QGRAF [34].

Figures 2–6 show the types of Feynman graphs relevant for the various contributions. Tad-

pole graphs and self-energies of external legs are not shown since they vanish in dimensional

regularisation. We note that all of the possible diagrams are planar.
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I J K

L M N

O P Q

Figure 4: Graphs relevant for the scalar electron contribution M(2),S. The solid lines represent

the scalar electron while the wavy lines denote the photon.

R S T

Figure 5: Graphs relevant for the scalar four-point interaction contribution M(2),V . The solid

lines represent the scalar electron while the wavy lines denotes the photon.

U V W

Figure 6: One-particle reducible graphs relevant for the electron, scalar electron and scalar photon

contributions M(2),F , M(2),S and M(2),X . The solid lines represent particles from the matter

multiplet, i.e. the electron or scalar electron while the wavy lines denote the photon or scalar

photon. Graphs V and W are only part of the scalar electron contribution.

Explicit evaluation of the two-loop graphs yields rather lengthy results for the indi-

vidual gauge invariant subsets, and we list them in appendix B. Combining the various

components according to eq. (4.14) gives the following two-loop N = 1 SUSY QED helicity

amplitudes,

M(2)
++++ = 0 +O(ε) ,

M(2)
+++− = 0 +O(ε) ,
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M(2)
++−− = +

(

− 16 Li4(y) + 8 (Y + 2) Li3(y) + 8Y Li3(x) + 8 (X Y − Y +X) Li2(y)−

− 16 ζ3 +
16

45
π4 − 2

3
(6Y + 11 + 2X Y ) π2 +

+
2

3

(

−X4 + 6X2 Y 2 + 4X Y 3 + 12X Y − 4X3 + 8Y 3
)

)

+

+

(

− 16 Li4(z)− 8 (Y −X) Li3(y)− 8 (Y −X) Li3(x)− 8 X Y Li2(y)+

+

(

− 8

3
π2 − 8 X Y

)

Li2(x) +
1

15
π4 − 2

3
(Y + 2−X) (Y −X) π2 +

+
1

3

(

4X3 + 12X3 Y + 12X Y 2 − 12X2 Y − 4X Y 3 + Y 4 − 3X4−

− 30X2 Y 2 − 4Y 3
)

)

t2

s2
+ 8 X2 t

u
+

+ iπ

{

16 X
t

u
+

(

4

3
(Y −X) π2 +

4

3
(Y −X) 3

)

t2

s2
+

+

(

16 Li3(x) + 8 X Li2(y) + 8 X Li2(x)−

− 4

3
(2Y − 1) π2 − 4

3
Y
(

6X − 6Y + Y 2 − 9X Y − 12
)

)}

+

+ {u↔ t}+O(ε) , (4.15)

where we have used the standard polylogarithm identities [35] to express our results in

terms of a basis set of constants (where ζn is the Riemann Zeta function, ζ2 = π2/6,

ζ3 = 1.202056 . . .), logarithms and polylogarithms Lin(w) defined by

Lin(w) =

∫ w

0

dt

t
Lin−1(t) , for n = 2, 3, 4 ,

Li2(w) = −
∫ w

0

dt

t
log(1− t) , (4.16)

with arguments x, 1− x and (x− 1)/x, where

x = − t
s
, y = −u

s
= 1− x , z = −u

t
=
x− 1

x
. (4.17)

In the physical region s > 0 and t, u < 0, our basis set of functions are all real.

As expected from the SUSY Ward identities, eqs. (4.2), two of the helicity amplitudes

vanish in the n→ 4 limit. However, the identities are violated by terms of O(ε) which can

be traced back to the SUSY breaking nature of dimensional regularisation.

The SUSY Ward identity does not require that M++−− vanishes, but, as in the one-

loop case, there are still significant cancellations and the full amplitude is somewhat more

compact than the individual contributions (which are listed in appendix B): in fact, at

two-loops we expect that amplitudes contain terms up to weight 4 (counting Lin, ln
n and

ζn as weight n, lnm Lin as weight n+m and so on). Each of the individual contributions

forM++−− listed in appendix B, and in particular the fermion contribution M(2),F
++−− that
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corresponds to the Standard Model (N = 0 SUSY), demonstrates that all possible weights,

0, . . . , 4, are present. However, we see that the N = 1 SUSY amplitude of eq. (4.15)

contains terms of weight 2, 3 and 4 and that, as in the one-loop case, terms of weight 0 and

1 cancel. We also note that the individual contributions contain terms proportional to the

dimensionless ratios, t4/u2s2, t2/s2, t/u (and t↔ u), while in the combination selected by

N = 1 SUSY, (4.15), the terms proportional to t4/u2s2 drop out.

4.3.2 N = 2 SUSY QED

For N = 2 SUSY, there are additional contributions from the gaugino, the scalar photon

and the modified quartic scalar electron interactions. In terms of the different gauge-

invariant pieces we find that

M(2) =M(2),S +M(2),F + 2M(2),P + 3M(2),V +M(2),X , (4.18)

where again the dependence on the helicities has been suppressed. Here,M(2),X denotes the

144 graphs involving the scalar photon while the factors of 2 and 3 multiplying the photino

and four-point scalar electron contributions, respectively, reflect the aditional photino and

the modified scalar electron interactions of the N = 2 SUSY theory.

Combining the individual gauge invariant contributions listed in appendix B according

to eq. (4.18), we find the N = 2 SUSY QED helicity amplitudes are rather compact and

are given by,

M(2)
++++ = 0 +O(ε) , M(2)

+++− = 0 +O(ε) ,

M(2)
++−− =

(

−16 Li4(y) + 8 Y Li3(x) + 8 Y Li3(y) +
16

45
π4 − 2

3
X Y π2−

− 2

3
Y 3 (Y − 4X)

)

+ iπ

{(

16 Li3(x)−
4

3
Y π2 − 4

3
Y 2 (Y − 3X)

)}

+

+ {u↔ t}+O(ε) . (4.19)

As expected, two of the helicity amplitudes vanish as n→ 4 due to the SUSYWard identity.

The remaning non-trivial helicity amplitude is considerably simpler than that obtained in

either pure QED [1] (see the fermion loop contributions in appendix B) or the N = 1 SUSY

QED helicity amplitudes of eq. (4.15). In particular, we note that only terms of weight 4

remain, the contributions of weight 2 and 3 (that were present in the N = 1 case) have can-

celled. Furthermore, all terms depending on the ratios of kinematic scales have dropped out.

5. Summary

We have demonstrated that the method based on n-dimensional projections is able to gen-

erate helicity amplitudes in an efficient way. We have been able to confirm the previous

results for photon-photon scattering via a charged fermion loop obtained by helicity meth-

ods in the high energy limit where the fermion mass can be ignored. The method can, in

principle, be used for more complicated processes, involving massive particles in the loop,

non-abelian fields and/or more external vertices. The method is constructed such that one

can use standard n-dimensional Lorentz covariant reduction techniques for tensor-integrals

not only for squared matrix elements, but also for helicity amplitudes.
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M++−− one-loop two-loop

N = 0 0,1,2 0,1,2,3,4

N = 1 2 2,3,4

N = 2 2 4

Table 1: Weights of terms contribution to M++−− at one- and two-loops. The N = 0 result refers

to the fermion contribution of eq. (B.3) while values given for N = 1 and N = 2 are extracted from

eqs. (4.15) and (4.19).

As an application we studied photon-photon scattering in the theoretically interesting

cases ofN = 1 andN = 2 supersymmetric QED. Because the process is both ultraviolet and

infrared convergent, the results are explicitly supersymmetric in n = 4, which is sufficient

to draw conclusions regarding SUSY cancellations. We have not addressed the question of

whether the method can be used to define supersymmetric amplitudes also at higher order

in (n− 4). However, we expect that the situation here will be similar to that found using

other techniques, where explicit terms proportional to (n − 4) have to be added in order

to preserve the SUSY Ward identities at all orders in (n− 4).

The results we found have an interesting pattern of simplification as one increases the

number of supersymmetries. In normal QED, corresponding to N = 0 supersymmetries,

one finds three independent amplitudes. For supersymmetric theories, two of these helicity

amplitudes vanish. This is well understood on the basis of the supersymmetric Ward iden-

tity. An intricate pattern of cancellations occurs in the remaining (non-trivial) amplitude,

M++−−, as N is increased, both in terms of the dimensionless ratios of kinematic scales

and in the weights of the functions present in the amplitude.

First, considering the one-loop level, one finds in normal (N = 0) QED terms propor-

tional to the dimensionless ratios t2/s2 and u2/s2 together with weights of logarithm of

0,1, 2 (see eq. (4.5). In the supersymmetric case (4.7), there are no dimensionless ratios

and there is a uniform weight of 2 for the logarithms.

At the two-loop level, the pattern is similar, see tables 1 and 2. Normal (N = 0)

QED contains powers of t/s up to 4 and all weights of logarithm from 0 to 4. The N = 1

case shows some simplifications, powers of t/s exist only up to squares and the logarithmic

terms have weights 2, 3, 4. Finally in the N = 2 theory there are no powers of t/s in the

amplitudes and the logarithms are uniformly of weight 4. We see therefore, that increasing

the number of supersymmetries reduces the complexity of the amplitudes and that the

N = 2 theory is maximally simplified. A conjecture would be that this pattern persists

in higher orders of perturbation theory, where one would expect no powers and a weight

of two times the level of loops in the logarithms. This pattern might be explainable by

performing similar calculations in superspace.

Acknowledgments

We thank Valya Khoze, Adrian Signer, Bas Tausk and Georg Weiglein for helpful dis-

cussions. This work was supported in part by the UK Particle Physics and Astronomy

– 16 –



J
H
E
P
0
5
(
2
0
0
2
)
0
6
0

M++−− 1 t2

s2
, u2

s2
, t

u
, u

t
t4

u2s2
, u4

t2s2

N = 0
√ √ √
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A. The SUSY QED Feynman rules

The Feynman rules for the SUSY QED Lagrangians of eqs. (2.1) and (2.3) with all momenta

incoming are given by,

µ − ieγµ ,

µ

p1

p2

ie(pµ1 − p
µ
2 ) ,

µ

ν

2ie2gµν ,

ei

ei

ej

ej







2ie2 , i = j ,

−ie2 , i 6= j , N = 1 ,

+ie2 , i 6= j, N = 2 ,

e

γ



















−ie
√
2PR , ẽ = φ−L , γ̃ = γ̃1 ,

−ie
√
2PL , ẽ = φ−L , γ̃ = γ̃2 ,

+ie
√
2PL , ẽ = φ+†

R , γ̃ = γ̃1 ,

−ie
√
2PR , ẽ = φ+†

R , γ̃ = γ̃2 ,
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e

γ



















−ie
√
2PL , ẽ = φ−†L , γ̃ = γ̃1 ,

−ie
√
2PR , ẽ = φ−†L , γ̃ = γ̃2 ,

+ie
√
2PR , ẽ = φ+

R , γ̃ = γ̃1 ,

−ie
√
2PL , ẽ = φ+

R , γ̃ = γ̃2 ,

e

Φ0

{

−ie
√
2PL , Φ0 = φ0 ,

−ie
√
2PR , Φ0 = φ0∗ .

(A.1)

where the photon, electron, scalar electron, photino and scalar photon are denoted by wavy,

solid, dashed, overlaid solid and wavy and overlaid dashed and wavy lines, respectively.

B. Two-loop contributions to the helicity amplitudes

In this appendix we list the individual contributions to the two-loop helicity amplitudes.

There are five separate gauge invarariant contributions, loops with scalar particles coupling

to photons, electron loops, photino exchange graphs, diagrams with the four scalar vertex

and graphs involving the scalar photon. We find that individual two-loop contributions are

given by,

M(2),S
++++ = −6 ,

M(2),F
++++ = −12 ,

M(2),P
++++ = +24 ,

M(2),V
++++ = −6 ,

M(2),X
++++ = −12 , (B.1)

M(2),S
+++− = −4 X2 t4

u2s2
+
(

π2 − 2
(

2Y +X Y − 3X2
))

− 4 X (2 + 3X)
t

u
+

+
(

−2 π2 − 2
(

2Y − 2X − 2X Y − 3X2 + 3Y 2
)) t2

s2
+

+ iπ

{

−8 (1 + 3X)
t

u
+ 4 (−1 + 2X) − 8 (−2X + Y )

t2

s2
− 8 X

t4

u2s2

}

+

+ {u↔ t} ,

M(2),F
+++− = − 2 X2 t4

u2s2
−
(

−X2 + 2Y
)

− 2 X (2 + 3X)
t

u
+

+
(

−π2 −
(

2Y − 2X − 2X Y − 3X2 + 3Y 2
)) t2

s2
+

+ iπ

{

−4 (1 + 3X)
t

u
+ 2 (X − 1)− 4 (−2X + Y )

t2

s2
− 4 X

t4

u2s2

}

+

+ {u↔ t} ,

M(2),P
+++− = 6 X2 t4

u2s2
+
(

−π2 +
(

6Y − 7X2 + 2X Y
))

+ 6 X (2 + 3X)
t

u
+

+
(

3 π2 + 3
(

2Y − 2X − 2X Y − 3X2 + 3Y 2
)) t2

s2
+
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+ iπ

{

12 (1 + 3X)
t

u
− 2 (5X − 3) + 12 (−2X + Y )

t2

s2
+ 12 X

t4

u2s2

}

+

+ {u↔ t} ,
M(2),X

+++− = −M(2),P
+++− ,

M(2),V
+++− = 0 , (B.2)

M(2),S
++−− = − 4 X2 t4

u2s2
− 8 X (X + 1)

t

u
+

+

(

16 Li4(x)− 8 (Y − 2) Li3(y)− 8 Li3(x) Y − 8 (X − Y +X Y ) Li2(x)−

− 16 ζ3 −
31

45
π4 +

4

3

(

−3Y − 3−X2 + 2X Y
)

π2 +

+
1

3

(

−24X2 − 3− 18X2 Y 2 − 48X + 8Y 3 + 24X Y
)

)

+

+

(

− 16 Li4(z) − 32 Li4(y)− 32 Li4(x) + 8 (−2 + Y + 3X) Li3(y)+

+ 8 (Y + 3X + 2) Li3(x) + 8 Li2(y)X Y +

+

(

−8

3
π2 + 8 (−2Y − 2X +X Y )

)

Li2(x) +
112

45
π4 +

+
4

3

(

−6X Y + 4Y + Y 2 + 3− 2X +X2
)

π2 −

− 4

3

(

−9X2 +X4 + 6X2 Y − 9X2 Y 2 − 4X3 Y + 6X Y 2 − 6Y−

− 2X3 + 2Y 3 + 6X + 6X Y
)

)

t2

s2
+

+ iπ

{

−8 (1 + 2X)
t

u
− 8 X

t4

u2s2
+

+

(

−16 Li3(y)− 8 X Li2(y)− 8 Li2(x)X +
8

3
π2 Y+

+
4

3

(

6Y 2 − 12− 6X Y − 9X Y 2 + Y 3
)

)

+

+

(

32 Li3(y) + 32 Li3(x) + 32 Y Li2(y) + 32 (Y − 1) Li2(x) −

− 4

3
(−2 + 5Y + 3X) π2 −

− 4

3

(

−9X2 Y + 6Y 2 − 27X Y 2 + 12X Y + 6Y − 12X−

− 6X2 + Y 3 + 3X3
)

)

t2

s2

}

+ {u↔ t} ,

M(2),F
++−− = − 2 X2 t4

u2s2
+

(

16 Li3(y) + 8 (Y −X) Li2(x)− 16 ζ3 −
2

3
(5 + 6Y ) π2+

+
2

3

(

−6Y 2 + 12X Y + 4Y 3 − 3− 12 Y
)

)

− 4 X
t

u
+
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+

(

− 16 Li4(z) − 16 Li4(y)− 16 Li4(x) + 8 (−1 + 2X) Li3(y)+

+ 8 (1 + 2X) Li3(x) +

(

−8

3
π2 − 8 (X + Y )

)

Li2(x) +
7

9
π4 −

− 2

3

(

Y 2 + 2X Y − Y −X − 3 +X2
)

π2 −

− 1

3

(

5X4 − 6X Y 2 − 12 Y − 10X3 + Y 4 − 18X2 − 4X Y 3−

− 20X3 Y + 6X2 Y 2 + 12X Y + 12X + 10 Y 3 + 30X2 Y
)

)

t2

s2
+

+ iπ

{

− 4
t

u
+

(

4

3
π2 + 8

(

−X Y + Y − 1 + Y 2
)

)

− 4 X
t4

u2s2
+

+ (16 Li3(y)+ 16 Li3(x) + 16 Y Li2(y) + 16 (Y − 1) Li2(x)−

− 4

3
(−1 + 2Y + 2X) π2 +

+
4

3

(

12X Y 2 − 3Y + 6X2 Y − 3Y 2 − 2X3+

+6X + 3X2 − 6X Y
)) t2

s2

}

+ {u↔ t} , (B.3)

M(2),P
++−− = 6 X2 t4

u2s2
+ 4 X (4X + 3)

t

u
+

+

(

− 32 Li4(x) + 16 Li3(y) Y + 16 (Y − 1) Li3(x) + 8 (Y −X) Li2(y)+

+ 16 Li2(x) Y X + 16 ζ3 +
47

45
π4 − 2

3

(

6X Y − 2X2 − 6X − 5
)

π2 −

− 2

3

(

−15X2 Y 2 − 18 Y 2 + 12X Y − 6− 36 Y − 4X3 Y + Y 4 + 4Y 3
)

)

+

+

(

16 Li4(z) + 48 Li4(y) + 48 Li4(x)− 8 (−3 + 2Y + 4X) Li3(y)−

− 8 (2Y + 4X + 3) Li3(x)− 16 Li2(y)X Y +

+

(

8

3
π2 − 8 (−3Y + 2X Y − 3X)

)

Li2(x)−
16

5
π4 −

− 2

3

(

11 Y + 2Y 2 − 16X Y − 5X + 9 + 2X2
)

π2 +

+
2

3

(

−18 Y + 3X4 + 15X Y 2 − 27X2 − 7X3 + Y 4 − 30X2 Y 2−

− 4X Y 3 − 12X3 Y + 18X Y + 18X + 7Y 3 + 21X2 Y
)

)

t2

s2
+

+ iπ

{

4 (3 + 8X)
t

u
+ 12 X

t4

u2s2
+

+

(

32 Li3(x) + 16 X Li2(y) + 16 Li2(x)X −
4

3
(4Y + 1) π2−

− 8

3

(

−3Y − 9X Y 2 − 3X Y + Y 3 + 3X2 − 9
)

)

+

– 20 –
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+

(

− 48 Li3(y)− 48 Li3(x)− 48 Y Li2(y)− 48 (Y − 1) Li2(x)+

+
4

3
(−3 + 8Y + 4X) π2 +

+
4

3

(

2Y 3 + 9Y + 9Y 2 − 18X − 12X2 Y − 42X Y 2 + 4X3−

−9X2 + 18X Y
)

)

t2

s2

}

+ {u↔ t} ,

M(2),X
++−− = −6 X2 t4

u2s2
− 12 X (2X + 1)

t

u
+

+

(

32 Li4(y)− 16 X Li3(x)− 16 X Li3(y)−
47

45
π4 − 2

3

(

−1 + 2X2
)

π2+

+
2

3

(

−3− 4X3 Y − 18 Y 2 − 3X2 Y 2 + Y 4 − 36 Y
)

)

+

+

(

− 48 Li4(y)− 48 Li4(x) + 24 (1 + Y +X) Li3(x)+

+ 24 (Y +X − 1) Li3(y)− 24 (Y +X) Li2(x) +
47

15
π4 +

+
2

3

(

13 Y + 3X2 + 9− 7X + 3Y 2 − 12X Y
)

π2 −

− 1

3

(

−12X3 Y − 36 Y + 36X − 10X3 + 3X4 − 54X2 + 30X2 Y+

+3Y 4 + 10 Y 3 − 12X Y 3 + 42X Y 2 + 36X Y − 18X2 Y 2
)

)

t2

s2
+

+ iπ

{

− 12 (1 + 4X)
t

u
− 12 X

t4

u2s2
+

+

(

−32 Li3(y) +
8

3
X π2 +

8

3

(

−9 + Y 3 − 3X2 Y − 9Y
)

)

+

+
(

48 Li3(x) + 48 Li3(y)− 48 Li2(x)− 4 (Y +X − 1) π2−
− 4

(

6X Y +X3 − 3X2 − 3X Y 2 − 6X − 3X2 Y + 3Y 2+

+3Y + Y 3
)) t2

s2

}

+

{

u↔ t

}

,

M(2),V
++−− = − 1 . (B.4)

The contribution from fermion exchange M(2),F has previously been computed in ref. [1]

and we find complete agreement with the results presented there once the different defini-

tions of the helicity amplitudes are taken into account.
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